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Abstract--Novel microwave phase shifters consisting of
coupled microstripHnes on thin ferroelectric films have been
demonstrated recently. A theoretical model useful for
predicting the propagation characteristics (insertion phase
shift, dielectric loss, impedance, and bandwidth) is presented
here. The model is based on a variational solution for line
capacitance and coupled strip transmission line theory.

Index Terms--FerroelectriciO,, Phase shifter circuits

I. INTRODUCTION

Recently, microwave phase shifters have been
demonstrated that used thin ferroelectri¢ films and

superconducting or normal metal coupled microstrip lines
that also served as biasing electrodes [1.2]. The insertion loss

of these Ku- and K-band phase shifters was substantially

better than their semiconductor microwave integrated circuit

counterparts. More than 400 of continuous phase shift with
about 4 dB loss at 77 K was obtained using YBazCu_O7.6

electrodes and the incipient ferroelectaic SrTiO3, sequentially

deposited onto 0.25 mm thick LaAIO3 substrates. An
insertion loss of about 5 dB was obtained from a similar

design using gold electrodes and BaxSrj._ TiO3 films on

LaAIO_ at room temperature. The films were grown by

pulsed laser ablation.
These low loss phase shifters enable a new type of phased

array antenna called a fen'oelectric reflectarray [3,4]. A

reflect,-mW antenna combines the best features of a gimbaled

parabolic dish (i.e., high efficiency and low cost) and a direct

radiating array (e.g., vibration-free scanning). It consists of a

surface of printed elements illuminated by a radiating feed.

The energy from the feed can be re-radiated to form a cophasal

beam. In the past, reflectarray antennas have been

implemented using spiral elements interconnected with

diodes to achieve far field phase shift [5]. However, their

performance has been limited by the losses of the phase

shifting elements and the finite number of phase shifting bits.

Senior Member IEEE.

Fixed beam printed microstrip patch reflectarrays have also

been reported [6]. But a viable technique for including

variable phase shift with printed radiators was elusive. The

phase shifters analyzed here hold promise for this application

because they are compact, low-loss, and can be fabricated

lithographically on the same surface as the radiating element.

II. VARIATIONAL FORMULATION OF LINE CAPACITANCE

The designs are based on a series of coupled

microstriplines interconnected with short sections of

nominally 50 f2 microstrip. Bias up to 400 V is applied to

the sections via printed bias-tees consisting of a quarter-wave
radial stub in series with a very high impedance quarter-wave

microstrip. A sketch of the cross-section is shovval in Fig. 1.

By concentrating the fields in the odd mode, the phase shift

per unit length is maximized and by using the film in thin
film form the effects of high loss tangent are minimized. The

amount of phase shift can be increased by cascading coupled
line sections. Though methods for calculating the

propagation parameters of coupled transmission lines are well
knoval, coupled lines on stratified substrates are difficult to

analyze. And the high permittivity of the ferroelectric layer

causes unacceptably long computation time by full-wave

electromagnetic simulators because the geometry must be

fractured into many thousands of cells. The multi-layer

structure is analyzed here using a computationally efficient

variational method to calculate the complex propagation

constant and characteristic impedance. The method is quite

general and can be used for multiple layers of various

dielectrics or other types of transmission lines. For example,

a multi-layer microstrip can be analyzed by allowing the strip

spacing (s) to become much greater than the substrate

thickness (h) or strip width (w).

In the case of cascaded coupled lines increasing phase shift

occurs at the expense of bandwidth since the structure

NA SA/TM--2000-209919



resemblesamulti-polefilter.Changingthedielectricconstant
of the ferroelectricfilm to change insertion phase also

modifies the pass band characteristic, resulting in a net

bandwidth of =10%. The bandwidth compression

phenomenon is shovw_ in Fig. 2 for an 8-section

Bao.60Sr04oTiO3 on 0.3 mm thick MgO phase shifter [10].

Roll-off at the high frequency end is attributed to the bias

tees. The impedance matrix of the cascade network can be

derived by traditional coupled line theory using the

superposition of even and odd mode excitation [7]. Then an

equivalent S-parameter model can be extTacted and used to

predict the pass-band characteristics of the phase shifter.

Line capacitance (C) can be calculated by adapting the
quasi-TEM variational expression from Koul and Bhat [8]

Figure 1,--Cross section of a coupled microstripline
phase shifter. The ferroelectric film and substrand

thickness are h1 and h2, respectively. The X denotes
electric current directions. Maximum voltage coupling

occurs when the line length (1) is kg/4.

and using the transverse transmission line method c£
Crampagne, Ahrnadpanah and Guiraud [9].

1 / C = (1 / q2)fs p(x,y)0(x, y)dl (1)

where q = _, p(x.y)dl and _b(x,y) is the potential distribution
which satisfies Poisson's equation and can be expressed in
terms of the admittances (Yn..,) at the charge plane (y = h_ +
h2) looking in the positive and negative y directions.
According to Crampagne, et al., the admittance can be
expressed in terms of the dielectric constant of each layer. The

charge distribution p(x.y) for the even and odd mode
excitations was assumed to have the form:

p(x, Y)e,o = 1/w{1 + A¢,o1(2/ w)(x -(W-s- w)/213 },

(W-s)/2-w <x <(W-s)/2 (2)

Marker GHz dB
1 16.0 -5.7549
2 18.0 -5.375
3 20.0 -5.9968
4 22.0 -6.2695
5 24.0 -6.4856

m
_0

Start Stop
15.0 25.0

. GHz

Figure 2.--Bandpass characteristics of an 8-section
coupled microstripline phase shifter using a 400 nm
BaxSr__xTiO3 film on 0.3 mm thick MgO. Bias voltages
from left to right are 0, 25, 50, 100, and 150V. Coupled
lines are 350 itm long and 301¢mwide separated by
7.5 p.m.

where A_.o are constants derived by maximizing the even (e)

and odd (o) mode capacitance. That is, a trial function that
maximizes capacitance yields the most accurate result. It is an
attribute of the variational method that the trial function for

the charge distribution does not have to be known precisely a
priori in order to evaluate capacitance. The expression for Ao
is given in (3) to (6).

The variational approach is only valid for electrically thin

stratified substrates. But since the coupling to surface waves

represents an operational limit, it is appropriate for practical

microwave applications.

Ao = _-_ (_.4.M(n) - L(n)). L(n). g(n) (3)
"--' (4. M(n) - L(n)). M(n)-g(n)

n

v,here

and

4 "I 2'W12
g(n) = n-r_. Y(n) kn-----------------_,w) (5)

and

M(n)=(_)3"sinl n'_ '(W-s-w)l'[ 3I(n'rt'w_2L2.w LkS- ) -21j

xc°s(n'rc'w_+('n_:w_'I(n'_:w'_2k2.W ) \ 2.W ) L\ 2.W ) -6]'sin(_)+6]

(6)
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Here,n is summed over all odd integers. A summation from
1 to 1999 was adequate for convergence. Ae is derived
similarly, by summing over all even integers.

In the even mode currents in the strips m'e equal in

amplitude and flowing in the same direction. In the odd
mode currents in the strips are equal in amplitude but flow in

opposite directions. So, Zoe is the characteristic impedance of

one strip to ground with equal currents in the same direction
and Zo_ is the characteristic impedance of one strip to ground

with equal currents in opposite directions. The microstrip
mode exists when s >> h,w and Zo_ = Zoo. The thin FE film

is most effective when the phase velocity is dominated by the

odd mode fields. The propagation constant is given by:

=. _v_=(=__o)(_Ew.''_+_o_''_) (_)

where

EEVEN = C E / CEair and EODD = C O / Coair (8)

and CEa_, and Coair are obtained by replacing all dielectrics

with air (i.e., er = 1).

The admittance at the charge plane, corresponding to

Fig. 1, is easily shown to be:

Y(n)=EO'[ E1 "L_l[CO'_(n._--_ii_2_:_h'2"_J[_2"cOth(n'wh21"cO[h(%hl-l'l-Et]

+co (nW"°II
A more general formulation for the admittance consisting of
an additional dielectric layer, say air, with thickness h3
between the host substrate and the ground plane can be
expressed as:

co,+ E1

Co
E g(n). (L(n) + A o • M(n)) 2

I1

And the even mode capacitance is similm'ly obtained, by
summing over even integers with Ae replacing Ao. For a
TEM transmission line, the characteristic impedance is
obtained as Zo = [(CCair)V2c]l where c is the speed of light
in vacuum.

In general, minimum attenuation is obtained when the
effect of the ground plane loss is minimized (i.e., in the odd
or balanced mode current flows into one strip and returns
through the other). Maximum attenuation occurs in the even
or unbalanced mode when equal ctm'ents flow into both strips
and return through ground.

A comparison between the quasi-TEM approximation and
a full-wave electromagnetic simulation is given in Table I for

microstrip. The spacing s was allowed to increase just until
the even and odd mode capacitance was equivalent. Choosing

arbitrarily large values for s yields anomalous results.

TABLE I.--MODELED DATA FOR A 2 _tM
FERROELECTRIC LAYER ON .25 nml TI-_CK LaAIO3, Zo =

50 Oluns, s >> w,h (MICROSTRIP MODE).

Er Ferroelectric Eeff (Sonnet r_9 Eeff (Variational)
Layer
300 18.76 18.43
600 21.34 21.00
900 23.49 23.09

1200 25.41 24.93
1500 27.18 26.59
1800 28.84 28.12

The quasi-TEM solution runs on a Pentium II machine in

about 10 sec regardless of the value entered for the ferroelectric
film dielectric constant. The same calculation on a

commercial electromagnetic simulator using finite element

techniques can take several hours because the geometry must

be fractured into thousands of cells for these very high
dielectric constants.

E0

+cot+ -l'an+
'an+" 1

E1 + ¢2 EO (c°th(n'_'-_l+¢2 "tanh(n'rt'_')l tanh01 a:.-_--)

(10)

%
Finally, the odd mode capacitance becomes:
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For coupled strip lines using the superposition of the even
and odd modes:

ZII = Z22 =-j/2(Zoe + ZOo)COt0(V ) (12)

and

Z13 =Z31 =-j/2(Zoe -ZOo)CSc0(V ) (13)

Where 0(V) is the voltage dependent electrical length of the

coupled lines obtained from (7) and the physical length of the

coupled region (i.e., 0(V) = 13(V)I). The characteristic

impedance can be expressed as the geometric mean of the

even and odd mode impedance such that:

Zo = (Zo Zoo) (14)

Equation (14) is strictly valid only for pure TEM

propagation and ignores frequency dependence, However, for a

practical geometry _x4th moderate coupling, like that

considered here, the expression is appropriate. To facilitate

the calculation, the Z-parameters are converted into ABCD or

chain parameters for the cascaded sections. The conversion is:

Af = Z1 If (15)
Z21f

Bf = Z11f • Z22f - Z12f • Z21f (16)
Z21f

1

Cf = fZ21-- (17)

Df = Z22-----L (18)
Z21f

where the indices are used to show fTequency dependence, t"
the short intervening sections of microstrip line (between each
coupled line section) are assumed to be of zero length the
overall two-port chain matrix becomes:

Di).(A: B:)(;: Bi" ] (A i B iDi)._ Ci Di ) (19)

Where the indices i and f are intended to be

interchangeable. Finally, the two-port S-parameters of, in this

case an 8-section phase shifter, can be converted back

according to:

a i+ bi-(c i.zo)-d i

sl 1i = Z°h. (20)

a i+ vl +c i-Z o+d i
Zo

2
s21i = h. (21)

a i+ _1 +c i.Z o+d i
Zo

The predicted bandpass characteristic for a Ba,Sr_., TiO3

film on 0.25 mm thick LaA103 is shown in Fig. 3 and is in

good agreement with experiment.

The ferroelectfic layer thickness is crucial to performance,

In principle the phase shift for a 2 gm thick film is 2.2 times

greater than that of a 0.5 gm film. However maintaining the

crystalline qualib' of the pulse laser ablated Ba, Sr_._ TiO3

films past a thickness of 0.5 gm or so has proven to be

difficult [10].
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Figure 3.--Theoretical calculation for the bandpass
characteristic of an 8-section coupled microstripline
phase shifter using a 0.5 I_m BaxSrl_xTiO 3 film on
0.3 mm thick MgO. The coupled length was 350 _rn,
w = 30 I_m, and s = 10 _m. The permittivity of the film
was tuned from 3500 (1-j0.05) (no bias) to 500 (1-j0.005)
(maximum bias).

III. CONCLUSIONS

The phase shifters analyzed here hold promise for

reflec_ray applications because they" are compact, low-loss,

and can be lithographed on the same surface as the radiating

element. A key advantage of this technology is the relatively

4NASA/TM--2000-209919



largefeaturesize.Active devices at the frequencies of interest
here would necessitate submicron gate length GaAs FETs.

The f'mest feature size associated with the coupled line phase

shifters is the electrode separation s, typically _10 p,m.
Whereas the GaAs FET performance is largely dictated by

transconductance and hence carrier transit time across the gate

region, the coupled line phase shifters are static devices. The

electrode gap separation detennines the degree of

electromagnetic coupling and the dc potential required to tune

the film. It is clear from the experimental and modeled data

that the inherent dielectric loss of epitaxial ferroelectfic films

isn't necessarily devastating insofar as microwave device

performance is concerned. Indeed the loss tangent of a thin
dielectric film (h_ < 2 I-tin) on a good substrate (tan8 < 0.001)

can deteriorate substantially (tan8 _<0.05) before the insertion

loss of the structures presented here is compromised. If the
tan8 of the ferroelectric film could be maintained at 0.005 or

less, the films contribution to total loss would be essentially

negligible except for the mismatch it introduces as it is

tuned. But even a tan8 of <0.05 is manageable and can result

in a 3 dB loss phase shifter that would enable a practical

scanning reflectan'ay antenna. A theoretical model for these

devices has been developed and has been shown to be in

good agreement with experiment and electromagnetic

simulators. Both the insertion phase shift and pass-band

characteristics can he closely approximated.
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