FY 1999 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
J.E. Turner Waits
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

March 2000
The NASA STI Program Office...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
FOREWORD

In accordance with the NASA Space Act of 1958, the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that "research and development work is valuable, but only if its results can be communicated and made understandable to others."

The N number shown for the reports listed is assigned by the Center for AeroSpace Information (CASI), Hanover, MD, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. The N number should be cited when ordering.
TABLE OF CONTENTS

NASA TECHNICAL MEMORANDA .. 1
NASA TECHNICAL PUBLICATIONS .. 5
MSFC CONFERENCE PUBLICATIONS .. 8
NASA CONTRACTOR REPORTS ... 11
MSFC PAPERS CLEARED FOR PRESENTATION .. 13
INDEX .. 59
A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 °F). For instance, the new alloy shows an average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 °F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is <$0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. For many microgravity science experiments, the ambient acceleration environment on ISS will significantly exceed desirable levels. The ubiquity of acceleration disturbance sources and the difficulty in characterization of these sources precludes source isolation, requiring vibration isolation to attenuate the disturbances to an acceptable level at the experiment. To provide a more quiescent acceleration environment, a vibration isolation system named STABLE (Suppression of Transient Accelerations By LEvitation) was developed. STABLE was the first successful flight test of an active isolation device for microgravity science payloads and was flown on STS–73/USML–2 in October 1995. This report documents the development of the high fidelity, nonlinear, multibody simulation developed using TREETOPS which was used to design the control laws and define the expected performance of the STABLE isolation system.
The analytical prediction of stress, strain, and fatigue life at locations experiencing local plasticity is full of uncertainties. Much of this uncertainty arises from the material models and their use in the numerical techniques used to solve plasticity problems. Experimental measurements of actual plastic strains would allow the validity of these models and solutions to be tested. This memorandum describes how experimental plastic residual strain measurements were used to verify the results of a thermally induced plastic fatigue failure analysis of a Space Shuttle main engine fuel pump component.

TM—1999-209148 February 1999

The Shuttle Upgrade program is a continuing improvement process to enable the Space Shuttle to be an effective space transportation vehicle for the next few decades. The Solid Rocket Booster (SRB), as a component of that system, is currently undergoing such an improvement. Advanced materials, such as composites, have given us a chance to improve performance and to reduce weight.

The SRB Composite Nose Cap (CNC) program aims to replace the current aluminum nose cap, which is coated with a Thermal Protection System and poses a possible debris hazard, with a lighter, stronger CNC. For the next 2 years, this program will evaluate the design, material selection, properties, and verification of the CNC. This particular process specification cites the methods and techniques for verifying the integrity of such a nose cap with nondestructive evaluation.

TM—1999-209149 March 1999

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY98. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM—1999-209201 March 1999
A Strategy for Integrating a Large Finite Element Model Using MSC NASTRAN/PATRAN: X-33 Lessons Learned. D.S. McGhee. Structures and Dynamics Laboratory. 19990028385N

The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made: purpose of models, units, common materials list, model numbering, interface control, and archive format. This strategy has been proven and expanded from experience on the X-33 vehicle.

TM—1999-209266 May 1999
Modified Truncated Cone Target Hyperthermal Atomic Oxygen Test Results. J.A. Vaughn, R.R. Kamenetzky, and M.M. Finckenor. Materials and Processes Laboratory. 19990087364N

The modified truncated cone target is a docking target planned for use on the International Space Station. The current design consists of aluminum treated with a black dye anodize, then crosshairs are laser etched for a silvery color. Samples of the treated aluminum were exposed to laboratory simulation of atomic oxygen and ultraviolet radiation to determine if significant degradation might occur. Durability was evaluated based on the contrast ratio between the black and silvery white areas of the target. Degradation of optical properties appeared to level off after an initial period of exposure to atomic oxygen. The sample that was not alodined according to MIL-C-5541, type 1A, performed better than alodined samples.

TM—1999-209425 June 1999
This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1–December 31, 1998. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in this report should be directed to Gregory S. Wilson (ESO1: 544–7579) or to one of the authors. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

TM—1999–209573 August 1999

This Technical Memorandum provides a summary of current work accomplished under Technical Task Agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). Current activities include ECLSS component design and development, computer model development, subsystem/integrated system testing, life testing, and general test support provided to the ISS program.

Under ECLSS design, MSFC was responsible for the six major ECLSS functions, specifications and standard, component design and development, and was the architectural control agent for the ISS ECLSS. MSFC was responsible for ECLSS analytical model development. In-house subsystem and system level analysis and testing were conducted in support of the design process, including testing air revitalization, water reclamation and management hardware, and certain nonregenerative systems.

The activities described herein were approved in task agreements between MSFC and NASA Headquarters Space Station Program Management Office and their prime contractor for the ISS, Boeing. These MSFC activities are inline to the designing, development, testing, and flights of ECLSS equipment planned by Boeing. MSFC’s unique capabilities for performing integrated systems testing and analyses, and its ability to perform some tasks cheaper and faster to support ISS program needs, are the basis for the TTA activities.

TM—1999–209575 September 1999
19990103958N 19990103942N

A common component of multilayer insulation blankets is beta cloth, a woven fiberglass cloth impregnated with Teflon™. It is planned for extensive use on the International Space Station. The Environmental Effects Group of the Marshall Space Flight Center Materials, Processing, and Manufacturing Department has investigated the impact of atomic oxygen (AO) and ultraviolet (UV) radiation on the optical properties of plain and aluminized beta cloth, both in the laboratory and as part of long-duration flight experiments. These investigations indicate that beta cloth is susceptible to darkening in the presence of UV radiation, dependent on the additives used. AO interactions resulted in bleaching of the beta cloth.

TM—1999–209629 May 1999
19990108484N

Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the FI ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO₂ sublimation. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of
incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

TM—1999–209630 May 1999
19990107329N

The latest version of Global Reference Atmospheric Model (GRAM–99) is presented and discussed. GRAM–99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0–27 km altitudes. As with earlier versions, GRAM–99 provides complete geographical and altitude coverage for each month of the year. GRAM–99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20–120 km altitudes, and NASA’s 1999 version Marshall Engineering Thermosphere (MET–99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20–27 km and 90–120 km). GRAM–99 includes water vapor and 11 other atmospheric constituents (O₃, N₂O, CO, CH₄, CO₂, N₂, O₂, O, A, He, and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmospheric (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user’s guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM–99 as subroutines in other programs (e.g., trajectory codes).

TM—1999–209631 September 1999
Deflections of a Uniformly Loaded Circular Plate With Multiple Support Points. L.D. Craig and J.A.M. Boulet*. Structures, Mechanics, and Thermal Department and *University of Tennessee.
19990107327N

This technical memorandum describes a method for determining the transverse deflections of a uniformly loaded, thin circular plate of constant thickness supported by single or multiple rings of equally spaced discreet points. The rotations are assumed free at each point. This could have application in the design of telescope mirror supports that must minimize structural gravitational deformations. It could also be of general use to the structural analyst.

TM—1999–209734 May 1999

This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

TM-1999-209735 September 1999
19990111740N

The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolthole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

During the interval of 1944–1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0–7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Niño years as compared to non-El Niño years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (especially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Niño activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Niño activity.) Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i.e., ≥2), except during El Niño-related seasons when the number usually will be less than average.

On the basis of Kevin Trenberth’s quantitative definition for marking the occurrence of an El Niño (or La Niña), one can precisely identify by month and year the starts and ends of some 15 El Niño and 10 La Niña events during the interval of 1950–1997, an interval corresponding to the most reliable for cataloguing intense hurricane activity in the Atlantic basin (i.e., those of category 3–5 on the Saffir-Simpson hurricane scale). The main purpose of this investigation is primarily two-fold: First, the statistical aspects of these identified extremes and the intervening periods between them (called “interludes”) are examined and, second, the statistics of the seasonal frequency of intense hurricanes in comparison to the extremes and interludes are determined.

This study clearly demonstrates that of the last 48 hurricane seasons, 20 (42 percent) can be described as being “El Niño-related” (i.e., an El Niño was in progress during all, or part, of the year hurricane season—June–November), 13 (27 percent) as “La Niña-related” (i.e., a La Niña was in progress during all, or part, of the yearly hurricane season), and 15 (31 percent) as “interlude-related” (i.e., neither an El Niño nor a La Niña was in progress during any portion of the yearly hurricane season.) Combining the latter two subgroups into a single grouping called “non-El Niño-related” seasons, one finds that they have had a mean frequency of intense hurricanes measuring 2.8 events per season, while the El Niño-related seasons have had a mean frequency of intense hurricanes measuring 1.3 events per season, where the observed difference in the means is inferred to be statistically important at the 99.8-percent level of confidence. Therefore, as previously shown by William Gray and colleagues more than a decade ago using a different data set, there undeniably exists an El Niño-Atlantic hurricane activity relationship, one which also extends to the class of intense hurricanes. During the interval of 1950–1997, fewer intense hurricanes occurred during El Niño-related seasons (always ≤3 and usually ≤2, this latter value having been true for 18 of the 20 El Niño-related seasons), while more usually occurred during non-El Niño-related seasons (typically ≥2, having been true for 22 of the 28 non-El Niño-related seasons). Implications for the 1998 and 1999 hurricane seasons are discussed.

Quasi-Static Probabilistic Structural Analyses Process and Criteria. B. Goldberg and V. Verderaime. Structures and Dynamics Laboratory.
Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming normal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

TP—1999–209260 June 1999

19990064119N

Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces provides guidelines in selecting materials for satellites and space platforms, designed to operate within the Low-Earth orbit environment, which limit the effects of atomic oxygen interactions with spacecraft surfaces.

This document should be treated as an introduction rather than a comprehensive guide since analytical and flight technologies continue to evolve, flight experiments are conducted as primary or piggyback opportunities arise, and our understanding of materials interactions and protection methods grows. The reader is urged to consult recent literature and current web sites containing information about research and flight results.

TP—1999–209267 May 1999

19990046771N

This report summarizes the design, analysis, manufacture, and test of a subscale, low-profile composite aerospace dome under internal pressure. A low-profile dome has a radius-to-height ratio greater than the square root of two. This effort demonstrated that a low-profile composite dome with a radius-to-height ratio of three was a feasible design and could adequately withstand the varying stress states resulting from internal pressurization. Test data for strain and displacement versus pressure are provided to validate the design.
The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster.

This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).
This document reports the one year science results for the Third United States Microgravity Payload (USMP–3). The USMP–3 major experiments were on a support structure in the Space Shuttle's payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about seven major scientific experiments were performed, advancing the state of knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive space station era.

This document reports the results and analyses presented at the Microgravity Science Laboratory (MSL–1) One Year Science Review meeting held at Marshall Space Flight Center August 25–26, 1998. The MSL–1 payload first flew on the Space Shuttle Columbia (STS–83) April 4–8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS–94) July 1–17, 1997. The MSL–1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

The Microgravity Materials Science Conference was held July 14–16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The
conference’s purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

CP—1999–209144 February 1999
The 1998 NASA Aerospace Battery Workshop. J.C. Brewer, Compiler. 19990032324N

This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27–29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world.

The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

CP—1999–209146/VOL. 2 February 1999

The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.

CP—1999–209258 April 1999
Third Aerospace Environmental Technology Conference. A.F. Whitaker, D.R. Cross, S.V. Caruso, M. Clark-Ingram, Editors. Materials and Processes Laboratory. 19990075847N

The elimination of CFC’s, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments were presented.

CP—1999–209261 June 1999

This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAЕ 99), held June 7–11, 1999. This conference was attended by scientists and researchers from around the world.

The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

CP—1999–209628 September 1999

This document reports the one year science results for the Fourth United States Microgravity Payload (USMP–4). The USMP–4 major experiments were on a support structure in the Space Shuttle’s payload bay and operated almost completely by the Principal Investigators through telescience. The mission included a Glovebox where the crew performed additional experiments for the investigators. Together about eight major scientific experiments were performed, advancing the state of
knowledge in fields such as low temperature physics, solidification, and combustion. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
NASA CONTRACTOR REPORTS

CR—1999–208188
October 1998
19990040178N

CR—1999–208189
February 1998
19990040422N

CR—1999–208190
August 1998
19990040421N

CR—1999–208191
September 1998
19990042214N

CR—1999–208192
November 1998
19990041442N

CR—1998–208859
October 1998
19990008476N

CR—1999–209426
July 1999
19990064433N

CR—1999–209427
July 1999
Guidelines for Proof Test Analysis. NAS8–39380. Southwest Research Institute.
19990064431N

CR—1999–209428
July 1999
19990063917N

CR—1999–209561
August 1999
19990116211N

CR—1999–209562
January 1993
19990066705N

CR—1999–209563
December 1993

CR—1999–209565
April 1996
19990071658N

CR—1999–209567
September 1998
19990064432N
CR—1999–209568 December 1998

CR—1999—209574 September 1999
Specification, Measurement, and Control of Electrical Switching Transients. EMC Compliance.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdedayem, H.A.</td>
<td>USRA</td>
</tr>
<tr>
<td>Paley, M.S.</td>
<td>USRA</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td>SD40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, M.L.</td>
<td>ES82</td>
</tr>
<tr>
<td>Bero, E.</td>
<td>ES82</td>
</tr>
<tr>
<td>Sever, T.L.</td>
<td>ES82</td>
</tr>
</tbody>
</table>

Solar Flares and Their Prediction. For presentation at Colloquium at the University of Memphis, Memphis, TN, January 27, 1999.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, M.L.</td>
<td>ES82</td>
</tr>
<tr>
<td>Hagyard, M.J.</td>
<td>ES82</td>
</tr>
<tr>
<td>Newton, E.K.</td>
<td>ES82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggarwal, M.D.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Choi, J.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Wang, W.S.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Bhat, K.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Lai, R.B.</td>
<td>Alabama A&M University</td>
</tr>
<tr>
<td>Shields, A.D.</td>
<td>ES76</td>
</tr>
<tr>
<td>Penn, B.G.</td>
<td>ES76</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td>ES76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander, C.</td>
<td>ES84</td>
</tr>
<tr>
<td>Swift, W.</td>
<td>UAH</td>
</tr>
<tr>
<td>Ghosh, K.K.</td>
<td>NRC/ES84</td>
</tr>
<tr>
<td>Ramsey, B.D.</td>
<td>ES84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander, R.A.</td>
<td>PD21</td>
</tr>
<tr>
<td>Coleman, H.W.</td>
<td>UAH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander, R.A.</td>
<td>TD31</td>
</tr>
</tbody>
</table>

A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles. For presentation at Thermal and Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alhorn, D.C.</td>
<td>EB23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, B.J.</td>
<td>EL23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, R.R.</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>Gurnett, D.A.</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>Frank, L.A.</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>Sigworth, J.B.</td>
<td>University of Iowa</td>
</tr>
<tr>
<td>Matsumoto, H.</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Hashimoto, K.</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Kojima, H.</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Murata, T.</td>
<td>Ehime University, Japan</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
</tr>
</tbody>
</table>

ET AL.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antar, B.N.</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td>Ethridge, E.</td>
<td>SD47</td>
</tr>
<tr>
<td>Maxwell, D.</td>
<td>SD47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aschwanden, M.J.</td>
<td>Lockheed-Martin</td>
</tr>
<tr>
<td>Alexander, D.</td>
<td>Lockheed-Martin</td>
</tr>
<tr>
<td>Hurlburt, N.</td>
<td>Lockheed-Martin</td>
</tr>
<tr>
<td>Newmark, J.S.</td>
<td>Space Applications Lab</td>
</tr>
<tr>
<td>Neupert, W.M.</td>
<td>Hughes SXT Corp.</td>
</tr>
<tr>
<td>Klimchuk, J.A.</td>
<td>Naval Research Lab</td>
</tr>
<tr>
<td>Gary, G.A.</td>
<td>ES82</td>
</tr>
</tbody>
</table>

3D-Stereoscopic Analysis of Solar Active Region Loops: II. SoHo/EIT Observations at Temperatures of...

AUSTIN, R.A. ES82
RAMSEY, B.D. ES82
TSE, C.L.

AUSTIN, R.A. ES84

AUSTIN, R.E. RA20
RISING, J.J. Lockheed-Martin

X–33, Leading the Way to VentureStar™ in the Next Millenium. For presentation at 50th International Astronautical Congress by IAF, Amsterdam, The Netherlands, October 2–9, 1999.

BACHMANN, K.J. North Carolina State
CARDELINEO, B.H. Spelman College
MOORE, C.E. SD47
CARDELINEO, C.A. Georgia Institute of Technology
SUKIDI, N. North Carolina State
MCCALL, S. North Carolina State

BAILEY, J.C. Raytheon STX
BLAKESLEE, R.J. HR20
DRISCOLL, K.T. UAH

Evidence for the Absence of Conductivity Variations Above Thunderstorms. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BAILEY, J.C. Raytheon STX
BLAKESLEE, R.J. HR20
DRISCOLL, K.T. UAH

Evidence for the Absence of Conductivity Variations Above Thunderstorms. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Presentation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bateman, M.G.</td>
<td>USRA/HR20</td>
<td>High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>Pace and Waite</td>
<td>Application of Linear Analytic Techniques for Lightning Location Retrieval for Advanced Lightning Direction Finder (ALDF) Networks. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Stewart, M.E</td>
<td>UAH/HR20</td>
<td></td>
</tr>
<tr>
<td>Blair, A.K.</td>
<td>UAH/HR20</td>
<td></td>
</tr>
<tr>
<td>Baughner, C.</td>
<td>SD46</td>
<td></td>
</tr>
<tr>
<td>Bennett, N.</td>
<td>USRA/SD48</td>
<td></td>
</tr>
<tr>
<td>Cockrell, D.</td>
<td>SD46</td>
<td></td>
</tr>
<tr>
<td>Jex, F.</td>
<td>SD46</td>
<td></td>
</tr>
<tr>
<td>Musick, B.</td>
<td>SD46</td>
<td></td>
</tr>
<tr>
<td>Poe, J.</td>
<td>SD46</td>
<td></td>
</tr>
<tr>
<td>Rulev, D.N.</td>
<td>RSC-Energia</td>
<td></td>
</tr>
<tr>
<td>Stazhkov, V.M.</td>
<td>RSC-Energia</td>
<td></td>
</tr>
<tr>
<td>Melton, T.L.</td>
<td>FD32</td>
<td></td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>SE LA University</td>
<td></td>
</tr>
<tr>
<td>Lyons, L.R.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Reeves, G.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>Sverdrup</td>
<td></td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>ED25</td>
<td></td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Van Den Ancker, M.</td>
<td>University of Amsterdam</td>
<td></td>
</tr>
<tr>
<td>Dieters, S.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Fender, R.</td>
<td>University of Amsterdam</td>
<td></td>
</tr>
<tr>
<td>Fox, D.W.</td>
<td>MIT</td>
<td></td>
</tr>
<tr>
<td>Kommers, J.M.</td>
<td>MIT</td>
<td></td>
</tr>
<tr>
<td>Lewin, W.H.G.</td>
<td>MIT</td>
<td></td>
</tr>
<tr>
<td>Van Paradijs, J.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>SE LA University</td>
<td></td>
</tr>
<tr>
<td>Lyons, L.R.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Reeves, G.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>Sverdrup</td>
<td></td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>ED25</td>
<td></td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Spivey, R.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Best, S.R.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Rose, M.F.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Bickley, F.P.</td>
<td>EE61</td>
<td></td>
</tr>
<tr>
<td>Schwinghamer, R.J.</td>
<td>DA01</td>
<td>NASA Experience with the Shuttle External Tank. For presentation at National Manufacturing Week Conference, Chicago, IL, March 15–18, 1999.</td>
</tr>
<tr>
<td>Blakeslee, R.</td>
<td>SD60</td>
<td>The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results. For presentation at 6th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 15–19, 1999.</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>Pace and Waite</td>
<td>Application of Linear Analytic Techniques for Lightning Location Retrieval for Advanced Lightning Direction Finder (ALDF) Networks. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>Koshaik, W.J.</td>
<td>HR20</td>
<td></td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>Pace and Waite</td>
<td>Application of Linear Analytic Techniques for Lightning Location Retrieval for Advanced Lightning Direction Finder (ALDF) Networks. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>SE LA University</td>
<td></td>
</tr>
<tr>
<td>Lyons, L.R.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Reeves, G.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>Sverdrup</td>
<td></td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>ED25</td>
<td></td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Spivey, R.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Best, S.R.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Rose, M.F.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Bickley, F.P.</td>
<td>EE61</td>
<td></td>
</tr>
<tr>
<td>Schwinghamer, R.J.</td>
<td>DA01</td>
<td>NASA Experience with the Shuttle External Tank. For presentation at National Manufacturing Week Conference, Chicago, IL, March 15–18, 1999.</td>
</tr>
<tr>
<td>Blakeslee, R.</td>
<td>SD60</td>
<td>The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results. For presentation at 6th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 15–19, 1999.</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>Pace and Waite</td>
<td>Application of Linear Analytic Techniques for Lightning Location Retrieval for Advanced Lightning Direction Finder (ALDF) Networks. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>SE LA University</td>
<td></td>
</tr>
<tr>
<td>Lyons, L.R.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Reeves, G.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>Sverdrup</td>
<td></td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>ED25</td>
<td></td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Spivey, R.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Best, S.R.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Rose, M.F.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Bickley, F.P.</td>
<td>EE61</td>
<td></td>
</tr>
<tr>
<td>Schwinghamer, R.J.</td>
<td>DA01</td>
<td>NASA Experience with the Shuttle External Tank. For presentation at National Manufacturing Week Conference, Chicago, IL, March 15–18, 1999.</td>
</tr>
<tr>
<td>Blakeslee, R.</td>
<td>SD60</td>
<td>The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results. For presentation at 6th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 15–19, 1999.</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>Pace and Waite</td>
<td>Application of Linear Analytic Techniques for Lightning Location Retrieval for Advanced Lightning Direction Finder (ALDF) Networks. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>SE LA University</td>
<td></td>
</tr>
<tr>
<td>Lyons, L.R.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Reeves, G.D.</td>
<td>ES83</td>
<td></td>
</tr>
<tr>
<td>Harmon, B.A.</td>
<td>ES84</td>
<td></td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>Sverdrup</td>
<td></td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>ED25</td>
<td></td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Spivey, R.</td>
<td>Tec Masters, Inc.</td>
<td></td>
</tr>
<tr>
<td>Best, S.R.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Rose, M.F.</td>
<td>ES01</td>
<td></td>
</tr>
<tr>
<td>Bickley, F.P.</td>
<td>EE61</td>
<td></td>
</tr>
<tr>
<td>Schwinghamer, R.J.</td>
<td>DA01</td>
<td>NASA Experience with the Shuttle External Tank. For presentation at National Manufacturing Week Conference, Chicago, IL, March 15–18, 1999.</td>
</tr>
</tbody>
</table>

BLYTH, A.M. HR20
CHRISTIAN, H.J., JR. HR20
LATHAM, J. HR20

Determination of Thunderstorm Anvil Ice Contents and Other Cloud Properties from Satellite Observations of Lightning. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BOCCIPPIO, D.J. HR20
CHRISTIAN, H.J. HR20

BOCCIPPIO, D.J. HR20
DRISCOLL, K. HR20
KOSHK, W.J. HR20
BLAKESLEE, R. HR20
BOECK, W. Niagara University
MACH, D. UAH
CHRISTIAN, H.J. HR20
GOODMAN, S.J. HR20

BOCCIPPIO, D.J. HR20
HECKMAN, S. HR20
GOODMAN, S.J. HR20

A Diagnostic Analysis of the Kennedy Space Center LDAR Network. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BOCCIPPIO, D.J. HR20
KOSHK, W.J. HR20
CHRISTIAN, H.J. HR20
GOODMAN, S.J. HR20

Land-Ocean Differences in LIS and OTD Tropical Lightning Observations. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BOECK, W.L. Niagara University
MACH, D.M. HR20

GOODMAN, S.J. HR20
CHRISTIAN, H.J., JR. HR20

Optical Observations of Lightning in Northern India Himalayan Mountain Countries and Tibet. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BOLOTNIKOV, A. Caltech
RAMSEY, B.D. ES84

Studies of Light and Charge Produced by Alpha-Particles in High-Pressure Xenon. For publication in Nuclear Instruments and Methods in Physics Research A, 1999.

BOOKOUT, P.S. ED23
RICKS, E. ED23

BOTTCHER, M. Rice University
PETRy, D. Universitat Autonoma de Barcelona
CONNAUGHTON, V. SD50
LAHTENMAKI, A. Tuorla Observatory, Finland
PURISMO, T. Tuorla Observatory, Finland
RAITERI, C.M. Strada Osservatorio, Italy
SCHRODER, F. Universitat Wuppertal, Germany
SILLANPAAS, A. Tuorla Observatory
SOBRITO, G. Strada Osservatorio, Italy
ET AL.

BRADFORD, R.N. EO36

Voice Over the Net (VON) and Its Use in NASA's International Space Station Science Operation. For presentation at VON Fall 99 Conference, Atlanta, GA, September 27–30, 1999.

BRAINERD, J.J. ES84

BRAINERD, J.J. ES84
PENDLETON, G.N. ES84
MALLOZZI, R.S. ES84
BRIGGS, M.S. ES84
PREECE, R.D. ES84

BRAINERD, J.J. ES84

BRIGGS, M.S. ES84
BAND, D.L. ES84
PREECE, R.D. ES84
PACIESAS, W.S.
PENDLETON, G.N. ES84

BRIGGS, M.S. ES84
BAND, D.L.
KIPPEN, R.D.
KOUVELIOTOU, C.
VAN PARADIJS, J.
SHARE, G.H.
MURPHY, R.J.
MATZ, S.M.
CONNORS, A.

ET AL.

BRITTNACHER, M.J.
FILLINGIM, M.
CHUA, D.
WILBER, M.
PARKS, G.K.
GERMANY, G.A.
SPANN, J.F., JR.

BRITTNACHER, M.J.
FILLINGIM, M.
CHUA, D.
WILBER, M.
PARKS, G.K.
GERMANY, G.A.

WILBER, M. Univ. of Washington, Seattle
PARKS, G.K. Univ. of Washington, Seattle
GERMANY, G.A. UAH/CSPAR
SPANN, J.F., JR. ES83

BRITTNACHER, M.J.
FILLINGIM, M.
CHUA, D.
PARKS, G.K.
GERMANY, G.A.

Global Auroral Response to a Solar Wind Pressure Pulse. For publication in Advances in Space Research, 1999.

WILBER, M. University of Washington
FILLINGIM, M. University of Washington
CHUA, D. University of Washington
PARKS, G.K. University of Washington
GERMANY, G.A. UAH/CSPAR
SPANN, J.F., JR. ES83

BRITTNACHER, M.J.
FILLINGIM, M.O.
CHUA, D.
PARKS, G.K.
GERMANY, G.A.

WILBER, M. Univ. of Washington, Seattle
PARKS, G.K. Univ. of Washington, Seattle
GERMANY, G.A. UAH/CSPAR

BROWN, A.M. ED23
FERRI, A.A. Georgia Institute of Technology

BUECHLER, D. HR20
GOODMAN, S.J. HR20
KNUPP, K. HR20
MCCAUL, E.W., JR. HR20

BUECHLER, D.E. UAH
GOODMAN, S.J. HR20
CHRISTIAN, H.J. HR20
DRISCOLL, K. UAH
Optical Transient Detector (OTD) Observations of a Tornadic Thunderstorm. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

BUNE, A. USRA
GILLIES, D.C. ES75
LEHOCZKY, S. ES75
Effects of Gravity on the Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe. For presentation at SPIE's 44th Meeting, Denver, CO, July 18–23, 1999.

BUNE, A.V. USRA
SEN, S. USRA
STEFANESCU, D.M. University of Alabama
CURRERI, P.A. ES75

BURGER, A. Fisk University
NDAP, J.-O. Fisk University
CHATTOPADHYAY, K. Fisk University
MA, X. Fisk University
SILBERMAN, E. Fisk University
FEH, S. ES75
PALOSZ, W. ES75
SU, C.-H. ES75
In-Situ Optical Determination of Thermomechanical Properties of ZnSe and ZnTe Crystals. For presentation at 44th SPIE Annual Meeting, Denver, CO, July 18–23, 1999.

CANNON, J.L. EP74
KATZ, A. Wright Patterson Air
BAMPTON, C. Boeing/Rocketdyne
MARCHOL, P. Aerojet
RHEMER, C. Pratt & Whitney
EFFINGER, M. EP74
GENGE, G. EP74

CARDELINO, C.A. Georgia Institute of Technology
MOORE, C.E. SD47
CARDELINO, B.H. Spelman College
ZHO, N. CFD Research Corp.
LOWRY, S. CFD Research Corp.
KRISHNAN, A. CFD Research Corp.
FRAZIER, D.O. SD47
BACHMANN, K.J. North Carolina State

CARRASQUILLO, R.L. FD21
BERTOTTO, D. Alenia Spazio

CARRUTH, M.R. EH11
CLIFTON, K.S. EH11
<table>
<thead>
<tr>
<th>Authors</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIO, Y.C.</td>
<td>TD40 Global Frequency and Distribution of Lightning as Observed by the Optical Transient Detector (OTD). For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>HURST, C.M.</td>
<td>Purdue University Complex Halo Loop Activity in a Long Duration Flare. For publication in Proceedings of Sac Peak Workshop/Conference, Sac Peak, AZ, October 20–23, 1998.</td>
</tr>
<tr>
<td>CHERN, P.S.</td>
<td>IIT Research Institute Global Frequency and Distribution of Lightning as Observed by the Optical Transient Detector (OTD). For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Institution(s)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CHRISTL, M.J.</td>
<td>SD50</td>
</tr>
<tr>
<td>BENSON, C.M.</td>
<td>SD50</td>
</tr>
<tr>
<td>BERRY, F.A.</td>
<td>SD50</td>
</tr>
<tr>
<td>FOUNTAIN, W.F.</td>
<td>SD50</td>
</tr>
<tr>
<td>GREGORY, J.C.</td>
<td>UAH</td>
</tr>
<tr>
<td>JOHNSON, J.S.</td>
<td>USRA/SD50</td>
</tr>
<tr>
<td>MUNROE, R.B.</td>
<td>University of Mobile</td>
</tr>
<tr>
<td>PARNELL, T.A.</td>
<td>UAH</td>
</tr>
<tr>
<td>TAKEHASHI, Y.</td>
<td>UAH</td>
</tr>
<tr>
<td>WATTS, J.W.</td>
<td>SD50</td>
</tr>
<tr>
<td>CHU, T.P.</td>
<td>Southern Illinois</td>
</tr>
<tr>
<td>DIGREGORIO, A.</td>
<td>Southern Illinois</td>
</tr>
<tr>
<td>RUSSELL, S.S.</td>
<td>EH13</td>
</tr>
<tr>
<td>CHUA, D.</td>
<td>University of Washington</td>
</tr>
<tr>
<td>BRITTNACHER, M.J.</td>
<td>University of Washington</td>
</tr>
<tr>
<td>PARKS, G.K.</td>
<td>University of Washington</td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>UAH/CSPAR</td>
</tr>
<tr>
<td>SPANN, J.F., JR.</td>
<td>ES83</td>
</tr>
<tr>
<td>CHUA, D.H.</td>
<td>University of Washington</td>
</tr>
<tr>
<td>BRITTNACHER, M.J.</td>
<td>ES83</td>
</tr>
<tr>
<td>PARKS, G.K.</td>
<td>ES83</td>
</tr>
<tr>
<td>GERMANY, G.A.</td>
<td>UAH/CSPAR</td>
</tr>
<tr>
<td>SPANN, J.F., JR.</td>
<td>ES83</td>
</tr>
<tr>
<td>CHUNG, T.J.</td>
<td>UAH</td>
</tr>
<tr>
<td>SCHUNK, R.G.</td>
<td>ED26</td>
</tr>
<tr>
<td>CANABAL, F.</td>
<td>UAH</td>
</tr>
<tr>
<td>HEARD, G.</td>
<td>UAH</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Low Energy Plasma in the Outer Magnetosphere as Observed by Interball Tail Probe. For presentation at American Geophysical Union 1999 Fall Meeting, San Francisco, CA, December 13, 1999.</td>
<td>COFFEY, V.N. SD50, VAISBERG, O.L. SD50, GALLAGHER, D.L. SD50, CHANDLER, M.O. SD50</td>
</tr>
</tbody>
</table>
CONNAUGHTON, V. ES84 CROE, A. SD47
ROBINSON, C.R. USRA SCHWEIZER, M. SD47
MCCOLLOUGH, M.L. USRA DOLD, P. SD47
LAURENT-MUEHLEISEN, S. Lawrence Livermore KAISER, T. SD47
 BATSE Observations of BL Lac Objects. For LICHTENSTEIGER, M. SD47
 publication in Proceedings of Astronomical Society of BENZ, K.W. SD47
 the Pacific Conference, Turku, Finland, June 1998.

COOPER, K. ED34
WELLS, D. ED34
SALVAIL, P. IIT Research Institute
VESELY, E. IIT Research Institute
Materials Selection and Their Characteristics as Used
in Rapid Prototyping. For presentation at Investment
Casting Institute Technology Meeting, San Francisco,

CRAWFORD, K. EB33
PINKLETON, D. Boeing
Using a Commercial Off the Shelf Data Acquisition
System for the Space Shuttle Solid Rocket Booster
Program. For presentation at International Telemetering

CRAWFORD, K. EB33
HUBER, H. EB33
PINKLETON, D. Boeing
JUNEN, K. Boeing
Update of the Development of a Low Cost Data
Acquisition System for the Space Shuttle Solid Rocket
Booster Program. For presentation at Digital Avionics
Systems Conference, St. Louis, MO, October 23–29,
1999.

CRAWFORD, L. ES76
KARR, L.J. ES76
NADARAJAH, A. ES76
PUSEY, M.L. ES76
Tetragonal Lysozyme Interactions Studied by Site
Directed Mutagenesis. For presentation at American
Crystallographic Association, Buffalo, NY, May 24,
1999.
Quench Module Insert (QMI) and the Diffusion Module Insert (DMI) Furnace Development. For presentation at Space Technology and Application International Forum (STAIF-00), Albuquerque, NM, January 30, 2000.

CRUZEN, C.A.
LOMAS, J.J.

CUMNOCK, J.A.
SPANN, J.F., JR.
GERMANY, G.A.
BLOMBERG, L.G.
COLEY, W.R.
BRITTNACHER, M.J.
PARKS, G.K.
CLAUER, C.R.

CURRY, K.
AGGARWAL, M.D.
CHOI, J.
WANG, W.S.
LAI, R.B.
PENN, B.G.
FRAZIER, D.O.

DAISUKE, N.
SULKANEN, M.E.
EVRARD, A.E.

Daly, M.
Sridhar, R.
Richardson, R.

Ding, R.J.
Oelgoetz, P.A.

Derrickson, J.H.
Wu, J.

Dexter, C.E.
Kos, L.D.

Dimmock, J.O.
Adams, M.
Sever, T.
Theories of the Universe: A One Semester Course for Honors Undergraduates. For presentation at Fourth Biennial History of Astronomy Workshop, University of Notre Dame, IL, July 2, 1999.
DOBSON, C.C. EP93
SUNG, C.C. UAH

DOBSON, C.C. EP63
Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by Use of Optically Pumped Trace-Sodium Vapor. For publication in Applied Optics, Volume 38, No. 18, Washington, DC, June 20, 1999.

DOLD, P. University of Freiburg
CROLL, A. University of Freiburg
SCHWEIZER, M. University of Freiburg
KAISER, T. University of Freiburg
SZOFRAN, F. ES75
NAKAMURA, S. NEC Fundamental
HIGIYA, T. NEC Fundamental
BENZ, K.W. University of Freiburg
The Role of Marangoni Convection for the FZ-Growth of Silicon. For publication in Proceedings of International Astronautical Federation, Melbourne, Australia, September 28–October 2, 1998.

DOLD, P. University of Freiburg
SCHWEIZER, M. University of Freiburg
SZOFRAN, F. ES75
BENZ, K.W. University of Freiburg

DORNEY, D.J. Virginia Commonwealth
GRIFFIN, L.W. ED32
GUNDY-BURLET, K.L. Ames Research Center

DRAKE, J.J. ES84
SWARTZ, D.A. ES84
BEIERSDORFER, P. ES84
BROWN, G. ES84
KAHN, S. ES84

DRAKE, J.J. ES84
SWARTZ, D.A. ES84

DRISCOLL, K.T. HR20
CHRISTIAN, H.J. HR20
GOODMAN, S.J. HR20
A Comparison Between Lightning Activity and Passive Microwave Measurements. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

DUNN, M.C. Southern University
HUTCHINSON, S.L. EO66

DUNN, M.C. Southern University
HUTCHINSON, S.L. EO66

EDWARDS, D.L. EH12
EDWARDS, D.L. ED31
FINCKENOR, M.M. ED31

ELLIOTT, H.A. UAH
COMFORT, R.H. UAH
CHANDLER, M.O. ES83
CRAVEN, P.D. ES83
MOORE, T.E. GSFC

EMERSON, C.W. Southwest Missouri
LAM, N.S. Louisiana State
QUATTROCHI, D.A. HR20

ENGEBERG, R. ED73
LASSITER, J. ED73

ESTES, M. USRA
QUATTROCHI, D.A. HR20
LUVALL, J. HR20

ESTES, M.G., JR. USRA
GORSEVSKI, V. Environmental Protection Agency
RUSSELL, C. Utah Office of Energy
QUATTROCHI, D.A. HR20
LUVALL, J.C. HR20

FALCONER, D.A. ES82/UAH
MOORE, R.L. ES82
PORTER, J.G. ES82
HATHAWAY, D.H. ES82

FALCONER, D.A. ES82
GARY, G.A. ES82
MOORE, R.L. ES82
PORTER, J.G. ES82

FEDOSEYEV, A.I. UAH
KANSA, E.J. Embry-Riddle
MARIN, C. UAH
VOLZ, M.P. SD47
OSTROGORSKY, A.G. UAH
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

FILLINGIM, M. University of Washington
BRITTNACHER, M. University of Washington
PARKS, G.K. University of Washington
GERMANY, G.A. UAH/CSPAR
SPANN, J.F., JR. ES83

FILLINGIM, M.O. University of Washington
BRITTNACHER, M. University of Washington
PARKS, G.K. University of Washington
GERMANY, G.A. UAH/CSPAR
SPANN, J.F., JR. ES83
LIN, R.P. ES83

FILLINGIM, M.O. University of Washington
BRITTNACHER, M. University of Washington
PARKS, G.K. University of Washington
CHEN, L.J. SD50
GERMANY, G.A. UAH/CSPAR
SPANN, J.F., JR. SD50
LIN, R.P. SD50

FINCKENOR, J. ED52
SPURRIER, M. ED24

FISHMAN, G.J. ES01

FISHMAN, G.J. ES01

FLACHBART, R. EP63
HOLT, J.B. EP63

FLACHBART, R.H. TD53
HASTINGS, L.J. TD53

FORSYTHE, E.L. USRA
JUDGE, R.A. ES76
PUSEY, M.L. ES76

FRAZIER, D.O. ES01
PALEY, M.S. ES01
PENN, B.G. ES01
ABDELDAYEM, H.A. ES01
SMITH, D.D. ES01
WITHEROW, W.K. ES01

Modeling the Plasmasphere. For presentation at Sixth Huntsville Modeling Workshop, Guntersville, AL, October 26–30, 1998.

Modeling the Plasmasphere. For presentation at Colloquium/Meeting With the Russian Space Research Institute (IKI), Moscow, Russia, January 14, 1998.

Overview of Fluid Dynamics Activities at the Marshall Space Flight Center. For presentation at Tenth Thermal and Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

GEARHART, R.B.
CRAIG, A.
WHEELER, J.
SWARTZ, D.A.

GEERTS, B.
HEYMFSFIELD, G.M.
TIAN, L.
HALVERSON, J.B.
GUILLORY, A.R.
MEJIA, M.I.

GERASIMENKO, L.M.
HOOVER, R.B.
ROZANOV, A.Y.
ZHMPUR, S.I.

GERMANY, G.A.
SWIFT, W.
CREUTZBERG, F.
EASTES, R.
RICH, F.
SPANN, J.F., JR.
BRITTNACHER, M.
PARKS, G.K.

GERMANY, G.A.
RICHARDS, P.G.
SPANN, J.F., JR.
BRITTNACHER, M.J.
PARKS, G.K.

GERRISH, H.P., JR.
RAMSEY, B.D.
SIVARAM, C.
SOUNDARARAJAPERUMAL, S.
GUILLORY, A.R.
MEJIA, M.I.

GHOSH, K.K.
RAMSEY, B.D.
AUSTIN, R.A.
SOUNDARARAJAPERUMAL, S.
PUKALENTHI, S.
ROSAKO, M.J.
AURRAJAPERUMAL, S.
SOUNDARARAJAPERUMAL, S.

GHOST, K.K.
RAMSEY, B.D.
SOUNDARARAJAPERUMAL, S.

Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State. For publication in Astrophysical Journal, 1999.

<table>
<thead>
<tr>
<th>Name</th>
<th>Paper Number</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>REESE, E.D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLDER, G.P.</td>
<td></td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>PATEL, S.</td>
<td></td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>HOLZAPFEL, W.L.</td>
<td></td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>COORAY, A.K.</td>
<td></td>
<td>University of Chicago</td>
<td></td>
</tr>
<tr>
<td>GRIFFIN, L.W.</td>
<td>ED32</td>
<td>University of Chicago</td>
<td>Simulations of the Unsteady Flow Through the Fastrac Supersonic Turbine. For presentation at ASME IGTI Turbo Expo, Indianapolis, IN, June 1999.</td>
</tr>
<tr>
<td>DORNEY, D.J.</td>
<td>TD64</td>
<td>Virginia Commonwealth</td>
<td></td>
</tr>
<tr>
<td>ZOLADZ, T.F.</td>
<td>TD64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRINER, C.</td>
<td>DD01</td>
<td></td>
<td>Bantum—A Systematic Approach to Reusable Launch Vehicle Technology Development. For presentation at IAF, Amsterdam, Netherlands, October 4–8, 1999.</td>
</tr>
<tr>
<td>LYLES, G.M.</td>
<td>RA10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUBAREV, M.</td>
<td>SD50</td>
<td>National Research Council</td>
<td>First Results From a Microfocus X-Ray System for Macromolecular Crystallography. For publication in Journal of Applied Crystallography, August 1999.</td>
</tr>
<tr>
<td>CISZAK, E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PONOMAREV, I.</td>
<td>SD50</td>
<td>X-Ray Optical Systems</td>
<td></td>
</tr>
<tr>
<td>GIBSON, W.M.</td>
<td></td>
<td>State University of NY</td>
<td></td>
</tr>
<tr>
<td>JOY, M.K.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUFFIN, O.T.</td>
<td>PS01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMES, G.H.</td>
<td>PS01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOOD, R.E.</td>
<td>HR20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Event/Conference</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
HOOD, R.E. HR20
KAKAR, R.

Overview of the Third Convection and Moisture Experiment (CAMEX-3). For presentation at 23rd AMS Conference on Hurricanes & Tropical Meteorology, Dallas, TX, January 9–15, 1999.

HORACK, J.M. ES01
TREISE, D. University of Florida

HOUTS, M.G. EP63
SCHMIDT, G.R. EP63
GERRISH, H.P. EP63
MARTIN, J.J. EP63

HOUTS, M.G. EP63

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44
DABNEY, R.W. EB44

HOWARD, R.T. EB44
BRYAN, T.C. EB44
BOOK, M.L. EB44

HUETER, U. RA10
TURNER, J. EE61

Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office. For presentation at JANNAF Interagency Propulsion Committee, Tucson, AZ, December 7–11, 1998.

JACOBSON, D.N. SD70

JARZEMBSKI, M.A. HR20
SRIVASTAVA, V. USRA
Interference of Backscatter From Two Droplets in a Focused Continuous Wave CO2 Doppler Lidar Beam. For publication in Applied Optics: Lasers, Photonics and Environmental Optics, 1998.

JARZEMBSKI, M.A. HR20
SRIVASTAVA, V. USRA
ROTHERMEL, J. HR20

JARZEMBSKI, M.A. HR20
SRIVASTAVA, V. USRA

JARZEMBSKI, M.A. HR20
PUESCHEL, R.F. Ames
SRIVASTAVA, V. USRA
MCCAUL, E.W., JR. USRA
CUTTEN, D.R. UAH
JEDLOVEC, G.J. HR20
ATKINSON, R.J. Lockheed Martin

JARZEMBSKI, G.J. HR20
IWAI, H. UAH

JEDLOVEC, G.J. SD60
LERNER, J.A. Karl-Franzens University

JEDLOVEC, G.J. SD60
HAINES, S.L. UAH

HAINES, S.L. UAH
JEKER, D.P. Swiss Federal Institute
PFISTER, L. Ames
BRUNNER, D. Royal Netherlands
BOCCIPPIO, D.J. HR20
PICKERING, K.E. University of Maryland
THOMPSON, A.M. Goddard
WERNLI, H. Swiss Federal Institute
SELKIRK, R.B. Ames
KONDO, Y. Nagoya University
ET AL.

JENKINS, A.A. Ion Corp.
ROMAN, M.C. ED62
Portable Fan Assembly for the International Space Station. For presentation at 29th International
JOHNSON, C.L. RA10
LEIFER, S. RA10
Interstellar Exploration: Propulsion Options for Precursors and Beyond. For presentation at IAF, Amsterdam, Netherlands, October 4–8, 1999.

JOHNSON, C.L. RA10
ESTES, R.D. Smithsonian
LORENZINI, E. Smithsonian
MARTINEZ-SANCHEZ, M. MIT
SANMARTIN, J. University of Madrid

JOHNSON, C.L. TD15
ESTES, R. Harvard Smithsonian

JOHNSON, D.L. EL23
VAUGHAN, W.W. UAH

JOHNSON, L. TD15
CURTIS, L. TD15
BALLANCE, J. TD15
ESTES, R. Smithsonian
LORENZINI, E. Smithsonian
GILCHRIST, B. University of Michigan

JONES, M.R. University of Arizona
FARMER, J.T. ED25
BREEDING, S.P. Tec-Masters, Inc.
Evaluation of the Use of Optical Fiber Thermometers for Thermal Control of the Quench Module Insert. For presentation at Tenth Thermal & Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

JOY, M.K. SD50

JUDGE, R.A. ES76
SNELL, E.H. ES76

KAISER, N. UAH
CROELL, A. UAH
SZOFRAN, F.R. ES75
COBB, S.D. ES75
DOLD, P. Universitat Freiburg
BENZ, K.W. Universitat Freiburg

KAMENETZKY, R.R. ED12
FINCKENOR, M.M. ED12
VAUGHN, J.A. ED12

KAMENETZKY, R.R. ED31
FINCKENOR, M.M. ED31
VAUGHN, J.A. ED31
EDWARDS, D.L. ED31
NOLEN, A. ED31
BURNS, H.D. ED31

KATZ, I. Maxwell Technologies
DAVIS, V.A. Maxwell Technologies
MANDELL, M.J. Maxwell Technologies
GARDNER, B.M. Maxwell Technologies
HILTON, J.M. Maxwell Technologies Summary of Rocketdyne Engine A5 Rocket Based
MINOR, J. ED03 Combined Cycle Testing. For presentation at Propulsion
FREDRICKSON, A.R. Jet Propulsion Engineering Research Center at MSFC, Huntsville, AL,
Interactive Spacecraft Charging Interactive Handbook with Integrated, Updated Spacecraft Charging Models.

KAUFFMAN, W.J. EL23 KAHAZANOV, G.V. University of Alaska
HARDAGE, D.M. EL23 KRIVORUTSKY, E.N. University of Alaska

KAUKLER, W.F. UAH GALLAGHER, D.L. SD50

KAVAYA, M.J. HR20 KOCZOR, R.J. ES01

KAVAYA, M.J. HR20 NOEVER, D.A. ES01

KAVAYA, M.J. HR20 ROBERTSON, G.A. ES01

KOLODZIEJCZAK, J.J. SD50 Hard X-Ray Measurements of Polycapillary Optics for

KETCHUM, A. Boeing KOMMERS, J.M. MIT
EMANUEL, M. Boeing LEWIN, W.H.G. MIT
CRAMER, J. EP62
KOUVELIOTOU, C. USRA/ES84
VAN PARADIS, J. UAH
PENDLETON, G.N. ES84
MEEGAN, C.A. ES84
FISHMAN, G.J. ES84

KOS, L.D. PD31

KOSHA K, W.J. HR20
SOLAKIEWICZ, R.J. HR20

KOSHA K, W.J. HR20
BLAKESLEE, R.J. HR20
BAILEY, J.C. Raytheon STX

ALDF Data Retrieval Algorithms for Validating the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). For publication in Remote Sensing Laboratory, University of Minnesota, 1999.

KOSHA K, W.J. HR20
CHRISTIAN, H.J. HR20
KRIDER, E.P. University of Arizona

A LIS Validation Study at the KSC-ER Using LDAR and Field Mill Data. For presentation at Spring 1999 American Geophysical Union Meeting, Boston, MA, May 1999.

KOSHA K, W.J. HR20
STEWART, M.F. UAH
CHRISTIAN, H.J. HR20
BERGSTROM, J.W. Ball Aerospace

KROES, R.L. ES76

KROES, R.L. ES76

KROME, M.E. ED44
CLARK, T.L. ED44

KRUPP, D. ED13
SHTESSEL, Y.B. UAH

KUNDROT, C.E. ES76

NASA's Biological Crystal Growth Program on the International Space Station. For presentation at 18th IUCR General Assembly and Congress, Glasgow, Scotland, August 7, 1999.

KURT, V.G.

AKIMOV, V.V.
MSFC PAPERS CLEARED FOR PRESENTATION

(Available only from authors. Dates are presentation dates.)

HAGYARD, M.J.

HATHAWAY, D.H.

LAK, T.

FLACHBART, R.

NGUYEN, H.

MARTIN, J.J.

LEE, J.A.

Lee, J.A.

LEYDERMAN, A.

University of Puerto Rico

PENN, B.G.

ES76

LITCHFORD, R.

ROBERTSON, T.

HAWK, C.

TURNER, M.

KOELFGEN, S.

LU, H.-I. SD60 Integrating Partial Polarization into a Metal-
ROBERTSON, F.R. SD60 Ferroelectric-Semiconductor Field Effect Transistor
 Model. For presentation at 11th International
 Symposium on Integrated Ferroelectrics, Colorado

LU, H.-I. SD60 MALONE, C.C. USRA
ROBERTSON, F.R. HR20 CISZAK, E. USRA
 KARR, L.J. SD48
On the Linearly-Balanced Kinetic Energy Spectrum. For
presentation at 12th Conference on Atmospheric and
Oceanic Fluid Dynamics, New York, NY, June 7–11,
1999.

LUMMERZHEIM, D. University of Alaska MAZURUK, K. USRA
SPANN, J.F., JR. ES83 RAMACHANDRAN, N. USRA
PARKS, G. University of Washington VOLZ, M.P. ES75
 Global Imaging Mission. For presentation at Huntsville
 98 Meeting, Guntersville, AL, October 29, 1998.

LUVALL, J.C. HR20 MAZURUK, K. ES75
QUATTROCHI, D.A. HR20 GILLIES, D.C. ES75
RICKMAN, D.L. HR20 VOLZ, M.P. ES75
 Measuring Thermal Characteristics of Urban
 Landscapes. For presentation at 1999 AAG Annual

LYLES, G.M. RA10 MAZURUK, K. ES75
 Technology Maturity Towards Highly Reusable Space
 Transportation Goals. For presentation at IAF,
 Amsterdam, Netherlands, October 4–8, 1999.

MACH, D.M. HR20 VOLZ, M.P. ES75
BOECK, W.L. HR20 GILLIES, D.C. ES75
CHRISTIAN, H.J. HR20 Magnetic Field Effect on the Stability of Flow Induced
 by a Rotating Magnetic Field. For publication in

MCCAUL, E.W., JR. HR20 MAZURUK, K. ES75
BUECHLER, D. HR20 VOLZ, M.P. ES75
GOODMAN, S.J. HR20 Magnetic Field Effect on the Stability of Flow Induced
 by a Rotating Magnetic Field. For publication in Journal

MACKERRAS, D. University of Queensland MCCLURE, J.C. University of Texas, El Paso
DARVENIZA, M. University of Queensland NUNES, A.C. EH23
ORVILLE, R.E. University of Queensland EVANS, D.M. University of Texas, El Paso
WILLIAMS, E.R. University of Queensland Arc and Melting Efficiency of Plasma Arc Welds. For
GOODMAN, S.J. HR20 presentation at ASM Materials Solutions Conference,
 Cincinnatti, OH, November 1–4, 1999.

MACLEOD, T.C. ES93 Simulation of the Universal-Time Diurnal Variation
HO, F.D. UAH of the Global Electric Circuit Charging Rate. For
 presentation at 11th International Conference on
 Atmospheric Electricity, Guntersville, AL, June 7–11,
 1999.
MCCOLLOUGH, M.L. USRA
ROBINSON, C.R. USRA
ZHANG, S.N. USRA
HARMON, B.A. ES84
PACIESAS, W.S. UAH
DIETERS, S. UAH
PHENGCHAMMAN, S. National Radio
HJELLMING, R.M. National Radio
RUPEN, M. National Radio
ET AL.

MCCOLLOUGH, M.L. USRA/SD50
HARMON, B.A. SD50
DIETERS, S.S UAH
WIJNANDS, R. University of Amsterdam

MCCOLLUM, M.B. ED44
CLARK, T.L. ED44

MCPHERSON, J.W. Hernandez Engineering
HARAWAY, S.W. Hernandez Engineering
WHIRLEY, J.D. CR10

MEEGAN, C.A. ES84
PENDLETON, G.N. ES84
MALLOZZI, R.S. ES84

MENDE, S.B.
HEETDERKS, H.
FREY, H.U.

University of CA-Berkeley
University of CA-Berkeley
Boeing

MIXSON, C.D. FD33

MOHAMADINEJAD, H. Boeing
KNOX, J.C. FD21
SMITH, J.E. UAH

MOORE, R.L. ES82
FALCONER, D.A. ES82
PORTER, J.G. ES82
SUSS, S.T. ES82

MOORE, R.L. SD50
FALCONER, D.A. SD50
PORTER, J.G. SD50

MULLINS, I.D. ED13
STONE, R.L. ED13
EVANS, S.W. ED13

NADARAJAH, A. ED76
LI, H. ES76
PUSEY, M.L. ES76

NADLER, J. TD40

Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion. For presentation at ASE Summer Faculty Fellow Program, The University of Alabama, Huntsville, AL, August 1999.

NAFTEL, J.C. TD13

X-33, Stepping Stone to Low Cost Access to Space. For presentation at International Space University, Nakhon Ratchasima, Thailand, August 9–14, 1999.

NELSON, T.R., JR. Air Force Research Lab
LOEHR, J.P. Air Force Research Lab

NEWTON, E.K. ES82
MILLER, J.A. ES82

NEESMAN, T.E. TD63
DENNIS, J. TD61

Fastrac Gas Generator Testing. For presentation at Tenth Thermal & Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

NEWTON, E.K. ES82
MULLINS, L.D. ED13
STONE, R.L. ED13
EVANS, S.W. ED13

NADARAJAH, A. ED76
LI, H. ES76
PUSEY, M.L. ES76

NADLER, J. TD40

Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion. For presentation at ASE Summer Faculty Fellow Program, The University of Alabama, Huntsville, AL, August 1999.

NAFTEL, J.C. TD13

X-33, Stepping Stone to Low Cost Access to Space. For presentation at International Space University, Nakhon Ratchasima, Thailand, August 9–14, 1999.

NELSON, T.R., JR. Air Force Research Lab
LOEHR, J.P. Air Force Research Lab

Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces. For presentation at Leonid's Meteor International Conference, Santa Clara, CA, April 12, 1999.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
<th>Conference/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEVER, D.</td>
<td>ES76</td>
<td>Low-Density Silica Xerogel Capture of Leonids Meteor Storm Dust Candidates by Stratospheric Balloon Return.</td>
<td>For presentation at Leonids Meteor International Conference, Santa Calara, CA, April 12, 1999.</td>
</tr>
<tr>
<td>NUNES, A.C., JR.</td>
<td>ED33</td>
<td>The Relation Between Alloy Chemistry and Hot-Cracking.</td>
<td>For presentation at 81st Annual AWS Convention, Chicago, IL, April 26–28, 2000.</td>
</tr>
<tr>
<td>O'DELL, S.L.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JONES, S.D.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUSSELL, J.K.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGELHAUPT, D.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COHEN, L.M.</td>
<td>Smithsonian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN SPEYBROECK, L.P.</td>
<td>Smithsonian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constellation-X Spectroscopy X-Ray Telescope
Requirements and Development Program: MSFC
Research Program. For publication in Proceedings of
SPIE’s 44th Annual Meeting, Denver, CO, July 18–

OBER, D. ES83
THOMSEN, M.F. ES83
GARY, P. ES83
GALLAGHER, D.L. ES83
MCCOMAS, D.J. ES83

Survey of Pancake-Shaped Warm Ion Distributions at
Geosynchronous Orbit. For publication in Journal of

OLUSEYI, H.M. Stanford University
WALKER, A.B.C., II Stanford University
PORTER, J.G. ES82
HOOVER, R.B. ES82
BARBEE, T.W., JR. Lawrence Livermore

Observation and Modeling of the Solar Transition
Region I. A Quasi-Static Loops Model with Implications
for Heating the Lower Transition Region. For

PADDIN, S. California Institute of Tech.
CARTWRIGHT, J.K. California Institute of Tech.
JOY, M. ES84

Coupling Between Close-Packed Shielded Cassegrain
Antennas. For publication in IEEE Transactions on

PARKER, D. Hamilton Standard
O’CONNOR, E. Hamilton Standard
BAGDIGIAN, R. FD21

Water Processor Assembly Technology Development.
For presentation at 29th International Conference on

PARKS, G.K. University of Washington
REME, H.
LIN, R.P.
SANDERSON, G.
GERMANY, G. UAH/CSPAR
SPANN, J.F., JR. ES83

BRITTNACHER, M. University of Washington
MCCARTHY, M.
CHEN, L.J. ET AL.

The Relationship of Ion Beams and Fast Flows in the
Plasma Sheet Boundary Layer. For publication in Fourth
International Conference on Substorms, Kluwer

PEARSON, S.D. ED03
CLIFTON, K.S. ED03

NASA’s Space Environments & Effects (SEE)
Program: Contamination Engineering Technology
Development. For presentation at SPIE’s Conference
on Optical System Contamination, Denver, CO, July

PEROZZO, M.A.
KONNERT, J.H.
LI, H.
NADARAJAH, A.
PUSEY, M.L. ES76

Energy Minimization of Molecular Features Observed
on the (110) Face of Lysozyme Crystals. For
presentation at American Crystallographic Association,

PERRY, J.L. ED62
CARTER, R.N. Precision Combustion, Inc.
ROYCHOUDHURY, S. Precision Combustion, Inc.

Demonstration of an Ultra-Short Channel Metal
Monolith Catalytic Reactor for Trace Contaminant
Control Applications. For presentation at 29th
International Conference on Environmental Systems,

POLITES, M.E. EB01
ET AL.

Recent Events in Guidance, Navigation, and Control
Highlights. For publication in Proceedings of 1999

POLITES, M.E. EB01
ET AL.

1999 Digital Avionics Highlights. For publication in
Aerospace America, December 1999.

POLITES, M.E. EB01
ET AL.

1999 Guidance, Navigation, and Control Highlights. For
publication in Aerospace America, December 1999.
PORTER, J.G. ES82
FALCONER, D.A. UAH/ES82
MOORE, R.L. ES82

PREECE, R.D. ES84
BRIGGS, M.S. UAH
MALLOWZI, R.S. UAH
PENDLETON, G.N. UAH
PACIESAS, W.S. UAH

BAND, D.L. University of CA-San Diego

PRICE, M.W. Corning Inc.
SCRIPA, R.N. UAB
LEHOCZKY, S.L. ES75
SZOFRAN, FR. ES75
HANSON, B. Corning Inc.

Determination of the Solid/Liquid Interface Shape and Resultant Radial Homogeneity in Directionally Solidified Hg0.89Mn0.1I Te. For presentation at ACCGE–11, Tucson, AZ, July 31–August 1, 1999.

PRIMM, L. JA62
BERGMANN, A. Boeing

PRINCE, F.A. PP03

PRINCE, F.A. PP03

PRUEGER, G. Boeing
WILLIAMS, M. Boeing
CHEN, W. Boeing
PARIS, J. Boeing
STEWART, E. Boeing
WILLIAMS, R. TD64

Unshrouded Centrifugal Turbopump Impeller. For presentation at Thermal & Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

PRYOR, D. TD15
HYDE, E.H. TD15
ESCHER, W.I.D. SAIC

PUSEY, M.L. ES76
SMITH, L. USRA
FORSYTHE, E. USRA

QIU, H.-L. California State
LAM, N.S. Louisiana State
QUATTROCHI, D.A. HR20
GAMON, J.A. California State

QUATTROCHI, D.A. HR20
LUVALL, J.C. HR20

QUATTROCHI, D.A. HR20
JENSEN, J.R. University of South Carolina
MORAIN, S.A. University of New Mexico
WALSH, S.J. University of North Carolina
RIDD, M.K. University of Utah

RAMACHANDRAN, N. USRA/SD47
SU, C.-H. SD47

RAMSEY, B.D. ES84
AUSTIN, R.A. ES84
APPLE, J.A. ES84
DIETZ, K.L. ES84

RAMSEY, B.D. SD50
SHARMA, D.P. SD50
MEISNER, J. SD50
AUSTIN, R.A. SD50

RAMSEY, B.D. SD50
ENGELHAUT, D. SD50
SPEEGLE, C.O. SD50
AUSTIN, R.A. SD50
KOLODZIEJCZAK, J.J. SD50
O’DELL, S.L. SD50
WEISSKOPF, M.C. SD50

RICHARDS, P.G. UAH
BUONSANTO, M.J. University of MA
REINISCH, B.W. TD64
HAINES, D.M. University of MA
BIBL, K. University of MA
CHENEY, G. University of MA
GALKIN, I.A. University of MA
HUANG, X. University of MA
MYERS, S.H. University of MA
SALES, G.S. University of MA
GALLAGHER, D.L. SD50
ET AL.

REINISCH, B.W. Baltic Scientific
HAINES, D.M. Baltic Scientific
BIBL, K. Baltic Scientific
CHENEY, G. Baltic Scientific
GALKIN, I.A. Baltic Scientific
HUANG, X. Baltic Scientific
MYERS, S.H. Baltic Scientific
SALES, G.S. Baltic Scientific
GALLAGHER, D.L. Baltic Scientific
ET AL.

RAMSEY, B.D. SD50
SHARMA, D.P. SD50
MEISNER, J. SD50
GOSTILO, V. SD50
IVANOV, V. SD50
LOUPILOV, A. SD50
SOKOLOV, A. SD50
SIPILA, H. Metorex International Oy

REINISCH, B.W. University of MA
HAINES, D.M. University of MA
BIBL, K. University of MA
CHENEY, G. University of MA
GALKIN, I.A. University of MA
HUANG, X. University of MA
MYERS, S.H. University of MA
SALES, G.S. University of MA
GALLAGHER, D.L. SD50
ET AL.

RITI'ER, J.
BRANLY, R.
THEODORAKIS, C. SD71
University of Central FL
Texas A&M University
A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA—Results from GRaDEX-I and the Design of GRaDEX-II. For presentation at SSPPO Conference “Shuttle Small Payloads Project Office,” Annapolis, MD, September 1999.

Systematic Differences Between Satellite-Based Precipitation Climatologies Over the Tropical Oceans. For presentation at 79th American Meteorological Society Annual Meeting, Dallas, TX, January 10–15, 1999.

ROTHERMEL, J. HR20 SAYYAH, T. Sverdrup Corp.
CUTTEN, D.R. HR20 SWANSON, G.R. ED25
HOWELL, B.F. HR20 SCHONBERG, W.P. UAH
HARDESTY, R.M. HR20
TRATT, D.M. HR20
DARBY, L.S. HR20

ROWE, S. ED53 SCHAEFER, D.A. SD44
WHITTEN, D. ED53 COBB, S.D. SD44
CLOYD, R. ED53 SZOFRAN, F.R. SD44

RODRIQUEZ, P. ED53

RUF, J. TD64 SCHAEFER, D.A. SD44
CANABAL, F. TD64 COBB, S.D. SD44
HOLT, J. TD64 SZOFRAN, F.R. SD44

GUBAREV, M. NRC/SD50 SCHMIDT, G.R. EP61
KOLODZIEJCZAK, J. SD50 GERRISH, H.P. EP61
JOY, M. SD50 MARTIN, J.J. EP61

GIBSON, W.M. University of Albany

GERRISH, H.P. EP61
MARTIN, J.J. EP61

RUSSELL, S.S. EH13 SMITH, G.A. Pennsylvania State University
WALKER, J.L. EH13 MEYER, K.J. Pennsylvania State University

46

SCHMIDT, G.R. TD40
THIO, Y.C. TD40
CHAKRABARTI, S. Pennsylvania State University

SCHMIDT, G.R. TD40
THIO, Y.C. TD40
CHAKRABARTI, S. Pennsylvania State University

SCHMIDT, G.R. TD40
GERRISH, H.P. TD40
MARTIN, J.J. TD40
SMITH, G.A. Pennsylvania State University
MEYER, K.J. Pennsylvania State University

SCHUNK, R.G. ED26
CHUNG, T.J. UAH

Parallelization of the Flow Field Dependent Variation Scheme for Solving the Triple Shock/Boundary Layer Interaction Problem. For presentation at Tenth Thermal & Fluids Analysis Workshop, Huntsville, AL, September 13–17, 1999.

SEN, S. USRA/SD47
KAUKLER, W. UAH
CATALINA, A. USRA/SD47
STEFANESCU, D.M. University of Alabama
CURRERI, P. ES75

SEN, S. USRA/ES75
JURETZKO, F. University of Alabama
STEFANESCU, D.M. University of Alabama
DHINDAW, B.K. IIT Khargpur, India
CURRERI, P.A. ES75

SINGH, A.D. Auburn University
LAKIN, D.R., II EB32
Sinha, G. Auburn University
NIGH, P. IBM

SEVER, T.L. HR20

SHARP, J.R. ED26

SHAW, E.J. VS20

SHIPLEY, A. University of Colorado
CASH, W. University of Colorado
OSTERMAN, S. University of Colorado
JOY, M.K. SD50
CARTER, J. SD50

SIEBENHAAR, A. Aerojet
BULMAN, M. Aerojet
JOHNSON, R. Aerojet
FAZAH, M. TD51

Demonstrating the Performance Benefits of the Strutjet RBCC for Space Launch Architectures. For presentation at ISABE Conference, Florence, Italy, September 1999.

SINGER, C. MP21

Binning for IC Quality: Experimental Studies on the SEMATECH Data. For presentation at IEEE International Symposium on Defect and Fault VLSI Systems, Austin, TX, November 2–4, 1998.

SKELLEY, S. TD63
ZOLADZ, T. TD63

SLADE, K.N. Duke University
TINKER, M.L. ED23

SLEDD, A.M. FD31

SMITH, D.D. ES76
YOON, Y. University of Rochester
BOYD, R.W. University of Rochester
CROOKS, R.M. Texas A&M University
GEORGE, M. UAH

SMITH, D.D. ES76
YOON, Y. University of Rochester
BOYD, R.W. University of Rochester
CAMPBELL, J.K.
BAKER, L.A.
CROOKS, R.M. Texas A&M University
GEORGE, M. UAH

SODEN, B. NOAA/GFDL
TJEMKES, S. EUMETSAT
SAUNDERS, R. ECMWF
BATES, J. NOAA/CDC
ELLINGSON, B. University of Maryland

ENGEL, R. Colorado State
GARAND, L. AES
JACKSON, D. NOAA/CDC
JEDLOVEC, G. ET AL.

SOLAKIEWICZ, R.J. HR20
KOSHA, W.J. HR20
Time of Arrival Retrievals on an Oblate Spheroidal. For presentation at 11th International Conference on Atmospheric Electricity, Gunterville, AL, June 6–11, 1999.

SPANN, J.F., JR. ES83
VENTURINI, C.C. UAH
COMFORT, R.H. University of Alabama
ABBAS, M.M. ES83

SPANN, J.F., JR. SD50
SMITH, M. SD50
GERMANY, G.A. UAH/CSPAR
CHUA, D. University of Washington
BRITTNACHER, M.J. University of Washington
PARKS, G.K. University of Washington

SPANN, J.F., JR. ES83
BRITTNACHER, M.J. University of Washington
PARKS, G.K. University of Washington
GERMANY, G.A. UAH/CSPAR

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendez, S.</td>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Frey, H.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Chenette, D.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Schultz, M.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Petrinec, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Spruenger, S.</td>
<td>Lockheed Martin</td>
<td></td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>Nichols Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Walker, H.J.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Frost, A.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Spruenger, A.M.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Walker, H.J.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Frost, A.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Spruenger, A.M.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Walker, H.J.</td>
<td>ED34</td>
<td></td>
</tr>
<tr>
<td>Frost, A.</td>
<td>ED34</td>
<td></td>
</tr>
</tbody>
</table>
Relationship of 0+ Field-Aligned Flows and Densities to Convection Speed in the Polar Cap at 5000 km Altitude. For publication in Journal of Atmospheric Sciences and Terrestrial Physics, 1999.

STRAKEY, P.A. Air Force Research Lab.
TALLEY, D.G. Air Force Research Lab.
HUTT, J.J. TD61

SU, C.-H. ES75
FETH, S. Raytheon STX Corp.
HIRSCHFELD, D. New Mex. Inst. of Mining and Tech.
SMITH, T.M. New Mex. Inst. of Mining and Tech.
WANG, L.J. University of Tennessee
VOLZ, M.P. ES75
LEHOCZKY, S.L. ES75

SU, C.-H. ES75
GEORGE, M.A. UAH
PALOSZ, W. USRA
FETH, S. Raytheon STX Corp.
LEHOCZKY, S.L. ES75

SU, C.-H. ES75
FETH, S. Raytheon STX Corp.
VOLZ, M.P. ES75
MATYI, R. University of Wisconsin-Madison
GEORGE, M.A. UAH
BURGER, A. Fisk University
LEHOCZKY, S.L. ES75

SU, C.-H. SD47
SHA, Y.-G. USRA
VOLZ, M.P. SD47
CARPENTER, P. USRA
LEHOCZKY, S.L. SD47
SUSS, S.T. SD50
NERNEY, S. Ohio University

SUGGS, R.J. SD60
JEDLOVEC, G.J. SD60
LAPENTA, W.M. SD60
HAINES, S.L. UAH

SUITs, M.W. EH13
CLARK, L. EH13
COX, D. EH13

SWANSON, G.R. ED25
ZACHARY, L.W. Iowa State University
Experimentally Determined Crack Location and Mixed Mode Stress Intensity Factors. For presentation at 1999 SEM Annual Conference & Exposition, Cincinnati, Ohio, June 7–9, 1999.

SZOFRAN, F.R. ES75

TANTON, G. Morgan Research Corp.
KESMODEL, R. Morgan Research Corp.
BURDEN, J. Morgan Research Corp.
SU, C.-H. SD47
COBB, S.D. SD47
LEHOCZYK, S.L. SD47

TAYLOR, E.W. University of New Mexico
OSINSKI, M. University of New Mexico
SVIMONISHVILI, T. University of New Mexico
WATSON, M. SD72
BUNTON, P. SD72
PEARSON, S.D. SD72
BILBRO, J. SD72

THIO, Y.C.F. TD40
FREEZE, B. TD40
KIRKPATRICK, R.C. Los Alamos Nat. Lab.
LANDRUM, B. UAH
GERRISH, H.P., JR. TD40
SCHMIDT, G.R. TD40

THOMAS, R.J. New Mex. Inst. of Mining and Tech.
KREHBIEL, P.R. New Mex. Inst. of Mining and Tech.
RISON, W. New Mex. Inst. of Mining and Tech.
HAMLIN, T. New Mex. Inst. of Mining and Tech.
BOCCIPPIO, D. SD60
GOODMAN, S. SD60
CHRISTIAN, H. SD60
Comparison of Ground-Based 3-Dimensional Lightning Mapping Observations with Satellite-Based LIS Observations in Oklahoma. For presentation at 11th International Conference on Atmospheric Electricity, Guntersville, AL, June 7–11, 1999.

THOMAS, R.J. New Mex. Inst. of Mining and Tech.
KREHBIEL, P.R. New Mex. Inst. of Mining and Tech.
RISON, W. New Mex. Inst. of Mining and Tech.
HAMLIN, T. New Mex. Inst. of Mining and Tech.
BOCCIPPIO, D. SD60
GOODMAN, S. SD60
CHRISTIAN, H. SD60
MOORE, C.E. SD47
FRAZIER, D.O. SD47

TOWNSEND, J.S. ED23
SMART, C. Hernandez Eng., Inc.

TRINH, H.P. EP62
CRAMER, J.M. EP62

VENTURINI, C.C. UAH/SD50
SPANN, J.E, JR. SD50
COMFORT, R.H. UAH
Preliminary Results from a Laboratory Study of Charging Mechanisms in a Dusty Plasma. For presentation at Colloquium/Physics Department of Auburn University, Auburn, AL, April 8, 1999.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Paper Title</th>
<th>Conference/Meeting Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VENTURINI, C.C.</td>
<td>UAH/SD50</td>
<td>A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam.</td>
<td>For presentation at IPELS ’99, Kreuth, Germany, August 11, 1999.</td>
</tr>
<tr>
<td>SPANN, J.F., JR.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMFORT, R.H.</td>
<td>UAH/SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENTURINI, C.C.</td>
<td>UAH/SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPANN, J.F., JR.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMFORT, R.H.</td>
<td>UAH/SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUSSELL, S.S.</td>
<td>EH13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILKERSON, D.</td>
<td>EB33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WANG, J.-C.</td>
<td>Alabama A&M University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATRING, D.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILLIES, D.C.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZOFRAN, F.R.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHA, Y.-G.</td>
<td>ES71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WANG, L.J.</td>
<td>University of Tennessee</td>
<td>Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe.</td>
<td>For presentation at APS Centennial Meeting, Atlanta, GA, March 20–26, 1999.</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHOCZKY, S.L.</td>
<td>ES75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Temperature Photoluminescence of PVT Grown ZnSe and ZnSeTe.</td>
<td>For presentation at APS Centennial Meeting, Atlanta, GA, March 20–26, 1999.</td>
</tr>
<tr>
<td>WATSON, M.D.</td>
<td>EB52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATSON, M.D.</td>
<td>EB52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAYROE, R.R., JR.</td>
<td>EB51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEISSKOPF, M.C. ES01

WEISSKOPF, M.C. ES01
The Study of Neutron Stars with the Chandra X-Ray Observatory. For presentation at The Neutron Star—Black Hole Connection, Crete, Greece, June 10, 1999.

WESTRA, D.G. ED25

WILKERSON, G.W. Micro Craft, Inc.
PITALO, S.K. SD70

WILLIAMS, B.E. Ultramet
FORTINI, A.J. Ultramet
TUFFIAS, R.H. Ultramet
DUFFY, A.J. Ultramet
TUCKER, S.P. EP63

WILLIAMS, E.
LIN, S.
LABRADA, C.
CHRISTIAN, H.J., JR.
GOODMAN, S.
BOCCIPPIO, D.
DRISCOLL, K. UAH

WILSON, C.A. ES84
FINGER, M.H. USRA

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA

WILSON, C.A. SD50
HARMON, B.A. SD50
FISHMAN, G.J. SD50
ZHANG, S.N. UAH
PACIESAS, W.S. UAH
MCCOLLOUGH, M.L. USRA
The Earth Occultation Technique With the Burst and Transient Source Experiment. For presentation at Astronomical Data Analysis Software & Systems IX Conference, Kauai, HI, October 4, 1999.

WILSON, C.A. ES84
FINGER, M.H. USRA
SCOTT, D.M. USRA
WILSON, C.A. ES84

WILSON, C.A. ES84
FINGER, M.H. USRA
WILSON, R.M. ES82
A Statistical Approach for Determining the Onsets/
Durations of ENSO Cycle Extremes. For publication

WILSON, R.M. ES82
Statistical Aspects of Intense Hurricanes in the Atlantic
Basin During the Past 49 Hurricane Seasons (1950–
Research (Oceans), 1999.

WILSON, R.M. ES82
Variation of Surface Air Temperatures in Relation to El
For publication in Journal of Atmospheric and Solar-
Terrestrial Physics, March 1999.

WILSON, R.M. ES82
Statistical Aspects of Intense Hurricanes in the Atlantic
Basin During the Past 49 Hurricane Seasons (1950–
1998): Implications for the Current Season. For

WILSON, R.M. ES82
El Nino During the 1990s: Harbinger of Climatic
Change or Normal Fluctuation? For publication in

WILSON, R.M. SD50
On the Bimodality of ENSO Cycle Extremes. For
publication in Journal of Atmospheric and Solar—
Terrestrial Physics, 1999.

WINGARD, C.D. EH32
Use of Several Thermal Analysis Techniques on a
Hypalon Paint Coating for the Solid Rocket Booster
(SRB) of the Space Shuttle. For presentation at North
American Thermal Analysis Society (NATAS)

WINGARD, C.D. ED34
Use of Several Thermal Analysis Techniques to Study
the Cracking of a Nitrile Butadiene Rubber (NBR)
Insulator on the Booster Separation Motor (BSM) of
the Space Shuttle. For presentation at North American

WOODS, P. ES84
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH

HURLEY, K. University of Texas
KIPPEN, R.M. USRA
FINGER, M.H. UAH
BRIGGS, M.S. UAH
DIETERS, S.
FISHMAN, G.J. ES84

Discovery of a New Soft Gamma Repeater, SGR 1627–
41. For publication in Astrophysical Journal Letters,

WOODS, P. ES84
KOUVELIOTOU, C. USRA/ES84
VAN PARADIJS, J. UAH
FINGER, M.H. USRA
THOMPSON, C.

BeppoSAX Observations of the SGR 1900+14 in
Quiescence and During an Active Period. For
publication in Astrophysical Journal Letters, Cambridge,
MA, June 1999.

WORLIKAR, A. Cape Simulations, Inc.
OVERHOLT, M. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.
SU, C.-H. ES85
RAMACHANDRAN, N. ES85

Simulation of Dynamics of PVT Growth: ZnSe. For
presentation at ACCGE–11, Tucson, AZ, August 1–6,
1999.

WRIGHT, M.E. SD43
Microgravity Science Glovebox (MSG). For
presentation at American Glovebox Society Conference,

WU, J. Fayetteville State
DERRICKSON, J.H. SD50
PARNELL, T.A. SD50
STRAYER, M.R. Oak Ridge Nat. Lab.

The Screening Effect in Electromagnetic Production of
Electron Positron Pairs in Relativistic Nucleus-Atom

WUEST, M. Southwest Research
HIDDLESTON, M.M.
BURCH, J.L. Southwest Research
DEMPSEY, D.L. Southwest Research
CRAVEN, P.D. ES83
CHANDLER, M.O. ES83
SPANN, J.F., JR. ES83
PETERSON, W.K. Lockheed Martin

55
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

COLLIN, H.L. Lockheed Martin
LENNARTSSON, W. Lockheed Martin

YESELYURT, S. Cape Simulations, Inc.
VUJISIC, L. Cape Simulations, Inc.
MOTAKEF, S. Cape Simulations, Inc.
SZOFRAN, F.R. ES75
VOLZ, M.P. ES75

YOUNG, R.B. ES76
BRIDGE, K.Y. ES76
VAUGHN, J.R. ES76

YOUNG, R.B. ES76
BRIDGE, K.Y. ES76
VAUGHN, J.R. ES76
Beta-Adrenergic Receptor Expression in Muscle Cells. For presentation at Signal Transduction & Therapeutic Strategies, Houston, TX, February 6, 1999.

YOUNG, R.B. ES76
BRIDGE, K.Y. ES76
Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells. For presentation at The Congress on In Vitro Biology, New Orleans, Louisiana, June 6, 1999.

YOUNG, R.B. ES76
BRIDGE, K.Y. ES76
STRIETZEL, C.J. UAH
Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeletal Muscle Cell Cultures. For publication in In Vitro Cellular and Developmental Biology, 1999.

YOUNG, R.B. ES76
BRIDGE, K.Y. ES76
VAUGHN, J.R. ES76
Substrate Effects in Growth of Spatixial ZnO Films. For presentation at International Workshop on ZnO, Dayton, Ohio, October 7–8, 1999.

ZHU, S. USRA/ES75
BANKS, C.E. USRA/ES75
FRAZIER, D.O. ES75
ABDELDAYEM, H. USRA
VOLZ, M.R ES75
HICKS, R. ES75

ZHU, S. USRA/ES75
SU, C.-H. USRA/ES75
LEHOOCZKY, S. ES75
GEORGE, M.A. University of Alabama

ZHU, S. USRA/ES75
SU, C.-H. USRA/ES75
LEHOOCZKY, S.L. ES75
MORPHOLOGY AND STRUCTURE OF ZN0 FILMS SYNTHESIZED BY OFF-AXIS SPUTTERING DEPOSITION. FOR PRESENTATION AT CONFERENCE FOR OPTICAL SCIENCE, ENGINEERING, & INSTRUMENTATION (SPIE) SD74, DENVER, CO, JULY 18–23, 1999.

ZHU, S. USRA/SD40
SU, C.-H. USRA/SD40
LEHOOCZKY, S.L. SD40
HARRIS, M.T. SD40
GEORGE, M.A. SD40
MCCARTY, P. SD40
Substrate Effects in Growth of Spitaxial ZnO Films. For presentation at International Workshop on ZnO, Dayton, Ohio, October 7–8, 1999.

ZHU, S. USRA/SD47
BANKS, C.E. SD47
FRAZIER, D.O. SD47
PENN, B. SD47
ABDELDAYEM, H. USRA/SD47
HICKS, R. SD47
BURNS, H.D. ED01
THOMPSON, G.W. UAH

ZHU, S. USRA/SD47
SU, C.-H. USRA/SD47
LEHOCZKY, S.L. SD47
PETERS, P. SD47
GEORGE, M.A. UAH

ZIMMERMAN, F.R. EH23
GERISH, H.
DAVIS, W.M. Boeing
HISSAM, D.A. TD62

ZIMMERMAN, F.R. EH23
HISSAM, D.A. TD62
GERRISH, H.P. TD40
DAVIS, W.M. Boeing

ZISSA, D.E. EB52

INDEX

TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulet, J.A.M</td>
<td>4</td>
</tr>
<tr>
<td>C. Wilkerson</td>
<td>1</td>
</tr>
<tr>
<td>Craig, L.D.</td>
<td>4</td>
</tr>
<tr>
<td>Finckenor, M.M.</td>
<td>2, 3</td>
</tr>
<tr>
<td>Fox, D.E.</td>
<td>4</td>
</tr>
<tr>
<td>Goodloe, C.C.</td>
<td>4</td>
</tr>
<tr>
<td>James, B.F.</td>
<td>3</td>
</tr>
<tr>
<td>Johnson, D.L.</td>
<td>4</td>
</tr>
<tr>
<td>Justus, C.G.</td>
<td>3, 4</td>
</tr>
<tr>
<td>Kameneitzky, R.R.</td>
<td>2, 3</td>
</tr>
<tr>
<td>Kim, Y.K.</td>
<td>1</td>
</tr>
<tr>
<td>Lake, R.E.</td>
<td>1</td>
</tr>
<tr>
<td>Lee, J.A.</td>
<td>1</td>
</tr>
<tr>
<td>Leslie, F.</td>
<td>1</td>
</tr>
<tr>
<td>McGhee, D.S.</td>
<td>2</td>
</tr>
<tr>
<td>Murphy, A.W.</td>
<td>1</td>
</tr>
<tr>
<td>Nurre, G.S.</td>
<td>1</td>
</tr>
<tr>
<td>Price, J.M.</td>
<td>1</td>
</tr>
<tr>
<td>Ramachandran, N.</td>
<td>1</td>
</tr>
<tr>
<td>Ray, C.D.</td>
<td>3</td>
</tr>
<tr>
<td>Salyer, B.H.</td>
<td>3</td>
</tr>
<tr>
<td>Steeve, B.E.</td>
<td>1</td>
</tr>
<tr>
<td>Suits, M.</td>
<td>2</td>
</tr>
<tr>
<td>Summers, F.G.</td>
<td>2</td>
</tr>
<tr>
<td>Swaim, K.W.</td>
<td>4</td>
</tr>
<tr>
<td>Swanson, G.R.</td>
<td>1</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>2</td>
</tr>
<tr>
<td>Waits, Turner, J.E.</td>
<td>2</td>
</tr>
<tr>
<td>Whorton, M.S.</td>
<td>1</td>
</tr>
<tr>
<td>Wilkerson, C.</td>
<td>1</td>
</tr>
</tbody>
</table>

CONFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekey, I.</td>
<td>9</td>
</tr>
<tr>
<td>Brewer, J.C.</td>
<td>9</td>
</tr>
<tr>
<td>Caruso, S.V.</td>
<td>9</td>
</tr>
<tr>
<td>Christian, H.J.</td>
<td>9</td>
</tr>
<tr>
<td>Clark-Ingram, M.</td>
<td>9</td>
</tr>
<tr>
<td>Cross, D.R.</td>
<td>9</td>
</tr>
<tr>
<td>Curreri, P.A.</td>
<td>8, 9</td>
</tr>
<tr>
<td>Ethridge, E.C.</td>
<td>9</td>
</tr>
<tr>
<td>Gillies, D.C.</td>
<td>8</td>
</tr>
<tr>
<td>Mankins, J.</td>
<td>9</td>
</tr>
<tr>
<td>McCauley, D.E.</td>
<td>8, 9</td>
</tr>
<tr>
<td>O'Neil, D.</td>
<td>9</td>
</tr>
<tr>
<td>Piland, W.</td>
<td>9</td>
</tr>
<tr>
<td>Robinson, M.B.</td>
<td>8</td>
</tr>
<tr>
<td>Rogers, T.</td>
<td>9</td>
</tr>
<tr>
<td>Smitherman, D.V., Jr.</td>
<td>8</td>
</tr>
<tr>
<td>Stallmer, E.</td>
<td>9</td>
</tr>
<tr>
<td>Walker, C.</td>
<td>8</td>
</tr>
<tr>
<td>Whitaker, A.F.</td>
<td>9</td>
</tr>
</tbody>
</table>

CONTRACTOR REPORTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroflex</td>
<td>13</td>
</tr>
<tr>
<td>Aerojet ASRM Division</td>
<td>11</td>
</tr>
<tr>
<td>Auburn University</td>
<td>11</td>
</tr>
<tr>
<td>AZ Technology, Inc</td>
<td>11</td>
</tr>
<tr>
<td>Computer Sciences Corporation</td>
<td>11</td>
</tr>
<tr>
<td>Control Dynamics</td>
<td>11</td>
</tr>
<tr>
<td>EMC Compliance</td>
<td>12</td>
</tr>
<tr>
<td>Erit Research, Inc</td>
<td>11</td>
</tr>
<tr>
<td>Northrop Grumman Corporation</td>
<td>11</td>
</tr>
<tr>
<td>Science Applications International Corp</td>
<td>12</td>
</tr>
<tr>
<td>Simpson Weather Associations, Inc</td>
<td>11</td>
</tr>
<tr>
<td>Southwest Research Institute</td>
<td>11</td>
</tr>
<tr>
<td>Teledyne Brown Engineering</td>
<td>12</td>
</tr>
<tr>
<td>University of Alabama in Huntsville</td>
<td>11</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Abbas, M.M.</td>
<td>48</td>
</tr>
<tr>
<td>Abdeldayem, H.</td>
<td>14, 56, 57</td>
</tr>
<tr>
<td>Abdeldayem, H.A.</td>
<td>13, 26, 27</td>
</tr>
<tr>
<td>Abedian, B.</td>
<td>32</td>
</tr>
<tr>
<td>Ackerman, E.</td>
<td>45</td>
</tr>
<tr>
<td>Adams, G.P.</td>
<td>41</td>
</tr>
<tr>
<td>Adams, M.</td>
<td>23</td>
</tr>
<tr>
<td>Adams, M.L.</td>
<td>13, 30</td>
</tr>
<tr>
<td>Aggarwal, M.D.</td>
<td>13, 23</td>
</tr>
<tr>
<td>Akimov, V.V.</td>
<td>36</td>
</tr>
<tr>
<td>Alexander, C.</td>
<td>13</td>
</tr>
<tr>
<td>Alexander, D.</td>
<td>13</td>
</tr>
<tr>
<td>Alexander, D.A.</td>
<td>27</td>
</tr>
<tr>
<td>Alexander, R.</td>
<td>49</td>
</tr>
<tr>
<td>Alexander, R.A.</td>
<td>13</td>
</tr>
<tr>
<td>Alhorn, D.C.</td>
<td>13</td>
</tr>
<tr>
<td>Alves, J.R.</td>
<td>32</td>
</tr>
<tr>
<td>Ambastha, A.K.</td>
<td>19</td>
</tr>
<tr>
<td>Ames, G.H.</td>
<td>30</td>
</tr>
<tr>
<td>Anderson, B.J.</td>
<td>13</td>
</tr>
<tr>
<td>Anderson, R.R.</td>
<td>13</td>
</tr>
<tr>
<td>Anfimov, D.S.</td>
<td>39</td>
</tr>
<tr>
<td>Antar, B.N.</td>
<td>13</td>
</tr>
<tr>
<td>Antipin, M.Y.</td>
<td>51</td>
</tr>
<tr>
<td>Apple, J.A.</td>
<td>44</td>
</tr>
<tr>
<td>Aschwanden, M.J.</td>
<td>13</td>
</tr>
<tr>
<td>Atkinson, R.J.</td>
<td>33</td>
</tr>
<tr>
<td>Austin, R.A.</td>
<td>14, 28, 44</td>
</tr>
<tr>
<td>Austin, R.E.</td>
<td>14</td>
</tr>
<tr>
<td>Ayala, S.</td>
<td>52</td>
</tr>
<tr>
<td>Bachmann, K.J.</td>
<td>14, 18</td>
</tr>
<tr>
<td>Bagdigan, R.</td>
<td>20, 42</td>
</tr>
<tr>
<td>Bailey, J.</td>
<td>52</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>14, 15, 36</td>
</tr>
<tr>
<td>Baker, L.A.</td>
<td>48</td>
</tr>
<tr>
<td>Balepin, V.</td>
<td>14</td>
</tr>
<tr>
<td>Ballance, J.</td>
<td>34</td>
</tr>
<tr>
<td>Hampton, C.</td>
<td>18</td>
</tr>
<tr>
<td>Band, D.L.</td>
<td>17, 43</td>
</tr>
<tr>
<td>Banks, C.E.</td>
<td>14, 56, 57</td>
</tr>
<tr>
<td>Bankston, C.D.</td>
<td>14</td>
</tr>
<tr>
<td>Barbee, T.W., Jr.</td>
<td>42</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>14</td>
</tr>
<tr>
<td>Baskaran, S.</td>
<td>14, 41</td>
</tr>
<tr>
<td>Bateman, M.G.</td>
<td>15</td>
</tr>
<tr>
<td>Bates, J.</td>
<td>48</td>
</tr>
<tr>
<td>Batts, W.</td>
<td>45</td>
</tr>
<tr>
<td>Baugher, C.</td>
<td>15</td>
</tr>
<tr>
<td>Beiersdorfer, P.</td>
<td>24</td>
</tr>
<tr>
<td>Bellomy-Ezell, J.</td>
<td>15</td>
</tr>
<tr>
<td>Belloni, T.</td>
<td>15</td>
</tr>
<tr>
<td>Belyaev, M.Y.</td>
<td>15</td>
</tr>
<tr>
<td>Bender, R.L.</td>
<td>15</td>
</tr>
<tr>
<td>Bennett, N.</td>
<td>15</td>
</tr>
<tr>
<td>Benson, C.M.</td>
<td>20</td>
</tr>
<tr>
<td>Benson, R.F.</td>
<td>27, 29</td>
</tr>
<tr>
<td>Benz, K.W.</td>
<td>22, 24, 34</td>
</tr>
<tr>
<td>Bergmann, A.</td>
<td>43</td>
</tr>
<tr>
<td>Bergstrom, J.W.</td>
<td>36</td>
</tr>
<tr>
<td>Bernstein, E.</td>
<td>41</td>
</tr>
<tr>
<td>Bero, E.</td>
<td>13</td>
</tr>
<tr>
<td>Berry, F.A.</td>
<td>20</td>
</tr>
<tr>
<td>Bertotto, D.</td>
<td>18</td>
</tr>
<tr>
<td>Best, S.R.</td>
<td>15</td>
</tr>
<tr>
<td>Bhat, B.N.</td>
<td>19</td>
</tr>
<tr>
<td>Bhat, K.</td>
<td>13</td>
</tr>
<tr>
<td>Bibl, K.</td>
<td>29, 44</td>
</tr>
<tr>
<td>Bickham, J.</td>
<td>45</td>
</tr>
<tr>
<td>Bickley, F.P.</td>
<td>15</td>
</tr>
<tr>
<td>Bilbro, J.</td>
<td>51</td>
</tr>
<tr>
<td>Blair, A.K.</td>
<td>15</td>
</tr>
<tr>
<td>Blakeslee, R.</td>
<td>15, 16</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>14, 15, 19, 36</td>
</tr>
<tr>
<td>Blanchard, G.T.</td>
<td>15</td>
</tr>
<tr>
<td>Blomberg, L.G.</td>
<td>23</td>
</tr>
<tr>
<td>Blyth, A.M.</td>
<td>16</td>
</tr>
<tr>
<td>Boardsen, S.A.</td>
<td>29</td>
</tr>
<tr>
<td>Boceppio, D.J.</td>
<td>16, 19, 33, 51, 54</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>16, 19, 38</td>
</tr>
<tr>
<td>Boldi, B.</td>
<td>29</td>
</tr>
<tr>
<td>Bolotnikov, A.</td>
<td>16</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>32</td>
</tr>
<tr>
<td>Bookout, P.S.</td>
<td>16</td>
</tr>
<tr>
<td>Bottcher, M.</td>
<td>16</td>
</tr>
<tr>
<td>Boyd, R.W.</td>
<td>48</td>
</tr>
<tr>
<td>Bradford, R.N.</td>
<td>16</td>
</tr>
<tr>
<td>Brainerd, J.J</td>
<td>16, 17</td>
</tr>
<tr>
<td>Branly, R.</td>
<td>44</td>
</tr>
<tr>
<td>Braswell, W.D.</td>
<td>49</td>
</tr>
<tr>
<td>Breeding, S.</td>
<td>15</td>
</tr>
<tr>
<td>Breeding, S.P.</td>
<td>34</td>
</tr>
<tr>
<td>Bremner, C.</td>
<td>41</td>
</tr>
<tr>
<td>Bridge, K.Y.</td>
<td>56</td>
</tr>
<tr>
<td>Briggs, M.S.</td>
<td>17, 39, 43, 55</td>
</tr>
<tr>
<td>Britten, J.A.</td>
<td>21</td>
</tr>
<tr>
<td>Brittmacher, M.J.</td>
<td>17, 20, 23, 26, 28, 42, 48</td>
</tr>
<tr>
<td>Brown, A.M.</td>
<td>18</td>
</tr>
<tr>
<td>Brown, G.</td>
<td>24</td>
</tr>
<tr>
<td>Brunner, D.</td>
<td>33</td>
</tr>
<tr>
<td>Bryan, T.C.</td>
<td>32</td>
</tr>
<tr>
<td>Buechler, D.E.</td>
<td>18, 19, 29, 38</td>
</tr>
<tr>
<td>Bulman, M.</td>
<td>47</td>
</tr>
<tr>
<td>Name</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Curry, K</td>
<td>23</td>
</tr>
<tr>
<td>Curtis, L</td>
<td>34</td>
</tr>
<tr>
<td>Cutten, D.R.</td>
<td>33, 46</td>
</tr>
<tr>
<td>Dabney, R.W.</td>
<td>32</td>
</tr>
<tr>
<td>D'agostino, M.G.</td>
<td>15</td>
</tr>
<tr>
<td>Daisuke, N.</td>
<td>23</td>
</tr>
<tr>
<td>Daly, M.</td>
<td>23</td>
</tr>
<tr>
<td>Darby, L.S.</td>
<td>46</td>
</tr>
<tr>
<td>Darveniza, M.</td>
<td>38</td>
</tr>
<tr>
<td>Davis, V.A.</td>
<td>34</td>
</tr>
<tr>
<td>Davis, W.M.</td>
<td>57</td>
</tr>
<tr>
<td>Deliberty, T.</td>
<td>23</td>
</tr>
<tr>
<td>Dembek, S.</td>
<td>37</td>
</tr>
<tr>
<td>Dempsey, D.L.</td>
<td>55</td>
</tr>
<tr>
<td>Dennis, J.</td>
<td>40</td>
</tr>
<tr>
<td>Derrickson, J.H.</td>
<td>23, 55</td>
</tr>
<tr>
<td>Dexter, C.E.</td>
<td>23</td>
</tr>
<tr>
<td>Dhindaw, B.K.</td>
<td>47</td>
</tr>
<tr>
<td>Dietz, K.L.</td>
<td>15, 39, 55</td>
</tr>
<tr>
<td>Digirolamo, A.</td>
<td>45</td>
</tr>
<tr>
<td>Digregorio, A.</td>
<td>20</td>
</tr>
<tr>
<td>Dimmock, J.O.</td>
<td>23</td>
</tr>
<tr>
<td>Ding, R.J.</td>
<td>23</td>
</tr>
<tr>
<td>Dischinger, H.C., Jr.</td>
<td>23</td>
</tr>
<tr>
<td>Dixit, S.N.</td>
<td>21</td>
</tr>
<tr>
<td>Dobson, C.C.</td>
<td>24</td>
</tr>
<tr>
<td>Dold, P.</td>
<td>22, 24, 34</td>
</tr>
<tr>
<td>Dorney, D.J.</td>
<td>24, 30</td>
</tr>
<tr>
<td>Drake, J.J.</td>
<td>24</td>
</tr>
<tr>
<td>Driscoll, K.</td>
<td>16, 18, 29, 54</td>
</tr>
<tr>
<td>Driscoll, K.T.</td>
<td>14, 19, 24</td>
</tr>
<tr>
<td>Dudley, M.</td>
<td>29</td>
</tr>
<tr>
<td>Duffy, A.J.</td>
<td>54</td>
</tr>
<tr>
<td>Dunn, M.C.</td>
<td>24</td>
</tr>
<tr>
<td>Eastes, R.</td>
<td>28</td>
</tr>
<tr>
<td>Edwards, D.L.</td>
<td>24, 25, 34</td>
</tr>
<tr>
<td>Effinger, M.R.</td>
<td>18, 20</td>
</tr>
<tr>
<td>Egerberger, L.J.</td>
<td>52</td>
</tr>
<tr>
<td>Ellingson, B.</td>
<td>48</td>
</tr>
<tr>
<td>Elliott, H.A.</td>
<td>25, 49</td>
</tr>
<tr>
<td>Ellis, D.</td>
<td>31</td>
</tr>
<tr>
<td>Emanuel, M.</td>
<td>35</td>
</tr>
<tr>
<td>Emerson, C.W.</td>
<td>25</td>
</tr>
<tr>
<td>Emmitt, G.D.</td>
<td>39</td>
</tr>
<tr>
<td>Engberg, R.</td>
<td>25</td>
</tr>
<tr>
<td>Engel, B.A.</td>
<td>15</td>
</tr>
<tr>
<td>Engel, C.D.</td>
<td>15</td>
</tr>
<tr>
<td>Engel, H.P.</td>
<td>29</td>
</tr>
<tr>
<td>Engelen, R.</td>
<td>48</td>
</tr>
<tr>
<td>Engelhaupt, D.</td>
<td>41, 44</td>
</tr>
<tr>
<td>Engerg, R.</td>
<td>25</td>
</tr>
<tr>
<td>Escher, W.J.D.</td>
<td>40, 43</td>
</tr>
<tr>
<td>Estes, M.G., Jr.</td>
<td>25, 43</td>
</tr>
<tr>
<td>Estes, R.D.</td>
<td>34</td>
</tr>
<tr>
<td>Ethridge, E.</td>
<td>13</td>
</tr>
<tr>
<td>Evans, D.M.</td>
<td>38</td>
</tr>
<tr>
<td>Evans, S.W.</td>
<td>40</td>
</tr>
<tr>
<td>Evrard, A.E.</td>
<td>23</td>
</tr>
<tr>
<td>Falconer, D.A.</td>
<td>25, 40, 43</td>
</tr>
<tr>
<td>Farmer, J.</td>
<td>15, 22</td>
</tr>
<tr>
<td>Farmer, J.T.</td>
<td>34</td>
</tr>
<tr>
<td>Fazah, M.</td>
<td>47</td>
</tr>
<tr>
<td>Fedoseyev</td>
<td>25</td>
</tr>
<tr>
<td>Fender, R.</td>
<td>15</td>
</tr>
<tr>
<td>Fennelly, J.A.</td>
<td>44</td>
</tr>
<tr>
<td>Ferri, A.A.</td>
<td>18</td>
</tr>
<tr>
<td>Feth, S.</td>
<td>18, 50</td>
</tr>
<tr>
<td>Filipenko, V.</td>
<td>14</td>
</tr>
<tr>
<td>Fillingim, M.O.</td>
<td>17, 26</td>
</tr>
<tr>
<td>Finckenor, J.</td>
<td>26</td>
</tr>
<tr>
<td>Finckenor, M.M.</td>
<td>25, 34, 52</td>
</tr>
<tr>
<td>Finger, M.H.</td>
<td>31, 54, 55</td>
</tr>
<tr>
<td>Fishman, G.J.</td>
<td>26, 29, 31, 36, 39, 54, 55</td>
</tr>
<tr>
<td>Fitzjarald, D.</td>
<td>45</td>
</tr>
<tr>
<td>Flachbart, R.H.</td>
<td>26, 37</td>
</tr>
<tr>
<td>Flemings, M.C.</td>
<td>32</td>
</tr>
<tr>
<td>Fonte, P.</td>
<td>32</td>
</tr>
<tr>
<td>Fork, R.L.</td>
<td>35, 40</td>
</tr>
<tr>
<td>Forsythe, E.L.</td>
<td>26, 43</td>
</tr>
<tr>
<td>Fortini, A.J.</td>
<td>54</td>
</tr>
<tr>
<td>Fountain, W.F.</td>
<td>20, 23</td>
</tr>
<tr>
<td>Fox, D.W.</td>
<td>15</td>
</tr>
<tr>
<td>Fragomeni, J.M.</td>
<td>41</td>
</tr>
<tr>
<td>Frank, L.A.</td>
<td>13</td>
</tr>
<tr>
<td>Frazier, D.O.</td>
<td>13, 14, 18, 23, 26, 27, 52, 56, 57</td>
</tr>
<tr>
<td>Fredrickson, A.R.</td>
<td>35</td>
</tr>
<tr>
<td>Freeze, B</td>
<td>51</td>
</tr>
<tr>
<td>Frey, H.U.</td>
<td>39, 49</td>
</tr>
<tr>
<td>Friedfed, R.</td>
<td>45</td>
</tr>
<tr>
<td>Frost, A.</td>
<td>49</td>
</tr>
<tr>
<td>Fung, S.F.</td>
<td>27, 29</td>
</tr>
<tr>
<td>Gaines, J.</td>
<td>27</td>
</tr>
<tr>
<td>Galkin, I.A.</td>
<td>44</td>
</tr>
<tr>
<td>Gallagher, D.L.</td>
<td>21, 27, 29, 35, 42, 44</td>
</tr>
<tr>
<td>Galloway, D.K.</td>
<td>29</td>
</tr>
<tr>
<td>Gamon, J.A.</td>
<td>43</td>
</tr>
<tr>
<td>Garand, L.</td>
<td>48</td>
</tr>
<tr>
<td>Garcia, R.</td>
<td>27</td>
</tr>
<tr>
<td>Gardner, B.M.</td>
<td>34</td>
</tr>
<tr>
<td>Gary, G.A.</td>
<td>13, 19, 25, 27, 50</td>
</tr>
<tr>
<td>Gary, P.</td>
<td>42</td>
</tr>
<tr>
<td>Gearhart, R.B.</td>
<td>28</td>
</tr>
<tr>
<td>Geerts, B.</td>
<td>28</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ruf, J</td>
<td>46</td>
</tr>
<tr>
<td>Rulev, D.N.</td>
<td>15</td>
</tr>
<tr>
<td>Rupen, M.</td>
<td>31, 39</td>
</tr>
<tr>
<td>Russell, C.</td>
<td>25</td>
</tr>
<tr>
<td>Russell, C.H.</td>
<td>35, 46</td>
</tr>
<tr>
<td>Russell, C.K.</td>
<td>41</td>
</tr>
<tr>
<td>Russell, C.T.</td>
<td>36</td>
</tr>
<tr>
<td>Russell, J.K.</td>
<td>41</td>
</tr>
<tr>
<td>Russell, S.S.</td>
<td>20, 46, 53</td>
</tr>
<tr>
<td>Sadun, A.C.</td>
<td>28</td>
</tr>
<tr>
<td>Saevich, Y.Y.</td>
<td>39</td>
</tr>
<tr>
<td>Sahi, M.</td>
<td>31</td>
</tr>
<tr>
<td>Sales, G.S.</td>
<td>44</td>
</tr>
<tr>
<td>Salvail, P.</td>
<td>22</td>
</tr>
<tr>
<td>Sandel, B.R.</td>
<td>27</td>
</tr>
<tr>
<td>Sanderson, G.</td>
<td>42</td>
</tr>
<tr>
<td>Sanghadasa, M.</td>
<td>51</td>
</tr>
<tr>
<td>Sanin, A.B.</td>
<td>39</td>
</tr>
<tr>
<td>Sanmartin, J.</td>
<td>34</td>
</tr>
<tr>
<td>Sarkisov, S.</td>
<td>14</td>
</tr>
<tr>
<td>Saunders, R.</td>
<td>48</td>
</tr>
<tr>
<td>Savage, L.</td>
<td>45</td>
</tr>
<tr>
<td>Sayyah, T.</td>
<td>46</td>
</tr>
<tr>
<td>Scal, J.L.</td>
<td>44</td>
</tr>
<tr>
<td>Schaefer, D.A.</td>
<td>21, 46</td>
</tr>
<tr>
<td>Schmidt, G.R.</td>
<td>19, 21, 32, 46, 47, 51</td>
</tr>
<tr>
<td>Schneider, M.P.</td>
<td>20, 31</td>
</tr>
<tr>
<td>Schonberg, W.P.</td>
<td>46</td>
</tr>
<tr>
<td>Schroder, F.</td>
<td>16</td>
</tr>
<tr>
<td>Schultz, M.</td>
<td>49</td>
</tr>
<tr>
<td>Schunk, R.G.</td>
<td>20, 47</td>
</tr>
<tr>
<td>Schweizer, M.</td>
<td>22, 24</td>
</tr>
<tr>
<td>Schwinghamer, R.J.</td>
<td>15</td>
</tr>
<tr>
<td>Scott, D.M.</td>
<td>54</td>
</tr>
<tr>
<td>Scripa, R.N.</td>
<td>43</td>
</tr>
<tr>
<td>Selkirk, R.B.</td>
<td>33</td>
</tr>
<tr>
<td>Sen, S.</td>
<td>18, 19, 47</td>
</tr>
<tr>
<td>Sever, T.</td>
<td>23</td>
</tr>
<tr>
<td>Sever, T.L.</td>
<td>13, 23, 47</td>
</tr>
<tr>
<td>Sha, Y.-G.</td>
<td>50, 53</td>
</tr>
<tr>
<td>Share, G.H.</td>
<td>17</td>
</tr>
<tr>
<td>Sharma, D.P.</td>
<td>44</td>
</tr>
<tr>
<td>Sharp, D.</td>
<td>29</td>
</tr>
<tr>
<td>Sharp, J.R.</td>
<td>47</td>
</tr>
<tr>
<td>Shaw, E.J.</td>
<td>47</td>
</tr>
<tr>
<td>Shields, A.D.</td>
<td>13</td>
</tr>
<tr>
<td>Shipley, A.</td>
<td>47</td>
</tr>
<tr>
<td>Shore, R.W.</td>
<td>21</td>
</tr>
<tr>
<td>Shettes, Y.B.</td>
<td>36</td>
</tr>
<tr>
<td>Shue, J.-H.</td>
<td>36</td>
</tr>
<tr>
<td>Shyy, W.</td>
<td>52</td>
</tr>
<tr>
<td>Siebenhaar, A.</td>
<td>47</td>
</tr>
<tr>
<td>Sigwarth, J.B.</td>
<td>13</td>
</tr>
<tr>
<td>Silberman, E.</td>
<td>18</td>
</tr>
<tr>
<td>Sillanpa, A.</td>
<td>16</td>
</tr>
<tr>
<td>Simnett, G.</td>
<td>50</td>
</tr>
<tr>
<td>Singer, C.</td>
<td>47</td>
</tr>
<tr>
<td>Singh, A.D.</td>
<td>37, 47</td>
</tr>
<tr>
<td>Singh, U.N.</td>
<td>35</td>
</tr>
<tr>
<td>Sinha, G.</td>
<td>47</td>
</tr>
<tr>
<td>Sipila, H.</td>
<td>44</td>
</tr>
<tr>
<td>Sivaram, C.</td>
<td>28</td>
</tr>
<tr>
<td>Skelley, S.</td>
<td>48</td>
</tr>
<tr>
<td>Slade, K.N.</td>
<td>48</td>
</tr>
<tr>
<td>Sledd, A.M.</td>
<td>48</td>
</tr>
<tr>
<td>Smart, C.</td>
<td>52</td>
</tr>
<tr>
<td>Smith, D.D.</td>
<td>26, 27, 48</td>
</tr>
<tr>
<td>Smith, G.</td>
<td>52</td>
</tr>
<tr>
<td>Smith, G.A.</td>
<td>46, 47</td>
</tr>
<tr>
<td>Smith, J.E.</td>
<td>30, 39</td>
</tr>
<tr>
<td>Smith, L.</td>
<td>43</td>
</tr>
<tr>
<td>Smith, M.</td>
<td>48</td>
</tr>
<tr>
<td>Smith, T.M.</td>
<td>50</td>
</tr>
<tr>
<td>Snell, E.H.</td>
<td>34</td>
</tr>
<tr>
<td>Sobrito, G.</td>
<td>16</td>
</tr>
<tr>
<td>Soden, B 4.</td>
<td>8</td>
</tr>
<tr>
<td>Soellner, W.</td>
<td>45</td>
</tr>
<tr>
<td>Sokolov, A.</td>
<td>44</td>
</tr>
<tr>
<td>Solakiewicz, R.J.</td>
<td>36, 48</td>
</tr>
<tr>
<td>Song, P.</td>
<td>36</td>
</tr>
<tr>
<td>Sood, R.</td>
<td>31</td>
</tr>
<tr>
<td>Soundararajaperumal, S.</td>
<td>28</td>
</tr>
<tr>
<td>Spann, J.F., Jr.</td>
<td>13, 15, 17, 20, 22, 23, 26, 28, 38, 39, 42, 44, 48, 52, 53, 55</td>
</tr>
<tr>
<td>Speegle, C.O.</td>
<td>44</td>
</tr>
<tr>
<td>Spencer, R.W.</td>
<td>49</td>
</tr>
<tr>
<td>Spivey, R.</td>
<td>15</td>
</tr>
<tr>
<td>Spreiter, J.R.</td>
<td>36</td>
</tr>
<tr>
<td>Springer, A.M.</td>
<td>49</td>
</tr>
<tr>
<td>Spurrier, M.</td>
<td>26</td>
</tr>
<tr>
<td>Sridhar, R.</td>
<td>23</td>
</tr>
<tr>
<td>Srivastava, V.</td>
<td>33</td>
</tr>
<tr>
<td>Stahara, S.S.</td>
<td>36</td>
</tr>
<tr>
<td>Stanley, T.T.</td>
<td>13, 49</td>
</tr>
<tr>
<td>Stazhkov, V.M.</td>
<td>15</td>
</tr>
<tr>
<td>Steadman, T.</td>
<td>49</td>
</tr>
<tr>
<td>Steele, J.W.</td>
<td>45</td>
</tr>
<tr>
<td>Stefanescu, D.M.</td>
<td>18, 19, 47</td>
</tr>
<tr>
<td>Stevenson, B.A.</td>
<td>49</td>
</tr>
<tr>
<td>Stewart, E.</td>
<td>43</td>
</tr>
<tr>
<td>Stewart, M.B.</td>
<td>41</td>
</tr>
<tr>
<td>Stewart, M.F.</td>
<td>15, 36</td>
</tr>
<tr>
<td>Stone, R.L.</td>
<td>40</td>
</tr>
<tr>
<td>Storey, M.C.</td>
<td>29</td>
</tr>
<tr>
<td>Name</td>
<td>Page numbers</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Strakey, P.A.</td>
<td>50</td>
</tr>
<tr>
<td>Strayer, M.R.</td>
<td>55</td>
</tr>
<tr>
<td>Strietzel, C.J.</td>
<td>56</td>
</tr>
<tr>
<td>Su, C.-H.</td>
<td>18, 44, 50, 51, 53, 55, 56, 57</td>
</tr>
<tr>
<td>Su, Y.J.</td>
<td>49</td>
</tr>
<tr>
<td>Suess, S.T.</td>
<td>40, 50, 51</td>
</tr>
<tr>
<td>Suggs, R.J.</td>
<td>37, 51</td>
</tr>
<tr>
<td>Suits, M.W.</td>
<td>51</td>
</tr>
<tr>
<td>Sukidi, N.</td>
<td>14</td>
</tr>
<tr>
<td>Sulkaneh, M.E.</td>
<td>23</td>
</tr>
<tr>
<td>Sung, C.C.</td>
<td>24</td>
</tr>
<tr>
<td>Svinomishvili, T.</td>
<td>51</td>
</tr>
<tr>
<td>Swanson, G.R.</td>
<td>46, 51</td>
</tr>
<tr>
<td>Swartz, C.</td>
<td>45</td>
</tr>
<tr>
<td>Swartz, D.A.</td>
<td>24, 28</td>
</tr>
<tr>
<td>Swift, W.</td>
<td>13, 28</td>
</tr>
<tr>
<td>Szofran, F.R.</td>
<td>20, 21, 22, 24, 34, 43, 45, 46, 51, 53, 56</td>
</tr>
<tr>
<td>Takehashi, Y.</td>
<td>20</td>
</tr>
<tr>
<td>Talia, J.E.</td>
<td>41</td>
</tr>
<tr>
<td>Talley, D.G.</td>
<td>50</td>
</tr>
<tr>
<td>Tanton, G.</td>
<td>51</td>
</tr>
<tr>
<td>Taylor, E.W.</td>
<td>51</td>
</tr>
<tr>
<td>Taylor, W.W.L.</td>
<td>29</td>
</tr>
<tr>
<td>Theodorakis, C.</td>
<td>44</td>
</tr>
<tr>
<td>Thio, Y.C.</td>
<td>19</td>
</tr>
<tr>
<td>Thio, Y.C.F.</td>
<td>47, 51</td>
</tr>
<tr>
<td>Thio, Y.F.</td>
<td>47</td>
</tr>
<tr>
<td>Thomas, R.J.</td>
<td>51</td>
</tr>
<tr>
<td>Thompson, A.M.</td>
<td>33</td>
</tr>
<tr>
<td>Thompson, B.R.</td>
<td>37</td>
</tr>
<tr>
<td>Thompson, C.</td>
<td>55</td>
</tr>
<tr>
<td>Thompson, G.W.</td>
<td>57</td>
</tr>
<tr>
<td>Thomsen, M.F.</td>
<td>42</td>
</tr>
<tr>
<td>Tian, L.</td>
<td>28</td>
</tr>
<tr>
<td>Tidwell, P.H., III</td>
<td>22</td>
</tr>
<tr>
<td>Tilghman, N.C.</td>
<td>23</td>
</tr>
<tr>
<td>Timofeeva, T.V.</td>
<td>51</td>
</tr>
<tr>
<td>Tinker, M.L.</td>
<td>48</td>
</tr>
<tr>
<td>Tjomkes, S.</td>
<td>48</td>
</tr>
<tr>
<td>Townsend, J.S.</td>
<td>52</td>
</tr>
<tr>
<td>Trapaga, G.</td>
<td>32</td>
</tr>
<tr>
<td>Tratt, D.M.</td>
<td>46</td>
</tr>
<tr>
<td>Treise, D.</td>
<td>32</td>
</tr>
<tr>
<td>Trinh, H.P.</td>
<td>52</td>
</tr>
<tr>
<td>Tse, C.L.</td>
<td>14</td>
</tr>
<tr>
<td>Tucker, D.S.</td>
<td>52</td>
</tr>
<tr>
<td>Tucker, P.K.</td>
<td>52</td>
</tr>
<tr>
<td>Tucker, S.P.</td>
<td>54</td>
</tr>
<tr>
<td>Tuffias, R.H.</td>
<td>54</td>
</tr>
<tr>
<td>Turner, J.</td>
<td>32</td>
</tr>
<tr>
<td>Turner, M.</td>
<td>37</td>
</tr>
<tr>
<td>Tzioumis, A.</td>
<td>31</td>
</tr>
<tr>
<td>Vaidyanathan, R.</td>
<td>52</td>
</tr>
<tr>
<td>Vaisberg, O.L.</td>
<td>21, 27</td>
</tr>
<tr>
<td>Van Den Ancker, M.</td>
<td>15</td>
</tr>
<tr>
<td>Van Hooser, K.</td>
<td>52</td>
</tr>
<tr>
<td>Van Paradijs, J.</td>
<td>15, 17, 29, 36, 55</td>
</tr>
<tr>
<td>Van Speybroeck, L.P.</td>
<td>41</td>
</tr>
<tr>
<td>Vaughan, W.</td>
<td>52</td>
</tr>
<tr>
<td>Vaughan, W.W.</td>
<td>34</td>
</tr>
<tr>
<td>Vaughn, J.</td>
<td>19</td>
</tr>
<tr>
<td>Vaughn, J.A.</td>
<td>34, 52</td>
</tr>
<tr>
<td>Vaughn, J.R.</td>
<td>56</td>
</tr>
<tr>
<td>Vaughn, T.P.</td>
<td>52</td>
</tr>
<tr>
<td>Venturini, C.C.</td>
<td>48, 52, 53</td>
</tr>
<tr>
<td>Vesely, E.</td>
<td>22</td>
</tr>
<tr>
<td>Vikram, C.S.</td>
<td>53</td>
</tr>
<tr>
<td>Volz, H.</td>
<td>29</td>
</tr>
<tr>
<td>Volz, M.P.</td>
<td>21, 25, 38, 45, 50, 53, 56</td>
</tr>
<tr>
<td>Vonjouanne, R.G.</td>
<td>46</td>
</tr>
<tr>
<td>Vujisic, L.</td>
<td>56</td>
</tr>
<tr>
<td>Walker, A.B.C., II</td>
<td>42</td>
</tr>
<tr>
<td>Walker, H.J.</td>
<td>49</td>
</tr>
<tr>
<td>Walker, J.L.</td>
<td>46, 53</td>
</tr>
<tr>
<td>Wallace, K.S.</td>
<td>53</td>
</tr>
<tr>
<td>Walsh, S.J.</td>
<td>44</td>
</tr>
<tr>
<td>Wang, A.-H.</td>
<td>50</td>
</tr>
<tr>
<td>Wang, J.-C.</td>
<td>53</td>
</tr>
<tr>
<td>Wang, L.J.</td>
<td>50, 53</td>
</tr>
<tr>
<td>Wang, T.-S.</td>
<td>27, 53</td>
</tr>
<tr>
<td>Wang, W.S.</td>
<td>13, 23</td>
</tr>
<tr>
<td>Watring, D.</td>
<td>53</td>
</tr>
<tr>
<td>Watson, M.</td>
<td>51</td>
</tr>
<tr>
<td>Waton, M.D.</td>
<td>53</td>
</tr>
<tr>
<td>Watts, J.W.</td>
<td>20</td>
</tr>
<tr>
<td>Weber, M.</td>
<td>29</td>
</tr>
<tr>
<td>Weisskopf, M.C.</td>
<td>44, 54</td>
</tr>
<tr>
<td>Wells, D.</td>
<td>22</td>
</tr>
<tr>
<td>Wernli, H.</td>
<td>33</td>
</tr>
<tr>
<td>West, E.A.</td>
<td>30</td>
</tr>
<tr>
<td>Westra, D.G.</td>
<td>54</td>
</tr>
<tr>
<td>Wheeler, J.</td>
<td>28</td>
</tr>
<tr>
<td>Whirley, J.D.</td>
<td>39</td>
</tr>
<tr>
<td>Whitten, D.</td>
<td>46</td>
</tr>
<tr>
<td>Wijers, R.A.M.J.</td>
<td>29</td>
</tr>
<tr>
<td>Wijnands, R.</td>
<td>39</td>
</tr>
<tr>
<td>Wilber, M.</td>
<td>17</td>
</tr>
<tr>
<td>Wilkerson, D.</td>
<td>53</td>
</tr>
<tr>
<td>Wilkerson, G.W.</td>
<td>54</td>
</tr>
<tr>
<td>Williams, B.E.</td>
<td>54</td>
</tr>
<tr>
<td>Williams, E.</td>
<td>29, 54</td>
</tr>
<tr>
<td>Williams, E.R.</td>
<td>38</td>
</tr>
<tr>
<td>Williams, G.A.</td>
<td>45</td>
</tr>
</tbody>
</table>
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY99. It also includes papers of MSFC contractors.

All of the NASA series reports may be obtained from the NASA Center for AeroSpace Information (CASI), 7121 Standard Drive, Hanover, MD 21076–1320

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.