
Report to Congress and the Environmental Protection Agency

M. J. Kurylo
P. L. DeCola
J. A. Kaye

Report to Congress and the Environmental Protection Agency

M. J. Kurylo
P. L. DeCola
J. A. Kaye

NASA Office of Earth Science Research Division
Washington, DC
Table of Contents

A Introduction

B Scientific Assessment of Ozone Depletion: 1998

Executive Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent Major Scientific Findings and Observations</td>
<td>5</td>
</tr>
<tr>
<td>Supporting Scientific Evidence and Related Issues</td>
<td>8</td>
</tr>
<tr>
<td>Recent Halogen and Methane Changes</td>
<td>8</td>
</tr>
<tr>
<td>Stratospheric Particles</td>
<td>10</td>
</tr>
<tr>
<td>Ozone in the Midlatitudes and Tropics</td>
<td>10</td>
</tr>
<tr>
<td>Ozone in High-Latitude Polar Regions</td>
<td>12</td>
</tr>
<tr>
<td>Stratospheric Temperatures</td>
<td>13</td>
</tr>
<tr>
<td>Tropospheric Ozone</td>
<td>14</td>
</tr>
<tr>
<td>Changes in UV Radiation</td>
<td>14</td>
</tr>
<tr>
<td>Changes in Climate Parameters</td>
<td>15</td>
</tr>
<tr>
<td>Future Halogen Changes</td>
<td>16</td>
</tr>
<tr>
<td>Recovery of the Ozone Layer</td>
<td>16</td>
</tr>
<tr>
<td>Implications for Policy Formulation</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter Summaries

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Long-Lived Ozone-Related Compounds</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>Short-Lived Ozone-Related Compounds</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Global Distributions and Changes in Stratospheric Particles</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Ozone Variability and Trends</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Trends in Stratospheric Temperatures</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Upper Stratospheric Processes</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>Lower Stratospheric Processes</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Tropospheric Ozone and Related Processes</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Ultraviolet Radiation at the Earth’s Surface</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Climate Effects of Ozone and Halocarbon Changes</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Halocarbon Scenarios for the Future Ozone Layer and Related Consequences</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>Predicting Future Ozone Changes and Detection of Recovery</td>
<td>51</td>
</tr>
</tbody>
</table>
C SUMMARY OF THE STRATOSPHERIC PROCESSES AND THEIR ROLE IN CLIMATE/INTERNATIONAL OZONE COMMISSION/GLOBAL ATMOSPHERIC WATCH (SPARC/IOC/GAW) ASSESSMENT OF TRENDS IN THE VERTICAL DISTRIBUTION OF OZONE

INTRODUCTION .. 55

FINDINGS .. 56
Validity of the Data Sets ... 56
Trend Analyses .. 60

D POLICYMAKERS SUMMARY OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) SPECIAL REPORT ON AVIATION AND THE GLOBAL ATMOSPHERE

INTRODUCTION .. 63

HOW DO AIRCRAFT AFFECT CLIMATE AND OZONE? 64

HOW ARE AVIATION EMISSIONS PROJECTED TO GROW IN THE FUTURE? ... 66

WHAT ARE THE CURRENT AND FUTURE IMPACTS OF SUBSONIC AVIATION ON RADIATIVE FORCING AND UV RADIATION? 68
Carbon Dioxide .. 68
Ozone ... 68
Methane ... 69
Water Vapor ... 69
Contrails .. 69
Cirrus Clouds ... 69
Sulfate and Soot Aerosols ... 70
What are the Overall Climate Effects of Subsonic Aircraft? 70
What are the Overall Climate Effects of Subsonic Aircraft on UV-B? 72

WHAT ARE THE CURRENT AND FUTURE IMPACTS OF SUPERSONIC AVIATION ON RADIATIVE FORCING AND UV RADIATION? 73

WHAT ARE THE OPTIONS TO REDUCE EMISSIONS AND IMPACTS? .. 74
Aircraft and Engine Technology Options ... 75
Fuel Options .. 75
Operational Options .. 76
Regulatory, Economic and Other Options .. 76

ISSUES FOR THE FUTURE .. 78
I AUTHORS, CONTRIBUTORS, AND REVIEWERS ... 131

A .. 131
B .. 131
C .. 148
D .. 151
E .. 166
F .. 167
G .. 169
H .. 170
NASA has relied heavily on the entire scientific community, national and international, in its effort to provide a better understanding of the upper atmosphere and its perturbation in response to natural phenomena and human activities. The lists of contributors to the individual sections in this report are given in Section I. We are indebted to those who gave their time and knowledge. We also thank Rose Kendall and Kathy Wolfe for compiling the report and providing editorial support.

Michael J. Kurylo

Philip L. DeCola

Jack A. Kaye
SECTION A

INTRODUCTION

In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, the National Aeronautics and Space Administration (NASA) has prepared this report on the state of our knowledge of the Earth’s upper atmosphere, and particularly, of the stratospheric ozone layer. The present report presents new findings since the last report in 1996 and is printed in two parts. Part I (Research Summaries) summarizes the objectives, status, and accomplishments of the research tasks supported under NASA’s Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP) for the period of 1997-1999. Part II (this document) is a compilation of several scientific assessments, reviews, and summaries. Section B (Scientific Assessment of Ozone Depletion: 1998), Section C (a summary of the 1998 Stratospheric Processes and Their Role in Climate/Intergovernmental Ozone Commission/Global Atmospheric Watch (SPARC/IOC/GAW) Assessment of Trends in the Vertical Distribution of Ozone SPARC Report No. 1, WMO Ozone Research and Monitoring Project Report No. 43), Section D (the Policymakers Summary of the Intergovernmental Panel on Climate Change, IPCC, special report on Aviation and the Global Atmosphere), and Section E (the executive summary of the NASA Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998) are summaries of the most recent assessments of our current understanding of the chemical composition and the physical structure of the stratosphere, with particular emphasis on how the abundance and distribution of ozone is predicted to change in the future. Section F (the executive summary of NASA’s Second Workshop on Stratospheric Models and Measurements, M&M II) and Section G (the end-of-mission statement for the Photochemistry of Ozone Loss in the Arctic Region in Summer, POLARIS, campaign) describe the scientific results for a comprehensive modeling intercomparison exercise and an aircraft and balloon measurement campaign, respectively. Section H (Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Supplement to Evaluation Number 12 of the NASA Panel for Data Evaluation) highlights the latest of NASA’s reviews of this important aspect of the atmospheric sciences.

For over two decades, scientists have postulated that certain pollutants directly associated with human activity could cause harmful effects by reducing the amount of stratospheric ozone. Initial concerns focused on supersonic aircraft emissions of NO and NO$_2$, and then shifted to the issue of chlorine and bromine loading of the stratosphere from chlorofluorocarbons (CFCs) and halons. Now there is compelling evidence that human activity has, in fact, changed the atmospheric environment on a global scale. In recognition of the importance of understanding such perturbations, Congress directed NASA in June 1975 to “develop and carry out a comprehensive program of research, technology, and monitoring of the phenomena of the upper atmosphere so as to provide for an understanding of and to maintain the chemical and physical integrity of Earth’s upper atmosphere.” Responding to this Congressional mandate, NASA implemented a long-range scientific research program, conducted through UARP and ACMAP, aimed at developing a comprehensive understanding of processes in the upper atmosphere. Additional activities are carried out through the NASA space flight programs. In the near-term, NASA has the
responsibility of providing triennial reports to Congress and concerned regulatory agencies on the status of upper atmospheric research, including scientific assessments of potential effects of human activities on the atmosphere, and particularly, on stratospheric ozone.

Many governments around the world, including the United States, have recognized that the ozone layer must be protected in order to preserve human health and aquatic and terrestrial ecosystems from damage due to enhanced levels of ultraviolet radiation. In particular, it was recognized that the use of chemicals containing chlorine (in the form of CFCs, hydrochlorofluorocarbons (HCFCs), and other chlorinated hydrocarbons such as methyl chloroform and carbon tetrachloride) and bromine (mainly in the form of halons and methyl bromide) constitute a potential threat to the ozone layer. More than twenty nations, including the United States, signed the Vienna Convention for the Protection of the Ozone Layer in Vienna, Austria, in 1985, and the Montreal Protocol on Substances That Deplete the Ozone Layer, in Montreal, Canada, in 1987. Subsequent Amendments and Adjustments (London, UK, 1990; Copenhagen, Denmark, 1992; Vienna, Austria, 1995; and Montreal, Canada, 1997) strengthened the Montreal Protocol by calling for an accelerated CFC phase-out schedule and adding to the list of regulated compounds.

The Vienna Convention and the Montreal Protocol both call for all regulatory decisions to be based on a scientific understanding of the issues, and the Montreal Protocol specifically called for international scientific assessments at least every four years. The 1998 scientific assessment was coordinated by NASA, the National Oceanic and Atmospheric Administration (NOAA), the United Nations Environment Program (UNEP), the World Meteorological Organization (WMO), and the European Commission (EC). The executive summary of the overall assessment and scientific summaries of the assessment chapters are reproduced in Section B.

One of the largest uncertainties in determining the effect of CFCs on stratospheric ozone has been the magnitude of the trends in the altitude region between 15 and 20 km. In 1996 the SPARC panel on Understanding Ozone Trends and the International Ozone Commission decided to collaborate, under the auspices of the World Climate Research Programme and the World Meteorological Organisation, on a study to carefully re-evaluate the ground-based and satellite data to resolve differences in the interpretation of the various ozone profile data records. The philosophy of the study was similar to that of the International Ozone Trends Panel of 1988 which addressed the total ozone measurements. The summary of this report is presented in Section C.

Aviation has experienced rapid expansion as the world economy has grown. This expansion has led to an increase in aviation emissions. In light of the concern about the possible effects of aircraft emissions on global climate and atmospheric ozone, the Intergovernmental Panel on Climate Change has prepared an assessment report addressing these issues. Section D consists of the policymakers summary from this special report.

The environmental impact of a proposed fleet of high-speed (i.e., supersonic) civil transport (HSCT) aircraft on the ozone layer has also been assessed. The interim assessment report from NASA’s High-Speed Research Program, issued in January 1995, has been superceded by a more recent 1998 assessment on the effects of high-speed aircraft in the stratosphere. The executive summary from this assessment report is included as Section E of this document.
NASA's Second Workshop on Stratospheric Models and Measurements (M&M II) is a continuation of the effort previously started in M&M I held in 1992. As originally stated, the aim of M&M was to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. The executive summary of the M&M II report comprises Section F of this document.

Process studies conducted via field campaigns, involving focused measurements within a particular atmospheric region so that specific chemical and physical processes can be understood and theories can be quantitatively tested, are fundamental to the assessment process. Such campaigns rely extensively on in situ and remote-sensing aircraft measurements as well as those from ground-, balloon-, and space-based instruments. Section G describes the results of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field campaign that was designed to understand the seasonal behavior of polar stratospheric ozone as it changes from very high concentrations in spring down to very low concentrations in autumn. This behavior has been attributed to an increased role of NOx catalytic cycles for ozone destruction during periods of prolonged solar illumination such as occur at high latitudes during summer. The detail with which current photochemical models can describe this large natural change in ozone serves as an indication of how well the role of increased stratospheric NOx from anthropogenic sources can be quantified. Additional information on the POLARIS measurement campaign, including an unabridged version of the end-of-mission statement, is available at the following website: http://cloud1.arc.nasa.gov/polaris/index.html.

Also fundamental to the assessment process is a solid quantitative foundation of laboratory-derived photochemical reaction rates for use in predictive models. The periodic review and evaluation of kinetic and photochemical data by the NASA Panel for Data Evaluation is an important unifying document for the atmospheric sciences community. It offers a standard reference database for atmospheric modeling (for both assessment and research) thereby providing a common focus for laboratory measurements and theoretical studies. The most recent recommendations of this panel are being published as an update to Evaluation Number 12 of the NASA Panel for Data Evaluation, and details on the scope of the re-evaluation as well as pertinent sections are included as Section H of this document.

The contributors to all of the sections mentioned above are listed in Section I.
SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 1998
EXECUTIVE SUMMARY

The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer commemorated its 10th anniversary in September 1997. Among the provisions of the Protocol was the requirement that the Parties to the Protocol base their future decisions on the available scientific, environmental, technical, and economic information as assessed by the worldwide expert communities. The advances of the understanding in ozone science over this decade were assessed in 1988, 1989, 1991, and 1994. This information was input to the subsequent Amendments and Adjustments of the 1987 Protocol. The Assessment summarized here is the fifth in that series.

RECENT MAJOR SCIENTIFIC FINDINGS AND OBSERVATIONS

Since the Scientific Assessment of Ozone Depletion: 1994, significant advances have continued to be made in the understanding of the impact of human activities on the ozone layer, the influence of changes in chemical composition on the radiative balance of the Earth’s climate, and, indeed, the coupling of the ozone layer and the climate system. Numerous laboratory investigations, atmospheric observations, and theoretical and modeling studies have produced several key ozone- and climate-related findings:

- **The total combined abundance of ozone-depleting compounds in the lower atmosphere peaked in about 1994 and is now slowly declining. Total chlorine is declining, but total bromine is still increasing.** As forecast in the 1994 Assessment, the long period of increasing total chlorine abundances – primarily from the chlorofluorocarbons (CFCs), carbon tetrachloride (CCl₄), and methyl chloroform (CH₃CCl₃) – has ended. The peak total tropospheric chlorine abundance was 3.7 ± 0.1 parts per billion (ppb) between mid-1992 and mid-1994. The declining abundance of total chlorine is due principally to reduced emissions of methyl chloroform. Chlorine from the major CFCs is still increasing slightly. The abundances of most of the halons continue to increase (for example, Halon-1211, almost 6% per year in 1996), but the rate has slowed in recent years. These halon increases are likely to be due to emissions in the 1990s from the halon “bank,” largely in developed countries, and new production of halons in developing countries. The observed abundances of CFCs and chlorocarbons in the lower atmosphere are consistent with reported emissions.

- **The observed abundances of the substitutes for the CFCs are increasing.** The abundances of the hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are increasing as a result of a continuation of earlier uses and of their use as substitutes for the CFCs. In 1996, the HCFCs contributed about 5% to the tropospheric chlorine from the long-lived gases. This addition from the substitutes offsets some of the decline in tropospheric chlorine associated with methyl chloroform, but is nevertheless about 10 times less than that from the total tropospheric chlorine growth rate throughout the 1980s. The
atmospheric abundances of HCFC-141b and HCFC-142b calculated from reported emissions data are factors of 1.3 and 2, respectively, smaller than observations. Observed and calculated abundances agree for HCFC-22 and HFC-134a.

- **The combined abundance of stratospheric chlorine and bromine is expected to peak before the year 2000.** The delay in this peak in the stratosphere compared with the lower atmosphere reflects the average time required for surface emissions to reach the lower stratosphere. The observations of key chlorine compounds in the stratosphere up through the present show the expected slower rate of increase and show that the peak had not occurred at the time of the most recent observations that were analyzed for this Assessment.

- **The role of methyl bromide as an ozone-depleting compound is now considered to be less than was estimated in the 1994 Assessment, although significant uncertainties remain.** The current best estimate of the Ozone Depletion Potential (ODP) for methyl bromide (CH$_3$Br) is 0.4, compared with an ODP of 0.6 estimated in the previous Assessment. The change is due primarily to both an increase in the estimate of ocean removal processes and the identification of an uptake by soils, with a smaller contribution from the change in our estimate of the atmospheric removal rate. Recent research has shown that the science of atmospheric methyl bromide is complex and still not well understood. The current understanding of the sources and sinks of atmospheric methyl bromide is incomplete.

- **The rate of decline in stratospheric ozone at midlatitudes has slowed; hence, the projections of ozone loss made in the 1994 Assessment are larger than what has actually occurred.** Total column ozone decreased significantly at midlatitudes (25-60°) between 1979 and 1991, with estimated linear downward trends of 4.0, 1.8, and 3.8% per decade, respectively, for northern midlatitudes in winter/spring, northern midlatitudes in summer/fall, and southern midlatitudes year round. However, since 1991 the linear trend observed during the 1980s has not continued, but rather total column ozone has been almost constant at midlatitudes in both hemispheres since the recovery from the 1991 Mt. Pinatubo eruption. The observed total column ozone losses from 1979 to the period 1994-1997 are about 5.4, 2.8, and 5.0%, respectively, for northern midlatitudes in winter/spring, northern midlatitudes in summer/fall, and southern midlatitudes year round, rather than the values projected in the 1994 Assessment assuming a linear trend: 7.6, 3.4, and 7.2%, respectively. The understanding of how changes in stratospheric chlorine/bromine and aerosol loading affect ozone suggests some of the reasons for the unsuitability of using a linear extrapolation of the pre-1991 ozone trend to the present.

- **The link between the long-term build-up of chlorine and the decline of ozone in the upper stratosphere has been firmly established.** Model predictions based on the observed build-up of stratospheric chlorine in the upper stratosphere indicate a depletion of ozone that is in good quantitative agreement with the altitude and latitude dependence of the measured ozone decline during the past several decades, which peaks at about 7% per decade near 40 km at midlatitudes in both hemispheres.

- **The springtime Antarctic ozone hole continues unabated.** The extent of ozone depletion has remained essentially unchanged since the early 1990s. This behavior is expected given
the near-complete destruction of ozone within the Antarctic lower stratosphere during springtime. The factors contributing to the continuing depletion are well understood.

- **The late-winter/spring ozone values in the Arctic were unusually low in 6 out of the last 9 years, the 6 being years that are characterized by unusually cold and protracted stratospheric winters.** The possibility of such depletions was predicted in the 1989 Assessment. Minimum Arctic vortex temperatures are near the threshold for large chlorine activation. Therefore, the year-to-year variability in temperature, which is driven by meteorology, leads to particularly large variability in ozone for current chlorine loading. As a result, it is not possible to forecast the behavior of Arctic ozone for a particular year. Elevated stratospheric halogen abundances over the next decade or so imply that the Arctic will continue to be vulnerable to large ozone losses.

- **The understanding of the relation between increasing surface UV-B radiation and decreasing column ozone has been further strengthened by ground-based observations, and newly developed satellite methods show promise for establishing global trends in UV radiation.** The inverse dependence of surface UV radiation and the overhead amount of ozone, which was demonstrated in earlier Assessments, has been further demonstrated and quantified by ground-based measurements under a wide range of atmospheric conditions. In addition, the influences of other variables, such as clouds, particles, and surface reflectivity, are better understood. These data have assisted the development of a satellite-based method to estimate global UV changes, taking into account the role of cloud cover. The satellite estimates for 1979-1992 indicate that the largest UV increases occur during spring at high latitudes in both hemispheres.

- **Stratospheric ozone losses have caused a cooling of the global lower stratosphere and global-average negative radiative forcing of the climate system.** The decadal temperature trends in the stratosphere have now been better quantified. Model simulations indicate that much of the observed downward trend in lower stratospheric temperatures (about 0.6°C per decade over 1979-1994) is attributed to the ozone loss in the lower stratosphere. A lower stratosphere that is cooler results in less infrared radiation reaching the surface/troposphere system. Radiative calculations, using extrapolations based on the ozone trends reported in the 1994 Assessment for reference, indicate that stratospheric ozone losses since 1980 may have offset about 30% of the positive forcing due to increases in the well-mixed greenhouse gases (i.e., carbon dioxide, methane, nitrous oxide, and the halocarbons) over the same time period. The climatic impact of the slowing of midlatitude ozone trends and the enhanced ozone loss in the Arctic has not yet been assessed.

- **Based on past emissions of ozone-depleting substances and a projection of the maximum allowances under the Montreal Protocol into the future, the maximum ozone depletion is estimated to lie within the current decade or the next two decades, but its identification and the evidence for the recovery of the ozone layer lie still further ahead.** The falloff of total chlorine and bromine abundances in the stratosphere in the next century will be much slower than the rate of increase observed in past decades, because of the slow rate at which natural processes remove these compounds from the stratosphere. The most vulnerable period for ozone depletion will be extended into the
coming decades. However, extreme perturbations, such as natural events like volcanic eruptions, could enhance the loss from ozone-depleting chemicals. Detection of the beginning of the recovery of the ozone layer could be achievable early in the next century if decreasing chlorine and bromine abundances were the only factor. However, potential future increases or decreases in other gases important in ozone chemistry (such as nitrous oxide, methane, and water vapor) and climate change will influence the recovery of the ozone layer. When combined with the natural variability of the ozone layer, these factors imply that unambiguous detection of the beginning of the recovery of the ozone layer is expected to be well after the maximum stratospheric loading of ozone-depleting gases.

SUPPORTING SCIENTIFIC EVIDENCE AND RELATED ISSUES

Recent Halogen and Methane Changes

- Tropospheric abundances of total organic chlorine (Cl) contained in long- and short-lived halocarbons reached maximum values of 3.7 ± 0.1 parts per billion (ppb) between mid-1992 and mid-1994 and are beginning to decrease slowly in the global troposphere. The decline in the tropospheric abundance of methyl chloroform (CH_3CCl_3) (at a rate of about 40 to 42 parts per trillion (ppt) Cl yr$^{-1}$ in 1996) is the principal cause of the decrease and reversal in the Cl growth rate. At the same time, chlorine from the sum of the major CFCs grew at 7 ppt Cl yr$^{-1}$ (CFC-12, 9 ppt Cl yr$^{-1}$; CFC-11, -2 ppt Cl yr$^{-1}$; CFC-113, 0 ppt Cl yr$^{-1}$) and by 10 ppt Cl yr$^{-1}$ from the three major hydrochlorofluorocarbons (HCFCs) (HCFC-22, 5 ppt Cl yr$^{-1}$; HCFC-141b, 4 ppt Cl yr$^{-1}$; HCFC-142b, 1 ppt Cl yr$^{-1}$). The rate of decay of CH_3CCl_3 is expected to slow down to less than 10 ppt Cl yr$^{-1}$ by 2005. By that point its concentration should be so small that it will no longer be an important contributor to atmospheric organic chlorine.

- Space-based remote measurements of hydrogen chloride (HCl), hydrogen fluoride (HF), and total chlorine in the stratosphere, as well as column abundances of HCl, chlorine nitrate (ClONO_2), HF, and carbonyl difluoride (COF$_2$) from the ground, are consistent with the content and rate of change of the total organic chlorine and fluorine abundance of the troposphere. These observations provide evidence that the rate of increase of stratospheric chlorine loading has slowed in recent years.

- Growth in the tropospheric concentrations of HCFCs and hydrofluorocarbons (HFCs) has been observed as expected from continuation of previous uses and from their use as replacements for chlorofluorocarbons (CFCs). Emissions calculated by industry from sales and use data are in accordance with the current global abundances of HCFC-22 and HFC-134a. For HCFC-141b and -142b, the industry data underestimate the current global abundances by factors of approximately 1.3 and 2 respectively. No production and sales data are currently available for other HCFCs and HFCs being used as CFC alternatives.

- New studies suggest a major reduction in the magnitude of the estimated oceanic source of methyl chloride (CH_3Cl). As a result, the sum of known sources is inadequate to explain the observed atmospheric burden of CH_3Cl, thus requiring a larger contribution from other sources, either natural or anthropogenic.
• Tropospheric bromine loading continues to rise largely because of the ongoing growth of Halon-1211 (almost 6% yr\(^{-1}\)), Halon-2402 (2% yr\(^{-1}\)), and Halon-1301 (1% yr\(^{-1}\)). Possible causes are the large "banking" in developed countries of that compound during the 1980s and its subsequent use and release during the 1990s, and new production in developing countries. Continued increases of halons over the next few years could cause the abundance of equivalent chlorine to decline more slowly than predicted in the 1994 Assessment.

• Recent measurements and intercomparisons of calibration standards have confirmed that the average global mixing ratio of methyl bromide (CH\(_3\)Br) is between 9 and 10 ppt and that the interhemispheric ratio is 1.3 ± 0.1 (north/south). New estimates of methyl bromide losses yield magnitudes of 77 Gg yr\(^{-1}\) (ranging from 37 to 133 Gg yr\(^{-1}\)) for ocean uptake; 42 Gg yr\(^{-1}\) (ranging from 10 to 214 Gg yr\(^{-1}\)) for soil uptake; and 86 Gg yr\(^{-1}\) (ranging from 65 to 107 Gg yr\(^{-1}\)) for removal by hydroxyl radical (OH), for a total removal rate of 205 Gg yr\(^{-1}\) with a range of about 110 to 450 Gg yr\(^{-1}\). The current best estimate of the lifetime of atmospheric CH\(_3\)Br, as calculated from losses within the atmosphere, to the ocean, and to soils, is 0.7 years, with a range of 0.4 to 0.9 years. The Ozone Depletion Potential (ODP) of methyl bromide is 0.4, with a range of 0.2 to 0.5.

• No new important sources of methyl bromide have been identified. The ocean now appears to be a net sink, with an estimated net flux from the atmosphere of -21 Gg yr\(^{-1}\) (ranging from -3 to -32 Gg yr\(^{-1}\)). Estimates of ocean emissions of order 60 Gg yr\(^{-1}\) can be directly deduced from the above estimates for uptake and net ocean flux. The total emission of CH\(_3\)Br from identified sources is 122 Gg yr\(^{-1}\), with a range of 43 to 244 Gg yr\(^{-1}\). The best-quantified source is fumigation, with a magnitude of 41 Gg yr\(^{-1}\) and a range of 28 to 64 Gg yr\(^{-1}\). Other anthropogenic sources include biomass burning (20 Gg yr\(^{-1}\), ranging from 10 to 40 Gg yr\(^{-1}\)) and leaded gasoline use (5 Gg yr\(^{-1}\), ranging from negligible to 10 Gg yr\(^{-1}\)). Identified sources of CH\(_3\)Br thus constitute only about 60% of identified sinks on a globally averaged basis. This disagreement is difficult to reconcile with estimated uncertainties in the source and sink terms. The short lifetime of methyl bromide, coupled with the inhomogeneity of its sources and sinks, complicates the interpretation of its global budget.

• Based on the most recent analysis of the methyl chloroform (CH\(_3\)CCl\(_3\)) observational record (including a refinement in calibration), the estimated atmospheric lifetimes (with respect to reactive removal by OH) of CH\(_3\)CCl\(_3\), HCFCs, HFCs, and CH\(_4\) have been reduced by about 15% since the 1994 Assessment. The 1995 assessment of the Intergovernmental Panel on Climate Change (IPCC) mostly reflected these revisions, with a slightly smaller correction factor of about 10%. For species whose chemical lifetime is shorter than 1 to 2 years, the use of a global-mean lifetime may not be appropriate.

• The atmospheric abundance of CH\(_4\) continues to increase, but with a declining growth rate. The average growth rate between 1980 and 1992 of about 10 ppb yr\(^{-1}\) can be compared with the 1996-1997 rate of approximately 3 to 4 ppb yr\(^{-1}\). The current best estimate for the total atmospheric lifetime of methane has been lowered to 8.9 ± 0.6 years.
Stratospheric Particles

- Observations and models have further confirmed that stratospheric sulfate aerosol (SSA) and polar stratospheric clouds (PSCs) play a key role in ozone loss chemistry through heterogeneous reactions that activate halogen species and deplete nitrogen species.

- Observations have increased our knowledge of particle formation processes, the dispersal and decay of volcanic SSA, and particle climatology. They show that supercooled ternary solution (STS) droplets that form from SSA without a nucleation barrier are an important class of PSC particles. The formation processes of solid PSC particles that play a significant role in denitrification of the polar vortices remain uncertain. Recent studies suggest that mesoscale temperature fluctuations, especially over mountain ranges, may be important in PSC formation processes, particularly in the Arctic.

- The two most recent major volcanic eruptions, El Chichón (1982) and Mt. Pinatubo (1991), both temporarily increased SSA amounts by more than an order of magnitude.

- There is no clear trend in SSA abundances from 1979 to 1997, demonstrating that any anthropogenic contribution must be smaller than thought in the 1994 Assessment. SSA models including known tropospheric sulfur sources underpredict 1979 values, which were thought to represent the non-volcanic background, but it is not clear that this period was truly free of volcanic influence.

Ozone in the Midlatitudes and Tropics

- As noted in the 1994 Assessment, Northern Hemisphere midlatitude column ozone decreased markedly in 1992-1993, following the large enhancement of stratospheric aerosol caused by the eruption of Mt. Pinatubo in 1991. Column ozone has now reached amounts higher than a linear extrapolation of the pre-Pinatubo trend would predict. Between 25 and 60°N, ozone abundances for 1994-1997 averaged about 4% below 1979 values, although with large variability, while extrapolation of the pre-1991 trend would predict current (1997) abundances about 5.5% below 1979 values. The corresponding winter/spring and summer/fall losses average about 5.4 and 2.8%, respectively, while a linear extrapolation would predict 7.6 and 3.4%, respectively. The average ozone abundances between 25 and 60°S are currently about 4% (satellite) or 5% (ground) below 1979 values, while the linear extrapolation would predict 7.2% (both satellite and ground).

- Our understanding of how changes in halogen and aerosol loading affect ozone suggests some of the reasons for the unsuitability of using a linear extrapolation of the pre-1991 ozone trend to the present. For example, observations of stratospheric HCl and ClONO₂ show a build-up of stratospheric chlorine in recent years consistent with halocarbon emissions, but slower than would have been predicted by the chlorine trends observed before 1992. In addition, enhanced stratospheric aerosol was also present throughout much of the decade of the 1980s due to earlier volcanic eruptions (e.g., El Chichón and Ruiz), likely enhancing the downward trend of ozone observed even before Pinatubo.
There are no statistically significant trends in total ozone in the equatorial regions (20°S to 20°N).

The amplitude of the annual cycle of ozone at middle to high latitudes has decreased by approximately 15% in the last decades because larger declines have occurred during the season of maximum ozone values.

For northern midlatitudes, combined vertical profile ozone trends through 1996 are negative at all altitudes between 12 and 45 km and are statistically significant at the 2σ level. The downward trend is largest near 40 and 15 km (approximately 7% per decade) and is smallest at 30 km (2% per decade). The bulk of column ozone decline is between the tropopause and 25 km.

The re-evaluation of the Stratospheric Aerosol and Gas Experiment (SAGE) I/II satellite data indicates that there are no significant interhemispheric differences in upper stratospheric trends through 1996. Agreement is good, within estimated uncertainties, between SAGE I/II and ozonesonde trends in the lower to middle stratosphere in northern midlatitudes.

The total ozone and the vertical profile trends derived for the northern midlatitudes are consistent with each other over the periods studied.

Most of the midlatitude column ozone decline during the last two decades arose because of depletion in the lower stratosphere. That region is influenced by local chemical ozone loss that is enhanced by volcanic aerosol, and by transport from other regions. The vertical, latitudinal, and seasonal characteristics of the depletion of midlatitude ozone are broadly consistent with the understanding that halogens are the primary cause. The expected low ozone amounts in the midlatitude lower stratosphere following the Mt. Pinatubo eruption further strengthened the connection between ozone destruction and anthropogenic chlorine.

Models that represent processes affecting ozone are able to calculate variations in ozone abundances that are broadly consistent with the observed midlatitude column ozone trend as well as the response to volcanic enhancement of stratospheric sulfate aerosol. In particular, models reproduce the lower ozone abundances observed immediately following Mt. Pinatubo and the subsequent increases as the aerosol disappeared.

Current two-dimensional (2-D) assessment models that allow for the observed build-up of stratospheric chlorine calculate reductions in ozone that are in good quantitative agreement with the altitude and latitude dependence of the measured decline in upper stratospheric ozone during the past several decades. This clearly confirms the hypothesis put forth in 1974 that release of CFCs to the atmosphere would lead to a significant reduction of upper stratospheric ozone, with the peak percentage decline occurring around 40 km.

Comparison of recent observations and model results shows that the overall partitioning of reactive nitrogen and chlorine species is well understood for the upper stratosphere. The previously noted discrepancy for the chlorine monoxide/hydrogen chloride (ClO/HCl) ratio has been resolved based on new kinetic information. Balloonborne observations of OH and
hydroperoxyl radicals (HO₂) agree well with theory, but satellite and ground-based observations of these species exhibit systematic differences compared with model calculations.

- An improved understanding of the relevant kinetic processes has resulted in a close balance between the calculated production and loss of ozone at 40 km (i.e., the long-standing difference between calculated and observed ozone abundance has been mostly resolved).

- Constituent measurements show that the tropics are relatively isolated from midlatitudes in the lower stratosphere. The extent of isolation affects the budgets (and lifetimes) of chemical species that affect ozone abundance.

Ozone in High-Latitude Polar Regions

- The large ozone losses in the Southern Hemisphere polar region during spring continued unabated with approximately the same magnitude and areal extent as in the early 1990s. In Antarctica, the monthly total ozone in September and October has continued to be 40 to 55% below the pre-ozone-hole values of approximately 320 m-atm cm ("Dobson units"), with up to a 70% decrease for periods of a week or so. This depletion occurs primarily over the 12- to 20-km altitude range, with most of the ozone in this layer disappearing during early October. These ozone changes are consistent overall with our understanding of chemistry and dynamics.

- In the Arctic vortex, low column ozone values were observed in the late-winter/spring for 6 out of the last 9 years. Monthly mean values were about 100 m-atm cm below 1960-1970 averages, with shorter-period differences exceeding 200 m-atm cm (equivalent to about 20 to 45% of values found in the 1960s and early 1970s). Within the column, the largest ozone differences were observed in the lower stratosphere.

- Years with large seasonal ozone depletion in the late-winter/spring Arctic are characterized by specific meteorological conditions. These conditions are lower-than-normal late-winter Arctic temperatures, which lead to enhanced activated chlorine, and a more isolated vortex and weaker planetary-wave driving, which lead to less transport of ozone-rich air into the Arctic. Low temperatures, an isolated vortex, and reduced wave driving are coupled processes that occur in concert in the stratosphere. Chemical ozone losses have been identified within the Arctic vortex and are associated with activated chlorine augmented by bromine. The total seasonal chemical ozone losses within the vortex have been estimated to be approximately 100 m-atm cm.

- With the present high abundances of chlorine loading, late-winter/spring Arctic chemical ozone loss is particularly sensitive to meteorological conditions (temperature and vortex isolation) because minimum vortex temperatures are at a critical value in terms of activating chlorine. Winter vortex temperatures in the 1990s have been particularly low. In the absence of low temperatures and an isolated vortex, reduced chemical ozone loss would be expected. However, such a reduced ozone loss would not indicate chemical recovery. The Arctic will remain vulnerable to extreme seasonal loss as long as chlorine loading remains high.
Chlorine activation in liquid particles in the lower stratosphere (both SSA and liquid PSCs) increases strongly with decreases in temperature and is at least as effective as that on solid particles. Thus, chlorine activation is to a first approximation controlled by temperature and water vapor pressure and only secondarily by particle composition.

Rapid polar ozone loss requires enhanced chlorine monoxide in the presence of sunlight. Maintenance of elevated CIO in late-winter/spring is dependent upon temperature and requires either repeated heterogeneous processing or denitrification. Since the 1994 Assessment, new understanding has shown that cold liquid aerosol can maintain elevated CIO in non-denitrified air.

Stratospheric Temperatures

- Radiosonde and satellite observations indicate a decadal cooling trend of the global, annual-mean lower stratosphere (approximately 16 to 21 km) since about 1980. Over the period 1979 to 1994, its amplitude is approximately 0.6°C per decade. At midlatitudes the trend is larger (approximately 0.75°C per decade) and broadly coherent among the various datasets with regard to the magnitude and statistical significance.

- Substantial cooling (approximately 3°C per decade) is observed in the polar lower stratosphere during late-winter/spring in both hemispheres. A decadal-scale cooling is evident in the Antarctic since the early 1980s and in the Arctic since the early 1990s. However, the dynamical variability is large in these regions, particularly in the Arctic, and this introduces difficulties in establishing the statistical significance of trends.

- The vertical profile of the annual-mean stratospheric temperature change observed in the Northern Hemisphere midlatitudes is robust for the 1979-1994 period within the different datasets. The trend consists of an approximately 0.75°C per decade cooling of the 15- to 35-km region, a slight reduction in the cooling at about 35 km, and increased cooling with height above 35 km (approximately 2°C per decade at 50 km).

- Model simulations based on known changes in the stratospheric concentrations of various radiatively active species indicate that the depletion of lower stratospheric ozone is the dominant radiative factor in the explanation of the observed global-mean lower stratospheric cooling trends for the period 1979-1990 (approximately 0.5°C per decade). The contribution to these trends from increases in well-mixed greenhouse gases is estimated to be less than one-fourth that due to ozone loss.

- Model simulations indicate that ozone depletion is an important causal factor in the latitude-month pattern of the decadal (1979-1990) lower stratospheric cooling. The simulated lower stratosphere in Northern and Southern Hemisphere midlatitudes and in the Antarctic springtime generally exhibit a statistically significant cooling trend over this period consistent with observations.

- In the middle and upper stratosphere, both the well-mixed greenhouse gases and ozone change contribute in an important manner to the cooling. However, the computed cooling due to these gases underestimates the observed decadal trend.
Tropospheric Ozone

- Trends in tropospheric ozone since 1970 in the Northern Hemisphere show large regional differences, with increases in Europe and Japan, decreases in Canada, and only small changes in the United States. The trend in Europe since the mid-1980s has reduced to virtually zero (at two recording stations). In the Southern Hemisphere, small increases have now been observed in surface ozone.

- Recent field studies have shown that anthropogenic emissions of ozone precursors (nitrogen oxides, carbon monoxide, and hydrocarbons) lead to large-scale production of ozone, which, through long-range transport, influences the ozone concentration in large regions of the troposphere in both hemispheres. However, significant uncertainties remain in the budget of tropospheric ozone, its precursors, and the chemical and physical processes involved. Large spatial and temporal variability is observed in tropospheric ozone, resulting from important regional differences in the factors controlling its concentration.

- Important improvements in global chemical transport models (CTMs) have allowed better simulations of tropospheric ozone distributions and of ozone perturbations resulting from anthropogenic emissions.

- Considerable progress has been made in testing tropospheric photochemistry through field measurements. Our theoretical understanding of tropospheric OH is nevertheless incomplete, specifically in regard to sources of upper tropospheric OH and polluted conditions.

- Increases in air traffic and the resulting emissions could have impacts on atmospheric chemistry and cloud formation, with implications for the ozone layer and the climate system. The understanding of the effects of aircraft emissions are currently being assessed as part of the Intergovernmental Panel on Climate Change (IPCC) special report Aviation and the Global Atmosphere: 1999. Consequently, this topic is not included in the scope of the present Assessment.

Changes in UV Radiation

- The inverse correlation between ozone column amounts and ultraviolet-B (UV-B) irradiance has been reconfirmed and firmly established by numerous ground-based measurements. The ground-based measurements have increased our understanding of additional effects such as albedo, altitude, clouds and aerosols, and geographic differences on UV irradiance at the Earth’s surface.

- A controversy concerning anomalous UV-trend estimates from the Robertson-Berger (RB) meter network located in the continental United States. (1974-1985) has been explained in terms of poor calibration stability. The reanalysis of this U.S. RB-meter dataset shows that the errors are too large for determining UV-irradiance trends over that period.

- Increases in UV-B irradiance (e.g., 1989-1997; 1.5% yr\(^{-1}\) at 300 nm, 0.8% yr\(^{-1}\) at 305 nm) have been detected with a few ground-based spectroradiometers at midlatitudes (near 40°) and are consistent with expected changes from the decreasing amounts of ozone. Although
these UV changes are consistent with those estimated from satellite data, the ground-based data records from suitably stable and calibrated instruments are not yet long enough to determine decadal trends. Local irradiance changes, not seen in the coarse-spatial-resolution satellite data, caused by pollution and aerosols have been detected in both UV-B (280 to 315 nm) and UV-A (315 to 400 nm).

- New satellite estimates of global (±65°) UV irradiance that now include cloud, surface reflectivity, and aerosol effects have been estimated from measured backscattered radiances from the Total Ozone Mapping Spectrometer (TOMS) using radiative transfer models. Climatological maps of UV irradiance can be produced from the daily data. In addition, the satellite data have been used to estimate zonally averaged global and seasonal trends in UV irradiance from 1979 to 1992. For this period, annual erythemal UV-irradiance decadal increases were estimated to be 3.7 ± 3% at 60°N and 3 ± 2.8% at 40°N. Larger decadal increases were observed in the Southern Hemisphere: 3.6 ± 2% at 40°S and 9 ± 6% at 60°S. No statistically significant trends were observed between ±30° latitude. Zonally averaged UV-A irradiances have not changed.

- Current zonal-average UV-irradiance trend estimations from satellite data that include cloud effects are nearly identical to clear-sky estimates. The currently estimated trends are slightly lower than the clear-sky trend estimates in the 1994 Assessment because of the new TOMS retrieval algorithm.

- Instrument intercomparison and newly developed calibration and database centers have improved the quality and availability of ground-based data.

Changes in Climate Parameters

- Increased penetration of UV radiation to the troposphere as a result of stratospheric ozone depletion influences key photochemical processes in the troposphere. Model results suggest that a 1% decrease in global total ozone leads to a global increase of 0.7 to 1% in globally averaged tropospheric OH, which would affect the lifetimes of several climate-related gases.

- The global average radiative forcing due to changes in stratospheric ozone since the late 1970s, using extrapolations based on the ozone trends reported in the 1994 Assessment for reference, is estimated to be -0.2 ± 0.15 Wm², which offsets about 30% of the forcing due to increases in other greenhouse gases over the same period. The climatic impact of the slowing of midlatitude trends and the enhanced ozone loss in the Arctic has not yet been assessed. Recovery of stratospheric ozone would reduce the offset to the radiative forcing of the other greenhouse gases. The ozone recovery will therefore lead to a more rapid increase in radiative forcing than would have occurred due to increases in other greenhouse gases alone.

- The global average radiative forcing due to increases in tropospheric ozone since preindustrial times is estimated to be +0.35 ± 0.15 Wm², which is about 10 to 20% of the forcing due to long-lived greenhouse gases over the same period.
Coupled ocean-atmosphere general circulation models (GCMs) have been used to calculate the impact of stratospheric ozone loss on the thermal structure of the atmosphere. The calculated altitude of the transition from tropospheric warming to stratospheric cooling due to increases in well-mixed greenhouse gases is in better agreement with observations when ozone depletion is taken into account.

Radiative forcings and Global Warming Potentials (GWPs) are now available for an expanded set of gases. New categories include fluorinated organic molecules. The CFC-11 radiative forcing has been revised by +12% from the value used since IPCC (1990), primarily because of the use of an improved vertical profile of CFC-11 mixing ratio. This and other updates lead to GWPs relative to CO$_2$ that are typically 20% higher than those in IPCC (1995).

Future Halogen Changes

Large reductions in the production and atmospheric release of ozone-depleting substances (ODSs) have been achieved by international regulations (Montreal Protocol and its Amendments and Adjustments). Without such controls, and assuming a (conservative) 3% annual growth rate in production, ODSs would have led to an equivalent effective chlorine loading of around 17 ppb in 2050. The control measures of the original Montreal Protocol (1987) reduce this to approximately 9 ppb; the Amendments of London (1990) to about 4.6 ppb; and the Amendments of Copenhagen (1992) to approximately 2.2 ppb (but with stratospheric halogen loading increasing again in the second half of the 21st century). The Adjustments of Vienna (1995) and the Amendments of Montreal (1997) further reduce this to about 2.0 ppb (approximately the 1980 abundance) around the year 2050.

Stratospheric halogen loading lags tropospheric loading by up to 6 years. Given that tropospheric halogen loading peaked around 1994 and assuming a scenario with a 3-yr lag time, the equivalent effective stratospheric chlorine loading is estimated to have peaked in 1997, at an abundance 1.7 times higher than in 1980. If annual ozone trends observed in the 1980s are attributed solely to these halogen increases, the peak ozone reductions in 1997, relative to 1980, are estimated to be about 5% at 45°N and 6% at 45°S. The corresponding increases in erythemally weighted UV radiation in 1997 are estimated to be 5% at 45°N and 8% at 45°S relative to the 1980 values.

Recovery of the Ozone Layer

In the absence of other changes, stratospheric ozone abundances should rise in the future as the halogen loading falls in response to regulation. However, the future behavior of ozone will also be affected by the changing atmospheric abundances of methane (CH$_4$), nitrous oxide (N$_2$O), water vapor (H$_2$O), sulfate aerosol, and changing climate. Thus, for a given halogen loading in the future, the atmospheric ozone abundance may not be the same as found in the past for that same halogen loading.

Several two-dimensional models were used to look at the response of ozone to past and future changes in atmospheric composition. Future global ozone abundances are predicted to recover only slowly toward their 1980 values. The return toward 1980 ozone values in
the models depends sensitively on the emission scenarios used. The CH$_4$ scenario used here has a lower growth rate than in previous assessments, which slows the modeled ozone recovery significantly. Understanding the methane trend is an important priority for understanding the future ozone recovery.

- Temperatures in the Arctic winter lower stratosphere are generally close to the threshold for substantial chlorine activation, making Arctic ozone particularly sensitive to small changes in temperature (e.g., cooling of the lower stratosphere by changes in greenhouse gases). Preliminary calculations with coupled chemistry/climate models suggest that recovery in the Arctic could be delayed by this cooling and, because of the large natural variability, recovery will be difficult to detect unambiguously until well into the next century.

- The detection of the onset of ozone recovery from halogen-induced depletion should be possible earlier in the Antarctic than in the Arctic or globally because there is less variability in the ozone loss in the Antarctic. Estimates of the timing of the detection of the onset of ozone recovery are uncertain. However, it is clear that unambiguous detection of the beginning of recovery will be delayed beyond the maximum loading of stratospheric halogens.

IMPLICATIONS FOR POLICY FORMULATION

The results from more than two decades of research have provided a progressively better understanding of the interaction of human activities and the chemistry and physics of the global atmosphere. New policy-relevant insights to the roles of trace atmospheric constituents have been conveyed to decision-makers through the international state-of-the-understanding assessment process. This information has served as a key input to policy decisions by governments, industry, and other organizations worldwide to limit the anthropogenic emissions of gases that cause environmental degradation: (1) the 1987 Montreal Protocol on ozone-depleting substances, and its subsequent Amendments and Adjustments, and (2) the 1997 Kyoto Protocol on substances that alter the radiative forcing of the climate system.

The research findings that are summarized above are of direct interest and significance as scientific input to governmental, industrial, and other policy decisions associated with the Montreal Protocol (ozone layer) and the Kyoto Protocol (climate change):

- **The Montreal Protocol is working.** Global observations have shown that the combined abundance of anthropogenic chlorine-containing and bromine-containing ozone-depleting substances in the lower atmosphere peaked in 1994 and has now started to decline. One measure of success of the Montreal Protocol and its subsequent Amendments and Adjustments is the forecast of "the world that was avoided" by the Protocol:

 - The abundance of ozone-depleting gases in 2050, the approximate time at which the ozone layer is now projected to recover to pre-1980 levels, would be at least 17 ppb of equivalent effective chlorine (this is based on the conservative assumption of a 3% per annum growth in ozone-depleting gases), which is about 5 times larger than today's value.
Ozone depletion would be at least 50% at midlatitudes in the Northern Hemisphere and 70% at midlatitudes in the Southern Hemisphere, about 10 times larger than today.

Surface UV-B radiation would at least double at midlatitudes in the Northern Hemisphere and quadruple at midlatitudes in the Southern Hemisphere compared with an unperturbed atmosphere. This compares to the current increases of 5% and 8% in the Northern and Southern Hemispheres, respectively, since 1980.

Furthermore, all of the above impacts would have continued to grow in the years beyond 2050. It is important to note that, while the provisions of the original Montreal Protocol in 1987 would have lowered the above growth rates, recovery (i.e., an improving situation) would have been impossible without the Amendments and Adjustments (London, 1990; Copenhagen, 1992; and Vienna, 1995).

The ozone layer is currently in its most vulnerable state. Total stratospheric loading of ozone-depleting substances is expected to maximize before the year 2000. All other things being equal, the current ozone losses (relative to the values observed in the 1970s) would be close to the maximum. These are:

- about 6% at Northern Hemisphere midlatitudes in winter/spring;
- about 3% at Northern Hemisphere midlatitudes in summer/fall;
- about 5% at Southern Hemisphere midlatitudes on a year-round basis;
- about 50% in the Antarctic spring; and
- about 15% in the Arctic spring.

Such changes in ozone are predicted to be accompanied by increases in surface erythemal radiation of 7, 4, 6, 130, and 22%, respectively, if other influences such as clouds remain constant. It should be noted that these values for ozone depletion at midlatitudes are nearly a factor of 2 lower than projected in 1994, primarily because the linear trend in ozone observed in the 1980s did not continue in the 1990s. However, springtime depletion of ozone in Antarctica continues unabated at the same levels as observed in the early 1990s, and large depletions of ozone have been observed in the Arctic in most years since 1990, which are characterized by unusually cold and protracted winters.

Some natural and anthropogenic processes that do not in themselves cause ozone depletion can modulate the ozone loss from chlorine and bromine compounds, in some cases very strongly. For example, in coming decades midlatitude ozone depletion could be enhanced by major volcanic eruptions, and Arctic ozone depletion could be increased by cold polar temperatures, which in turn could be linked to greenhouse gases or to natural temperature fluctuations. On the other hand, increases in methane would tend to decrease chlorine-catalyzed ozone loss.

The current vulnerability to ozone depletion over the next few decades is primarily due to past use and emissions of the long-lived ozone-depleting substances. The options to reduce this vulnerability over the next two decades are thus rather limited. The main drivers of
ozone change could be natural and anthropogenic processes not related to chlorine and bromine compounds, but to which the ozone layer is sensitive because of the elevated abundances of ozone-depleting substances.

- **The ozone layer will slowly recover over the next 50 years.** The stratospheric abundance of halogenated ozone-depleting substances is expected to return to its pre-1980 (i.e., "unperturbed") level of 2 ppb chlorine equivalent by about 2050, assuming full compliance with the Montreal Protocol and its Amendments and Adjustments. The atmospheric abundances of global and Antarctic ozone will start to slowly recover within coming decades toward their pre-1980 levels once the stratospheric abundances of ozone-depleting (halogen) gases start to decrease. However, the future abundance of ozone will be controlled not only by the abundance of halogens, but also by the atmospheric abundances of methane, nitrous oxide, water vapor, and sulfate aerosols and by the Earth's climate. Therefore, for a given halogen loading in the future, atmospheric ozone abundance is unlikely to be the same as found in the past for the same halogen loading.

- **Few policy options are available to enhance the recovery of the ozone layer.** Relative to the current, but not yet ratified, control measures (Montreal, 1997), the equivalent effective chlorine loading above the 1980 level, integrated from now until the 1980 level is re-attained, could be decreased by:

 - 9% by eliminating global Halon-1211 emissions in the year 2000, thus requiring the complete elimination of all new production and destruction of all Halon-1211 in existing equipment;

 - 7% by eliminating global Halon-1301 emissions in the year 2000, thus requiring the complete elimination of all new production and destruction of all Halon-1301 in existing equipment;

 - 5% by eliminating the global production of all HCFCs in the year 2004;

 - 2.5% by eliminating the global production of all CFCs and carbon tetrachloride in the year 2004;

 - 1.6% by reducing the cap on HCFC production in developed countries from 2.8% to 2.0% in the year 2000, by advancing the phase-out from the year 2030 to 2015, and by instituting more rapid intermediate reductions; and

 - about 1% by eliminating the global production of methyl bromide beginning in 2004.

These policy actions would advance the date at which the abundance of effective chlorine returns to the 1980 value by 1-3 years. A complete and immediate global elimination of all emissions of ozone-depleting substances would result in the stratospheric halogen loading returning to the pre-1980 values by the year 2033. It should also be noted that if the currently allowed essential uses for metered dose inhalers are extended from the year 2000 to 2004, then the equivalent effective chlorine loading above the 1980 level would increase by 0.3%.
• Failure to comply with the international agreements of the Montreal Protocol will affect the recovery of the ozone layer. For example, illegal production of 20-40 ktonnes per year of CFC-12 and CFC-113 for the next 10-20 years would increase the equivalent effective chlorine loading above the 1980 abundance, integrated from now until the 1980 abundance is re-attained, by about 1-4% and delay the return to pre-1980 abundances by about a year.

• The issues of ozone depletion and climate change are interconnected; hence, so are the Montreal and Kyoto Protocols. Changes in ozone affect the Earth’s climate, and changes in climate and meteorological conditions affect the ozone layer, because the ozone depletion and climate change phenomena share a number of common physical and chemical processes. Hence, decisions taken (or not taken) under one Protocol have an impact on the aims of the other Protocol. For example, decisions made under the Kyoto Protocol with respect to methane, nitrous oxide, and carbon dioxide will affect the rate of recovery of ozone, while decisions regarding controlling HFCs may affect decisions regarding the ability to phase out ozone-depleting substances.
SCIENTIFIC ASSESSMENT OF OZONE DEPLETION: 1998
CHAPTER SUMMARIES

CHAPTER 1: LONG-LIVED OZONE-RELATED COMPOUNDS

Since the previous Assessment (WMO, 1995), significant progress has been achieved in determining and understanding the distributions of long-lived ozone-related gases in both the troposphere and stratosphere. In this chapter, we deal primarily with long-lived halocarbons (chlorofluorocarbons (CFCs), halons, perfluorinated and perchlorinated compounds) and other significant long-lived non-halocarbon species.

- Tropospheric measurements show that:

 (a) International “compliance” with the Montreal Protocol and its Amendments has resulted in the amounts of most CFC’s and chlorocarbons in the atmosphere being equal to or lower than amounts that are consistent with the Protocol’s provisions regarding production and emission.

 (b) The total amount of organic chlorine (CCl₃) contained in long- and short-lived chlorocarbons reached maximum values of 3.7 ± 0.1 parts per billion (ppb) between mid-1992 and mid-1994 and is beginning to decrease slowly in the global troposphere. This slowing down and reversal in the growth rate resulted primarily from reduced emissions of methyl chloroform (CH₃CCl₃).

 (c) Despite significant reduction in the emission of halons, the total amount of organic bromine in the troposphere continues to rise, largely because of the ongoing growth of Halon-1211 (CBrClF₂). Possible causes are releases during the 1990s from the large halon “bank” that accumulated in developed countries during the 1980s and from increased production of Halon-1211 in developing countries. The recent observations of Halon-1211 concentrations are higher and growing faster than concentrations calculated from emissions derived from industry and United Nations Environment Programme (UNEP) data. Halon increases over the next few years could delay the time of the currently expected total organic bromine maximum in the troposphere.

 (d) The amount of nitrous oxide (N₂O) in the troposphere continues to increase at 0.2 to 0.3% per year. As concluded in previous assessments, this trend indicates that the global sources exceed the sinks by approximately 30%. The imbalance appears to be caused by anthropogenic sources whose relative strengths remain uncertain.

- Stratospheric measurements reflect the tropospheric chlorocarbon changes with a time delay ranging from 3 to 6 years, depending on latitude and altitude. Assuming the maximum delay, the peak in chlorine loading in the middle stratosphere (and consequently chlorine-catalyzed ozone loss) is expected to be reached around the year 2000. The impact of organic bromine is not going to significantly alter the time of maximum ozone depletion.
Specifically:

(a) Space-based measurements of hydrogen chloride (HCl) near the stratopause and of total chlorine throughout the stratosphere are consistent with the amount and rate of change of total CCl₄ in the troposphere. The rate of increase of stratospheric chlorine has slowed in recent years.

(b) The rate of increase of the total amount of inorganic chlorine (Cl₄) in the atmosphere obtained by combining HCl and chlorine nitrate (ClONO₂) ground-based measurements and a model-computed chlorine monoxide (ClO) background has slowed significantly, from about 3.7% per year in 1991 to 1992 to about 1.8% per year in 1995 to 1996.

(c) The long-term remote monitoring of hydrogen fluoride (HF) near 55 km altitude from space and of total column amounts of HF and carbonyl fluoride (COF₂) from the ground, along with the HCl trends, have confirmed that CFC and chlorocarbon compounds included in the Montreal Protocol have been the principal sources of both inorganic fluorine and Cl₄ in the stratosphere.

(d) Volcanoes have not contributed significantly in recent decades to the total amount of chlorine in the stratosphere.

- Industrial production, sales data, and end-use modeling indicate that global emissions of the long-lived CFCs (-11, -12, -113, -114, and -115), carbon tetrachloride (CCl₄), and Halon-1211 and -1301 (CBrF₃) are all in decline. For CFC-12 (CCl₂F₂) and Halon-1211, the emissions still exceed their atmospheric removal rates; hence, their concentrations are still increasing.

- Estimations using global tropospheric measurements and atmospheric chemical models show that:

 (a) The CFCs whose emissions are accurately known appear to have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism.

 (b) CFC and chlorocarbon emissions inferred from atmospheric observations are consistent, approximately, with independent estimates of emissions based on industrial production and sales data. CFC-113 (CCl₃FCCIF₂) is an exception: emissions based on atmospheric observations are significantly lower than those calculated by industry.
While CCl₄ in the atmosphere is declining at approximately 0.8% per year, the interhemispheric difference is effectively constant, indicating that there are still significant Northern Hemispheric (NH) emissions. Atmospheric measurements and estimates of developed countries' emissions indicate that developing countries have dominated world releases of CCl₄ after 1991. A recent investigation of stratospheric CCl₄ observations and some three-dimensional (3-D) model studies suggest that its lifetime is closer to 35 years, instead of the previously reported 42 years; if this shorter lifetime is correct, then larger emissions are indicated, presumably from developing countries.

Perfluorocarbons (PFCs) and sulfur hexafluoride (SF₆) continue to increase in the background atmosphere. They are not ozone depleters but are of potential concern because they are strong absorbers of infrared radiation on a per-molecule basis and, once released, they persist in the atmosphere for millennia.

- Simultaneous determinations of the stratospheric mixing ratio of a species and the age of the air can be used together with tropospheric measurements to estimate steady-state atmospheric lifetimes for species that lack tropospheric sinks. In general, the lifetimes obtained in this way are consistent with the model-derived lifetime ranges and lifetimes based on tropospheric measurements. However, the recommended reference lifetimes for CFC-11 (CCl₃F) and CCl₄ are approximately 45 and 35 years, respectively, which are shorter than the previously recommended estimates (50 and 42 years, respectively); some recent 3-D models also support these changes. Recommended reference lifetimes for major ozone-depleting source gases discussed in this chapter and also in Chapter 2 are summarized in Table 1-1.
Table 1-1. Summary of current (WMO, 1998) and previous (WMO, 1995) reference and observed steady-state lifetimes for several ozone-related source species. Lifetime is defined as the total amount of a compound in the atmosphere divided either by its total rate of removal or by its rate of destruction by tropospheric OH alone (values in parentheses). Additional information on calculated uncertainties can be found in Tables 1-3, 1-4, 1-5, 1-6, and in Chapter 2 (Tables 2-2, 2-4, and 2-6).

<table>
<thead>
<tr>
<th>Industrial Name</th>
<th>Chemical Formula</th>
<th>Lifetime, WMO (1998)(^a) (years)</th>
<th>Lifetime, Observed Range (years)</th>
<th>Lifetime, WMO (1995) (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrous oxide</td>
<td>N(_2)O</td>
<td>120</td>
<td>75 to 173(^d)</td>
<td>120</td>
</tr>
<tr>
<td>CFC-11</td>
<td>CCl(_3)F</td>
<td>45(^f)</td>
<td>29 to 76(^e)</td>
<td>50</td>
</tr>
<tr>
<td>CFC-12</td>
<td>CCl(_2)F(_2)</td>
<td>100</td>
<td>77 to 185(^e)</td>
<td>102</td>
</tr>
<tr>
<td>CFC-113</td>
<td>CCl(_2)FCCl(_2)</td>
<td>85</td>
<td>54 to 143(^d)</td>
<td>85</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>CCl(_4)</td>
<td>35(^f)</td>
<td>21 to 43(^d)</td>
<td>42</td>
</tr>
<tr>
<td>H-1211</td>
<td>CBrCCl(_2)</td>
<td>11(^f)</td>
<td>10 to 31(^d)</td>
<td>20</td>
</tr>
<tr>
<td>H-1301</td>
<td>CBrF(_3)</td>
<td>65</td>
<td>60 to 65(^g)</td>
<td>65</td>
</tr>
<tr>
<td>Methyl chlorofom</td>
<td>CH(_3)CCl(_3)</td>
<td>4.8 (5.7)</td>
<td>4.5 to 5.1(^b)</td>
<td>5.4</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>CHCIF(_2)</td>
<td>11.8 (12.3)</td>
<td>7.0 to 14.4(^c)</td>
<td>13.3</td>
</tr>
<tr>
<td>HCFC-141b</td>
<td>CH(_2)CCl(_2)F</td>
<td>9.2 (10.4)</td>
<td>(h)</td>
<td>9.4</td>
</tr>
<tr>
<td>HCFC-142b</td>
<td>CH(_2)CCl(_2)</td>
<td>18.5 (19.5)</td>
<td>(h)</td>
<td>19.5</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>CH(_2)FCF(_3)</td>
<td>13.6 (14.1)</td>
<td>(h)</td>
<td>14</td>
</tr>
<tr>
<td>HFC-23</td>
<td>CHF(_3)</td>
<td>243 (255)</td>
<td>(h)</td>
<td>250</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>CH(_3)Cl</td>
<td>~1.3 (1.3)</td>
<td>(h)</td>
<td>1.5</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>CH(_3)Br</td>
<td>0.7 (1.8)</td>
<td>(h)</td>
<td>1.3</td>
</tr>
<tr>
<td>Methane</td>
<td>CH(_4)</td>
<td>8.9(^i) (9.3)</td>
<td>(h)</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^a\) The numbers in parentheses represent lifetimes for removal by tropospheric OH scaled to the total atmospheric lifetime of CH\(_3\)CCl\(_3\) (4.8 years) derived by Prinn et al. (1995), and adopting CH\(_3\)CCl\(_3\) lifetimes for ocean removal of 85 years and stratospheric removal of 45 years (Kaye et al., 1994). Adopting a shorter stratospheric removal time of 37 years (Prinn et al., 1995; see also Volk et al., 1997) yields a lifetime for CH\(_3\)CCl\(_3\) removal by tropospheric OH of 5.9 years which is within the uncertainty limits of the above (WMO, 1998) reference value.

\(^b\) Prinn et al., 1995.

\(^c\) Miller et al., 1998.

\(^d\) Volk et al., 1997. Note that this analysis gives only stratospheric lifetimes. Additional loss of H-1211 in the troposphere (see Section 1.4.4) reduces its lifetime to 11 years. When considering recently updated emissions of H-1211 (see Figure 1-11) and observations, the Butler et al. (1998) lifetime evaluation approach leads to an H-1211 lifetime of 10 years.

\(^e\) For CFC-11, combined range of Volk et al. (1997) and updated values from Cunnold et al. (1997); for CFC-12, range covered by the central estimates of Volk et al. (1997) and updated central estimates from Cunnold et al. (1997).

\(^f\) WMO 1998 CFC-11, H-1211, and CCl\(_4\) lifetimes are lower than WMO (1995) values to take account of recent estimates based on stratospheric observations and models. Note that some calculations in later chapters were carried out before these WMO (1998) values were finalized and therefore used WMO (1995) values instead.

\(^g\) Butler et al., 1998.

\(^h\) Not available or not applicable.

\(^i\) Lifetime as calculated by Prinn et al. (1995). The adjustment time for CH\(_4\) recovery would be somewhat longer due to CH\(_4\) feedback on CO and OH (WMO, 1995).
CHAPTER 2: SHORT-LIVED OZONE-RELATED COMPOUNDS

Fluorinated and Chlorinated Compounds

- The Montreal Protocol and its Amendments have caused dramatic changes in industrial halocarbon emissions. For example, industrial sales of methyl chloroform (CH$_3$CCl$_3$) have dropped by more than a factor of 3 from 1990 to 1995, resulting in decreases in its tropospheric concentration over this same period, approaching 40%. This decline in tropospheric CH$_3$CCl$_3$ (about 40 to 42 parts per trillion (ppt) atomic chlorine (Cl) yr$^{-1}$ in 1996) is one of the principal causes for the recent downturn in total tropospheric Cl.

- Rapid growth in the tropospheric concentrations of several hydrochlorofluorocarbons (HCFCs) has occurred throughout the 1990s as expected from continuation of previous uses and from use as replacements for chlorofluorocarbons (CFCs). As a result, tropospheric Cl from HCFC-22, -141b, and -142b was increasing in mid-1996 by about 11 ppt yr$^{-1}$ and accounted for an equivalent of approximately 5% of the Cl present in long-lived tropospheric gases. This increasing contribution to tropospheric Cl offsets some of the 1996 decline in tropospheric Cl associated with the decreasing tropospheric burden of CH$_3$CCl$_3$. This can be contrasted with the total tropospheric Cl growth rate throughout the 1980s, which exceeded 100 ppt yr$^{-1}$.

- Significant growth has also been recorded for some hydrofluorocarbons (HFCs). HFC-134a has increased throughout the 1990s from non-detectable levels to slightly greater than 3 ppt. HFC-23 (a byproduct of HCFC-22 production) has tracked the tropospheric concentration of HCFC-22 since 1980 and is growing at about 0.6 ppt yr$^{-1}$ from a mid-1995 abundance of approximately 11 ppt.

- Based on the most recent analysis of the CH$_3$CCl$_3$ observational record (including a refinement in calibration), the atmospheric lifetimes (with respect to reactive removal by hydroxyl radicals (OH)) of CH$_3$CCl$_3$, HCFCs, and HFCs, have been reduced by about 15% since the 1994 Assessment (WMO, 1995; see Table 2-1). The 1995 Intergovernmental Panel on Climate Change Assessment (IPCC, 1996) mostly reflected these revisions, with a slightly smaller correction factor of about 10%.

- Using the recommended lifetimes for HCFCs and HFCs, emissions calculated by industry from sales and use data are in accordance with the current global abundances of HCFC-22 and HFC-134a. For HCFC-141b and -142b, the industry data underestimate the current global abundances by factors of approximately 1.3 and 2, respectively.

- New measurements of, and improved calibrations for, methyl chloride (CH$_3$Cl), the largest natural source of atmospheric Cl, suggest that its global average mixing ratio is about 550 ppt, a slight revision of the 600 ppt given in the 1994 Assessment (WMO, 1995). Despite new information on CH$_3$Cl sources, their sum accounts for only 40 to 80% of the current atmospheric burden of CH$_3$Cl. New information on the marine production of CH$_3$Cl suggests a much lower oceanic source strength than previously assumed (constituting about 7
to 13% of the total source flux required to balance the removal of CH3Cl by OH). These data imply that biomass burning now appears to be the largest known source of atmospheric CH3Cl, approximately three times greater than the ocean source.

- The total Cl determined from the average tropical tropopause or lower stratospheric mixing ratios of the anthropogenic chlorocarbons methylene chloride (CH2Cl2), chloroform (CHCl3), and tetrachloroethene (C2Cl4), and from phosgene (COC12, a product of chlorocarbon breakdown in the atmosphere), indicates that these short-lived compounds contribute about 100 ± 20 ppt of Cl to the stratosphere, or about 3% of the total organic Cl.

Methyl Bromide (CH3Br)

- Recent measurements and intercomparison of calibration standards have confirmed that the average global mixing ratio of CH3Br lies between 9 and 10 ppt, and that the interhemispheric ratio is 1.3 ± 0.1 (North/South), decreasing seasonally by as much as 0.2. Available data are not sufficient to determine the magnitude of CH3Br trends since 1992.

- The amplitude of the seasonal behavior of CH3Br shows wide geographical variability. The lack of an appreciable seasonal variation in the Southern Hemisphere (SH) suggests the existence of seasonality in other processes (sources or sinks) that offsets the signal for chemical removal by OH.

- Additional laboratory and shipboard measurements carried out since the 1994 Assessment (WMO, 1995) have changed our understanding of the ocean’s role in the CH3Br global budget. The ocean now appears to be a net sink, with an estimated net flux across the surface of about -21 Gg yr⁻¹, ranging from -3 to -32 Gg yr⁻¹. There is some evidence of seasonality in the saturation of CH3Br at high latitudes, which suggests a close interplay between aquatic sources and sinks of CH3Br and which further complicates narrowing the uncertainty in the global net flux across the ocean surface.

- New laboratory and field measurements and calculations utilizing global climatological data have increased the estimated total removal rates of CH3Br. The magnitude of ocean uptake is -77 Gg yr⁻¹, with a range of -37 to -133 Gg yr⁻¹. Chemical removal in the ocean accounts for 70% of this estimate, with a newly identified biological ocean sink contributing the remaining 30%. Two different studies suggest a significant soil sink for CH3Br. Although measured deposition velocities in similar soil types are consistent with each other, extrapolation to a global soil sink for CH3Br yield estimates that differ widely due to utilization of different global soil type inventories. The best estimate for the soil sink for CH3Br is -42 Gg yr⁻¹, with a range of -10 to -214 Gg yr⁻¹. Removal by atmospheric OH has been increased by 15% over the value in the 1994 Assessment (WMO, 1995) due to the impact of the recalibration of the CH3CCI3 data. The current estimate for OH removal is -86 Gg yr⁻¹, ranging from -65 to -107 Gg yr⁻¹. Thus the total removal rate of CH3Br is -205 Gg yr⁻¹, with a range of -454 to -112 Gg yr⁻¹.
No new important sources of CH$_3$Br have been identified. The total emission of CH$_3$Br from identified sources is 122 Gg yr$^{-1}$, with a range of 43 to 244 Gg yr$^{-1}$. The best-quantified source is fumigation, with a magnitude of 41 Gg yr$^{-1}$ and a range of 28 to 64 Gg yr$^{-1}$. Other anthropogenic sources include biomass burning (20 Gg yr$^{-1}$, ranging from 10 to 40 Gg yr$^{-1}$) and leaded gasoline use (5 Gg yr$^{-1}$, ranging from 0 to 10 Gg yr$^{-1}$). Estimates of ocean emissions of order 60 Gg yr$^{-1}$ can be directly deduced from the above estimates for ocean uptake and net ocean flux.

The budget of atmospheric CH$_3$Br, calculated from our current understanding of sources and sinks, does not balance. Identified sinks (about 200 Gg yr$^{-1}$) outweigh identified sources (about 120 Gg yr$^{-1}$). The range in the imbalance is -315 to +36 Gg yr$^{-1}$, obtained by combining estimated ranges for each of the sources and sinks. Because these ranges do not represent a statistical uncertainty, we cannot ascribe a probability to obtaining a balanced budget. Still, uncertainties in sources and sinks cannot easily explain the discrepancy.

The current best estimate of the lifetime of atmospheric CH$_3$Br, calculated from losses within the atmosphere, to the ocean, and to soils, is 0.7 (0.4 to 0.9) years, contrasted with 1.3 (0.8 to 1.7) years given in the 1994 Assessment (WMO, 1995). The range is estimated by calculating the separate impacts of uncertainties in each of the sinks. The change from the 1994 Assessment is due primarily to both an increase in the ocean sink and the identification of a soil uptake, with a smaller contribution from the increase in the atmospheric removal rate. The Ozone Depletion Potential (ODP) for CH$_3$Br, calculated using the above lifetime and a bromine (Br) efficiency factor of 58, is 0.4, with a range of 0.2 to 0.5. The ODP range is again calculated by considering the separate impacts of uncertainties in each of the parameters used for the ODP estimate. The bromine efficiency factor of 58 is greater than the value of 48 given in the 1994 Assessment due to improvements in our knowledge of stratospheric bromine chemistry.

Other Brominated Compounds

Measurements of shorter-lived organic Br compounds (CH$_2$Br$_2$, CHBr$_3$, CH$_2$BrCl, CHBrCl$_2$, CHBr$_2$Cl, and C$_2$H$_4$Br$_2$) indicate that these chemicals contribute 5 to 10 ppt Br to the tropospheric organic Br burden. However, such measurements have not been part of long-term monitoring programs and the data are sporadic in time and location, with a bias toward coastal and oceanic regions. Variable concentrations of these compounds (ranging from 1.0 to 1.7 ppt) have been reported at the tropical tropopause, but the paucity of data and the high variability make it difficult to quantify their contribution to reactive Br in the lower stratosphere.

Methane (CH$_4$) and Carbon Monoxide (CO)

The current best estimate for the total atmospheric lifetime of CH$_4$ is 8.9 ± 0.6 years. The lifetime decrease since the 1994 Assessment (WMO, 1995) reflects the impact of the CH$_3$CCl$_3$ recalibration.
• The burden of atmospheric CH$_4$ continues to increase, but the rate of growth is declining. A growth rate of about 3 to 4 ppb yr$^{-1}$ was reported for the 1996 to 1997 period, contrasting with an average increase rate of about 10 ppb yr$^{-1}$ in the late 1980s. Apart from the anomalously low growth period after the 1991 eruption of Mt. Pinatubo, the above growth rate is the lowest since the mid-1940s. These lower growth rates are in contrast with the commonly used scenarios of future CH$_4$ emissions.

• Ground-based networks for carbon monoxide (CO) monitoring continue to expand, with many laboratories beginning new CO-monitoring programs. A recent intercomparison of measurements showed that large differences still exist between groups, which may be related to the calibration scales used in the analyses.

• The long-term increase in CO observed in the Northern Hemisphere (NH) until the mid- to late 1980s reversed at that time, with a steady average decrease of 2% yr$^{-1}$ since 1990. This decrease continues today. No significant long-term trend in the SH has been deduced from measurements made over the past 20 years. However, periods of sharp decline in 1992 to 1993 and again in 1995 have yielded the lowest SH mixing ratios in the past two decades.
Table 2-1. Summary of current (WMO, 1998) and previous (WMO, 1995) reference and observed steady-state lifetimes for several ozone-related source species. Lifetime is defined as the total amount of a compound in the atmosphere divided by its total rate of removal (or by its rate of destruction by tropospheric OH alone; values in parentheses). Additional information on calculated ranges for different models and lifetime-related uncertainties can be found in Chapter 1 (Tables 1-3, 1-4, 1-5, 1-6) and in Tables 2-2, 2-4, and 2-6 of this chapter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(years)</td>
<td>(years)</td>
<td>(years)</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>120</td>
<td>75 to 173<sup>d</sup></td>
<td>120</td>
</tr>
<tr>
<td>CFC-11</td>
<td>CCl₃F</td>
<td>45<sup>f</sup></td>
<td>29 to 76<sup>e</sup></td>
<td>50</td>
</tr>
<tr>
<td>CFC-12</td>
<td>CCl₂F₂</td>
<td>100</td>
<td>77 to 185<sup>c</sup></td>
<td>102</td>
</tr>
<tr>
<td>CFC-113</td>
<td>CCl₃FCClF₂</td>
<td>85</td>
<td>54 to 143<sup>d</sup></td>
<td>85</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>CCl₄</td>
<td>35<sup>f</sup></td>
<td>21 to 43<sup>d</sup></td>
<td>42</td>
</tr>
<tr>
<td>H-1211</td>
<td>CBrClF₂</td>
<td>11<sup>f</sup></td>
<td>10 to 31<sup>d</sup></td>
<td>20</td>
</tr>
<tr>
<td>H-1301</td>
<td>CBrF₃</td>
<td>65</td>
<td>60 to 65<sup>g</sup></td>
<td>65</td>
</tr>
<tr>
<td>Methyl chloroform</td>
<td>CH₃CCl₃</td>
<td>4.8 (5.7)</td>
<td>4.5 to 5.1<sup>b</sup></td>
<td>5.4</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>CHClF₂</td>
<td>11.8 (12.3)</td>
<td>7.0 to 14.4<sup>c</sup></td>
<td>13.3</td>
</tr>
<tr>
<td>HCFC-141b</td>
<td>CH₂CCl₂F</td>
<td>9.2 (10.4)</td>
<td>(h)</td>
<td>9.4</td>
</tr>
<tr>
<td>HCFC-142b</td>
<td>CH₂CClF₂</td>
<td>18.5 (19.5)</td>
<td>(h)</td>
<td>19.5</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>CH₂FCF₃</td>
<td>13.6 (14.1)</td>
<td>(h)</td>
<td>14</td>
</tr>
<tr>
<td>HFC-23</td>
<td>CH₃F</td>
<td>243 (255)</td>
<td>(h)</td>
<td>250</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>CH₃Cl</td>
<td>~1.3 (1.3)</td>
<td>(h)</td>
<td>1.5</td>
</tr>
<tr>
<td>Methyl bromide</td>
<td>CH₃Br</td>
<td>0.7 (1.8)</td>
<td>(h)</td>
<td>1.3</td>
</tr>
<tr>
<td>Methane</td>
<td>CH₄</td>
<td>8.9<sup>i</sup> (9.3)</td>
<td>(h)</td>
<td>10</td>
</tr>
</tbody>
</table>

^a The numbers in parentheses represent lifetimes for removal by tropospheric OH scaled to the total atmospheric lifetime of CH₃CCl₃ (4.8 years) derived by Prinn et al. (1995), and adopting CH₃CCl₃ lifetimes for ocean removal of 85 years and stratospheric removal of 45 years (Kaye et al., 1994). Adopting a shorter stratospheric removal time of 37 years (Prinn et al., 1995; see also Volk et al., 1997) yields a lifetime for CH₃CCl₃ removal by tropospheric OH of 5.9 years, which is within the uncertainty limits of the above (WMO, 1998) reference value.

^b Prinn et al., 1995.

^c Miller et al., 1998.

^d Volk et al., 1997. Note that this analysis gives only stratospheric lifetimes. Additional loss of H-1211 in the troposphere (see Section 1.4.4) reduces its lifetime to 11 years. When considering recently updated emissions of H-1211 (see Figure 1-11) and observations, the Butler et al. (1998) lifetime evaluation approach leads to an H-1211 lifetime of 10 years.

^e WMO (1998) CFC-11, H-1211, and CCl₄ lifetimes are lower than WMO (1995) values to take account of recent estimates based on stratospheric observations and models. Note that some calculations in later chapters of this 1998 Assessment were carried out before these WMO (1998) values were finalized and therefore used WMO (1995) values instead.

^f Butler et al., 1998.

^g Not available or not applicable.

ⁱ Lifetime as calculated by Prinn et al. (1995). The adjustment time for CH₄ recovery would be somewhat longer due to CH₄ feedback on CO and OH (WMO, 1995).
CHAPTER 3: GLOBAL DISTRIBUTIONS AND CHANGES IN STRATOSPHERIC PARTICLES

Much progress has been made recently in our understanding of the two major classes of stratospheric particles: stratospheric sulfate aerosol (SSA), and polar stratospheric clouds (PSCs). Thermodynamic models have provided a clearer picture of particle behavior at low temperatures, while a richer and longer measurement suite has increased our knowledge of particle formation processes, the dispersal and decay of volcanic SSA, and particle climatology.

- There is no clear trend in background SSA from 1979 to 1997. SSA levels in late 1997 were below those observed before the 1991 Mt. Pinatubo eruption and are likely still decreasing. Hence, any anthropogenic contribution to the SSA layer must be smaller than previously estimated from observed changes from 1979 to 1989. Peak aerosol scattering ratios in 1997 were about 40% greater than those observed during 1979, but due to uncertainties and natural variability in the measurements, this difference must be viewed with caution at present.

- It is not clear that the 1979 minimum SSA period was truly free of volcanic influence. Recent model calculations of SSA production from known tropospheric sulfur sources significantly underestimate the 1979 observations. Other non-volcanic sources are thought to be insignificant.

- Post-volcanic SSA decay varies with time, space, and aerosol property. The e^{-t} decay time for column backscatter following the eruption of Mt. Pinatubo was about 1 year until 1994, and nearly twice as long (1.8 years) from 1994 to 1997. Derived surface areas decayed back to pre-Pinatubo levels in about 3.5 years at 25 km and about 5 years at 15 km. Surface area decayed 20-30% more slowly than backscatter or mass.

- PSC observations are still divided into two broad classes: Type 1 PSCs, containing nitric acid (HNO₃) as a major component, that form at temperatures above the water (H₂O) ice point; and Type 2 PSCs, containing predominantly H₂O ice particles. Most of the observations of Type 1 PSCs can be subclassified as Type 1b liquid particles or Type 1a solid particles. Other types of particles have been proposed to explain some specific observations.

- It is now generally accepted that Type 1b PSCs are supercooled ternary solution (STS) droplets that form from SSA without a nucleation barrier. Type 1a PSC particles are generally interpreted as solid nitric acid trihydrate (NAT), but understanding of the phase transition mechanisms leading to their formation is still poor. Better understanding of Type 1a PSCs is needed because solid particles play a significant role in denitrification.

 - Many of the Type 1b PSC observations occurred during ongoing fast synoptic cooling events, shortly after the air parcels experienced cold temperatures. Type 1a PSCs, in contrast, have been observed when synoptic temperatures were below the NAT existence temperature for several days. It now appears that theoretical models of Type 1a PSC formation may require knowledge of the air parcel thermal history.
Mesoscale temperature fluctuations, especially over mountain ranges where such fluctuations can reach 20 K peak-to-peak, are important in PSC formation processes, particularly in the Arctic. The integral effect of such phenomena on polar ozone depletion is still unclear.

Increases in source gases and cooling of the lower stratosphere from ozone depletion and increasing greenhouse gases favor increased formation and persistence of PSCs. However, an upward trend in PSC occurrence is not discernible in the present satellite data record due to the relatively short length of the record as well as the large variability in cloud sightings from year to year.

CHAPTER 4: OZONE VARIABILITY AND TRENDS

Non-Polar Ozone

TOTAL COLUMN OZONE

The 1994 Assessment noted large negative trends in midlatitude total ozone in the 1980s, with an additional marked decrease in Northern Hemisphere midlatitude ozone following the large enhancement of stratospheric aerosol caused by the eruption of Mt. Pinatubo in 1991. By 1994, the transient effect on total ozone of the Mt. Pinatubo aerosols had largely disappeared. Since 1994, non-polar total ozone, while variable, has not shown an overall negative trend, and total ozone levels are now at a higher level than would be predicted by a linear extrapolation of the pre-Pinatubo trend. Extrapolation of the pre-Pinatubo trend of -2.9%/decade in Northern Hemisphere midlatitudes (25°-60°) would predict an ozone depletion relative to 1979 of -5.5% at the end of 1997, whereas instead the deviations have averaged about -4% in the last 2 or 3 years. Seasonally, the corresponding winter/spring (December-May) and summer/fall (June-November) changes averaged about -5.5% and -2.8%, respectively, whereas a linear extrapolation of the pre-Pinatubo trend would predict -7.6% and -3.4%, respectively. In the Southern Hemisphere (25°-60°), trend extrapolation would predict -7.2% depletion at the end of 1997, whereas the smoothed data indicate a 1997 value of about -4% (satellite) or -5% (ground).

As shown in Table 4-1, trends in total ozone from January 1979 updated through the end of 1997 exhibit the now-familiar pattern of negative trends with the following features:

1. Trends in both hemispheres in mid and high latitudes in all seasons are negative, large, and statistically significant.

2. Trends in the equatorial regions (20°S to 20°N) are statistically nonsignificant.
Table 4-1. Total ozone trends in percent per decade and uncertainties (two standard errors) from Total Ozone Mapping Spectrometer (TOMS) data*.

<table>
<thead>
<tr>
<th>Latitudes</th>
<th>Trend (%/decade)</th>
<th>Annual</th>
<th>Dec-May(^1)</th>
<th>Jun-Nov(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North 50°-65°</td>
<td>-3.7 ± 1.6</td>
<td></td>
<td>-4.4 ± 2.6</td>
<td>-2.8 ± 1.3</td>
</tr>
<tr>
<td>North 30°-50°</td>
<td>-2.8 ± 1.7</td>
<td></td>
<td>-3.8 ± 2.4</td>
<td>-1.7 ± 1.3</td>
</tr>
<tr>
<td>Equatorial 20°-20°</td>
<td>-0.5 ± 1.3</td>
<td></td>
<td>-0.3 ± 1.6</td>
<td>-0.7 ± 1.3</td>
</tr>
<tr>
<td>South 30°-50°</td>
<td>-1.9 ± 1.3</td>
<td></td>
<td>-2.4 ± 1.2</td>
<td>-1.4 ± 1.9</td>
</tr>
<tr>
<td>South 50°-65°</td>
<td>-4.4 ± 1.8</td>
<td></td>
<td>-3.4 ± 1.6</td>
<td>-5.2 ± 2.6</td>
</tr>
</tbody>
</table>

* Values in table are averages from Total Ozone Mapping Spectrometer (TOMS) trends in Table 4-5. Ground-based trends are shown in Table 4-4 for somewhat different latitude bands.

1 North winter/spring and south summer/fall.

2 North summer/fall and south winter/spring.

Ozone Trends

- In the middle and high latitudes, the overall ozone amount has declined during all months of the year, and the amplitude of the annual cycle for stations has decreased by about 15% mainly as a result of a decline in the maximum. In the Northern Hemisphere, the trends are much larger (more negative) in the winter and spring seasons (December-January-February, March-April-May) about -3 to -6%/decade, than in summer and fall (June-July-August, September-October-November), about -1 to -3%/decade.

- Regional trends in total ozone show some systematic differences among continental-scale regions at the same latitudes, e.g., Siberia, Europe, and North America. The longitudinal trend calculations using gridded data from TOMS show the strongest negative trends over Siberia in spring and large negative trends over Europe in winter and spring. North America shows relatively smaller trends in winter/spring.

- Total ozone levels at 60°N-60°S were at their lowest in 1993 in the aftermath of the Mt. Pinatubo eruption. Since that time, ground-based ozone values have remained fairly constant, whereas the Earth Probe (EP)-TOMS record, which began in 1996, shows global ozone to be about 2% higher. This discrepancy, which is not seen in the northern midlatitudes (the region where we have most confidence in the observational record) has not been resolved.

- New scientific understanding shows that quasi-decadal ozone oscillations have been induced by major volcanic eruptions in the past 20 years. The confounding influences of solar and volcanic effects on ozone time-series analyses could affect the interpretation of recent changes.
Vertical Ozone Distribution

- Based on the Stratospheric Aerosol and Gas Experiment (SAGE I/II) Version 5.96 data, there is no significant inter-hemispheric difference in upper stratospheric trends for data extended through 1996.

- Combined trends and uncertainties (including both statistical and systemic error) have been estimated from all available measurement systems. This was done only for the northern midlatitudes. The combined trends are negative at all altitudes between 10 and 50 km and are statistically significant at the 2-sigma level. The combined trend has two local maxima, -7.4 ± 4.6%/decade at 15 km. The smallest trend deduced, -2.0 ± 1.8%/decade. Occurred at 30 km. This combined trend, representing the results from all the independent data sources, is an indicator of the robustness of the trend results.

- Statistically significant trends of -6 to 8%/decade have been found at 40-50 km altitude for the midlatitudes. There is good agreement between SAGE I/II and Umkehr. The Solar Backscatter Ultraviolet (SBUV/SBUV2) spectrometer combined record shows less-negative trends. There is a factor of 2 seasonal variation in the trends, with the maximum value in winter.

- Trends in the column amount of ozone above 20 km deduced from SAGE I/II are much less than the column trends deduced from TOMS. However, the TOMS-SAGE differences are consistent with the sonde trends below 20 km. There is also a consistent seasonal variation for the satellite and sonde data.

- There is good agreement between SAGE I/II trends and sonde trends over the altitude region from 15 to 27 km at northern latitudes for the time period 1980 to 1996. This is a significant improvement compared with previous comparisons due principally to the revision of the SAGE dataset. The agreement in the derived trends from SAGE II-only and the sondes is excellent for the period 1984-1996.

- Both sonde and SAGE data show that most of the column ozone loss at midlatitudes occurs between 10 and 25 km altitude, with peak loss between 15 and 20 km. The seasonal variation of the trend occurs primarily between 10 and 20 km, with largest trends in winter and spring.

Polar Ozone

ARCTIC OZONE

- In the Arctic vortex, extremely low ozone values were deduced in late-winter/spring (a loss of about 100 Dobson units (DU; m-atm cm) with extremes exceeding ~200 DU below the 1964-1976 averages) in 6 out of the last 9 years. They are comparable with the values recorded (episodically) in the areas adjacent to the vortex. The ozone deficiencies are observed mostly in the layer a few kilometers above the tropopause.
• In the spring seasons of 1993, 1995, 1996, and 1997, the difference in total ozone from the pre-1976 level was comparable with differences observed in the austral spring.

ANTARCTIC OZONE

• The large ozone losses continued at high latitudes in the Southern Hemisphere. The trends from 1979 in winter (June-July-August) are up to -6%/decade, and especially, in spring (September-October-November), up to -10%/decade, due to the influence of the Antarctic ozone hole. Trends in the summer months are smaller (-2 to -5%).

• Since the last Assessment, the monthly total ozone in September and October in Antarctica continued at a level of 40 to 55% below the pre-ozone-hole values, with up to a 70% decrease for periods of a week or so.

• At maximum expansion, the size of the ozone hole (defined as the area containing ozone values less than 220 DU) was nearly the same as during the early 1990s (>20 × 10^6 km²).

• In the lower stratosphere, between 12 and 20 km, over the September-November period, the monthly-mean ozone content was, on the average, between 60 and 90% below the pre-ozone-hole values and at times nearly completely destroyed.

CHAPTER 5: TRENDS IN STRATOSPHERIC TEMPERATURES

Observations

• Datasets available for analyzing stratospheric temperature trends comprise measurements by radiosonde (1940s-present), satellite (1979-present), lidar (1979-present), and rocketsonde (periods varying with location, but most terminating by -mid-1990s); meteorological analyses based on radiosonde and/or satellite data; and products based on assimilating observations using a general circulation model (GCM).

• The temporary global, annual-mean lower stratospheric (~50-100 hPa) warming (peak value ~1 K) associated with the aerosols from the Mt. Pinatubo volcanic eruption (see WMO, 1992, 1995), which lasted up to about 1993, has now given way to a relatively colder stratosphere.

• Radiosonde and satellite data indicate a cooling trend of the global, annual-mean lower stratosphere since ~1980. Over the period 1979-1994, the trend is ~0.6 K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend.

• Over the period 1979-1994 there is an annual-mean cooling of the Northern Hemisphere midlatitude lower stratosphere (~0.75 K/decade at 30-60°N). This trend is coherent amongst the various datasets with regard to the magnitude and statistical significance. Over the longer period 1966-1994, the available datasets indicate an annual-mean cooling at 30-60°N of ~0.3 K/decade.
• In the −15-45° latitude belt of the Southern Hemisphere, the radiosonde record indicates an annual-mean cooling of the lower stratosphere of up to −0.5-1 K/decade over the period 1979-1994. The satellite record also indicates a cooling of the lower stratosphere in this latitude belt; the cooling is statistically significant between about November and April.

• Substantial cooling (~3-4 K/decade) is observed in the polar lower stratosphere during late winter/springtime in both hemispheres. An approximate decadal-scale cooling trend is evident in the Antarctic since about the early 1980s, and in the Arctic since about the early 1990s. However, the dynamical variability is large in these regions, particularly in the Arctic, and this introduces difficulties in establishing a high statistical significance of the trends.

• A cooling of the upper stratosphere (pressure < 3 hPa; altitude > 40 km) is apparent over the 60°N-60°S region from the annual-mean Stratospheric Sounding Unit (SSU) satellite data over the 1979-1994 period (up to −3 K/decade near 50 km). There is a slight minimum in cooling in the middle stratosphere (~30-40 km) between the maxima in the lower and upper stratosphere.

• Lidar and rocket data available from specific sites generally show a cooling over most of the middle and upper stratosphere (~30-50 km) of 1 to 2 K/decade since ~1970, with the magnitude increasing with altitude. The influence of the 11-year solar cycle is relatively large (>1 K) at these altitudes (>30 km).

• The vertical profile of the annual-mean stratospheric temperature change observed in the Northern Hemisphere midlatitude (45°N) over the 1979-1994 period is robust among the different datasets. The overall trend (Figure 5A) consists of a ~0.8 K/decade cooling of the ~20-35 km region, with the cooling trend increasing with height above (~2.5 K/decade at 50 km).

Model Results and Model-Observation Comparisons

• Model simulations based on the known changes in the stratospheric concentrations of various radiatively active species indicate that the depletion of lower stratospheric ozone is the dominant factor in the explanation of the observed global-mean lower stratospheric cooling trend (~0.5-0.6 K/decade) for the period 1979-1990. The contribution to this trend from increases in well-mixed greenhouse gases is estimated to be less than one-fourth that due to ozone loss.

• Model simulations indicate that ozone depletion is an important causal factor in the latitude-month pattern of the decadal (1979-1990) lower stratospheric cooling. The simulated lower stratosphere in Northern and Southern Hemisphere midlatitudes, and in the Antarctic springtime, generally exhibits a statistically significant cooling trend over this period, consistent with observations.
Figure 5A. Summary figure illustrating the overall mean vertical profile of temperature trend (K/decade) over the 1979-1994 period in the stratosphere at 45°N, as compiled using radiosonde, satellite, and analyzed datasets (Section 5.2.3.3). The vertical profile of the averaged trend estimate was computed as a weighted mean of the individual system trends shown in Figure 5-9, with the weighting being inversely proportional to the individual uncertainty. The solid line indicates the weighted trend estimate while the dashed lines denote the uncertainty at the 2-sigma level (note: Table 5-6 lists the numerical values of the trends and the uncertainty at the one-sigma level). (Figure assembled for this chapter in cooperation with the SPARC-Stratospheric Temperature Trends Assessment project.)

- The Fixed Dynamical Heating (FDH; equivalently, the pure radiative response) calculations yield a mid- to high-latitude annual-mean cooling that is approximately consistent with a GCM’s radiative-dynamical response (Figure 5B); however, changes in circulation simulated by the GCM cause an additional cooling in the tropics, besides affecting the meridional pattern of the temperature decrease.

- FDH model results indicate that both well-mixed greenhouse gases and ozone changes are important contributors to the cooling in the middle and upper stratosphere; however, the computed upper stratospheric cooling is smaller than the observed decadal trend. Increased water vapor in the lower to upper stratosphere domain could also be an important contributor to the cooling; however, decadal-scale global stratospheric water vapor trends have not yet been determined.
Figure 5B. Top panel: Idealized, annual-mean stratospheric ozone loss profile, based on Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite-observed ozone trends. Middle panel: Corresponding temperature change, as obtained using a Fixed Dynamical Heating (FDH) model, which illustrates the pure radiative response, and (bottom panel) a general circulation model (GCM), which illustrates the radiative-dynamical response (Section 5.3.3.1). (Adapted from Ramaswamy et al., 1992, 1996).
• Model simulations of the response to the observed global lower stratospheric ozone loss in mid to high latitudes suggest a radiative-dynamical feedback leading to a warming of the middle and upper stratospheric regions, especially during springtime; however, while the modeled warming is large and can be statistically significant during the Antarctic spring, it is not statistically significant during the Arctic spring. Antarctic radiosonde observations indicate a statistically significant warming trend in spring at ~30 hPa (24 km) and extending possibly to even higher altitudes; this region lies above a domain of strong cooling that is approximately collocated with the altitude of the observed ozone depletion.

• There is little evidence to suggest that tropospheric climate changes (e.g., induced by greenhouse gas increases in the troposphere) and sea surface temperature variations have been dominant factors in the global-mean stratospheric temperature trend over the 1979-1994 period. The effect of potential shifts in atmospheric circulation patterns upon the decadal trends in global stratospheric temperatures remains to be determined.

CHAPTER 6: UPPER STRATOSPHERIC PROCESSES

Since the previous Assessment (WMO, 1995), an improved understanding of upper stratospheric processes has been gained through numerous atmospheric observations that have better defined long-term changes in ozone and better constrained our understanding of reactive hydrogen, nitrogen, and chlorine gases. The original hypothesis put forth in 1974 that a release of industrial chlorofluorocarbons (CFCs) to the atmosphere would lead to a significant reduction of upper stratospheric ozone, with the peak percentage decline occurring around 40 km, is now clearly confirmed.

• The global distributions calculated by current two-dimensional “assessment models” of the long-lived source gases (e.g., H₂O, methane (CH₄), nitrous oxide (N₂O), CFCs) of the radicals that catalyze ozone loss compare well with global observations. Consequently, the simplified representations of dynamics used by these models have proved to be useful for studies of the observed changes in upper stratospheric ozone (O₃) during the past several decades.

• Several independent recent studies show increases in upper stratospheric H₂O of about 55 to 150 parts per billion by volume (ppbv) per year from 1992 to 1996/1997, which cannot be explained by a concurrently observed downward trend in upper stratospheric CH₄ (about 15 ppbv/year). Should this rise in H₂O continue to occur, it could have important long-term radiative and photochemical consequences. However, changes in H₂O do not contribute a large fraction to the observed decline in upper stratospheric ozone over the last decades.

• Balloonborne observations of hydroxyl radicals (OH) and hydroperoxyl radicals (HO₂) near 40 km agree with calculated concentrations to within ±20%. Ground-based column observations of OH, which have a substantial contribution from the mesosphere, exhibit larger discrepancies with models. Satellite observations of OH near 50 km are considerably less than calculated using standard photochemical kinetics. These discrepancies are unlikely to have a substantial effect on calculated trends of upper stratospheric ozone.
Comparisons of recent observations and model calculations show that the overall partitioning of reactive nitrogen and chlorine species is well understood. The previously noted discrepancy for the chlorine monoxide/hydrogen chloride ratio (ClO/HCl) has been resolved, provided allowance is made for production of HCl from a minor channel of the ClO + OH reaction, which is consistent with a recent laboratory study.

Measurements of the total stratospheric chlorine loading demonstrate that long-lived organic chlorine compounds (mainly CFCs) released by anthropogenic activity are the dominant source of ClO, the chlorine compound that depletes O3. The observed increases in upper stratospheric hydrogen chloride (HCl) and hydrogen fluoride (HF) are in excellent agreement with the rise of the chlorine and fluorine content of their organic source gases in the troposphere.

An improved understanding of the relevant kinetic processes has resulted in close balance between the calculated production and loss of O3 at 40 km (i.e., the long-standing difference between calculated and observed ozone abundance, the so-called “ozone deficit problem,” has been resolved at this altitude): Although there are remaining uncertainties regarding a possible ozone deficit at higher altitudes, the severity of this problem has been substantially reduced throughout the upper stratosphere.

Several independent long-term datasets show a decline of the concentration of O3 that peaks around 40 km altitude at a value of 7.4 ± 1.0%/decade. Photochemical model simulations likewise reveal a long-term decline of ozone throughout the upper stratosphere that is driven by the accumulation of anthropogenic chlorine. There is good quantitative agreement between the observed and simulated meridional and vertical structure of the long-term reductions in upper stratospheric ozone.

CHAPTER 7: LOWER STRATOSPHERIC PROCESSES

Chemical, microphysical, radiative-dynamical, and transport processes all play important roles in determining ozone abundance in the lower stratosphere. Since the last Assessment (WMO, 1995), there have been significant advances in our understanding of these processes and of the way in which they couple together to produce the observed distribution of ozone, and changes in this distribution.

Current Understanding of Lower Stratospheric Ozone Depletion

- The large ozone losses during spring over Antarctica continue unabated, with approximately the same magnitude and areal extent as in the early 1990s. The near-constant extent of seasonal column ozone losses from year to year reflects the near-complete destruction of ozone within the Antarctic lower stratosphere during springtime, and is consistent with our understanding of polar processes.

- Low abundances of late-winter/spring column ozone have been recorded both inside and outside the Arctic vortex in six of the last nine years. Observations show those years to be characterized by specific meteorological conditions: lower-than-normal late-winter/spring...
Arctic temperatures, which lead to enhanced activated chlorine; and a more isolated vortex and weaker planetary-wave driving, which lead to less transport of ozone-rich air into the Arctic. Under these meteorological conditions, both chemistry and dynamics act to reduce the seasonal levels of column ozone.

- During these years of low late-winter/spring column ozone, high abundances of active chlorine have been observed inside the Arctic vortex, and chemical ozone losses inside the vortex have been unambiguously identified. These chemical losses are associated with activated chlorine augmented by bromine. The total seasonal chemical ozone losses within the vortex have been estimated to be approximately 100 milli-atm cm (Dobson units), although this magnitude is subject to considerable uncertainty.

- Low polar temperatures, an isolated vortex, and reduced wave driving are coupled processes that occur in concert in the stratosphere; but their intensity and duration are highly variable. With the present high chlorine loading and winter/spring temperatures close to the threshold for significant chlorine activation, late-winter/spring Arctic chemical ozone loss is particularly sensitive to meteorological conditions (temperature and vortex isolation). Thus, it is not possible to predict the year-to-year variations.

- The decadal trend in springtime Arctic depletion during the 1990s is reminiscent of the early years of the Antarctic ozone hole. However, while the decadal trend in the Antarctic during the late 1970s and 1980s was driven by the trend in chlorine loading, the decadal trend in the Arctic during the 1990s has been driven by a decadal change in late-winter/spring meteorological conditions in the presence of already high chlorine loading. Thus, a reduced chemical ozone loss in the coming years would not necessarily indicate chemical recovery. The Arctic will remain vulnerable to extreme seasonal loss as long as chlorine loading remains high.

- The major contribution to the midlatitude column ozone decline during the last two decades has come from decreases in the lower stratosphere. This region is influenced by local chemical ozone loss, enhanced by volcanic aerosol, and by transport from other regions. The vertical, latitudinal, and seasonal characteristics of the decadal depletion of midlatitude ozone are broadly consistent with the understanding that halogens are the primary cause. The expected low ozone amounts in the midlatitude lower stratosphere following the Mt. Pinatubo eruption, and the progressively smaller decreases in the following years as the volcanic aerosol loading decreased, further strengthened the connection between ozone destruction and anthropogenic chlorine. (In the absence of chlorine, an increase in sulfate loading is expected to increase ozone abundance.)

- The apparent leveling-off in midlatitude column ozone losses since the last Assessment is consistent with recovery from the large losses following the Mt. Pinatubo eruption as the volcanic aerosol loading slowly declined. Recent modeling studies have shown that it takes several years for the chemical effects of a volcanic eruption to disappear. Indeed, the trend in midlatitude ozone depletion during the 1980s (prior to Mt. Pinatubo) is now understood to have been exacerbated by volcanic influences during that decade.
Processes

- Chlorine activation in or on liquid particles in the lower stratosphere (both stratospheric sulfate aerosol (SSA) and supercooled ternary solutions (STS)) increases strongly with decreases in temperature. The rate coefficients are at least as large as those on solid polar stratospheric clouds (PSCs) close to nitric acid trihydrate (NAT) equilibrium temperatures. Thus, chlorine activation is to a first approximation controlled by temperature and water vapor pressure, and only secondarily by the phase of the condensed matter.

- Rapid polar ozone loss requires elevated chlorine monoxide (ClO) in the presence of sunlight. Maintenance of elevated ClO in late-winter/spring was previously thought to require denitrification. Since the last Assessment, new understanding has shown that cold liquid aerosol and/or repeated heterogeneous processing can also maintain elevated ClO in non-denitrified air.

- Some rate coefficients and photochemical parameters have been revised since the last Assessment. Although the impact of these findings has not yet been fully evaluated, our understanding of the lower stratosphere is not expected to change significantly. The lower measured rate coefficients for the reactions of iodine monoxide (IO) radicals mean that iodine may not contribute very significantly to the observed ozone depletion in the lower stratosphere.

- One of the most important new heterogeneous reactions identified since the last Assessment is the hydrolysis of bromine nitrate (BrONO$_2$), which serves to enhance odd hydrogen radicals (HO$_x$) and suppress nitrogen oxides (NO$_x$) and thereby plays a significant role in the midlatitude ozone chemistry.

- An individual stratospheric air parcel is made up of molecules that have spent differing amounts of time in the stratosphere. To calculate the composition of a given air parcel, one therefore needs to know the distribution of such times. The distribution varies as a function of height and latitude of the parcel. Different two-dimensional (2-D) and three-dimensional (3-D) model calculations of the distributions vary greatly and are generally inconsistent with measurements.

- The balance between radiation and dynamics controls upwelling and temperature in the tropics, and hence the amount of water vapor entering the stratosphere. This represents a potentially important mechanism by which stratospheric ozone depletion could be altered by changes in climate. The nature of this radiative-dynamical control is better understood since the last Assessment, although some important details remain unresolved.

- Constituent measurements show that the tropics are relatively isolated from midlatitudes, in some ways analogous to the wintertime polar vortex. The extent of isolation affects the budgets (and lifetimes) of chemical species. Simplified models that represent this dynamical feature (e.g., a leaky tropical pipe model) have been used to provide rough estimates of mixing time scales.
Small-scale chemical tracer structure in the lower stratosphere, manifested as filaments or laminae, can arise from stirring by the large-scale flow. The importance of this process has been demonstrated since the last Assessment through transport calculations supported by in situ measurements. There have been significant advances in our understanding and quantification of this process, which affects mixing time scales in the lower stratosphere.

Observations together with process-based modeling suggest that mesoscale PSC formation can activate chlorine in lee wave clouds. It is estimated that ozone can be destroyed downstream of such clouds for many days. Mesoscale chemical structure due to filamentation may also systematically impact rates of reactions (e.g., chlorine deactivation or ozone loss) on a larger spatial scale. However, the contribution of these two phenomena to midlatitude or polar ozone changes is yet to be quantified.

Quantification and Prediction of Ozone Changes

Field measurements of the abundances of free radical catalysts involved in lower stratospheric ozone loss are consistent with model calculations and have enabled calculation of ozone loss rates in certain parts of the lower stratosphere. For example, it is now known that HOX is the dominant catalytic ozone destroyer in the midlatitude stratosphere below ~20 km. However, observations in the lowest part of the extratropical stratosphere within a few km above the tropopause remain very limited.

Two-dimensional models, despite their shortcomings, are useful for characterizing radiative/chemical effects in the present climate system. They are able to calculate variations in total ozone amounts that are broadly consistent with the observed midlatitude column ozone trend. In particular, the models reproduce the lower ozone amounts observed immediately following Mt. Pinatubo and the subsequent increases as the aerosol disappeared.

The major hindrance for future prognosis of ozone levels in the Arctic is the limited ability of models to predict the dynamics (hence temperatures and transport), due to the inherent chaotic variability of the atmospheric circulation on interannual and decadal time scales.

Dynamical forcing of the stratosphere by gravity-wave drag is now believed to be a more important effect than was previously realized. Most gravity-wave drag parameterizations remain crude. This represents a significant obstacle for general circulation modeling and prediction of stratospheric climate change.

CHAPTER 8: TROPOSPHERIC OZONE AND RELATED PROCESSES

A concerted effort continues in the deduction of trends in tropospheric ozone from the sparse in situ record. Trends are reported regionally or at stations where monitoring is conducted. Surface ozone increases, typically observed in Northern Hemisphere midlatitudes, have slowed considerably in the past decade. At the South Pole, there continues to be a decrease in surface ozone associated with the Antarctic lower stratospheric ozone depletion.
• Since the 1994 Assessment (WMO, 1995), a thorough evaluation of tropospheric ozone profiles can be summarized as follows:

 - Midlatitude: Three stations over Europe, which have had the greatest increases in free tropospheric ozone since 1970, show a major change in trends since 1980. Only Payerne shows an increase during the period 1980-1996; Uccle shows no change and Hohenpeissenberg a statistically marginal decrease. The two U.S. stations with regular ozonesonde launches (Wallops Island and Boulder) also show no significant change or a slight decrease since 1980. Of three Japanese stations, two show increases of 5-15%/decade, though not all significant; one station shows no trend. Canadian stations show a small decrease in free tropospheric ozone since 1980.

 - Tropics and Southern Hemisphere: There is only one tropical site with sufficient data for trends: Natal, Brazil, shows a 10-20%/decade increase only in the middle troposphere and possibly not significant; the record becomes too sparse for trends after 1992. There is no trend in free tropospheric ozone at Lauder, New Zealand, where the record began in 1986.

• Observations of ozone and other photochemically reactive species during field campaigns have been made with greater focus on understanding the interaction of chemistry and dynamics on local scales. Processes affecting reactive nitrogen species have been elucidated on several intensive campaigns. The free tropospheric nitric oxide (NO) and total reactive nitrogen climatology has been extended in aircraft campaigns in both Northern and Southern Hemispheres. Systematic sampling has extended the NO database along commercial aviation routes. Continental outflow downwind of industrial activity in Northern Hemisphere midlatitudes strongly enhances ozone budgets over large regions of the North Atlantic and North Pacific. Measurement campaigns in the tropics and subtropics show continental influences from long-range transport of biomass-burning emissions, although NO from lightning may also play a significant role in the tropical ozone budget.

 - Reliable instrumentation for hydroxyl radicals (OH), hydroperoxyl radicals (HO$_2$), and organic peroxy radicals (RO$_2$) has been a breakthrough development since the last Assessment. Intercomparisons on the ground, and model interpretation of ground-based and airborne OH and related measurements show that our theoretical understanding of OH is not complete. With the constraint of ancillary measurements, it can be shown that data-model discrepancies tend to be greatest under polluted conditions and that odd hydrogen (HO$_X$) sinks, rather than sources, are probably not accounted for. In the upper troposphere, under certain conditions, acetone and the recycling of peroxides following deep convective transport appear to be important HO$_X$ sources. On a global scale, inferences about the total OH budget range from no trend in the past decade to a slightly positive trend.
Model intercomparisons and uncertainty studies show that photolysis rates, representations of stratospheric-tropospheric exchange, and imprecise pathways in organic oxidation chains continue to limit the reliability of models used in interpretive ozone studies and predictions. Models continue to suggest intriguing possibilities for heterogeneous and multiphase reactions affecting ozone in a major way, but experimental confirmation is lacking for the most part.

Large-scale ozone distributions calculated in global chemistry-transport models (CTMs) are in fair accord with the sparse measurements and historical ozone data. However, the agreement between models and measurements on regional and smaller scales is more difficult to achieve. The quality of simulations is probably most limited by the treatment of convection and other sub-grid dynamical processes as well as complex chemical pathways near ozone precursor source regions.

CHAPTER 9: ULTRAVIOLET RADIATION AT THE EARTH'S SURFACE

The advances and new findings that have occurred in the ultraviolet (UV) radiation field since the publication of the previous Assessment (WMO, 1995) include the following:

- The inverse relationship between decreasing ozone amount and increasing UV-B radiation has been reconfirmed and firmly established in both theory and measurements. The measured effects of ozone, albedo, altitude, clouds and aerosols, and geographic differences are much better understood.

- The number, distribution, and quality of UV-irradiance (energy per unit area per unit time) instruments have greatly improved throughout the world. However, there are still regions of sparse coverage.

- Well-calibrated UV-irradiance spectral time series are now available at some ground sites for periods of up to 9 years, where changes in UV-B irradiance have been detected (e.g., 1.5% per year at 300 nm, 0.8% per year at 305 nm) at midlatitudes (near 40°) that are consistent with expected changes from the decreasing amounts of ozone. However, the long-term stability needed for trend estimates has been demonstrated for only a few ground-based UV instruments. Either the records are not long enough or the instrument stability is insufficient to reliably determine decadal change at most midlatitude sites. Other factors limiting the detection of long-term trends are that clouds, albedo, aerosols, and short-term ozone changes produce local daily, monthly, and interannual changes that are larger than the long-term trend. It is important for long-term trend detection that both UV-A and UV-B be measured separately along with ancillary data (e.g., ozone and aerosols).

- The anomalous UV-trend estimates from the Robertson-Berger (RB) meter network located in the United States are now understood. Corrections have been applied to the data, which now show no significant trends for the latitude range of the instruments' locations. It was concluded that the data from the U.S. RB network alone are unsuitable for trend detection.

44
- Increases in UV-B irradiance in the Northern Hemisphere at high latitudes have been attributed to the low ozone amounts in the winter and spring of 1995, 1996, and 1997.

- New types of filter instruments have been developed, using narrower band pass at a few selected wavelengths and greater filter stability specifications than previous broadband instruments. These simpler instruments may yield results with accuracy comparable to that of grating spectroradiometers (5 to 10%) and should permit a wider geographical distribution of measuring sites for UV irradiance. This is especially important to address the lack of sufficient observing sites in some regions.

- New satellite estimates of global (latitude ±65°) UV irradiance, which now include cloud, surface albedo, and aerosol effects, are available using radiative transfer models and measured radiances from Total Ozone Mapping Spectrometer (TOMS) instruments. The satellite-estimated UV irradiances have been compared with ground-based measurements at a single site, Toronto. The weekly-average results agree to within 5% for snow-free conditions. Further comparisons at other sites are necessary to validate the accuracy and applicability of the techniques over a wide range of observing conditions. This may be especially important when accounting for local aerosol extinctions.

- TOMS satellite data have been used to estimate long-term decadal changes in zonally averaged global and seasonal patterns in UV irradiance from 1979 to 1992. The results showed that the UV-B irradiances increased (see table below), while UV-A irradiances remained unchanged. At individual sites, changes in UV-A irradiances have occurred because of changes in local cloudiness and aerosol amounts.

<table>
<thead>
<tr>
<th>Latitude</th>
<th>January</th>
<th>April</th>
<th>July</th>
<th>October</th>
<th>Annual ± 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50° to 65°N</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3.7 ± 3</td>
</tr>
<tr>
<td>35° to 50°N</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3 ± 2.8</td>
</tr>
<tr>
<td>30°S to 30°N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 ± 2</td>
</tr>
<tr>
<td>35° to 50°S</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3.6 ± 2</td>
</tr>
<tr>
<td>50° to 65°S</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>9 ± 6</td>
</tr>
</tbody>
</table>

- Zonally averaged UV-irradiance trend determinations from satellite data that include cloud effects yield numbers nearly identical to those from clear-sky estimates. However, the currently estimated UV trends are slightly lower than the clear-sky values in the 1994 Assessment because of the new TOMS ozone algorithm (see Chapter 4).
• Measurements at several ground sites have indicated differences between UV irradiances in the Northern and Southern Hemispheres that are larger than explained by the known differences in ozone amount and Sun-Earth separation. This may indicate that other factors such as aerosols could be involved. Satellite estimates show smaller irradiance differences between the hemispheres than do ground-based measurements.

• Several intercomparisons of UV-irradiance instruments of different types have been conducted in various countries. These have helped identify instrument capabilities and limitations. Currently, the best intercomparisons of different instruments at the same location are within ±5% absolute accuracy. However, this “best” accuracy estimate does not represent the general level of agreement between geographically distributed networks of similar and different instruments over extended periods of time. Significant improvements have been made to reduce errors in the cosine response, stray light rejection, and wavelength alignment.

• Expansion of the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) in Canada and the European database, Scientific UV Data Management/UV Radiation in the Arctic; Past, Present, and Future (SUVDAMA/UVRAPPF), has significantly improved the availability and distribution of data to researchers studying the effects and behavior of UV-B radiation. Extensive sources of UV information have become available on the Internet.

• Significant improvements have been made in calibration of ground-based instruments. This has been achieved through instrument intercomparisons and the use of newly developed central calibration facilities, although additional calibration facilities would continue to meet needs. After validation, satellite estimations of UV irradiance may serve as a comparison standard between widely separated ground-based instruments in a manner similar to that used for the ground-based ozone network.

• Different classes of radiative transfer models have been intercompared and found to agree within 1% for irradiances. However, for some radiative transfer approximations (e.g., delta-Eddington) the gains in computational speed are offset by losses in accuracy. Two-stream models have accuracies on the order of 5% for moderate optical depths and can have errors exceeding 10% for large optical depths (small irradiances).

• Public interest related to UV exposure has been addressed by establishing a standardized UV index in many countries, based on estimates of ozone and, in some cases, cloud cover and surface albedo, to provide daily information about the intensity of UV radiation.

CHAPTER 10: CLIMATE EFFECTS OF OZONE AND HALOCARBON CHANGES

• Increased penetration of UV radiation to the troposphere as a result of stratospheric ozone depletion leads to changes in key photochemical processes in the troposphere. Model simulations have been used to estimate that a 1% decrease in global total ozone leads to a global increase of about 1.5% in the photolytic production of the first excited state of atomic oxygen, O(^3P), from ozone. This results in a 0.7 to 1% increase in globally averaged tropospheric hydroxyl radical (OH). Since OH is the main oxidant for climatically important
gases, such as methane (CH₄), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), this change would be expected to decrease their lifetimes. Stratospheric ozone depletion may have contributed 20 to 40% of the reduction in CH₄ growth rate, and 25 to 40% of the carbon monoxide (CO) surface concentration decrease during the two years following the Mt. Pinatubo volcanic eruption in 1991. The effect on those species whose lifetimes depend on OH has not yet been quantified.

- The first systematic calculations of the effects of ozone changes on climate using a general circulation model (GCM) have been reported. Previous assessments highlighted the climatic importance of ozone changes near the tropopause. When taking into account the impact of ozone changes on cloudiness, this GCM study suggests that changes in lower tropospheric ozone are of similar importance to changes near the tropopause. This study suggests that, because of the cloud interactions, the ozone change since the late 1970s may have resulted in a surface temperature change 20-30% smaller than that implied by radiative forcing. Given the known difficulties in modeling cloud processes in GCMs, the generality of conclusions drawn from a single model must be treated with caution.

- The global-average radiative forcing due to changes in stratospheric ozone since the late 1970s is estimated to be \(-0.2 \pm 0.15\) Wm\(^{-2}\). The central value of this forcing estimate is about double the Intergovernmental Panel on Climate Change (IPCC, 1996) estimate, partly because the calculations now include the increased ozone losses during the 1990s. There remain uncertainties due to difficulties in defining the vertical profile of ozone change and in calculating the stratospheric temperature response to this change. The stratospheric ozone forcing may have offset about 30% of the forcing due to the increases in the well-mixed greenhouse gases since the late 1970s.

- Recovery of stratospheric ozone would reduce the offset to the radiative forcing of the other greenhouse gases. The ozone recovery will therefore lead to a more rapid increase in radiative forcing than would have occurred due to increases in other greenhouse gases alone.

- The global-average radiative forcing due to increases in tropospheric ozone since preindustrial times is estimated to be \(+0.35 \pm 0.15\) Wm\(^{-2}\). This estimate is consistent with the IPCC (1996) estimate of \(0.4 \pm 0.2\) Wm\(^{-2}\), but is based on a much wider range of model studies; significant uncertainties remain because of inter-model differences and the lack of data for evaluating the model results. Since the forcing due to the increases in "well-mixed" greenhouse gases since preindustrial times is about 2.5 Wm\(^{-2}\), the tropospheric ozone changes may have enhanced this forcing by 10-20%.

- Coupled ocean-atmosphere GCMs have been used to calculate the impact of stratospheric ozone loss on the thermal structure of the atmosphere. The observed stratospheric ozone depletion appears to explain much of the observed temperature decrease in the lower stratosphere. The calculated altitude of the transition from tropospheric warming to stratospheric cooling is in better agreement with observations when ozone depletion is taken into account. The global average surface temperature is estimated to be about 0.1°C cooler over the past two decades as a result of the stratospheric ozone loss; this
can be compared with the calculated warming of about 0.3°C over the same period, due to well-mixed greenhouse gas increases.

- **The CFC-11 radiative forcing has been revised.** The currently recommended chlorofluorocarbon-11 (CFC-11) radiative forcing is 12% higher than the value used in IPCC (1990) and subsequent assessments. The change is primarily due to the use of an improved vertical profile of CFC-11. Because this gas was used as a reference in previous assessments to calculate the forcing for many other molecules, its change leads to revised radiative forcings recommendations for these gases.

- **Radiative forcings and Global Warming Potentials (GWPs) are presented for an expanded set of gases.** New categories of gases in the radiative forcing set include fluorinated organic molecules. For some of these gases, GWPs are not reliable, because laboratory data are not available for determination of the lifetimes. The direct GWPs have been calculated relative to carbon dioxide (CO₂) using an improved calculation of the CO₂ radiative forcing, the IPCC (1996) response function for a CO₂ pulse, and new values for the radiative forcing and lifetimes for a number of halocarbons. As a consequence of changes in the radiative forcing for CO₂ and CFC-11, the revised GWPs are typically 20% higher than listed in IPCC (1996). Indirect GWPs are also presented. The direct GWPs, for those species whose lifetimes are well characterized, are estimated to be accurate within ±35%, but the indirect GWPs are less certain.

CHAPTER 11: HALOCARBON SCENARIOS FOR THE FUTURE OZONE LAYER AND RELATED CONSEQUENCES

- **Different future scenarios for the release of ozone-depleting substances (ODSs) into the atmosphere will have different consequences for atmospheric halogen loading and therefore for stratospheric ozone and surface ultraviolet (UV) radiation.** Such scenarios indicate the sensitivity of the ozone layer to possible additional future control measures and illustrate the effects of compliance with the Montreal Protocol. The scenarios are not designed to yield exact predictions of future ozone amounts, which are affected also by other factors including possible interactions with climate change associated with the increasing atmospheric concentrations of greenhouse gases and aerosols. These factors are not considered here, both because of uncertainties in predictability and to enable a more direct and simple comparison of the relative impacts of different future ODS production/emission scenarios.

- **Large reductions in the production and atmospheric release of ODSs have been achieved by international regulations (Montreal Protocol and its Amendments and Adjustments).** Without such controls, and assuming a (perhaps conservative) 3% annual growth rate in production, ODSs would have led to an equivalent effective stratospheric chlorine (EESC) loading of about 17 parts per billion (ppb) in 2050. The control measures of the original Montreal Protocol (1987) reduce this to about 9 ppb; the London Amendments (1990) to about 4.6 ppb; and the Copenhagen Amendments (1992) to about 2.2 ppb (but with effective chlorine loading increasing again in the second half of the 21st century). The
Vienna Adjustments (1995) and the Montreal Amendments (1997) further reduce this to about 2.0 ppb (approximately the 1980 level) around the year 2050.

- **If there were to be an immediate stop to all emissions of human-made ODSs, including those currently in use, the future stratospheric halogen loading would not return to the 1980 level until about 2033.** On the other hand, with maximum production allowed by the current Protocol (Montreal Protocol and its Amendments and Adjustments as of 1997), the future stratospheric halogen loading is expected to decrease after about 1997 and to drop below the 1980 level in 2052.

- **Additional scenarios may affect the future ozone layer, although by amounts generally smaller than those already expected to be achieved by current regulations.** Relative to the current regulations (Montreal Protocol and its Amendments and Adjustments as of 1997), the equivalent effective chlorine loading above the 1980 level, integrated from now until the 1980 level is re-attained, could be decreased by
 - 9% by eliminating global Halon-1211 emissions in the year 2000, thus requiring the complete elimination of all new production and destruction of all Halon-1211 in existing equipment;
 - 7% by eliminating global Halon-1301 emissions in the year 2000, thus requiring the complete elimination of all new production and destruction of all Halon-1301 in existing equipment;
 - 5% by eliminating the global production of hydrochlorofluorocarbons (HCFCs) in the year 2004;
 - 2.5% by eliminating the global production of chlorofluorocarbons (CFCs) and carbon tetrachloride in the year 2004;
 - 1.6% by reducing the cap on HCFC production in developed countries from 2.8% to 2.0% and advancing the phase-out from the year 2030 to 2015, as well as more rapid intermediate reductions;
 - about 1% by eliminating the global production of methyl bromide in 2004.

The policy actions would advance the date at which the level of effective chlorine returns to the 1980 level by 1-3 years. It should be noted that if the currently allowed essential uses for metered dose inhalers (CFC-11, CFC-12, CFC-114) are extended from the year 2000 to 2004, the effective chlorine loading above the 1980 level would increase by 0.3%.

- **Illegal production of ozone-depleting substances may delay the recovery of the ozone layer.** For example, illegal production of, in total, 20-40 ktonnes per year of CFC-12 and CFC-113 for the next 10-20 years would increase the equivalent effective chlorine loading above the 1980 level, integrated from now until the year the 1980 level is re-attained, by 1%-

49
4% and delay the return to pre-1980 levels by about a year. Significant additional contributions may come from illegal production of halons.

- **Different scenarios of future effective chlorine loading lead to correspondingly different scenarios of future ozone amounts.** The exact ozone response is difficult to predict because of possible interactions with other global atmospheric changes. However, for the purpose of comparing the different scenarios, a simple scaling relationship between equivalent effective stratospheric chlorine loading and ozone depletion can be used if it is assumed that the ozone reductions observed during 1979-1991 were caused exclusively by the simultaneous increase in stratospheric effective chlorine. Within this approximation, the future evolution of ozone reductions follows closely the increases of effective chlorine above 1980 levels, with lowest ozone in about 1997, contemporaneous with maximum effective chlorine loading, and return to baseline (1980) values in 2052 (maximum production scenario) and 2033 (zero emissions scenario). At 45°N, the maximum reduction in the annually averaged ozone is expected to be about 15 Dobson units (DU), or about 4.3% lower than the 1980 value. At 45°S, the maximum reduction in the annually averaged ozone is expected to be about 20 DU, or about 6.2% lower than the 1980 value.

- **Decreases in the ozone column cause increases in surface UV radiation, if other factors (e.g., clouds, aerosols) remain unchanged.** For erythemally effective UV radiation (UV$_{\text{ery}}$, the integral of the product of the spectral irradiance and the spectral erythemal sensitivity), the temporal evolution of the scenario follows closely the increases of effective chlorine above 1980 levels, with highest UV irradiances in about 1997, contemporaneous with maximum effective chlorine loading, returning to baseline (1980) values in 2052 (maximum production scenario) and 2033 (zero emissions scenario). At 45°N, the maximum enhancement in the annually averaged UV$_{\text{ery}}$ is expected to be about 4.7%, while at 45°S it is estimated to be about 8.1%.

- **Many other biological effects of UV exposure are recognized in addition to erythema and skin cancer induction.** These have a broad range of sensitivity to ozone changes, primarily because of different sensitivities of the biological effects to various wavelengths of radiation. In the few cases for which the biological spectral sensitivity functions (action spectra) are known, scaling factors are derived that allow estimation of the effective biological radiation for each of these effects, relative to the changes in erythemal radiation expected from future changes in effective stratospheric chlorine loading. The potential impacts of higher UV irradiances at the Earth’s surface are discussed in detail by the UNEP Panel on the Environmental Effects of Ozone Depletion (UNEP, 1998b).

- **The compilation of Ozone Depletion Potentials (ODPs) has been updated and expanded.** The ODPs of halogen-containing molecules have been updated, relative to the previous Assessment, based on new estimates of atmospheric lifetimes.
CHAPTER 12: PREDICTING FUTURE OZONE CHANGES AND DETECTION OF RECOVERY

A range of models has been used to investigate future changes in ozone in response to changing atmospheric emissions of source gases and greenhouse gases. A significant advance is the use of three-dimensional (3-D) models in these studies. The detection of the beginning of recovery of ozone (where recovery is defined as the response of ozone to reductions in chemical ozone loss due to the halogens) is considered for the first time in this Assessment.

All other things being equal, stratospheric ozone levels should rise as the halogen loading falls in response to regulation. However, the future behavior of ozone will also be affected by the changing atmospheric abundances of methane (CH₄), nitrous oxide (N₂O), sulfate aerosol, and changing climate. Thus, for a given halogen loading in the future, the atmospheric ozone abundance will not be the same as found for that loading in the past. Because of these additional factors, observation of the beginning of ozone recovery is expected to be delayed beyond the time of maximum stratospheric halogen loading.

Model Predictions of Future Ozone

- Ten two-dimensional (2-D) models were used to investigate the response of ozone to past and future changes in halogen loading as well as CH₄, N₂O, and sulfate aerosol. The models provide a reasonable representation of the general structure of recent observed local and column ozone trends, giving credence to their ability to represent future ozone change.
 - In integrations to 2050, excluding the possibility of major volcanic eruptions in the future, the lowest global ozone is predicted to have occurred in the years immediately following the eruption of Mt. Pinatubo in 1991.
 - After 2000, ozone levels are predicted to recover slowly toward their pre-1980 values. The modeled recovery depends sensitively on the emission scenarios for the halogens, and for CH₄, N₂O, and sulfate aerosol density.
 - Increases in future CH₄ will shorten the recovery period. Increases in N₂O and sulfate aerosol surface area density will extend the recovery period. In one model that tested the effects of projected future CO₂ increases, the recovery period was shortened.
 - The methane scenario used here as a baseline had a lower growth rate than in previous Assessments and lengthened the modeled ozone recovery significantly. Understanding the methane trend is an important priority for understanding the future ozone recovery.
 - Model simulations show that future volcanic events at low inorganic chlorine (Cl⁺) abundances will not significantly affect the rate of recovery.
• Polar ozone loss in recent Northern Hemisphere winters has demonstrated a large dependence on meteorological conditions, and especially temperature. Those winters with the lowest polar lower stratospheric temperatures have shown largest ozone losses. Recovery of ozone is evidently strongly dependent on meteorological conditions.

• Advances in computing power have allowed the first simulations of future ozone using coupled 3-D models.

 – Three-dimensional models highlight that future Arctic ozone loss is very sensitive to changes in the strength, frequency, and timing of sudden warnings.

 – Three-dimensional models suggest that recovery of Arctic ozone is likely to be delayed past the maximum in stratospheric chlorine abundances and beyond that predicted by 2-D models. For example, coupled chemistry-climate models show greater ozone depletion in the Arctic in 2015 than 1995. The single model that has predicted trends out beyond 2015 shows a recovery of Arctic ozone beginning in the 2020s.

 – Model simulations indicate that observations of the onset of ozone recovery from halogen-induced depletion should be possible earlier in the Antarctic than in the Arctic.

 – At high latitudes throughout the stratosphere, there are considerable differences in the temperature response of general circulation models (GCMs) to increasing greenhouse gases that are associated with differences in modeled circulation changes.

 – Further validation of stratospheric GCMs is necessary for them to reach a consensus on predictions of chemistry-climate interactions in the stratosphere such as that now seen in predictions of surface parameters by climate models.

Detection of Recovery

• Observation of the beginning of ozone recovery, defined as the unambiguous detection of an increase toward pre-1980 ozone values, will be possible in the Antarctic before either the Arctic or midlatitudes. This is due to at least two factors: the smaller degree of variability in the Antarctic ozone loss phenomenon and the relatively smaller effect that future climate change will have on ozone loss in Antarctica.

• Antarctic ozone recovery indicators that have been identified include the geographical extent of the ozone hole region as measured by the 220-Dobson unit (DU) ozone contour, the total column ozone during October at South Pole and Halley stations, the amount of ozone depletion at the top of the ozone hole, in the 22-24 km region where the depletion chemistry is not saturated, and the rate of ozone decline during September in the 12-20 km region of maximum polar stratospheric cloud formation.

• Comparison of modeled ozone recovery with observations, and taking into account ozone variability, suggests that the beginning of recovery of the Antarctic ozone hole will likely not be detected before about 2020. The onset of the recovery of the bulk of the global ozone
layer may possibly not be unambiguously detected before 2030. Because of the large uncertainties in model predictions associated with changes in CH₄, N₂O, sulfate aerosol, and climate, these estimates are likewise uncertain; however, it is clear that the onset of ozone recovery will be delayed beyond the maximum in stratospheric halogens.

- A pre-recovery period, defined as a cessation of the worsening of global ozone depletion, may be observed during the next decade; however, a major volcanic eruption during this period would cause stratospheric chemical perturbations that would result in a further decline in ozone for several years. Over the longer term, future major volcanic eruptions occurring at decadal intervals would not be expected to alter eventual ozone layer recovery.

- Recovery of ozone from the effects of chlorine may be observed at an earlier time in the 40-km region, where the chemistry affecting ozone is relatively simple and volcanic effects are absent. However, climate change will likewise cause an increase in ozone in this region, possibly masking ozone recovery. In addition, because ozone in this region contributes only a few percent to the total column, observation of recovery at 40 km should not be interpreted as evidence for the recovery of the global ozone layer.
SUMMARY OF THE STRATOSPHERIC PROCESSES AND THEIR ROLE IN CLIMATE/INTERNATIONAL OZONE COMMISSION/GLOBAL ATMOSPHERIC WATCH (SPARC/IOC/GAW) ASSESSMENT OF TRENDS IN THE VERTICAL DISTRIBUTION OF OZONE

1. INTRODUCTION

One of the largest uncertainties in determining the effect of CFC's on stratospheric ozone has been the magnitude of the trends in the altitude region between 15 and 20 km. In the 1994 WMO-UNEP ozone assessment, SAGE was reported as giving trends up to -0±8% per decade at northern mid-latitudes, while the ozonesonde stations gave a trend of -±3% per decade. In 1996 the SPARC panel on Understanding Ozone Trends and the International Ozone Commission decided to collaborate, under the auspices of the World Climate Research Programme and the World Meteorological Organisation, on a study to carefully re-evaluate the ground-based and satellite data to resolve this discrepancy. The philosophy of the study was similar to that of the International Ozone Trends Panel of 1988 which addressed the total ozone measurements. The published literature was not simply reviewed, but a critical re-analysis and interpretation of the vertical profiles of ozone was performed. One of the principal aims of the report was to determine if there was sufficient confidence in the long-term measurement systems to use them for accurate determination of ozone trends in the stratosphere and troposphere. A major purpose of the study was to validate the quality of the data including quantification of the errors and to determine if there were any limitations in altitude or latitude.

The report is divided into three main chapters. Chapter 1 contains a description of how the various instruments work, and how ozone concentrations are calculated from the raw measurement. Particular attention is paid to the true vertical resolution of each instrument's measurement and to its long term calibration drift as well as to its precision and accuracy. Chapter 2 assesses how well the various measurements agree through a series of rigorous data comparisons. Traditional techniques based on zonal averages and on close matches in time and space are augmented by new techniques which classify the air mass according to its dynamic history. Chapter 3 discusses and uses the various methods available for calculating trends, as well as investigating how well the causes of the trends can be determined by statistical approaches.
2. FINDINGS

2.1 Validity of the Data Sets

Only four measurement techniques were identified that had produced records long enough to assess long term trends, SAGE (I and II), SBUV and SBUV2, Umkehr/Dobson and ozonesondes. The SAGE I and II satellite series extends from February 1979 to June 1996, with a three year interruption beginning November 1981. This series provides altitude coverage from the lower stratosphere to the stratopause. The SBUV-SBUV2 satellites (1978 to present) and the ground-based Umkehr/Dobson instruments (1957 to present) provide data sets for examining trends in the middle and upper stratosphere. Data from the ozonesonde network, started in the early 1960's, and extend to the present. This data set has the potential for providing trends in the lower stratosphere and troposphere. The report also assessed the ozone data quality from measurement systems which have operated over shorter time periods to validate the long term measurement systems above. The purpose of this approach was two-fold, (1) Was there any evidence that the SAGE algorithms produced errors in the measured ozone?, and (2) Was there any evidence for a long-term systematic error in the SAGE data which could affect the derived trends?

The measurement techniques of all the data sets were critically analysed from an instrumental and theoretical perspective. Changes in instrument performance and operation were considered as well as any errors or uncertainties produced in the algorithms used. Important issues include the correction in the SAGE data for the presence of aerosol (principally important below 20 km and in the aftermath of volcanic eruptions) and the pump correction for ozonesondes (important above 25 km). Tables of uncertainties have been composed which include not only the accuracy and precision of individual measurements, but also, for the first time for measurements of the vertical profile of ozone, estimates of the stability of the various systems over time. These were given as a function of altitude and latitude where appropriate and are being included in the estimates of the uncertainties in the trends given below. The drift uncertainties (2σ) are estimated to be less than 5% per decade for all measurements systems considered, with the exception of the Brewer-Mast ozonesonde in the troposphere (at 5 km).

The inter-comparisons were used to see if the drifts found between instruments with long term records were consistent with these estimates of stability. These inter-comparisons also included data covering shorter periods from the HALOE and MLS instruments on the UARS satellite and ground-based LIDAR and microwave instruments including those in the NDSC.

All SAGE II data used in the report were derived using the version 5.96 algorithm. The known error in the altitude registration of the SAGE I data was corrected according to Wang et al. (1996). It was found that the most important screening consideration was to eliminate SAGE II data contaminated by Mt. Pinatubo aerosol absorption. SAGE II ozone retrievals are affected by an inability to remove all the aerosol interference (although the current algorithm is better than previous versions). Based on comparisons with MLS, which is almost unaffected by high aerosol loading, it is recommended that between 1.5 and 2.5 years of data following the Pinatubo eruption be omitted from the SAGE II ozone data at pressures greater than 10 hPa. The detailed recommendations are given in the report as a function of pressure.
The upper altitude limit of SAGE II data for use in detecting trends was determined to be on the order of 50 km based on noise in SAGE II and inter-comparisons with HALOE. The lower altitude limit is less well determined, most likely because of low altitude atmospheric variability and aerosol effects on both the SAGE II measurements and the data used for comparisons. In most instances, the drifts and their associated uncertainties between SAGE II and correlative data start to increase below about 20 km, and they become much more variable thus limiting the lower altitude that can be validated. This is not to say that long-term trends derived from SAGE II are invalid in this range, only that for the measurements systems used in the inter-comparisons, a less definitive statement can be made about trend validity. The smallest long-term drifts that can be verified over the 20 km to 50 km altitude interval are in the range of 0.3%/year\(^1\) when viewed as a function of latitude.

Between 20 and 40 km, the Dobson/Umkehr measurements constrain SAGE I/II drifts in a narrow latitude band in the northern mid-latitudes to 0.2±0.2%/year\(^1\) and in the southern mid-latitudes to 0.3 ±0.3%/year\(^1\) at the 95% confidence level. Globally averaged SAGE I/II trends over this altitude range are constrained by both ground-based and satellite measurements to be valid to a level on the order of 0.2%/year\(^1\) at the 95% confidence level. It appears that the best agreement in trends occurs for SAGE II comparisons with other satellite data; although the Dobson/Umkehr comparisons provide equally good constraints in the northern and southern mid-latitudes.

The drifts for time series of coincident differences between SAGE II and other measurements for individual stations or latitudes are summarised in Figure 1. Values range from ≤ 0.3 ±0.15%/year\(^1\) to ~0.5 ±0.7%/year\(^1\) (sondes, lidar, Umkehr, HALOE) for altitudes between 20 km and 35 km and ≤ 0.5 ±0.5%/year\(^1\) to ~1 ± 1%/year\(^1\) for altitudes between 35 km and 50 km. Only two systems (sondes and lidar) provide useful trend comparison data for the altitude range between 15 km and 20 km. Trends of matched pair (i.e. sonde minus SAGE II) differences at individual stations show significant variability, ranging up to 3%/year\(^1\) at 15 km for Lauder; however, best agreement was obtained when the matched pair differences from the eight sonde stations used in the trend analyses (see section 2.2) were combined into a single time series to calculate the regression slope of the differences. No statistically significant differences were obtained for the combined time series, but the mean difference was about 0.25% ± 0.4%/year\(^1\) in this lower stratosphere range above ~15 km altitude. This suggests that there is a fair degree of noise in the differences at individual stations due either to atmospheric variability, sampling, or instrumental effects; but it also suggests that SAGE II trends in the lower stratosphere are accurate to the 0.25%/year\(^1\) level.

While no statistically significant drift was found between SAGE and the ozonesondes, differences in the absolute values of the measured ozone were found. The SAGE II absolute values agree with sondes in the altitude region between 20 km and 28 km to within a few %, but below 20 km SAGE II values start to increase relative to the sondes and reach values which are 15% to 20% larger at 15 km. The low altitude differences are latitudinally dependent which could indicate a problem with using the data for global trend calculations.
The globally averaged drifts of SAGE II versus SBUV, HALOE and MLS range from -0.06% to -0.4% ± 0.6% year⁻¹, i.e. SAGE II ozone has become more negative compared to the other instruments. These differences, although statistically insignificant, give a slight indication of a SAGE II drift with time (SAGE II trend is larger). SBUV2 differences with SAGE II are of opposite sign to SBUV, HALOE and MLS, but this is most likely due to algorithm effects brought on by a drifting orbit. Globally averaged analyses of the longest satellite time series - SBUV compared with the composite time series of SAGE I (1979-1981) and SAGE II (1984-89), designated SBUV(*) in Figure 1, shows agreement to (-0.2% to 0.2%) ± 0.2% year⁻¹ in the altitude region between 20 km and 50 km.

Figure 1. Trends of differences (i.e. drifts) between ozone measurements made by various ozone profiling instruments and SAGE II in % per year [(Sounding - SAGE II)/SAGE II]. Trends with ozonesondes are for the eight northern mid-latitude sounding stations used in Chapter 3 covering 36°N to 56°N. Umkehr differences are averages for eight Northern and Southern Hemisphere stations. Lidar differences are averages for the three stations with the longest records and number of coincidences exceeding 100 (Hohenpeissenberg, OHP and TMF). Trends of satellite differences (SBUV, SBUV2, HALOE and MLS) are presented as global means. The average differences are indicated by the dots and the bars represent the 95% confidence intervals of the drift estimations.
The results of a novel coordinate mapping (CM) study show general agreement with the conventional inter-comparisons, which rely on measurement space and time coincidence. Near 25 km, both the CM and conventional techniques show statistically significant regression slopes of differences in the 40-50°S (1-1.5%/year) and 60-70°S (-0.5%/year) regions. Differences between the two satellite measurements also appear in the CM analysis near 40-50°N in the same altitude range with the CM technique indicating a marginally significant positive drift of SAGE II relative to HALOE of $\pm 0.75%/year$. At higher altitudes, CM results show insignificant drifts of less than 0.5%/year in all regions except the polar summer latitudes. Differences in this region, which cannot be directly compared to conventional results, indicate statistically significant trends of differences, with SAGE ozone trends being larger relative to HALOE. A Lagrangian approach was tested which used air parcel trajectories to link measurements. This technique was only tested for a limited time period and so was unsuitable for use in assessing long-term stability, but it also shows great promise for applications in the future. Some evidence exists to suggest that SAGE I and SAGE II overlapping measurements are inconsistent (e.g., the comparisons with the ozonesonde measurements at Hohenpeissenberg, Payerne and Uccle), but the results are not statistically significant. It is recalled that SAGE I data have been corrected for a systematic reference height error of approximately 300 m (latitude dependent). The uncertainty in this correction for each latitude is approximately 100 m. Below 20 km altitude a simple upward shift of the SAGE I profiles (as assumed for this report) may be incorrect because of the large Rayleigh scattering contribution to the 0.6 nm extinction at these altitudes. A new inversion of the SAGE I data to correct the altitude registration problem would be preferable. Data can be used for trends with caution below 20 km, but more inter-comparisons are needed to draw firm conclusions.

Comparisons of ozonesondes in the stratosphere with other ozone profiling techniques show consistent results with agreement of about ±(3-5)% at altitudes between the tropopause and 28 km. The precision of the different sonde types is better than ±3%. Above 28 km the results are not consistent due to instrumental uncertainties (e.g. pump corrections and sensing solution changes) and caution must be used, at least for the non-ECC types of sondes, when applying the data for long-term trend determinations.

There is a dearth of sonde validation studies for the troposphere. Because of the small number of comparisons, only estimates about the reliability of the sonde data records below the tropopause can be made. In general, ECC-sondes provide much more consistent results than the other two types of sondes considered in the report. The precision of the ECC-sonde is better than ±(5-10)% and shows a small positive bias of about 3%. Brewer Mast and KC79-sondes are less precise (±(10-20)%), but there are no indications of any bias larger than ±5%. Key issues of uncertainty are the background correction and the use of the total ozone normalisation factor.

The main reasons for observed differences between different sonde results from sounding stations using the same type of ozone sonde are believed to be due to differences in the preparation and correction procedures applied at the different launch sites. Although much progress has been made to improve the quality and homogeneity of the ozonesonde data since the last WMO Scientific Assessment of Stratospheric Ozone in 1994, there is still an urgent need
to investigate and intercompare the instrumental performance of the different sonde types as well as a need to revise and agree on procedures for preparation and data processing.

1.2 Trend Analyses

The statistical models used in the report were inter-compared using three test data sets. This comparison revealed only minor differences in trends obtained by the models. Somewhat greater differences were found in the uncertainties estimated for the trends and other variables included in the models. Results are most sensitive to the details of the models for time series with significant missing data. Quasi-decadal variations are a ubiquitous feature of ozone observations, in addition to QBO and faster time scale dynamical variability. Inclusion of these terms does not have a strong influence on the calculated trends for long time series. Much of the observed decadal change is approximately in phase with the solar cycle for the observational record, suggesting a solar mechanism. However, current model calculations of the solar effect show some inconsistencies with observations (in terms of magnitude and lower stratospheric response), and this limits confidence in our detailed understanding. It is also likely that a confusion exists between solar and volcanic signals for the recent record. Although these effects have relatively small impacts on the linear trend estimates, it does limit the ability to interpret decadal variability.

Figure 2 shows the mean trend vs. altitude at northern mid-latitudes obtained for combined measurement systems including estimated uncertainties from both the statistical and instrumental analyses. This averaging of trends from SAGE I/II, ozonesondes, Umkehr and SBUV is possible for the first time in a major assessment because there is now agreement between the systems in the regions where the measurements overlap. A few points are worth noting before discussing the trend findings further:

(a) The trends below 20 km shown in figure 2 are found from the ozonesondes alone. There is now reasonable agreement in the trends at these altitudes between ozonesondes and SAGE I/II (which has occurred mainly as a result of the revised SAGE aerosol correction), but uncertainties in the SAGE I altitude registration below 20 km are considered too large for the SAGE I/II trends to be used in this context,

(b) The ozone losses are statistically significant at all altitudes between 12 and 50 km,

(c) There are two clear maxima in the trends, one around 40 km altitude, the other at about 15 km.

The upper stratosphere (altitudes between about 30 and 50 km) is a region where changes in ozone were originally predicted to occur. This is a region in which the chemistry should be dominated by gas-phase reactions. When the upper stratospheric data are fit to a standard statistical model, negative trends are found throughout the region with statistically significant peak values of -6 to -8% per decade at 40-45 km altitude. There is a factor of two seasonal variation, with a maximum negative trend in winter. There is no significant inter-hemispheric difference in upper stratospheric trends based on SAGE I/II version 5.96 data extended through 1996. There is good agreement between SAGE I/II and Umkehr. The SBUV-SBUV2 combined
record shows less negative trends. Less confidence is placed in the SBUV-SBUV2 result due to potential problems with the present version (6.1.2) of the NOAA-11 SBUV2 data.

Figure 2. Estimate of the mean trend in the vertical distribution of ozone that has occurred over northern mid-latitudes from 1980-1996 (heavy solid line) calculated using the trends derived from SAGE I/II, ozonesondes, SBUV and Umkehr measurements. Combined uncertainties are shown as 1σ (light solid lines) and 2σ (dashed lines). The combined trends and uncertainties are extended down to 10 km as shown by the light dotted lines. The results below 15 km are a mixture of stratospheric and tropospheric trends and the exact numbers should be viewed with caution. Combined trends have not been extended lower into the troposphere because there are concerns regarding the representativeness of any mean trends derived from the small sample of sonde stations.

The lower stratosphere (altitudes below 30 km) is the region where much of the trend which has been deduced from column data is expected to occur. The primary trend instruments in this region are sondes (up to 27 km) and SAGE (20-30 km). For sondes, sampling of the data prior to trend analysis has as much or more effect on derived trends than do the details of the statistical model. The optimal selection criteria for the use of sonde data in trend analyses is a subject of debate. Trends from 8 individual stations in the northern mid-latitudes are negative throughout the lower stratosphere. They range from -3 to -11% per decade at 20 km and are statistically significant at all stations. The trends show little seasonal variability above 20 km. The seasonal variability in the trend in the ozone profile occurs mostly in the altitude range of 10-20 km. The exact time dependence of this seasonal variability is uncertain. European stations show a winter-spring maximum, while Canadian stations show a spring-summer maximum. Details of this seasonal maximum were somewhat different in the two analyses of the sonde data. There is a reasonable agreement between SAGE I/II trends and sonde trends over the altitude region from 15 to 27 km at northern mid-latitudes. The agreement between 15 and 20 km may be fortuitous.
SAGE II trends in the 15-20 km region in the tropics are much more negative than those in northern mid-latitudes but there are insufficient sonde records with which to compare these results (or those at southern mid-latitudes).

It is difficult to make generalisations concerning trends in tropospheric ozone. The only data from which to make conclusions is sonde data from a small number of stations. Trends calculated for Canadian stations are negative or near zero for the period from 1970 through 1996 and also for the period from 1980 through 1996. Trends calculated for 3 European stations are strongly positive for the period 1970 through 1996 but are essentially zero at two of these stations when data from 1980 through 1996 are considered. Trends calculated for the Japanese stations show a mixture of positive and insignificant for both time periods.

Trends in the column amount of ozone above 20 km deduced from SAGE I/II are much smaller than the column trends deduced from TOMS. The TOMS/SAGE differences are consistent with the sonde trends below 20 km. There is also a consistent seasonal variation between satellite and sonde data. Both indicate that the primary seasonal variation in mid-latitude ozone trends occurs at altitudes between 10 and 20 km with a clear maximum over northern mid-latitudes during the local winter-spring period and a much smaller seasonal cycle in the southern hemisphere.

REFERENCES

1. INTRODUCTION

This report assesses the effects of aircraft on climate and atmospheric ozone and is the first IPCC report for a specific industrial subsector. It was prepared by IPCC in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer, in response to a request by the International Civil Aviation Organization (ICAO) because of the potential impact of aviation emissions. These are the predominant anthropogenic emissions deposited directly into the upper troposphere and lower stratosphere.

Aviation has experienced rapid expansion as the world economy has grown. Passenger traffic (expressed as revenue passenger-kilometers) has grown since 1960 at nearly 9% per year, 2.4 times the average Gross Domestic Product (GDP) growth rate. Freight traffic, approximately 80% of which is carried by passenger airplanes, has also grown over the same time period. The rate of growth of passenger traffic has slowed to about 5% in 1997 as the industry is maturing. Total aviation emissions have increased, because increased demand for air transport has outpaced the reductions in specific emissions from the continuing improvements in technology and operational procedures. Passenger traffic, assuming unconstrained demand, is projected to grow at rates in excess of GDP for the period assessed in this report.

The effects of current aviation and of a range of unconstrained growth projections for aviation (which include passenger, freight, and military) are examined in this report, including the possible effects of a fleet of second generation, commercial supersonic aircraft. The report also describes current aircraft technology, operating procedures, and options for mitigating aviation's future impact on the global atmosphere. The report does not consider the local environmental effects of aircraft engine emissions or any of the indirect environmental effects of aviation operations such as energy usage by ground transportation at airports.

1 ICAO is the UN specialized agency that has global responsibility for the establishment of standards, recommended practices, and guidance on various aspects of international civil aviation, including environmental protection.
2 The revenue passenger-km is a measure of the traffic carried by commercial aviation: one revenue-paying passenger carried 1 km.
3 Specific emissions are emissions per unit of traffic carried, for instance, per revenue passenger-km.
2. HOW DO AIRCRAFT AFFECT CLIMATE AND OZONE?

Aircraft emit gases and particles directly into the upper troposphere and lower stratosphere where they have an impact on atmospheric composition. These gases and particles alter the concentration of atmospheric greenhouse gases, including carbon dioxide (CO₂), ozone (O₃), and methane (CH₄); trigger formation of condensation trails (contrails); and may increase cirrus cloudiness—all of which contribute to climate change (see Box 1).

The principal emissions of aircraft include the greenhouse gases carbon dioxide and water vapor (H₂O). Other major emissions are nitric oxide (NO) and nitrogen dioxide (NO₂) (which together are termed NOₓ), sulfur oxides (SOₓ), and soot. The total amount of aviation fuel burned, as well as the total emissions of carbon dioxide, NOₓ, and water vapor by aircraft, are well known relative to other parameters important to this assessment.

The climate impacts of the gases and particles emitted and formed as a result of aviation are more difficult to quantify than the emissions; however, they can be compared to each other and to climate effects from other sectors by using the concept of radiative forcing. Because carbon dioxide has a long atmospheric residence time (~100 years) and so becomes well mixed throughout the atmosphere, the effects of its emissions from aircraft are indistinguishable from the same quantity of carbon dioxide emitted by any other source. The other gases (e.g., NOₓ, SOₓ, water vapor) and particles have shorter atmospheric residence times and remain concentrated near flight routes, mainly in the northern mid-latitudes. These emissions can lead to radiative forcing that is regionally located near the flight routes for some components (e.g., ozone and contrails) in contrast to emissions that are globally mixed (e.g., carbon dioxide and methane).

The global mean climate change is reasonably well represented by the global average radiative forcing, for example, when evaluating the contributions of aviation to the rise in globally averaged temperature or sea level. However, because some of aviation’s key contributions to radiative forcing are located mainly in the northern mid-latitudes, the regional climate response may differ from that derived from a global mean radiative forcing. The impact of aircraft on regional climate could be important, but has not been assessed in this report.

Ozone is a greenhouse gas. It also shields the surface of the earth from harmful ultraviolet (UV) radiation, and is a common air pollutant. Aircraft-emitted NO, participates in ozone chemistry. Subsonic aircraft fly in the upper troposphere and lower stratosphere (at altitudes of about 9 to 13 km), whereas supersonic aircraft cruise several kilometers higher (at about 17 to 20 km) in the stratosphere. Ozone in the upper troposphere and lower stratosphere is expected to increase in response to NOₓ increases and methane is expected to decrease. At higher altitudes, increases in NOₓ lead to decreases in the stratospheric ozone layer. Ozone precursor (NOy) lifetimes in these regions increase with altitude, hence perturbations to ozone by aircraft depend on the altitude of NOₓ injection and vary from regional in scale in the troposphere to global in scale in the stratosphere.

4 Radiative forcing is a measure of the importance of a potential climate change mechanism. It expresses the perturbation or change to the energy balance of the Earth-atmosphere system in watts per square meter (Wm⁻²). Positive values of radiative forcing imply a net warming, while negative values imply cooling.
Box 1. The Science of Climate Change

Some of the main conclusions of the Summary for Policymakers of Working Group I of the IPCC Second Assessment Report, published in 1995, which concerns the effects of all anthropogenic emissions on climate change, are the following:

- Increases in greenhouse gas concentrations since pre-industrial times (i.e., since about 1750) have led to a positive radiative forcing of climate, tending to warm the surface of the Earth and produce other changes of climate.

- The atmospheric concentrations of the greenhouse gases carbon dioxide, methane, and nitrous oxide (N₂O), among others, have grown significantly: by about 30, 145, and 15% respectively (values for 1992). These trends can be attributed largely to human activities, mostly fossil fuel use, land-use change, and agriculture.

- Many greenhouse gases remain in the atmosphere for a long time (for carbon dioxide and nitrous oxide, many decades to centuries). As a result of this, if carbon dioxide emissions were maintained at near current (1994) levels, they would lead to a nearly constant rate of increase in atmospheric concentrations for at least two centuries, reaching about 500 ppmv (approximately twice the pre-industrial concentration of 280 ppmv) by the end of the 21st century.

- Tropospheric aerosols resulting from combustion of fossil fuels, biomass burning, and other sources have led to a negative radiative forcing, which, while focused in particular regions and subcontinental areas, can have continental to hemispheric effects on climate patterns. In contrast to the long-lived greenhouse gases, anthropogenic aerosols are very short-lived in the atmosphere; hence, their radiative forcing adjusts rapidly to increases or decreases in emissions.

- Our ability from the observed climate record to quantify the human influence on global climate is currently limited because the expected signal is still emerging from the noise of natural variability, and because there are uncertainties in key factors. These include the magnitude and patterns of long-term natural variability and the time-evolving pattern of forcing by, and response to, changes in concentrations of greenhouse gases and aerosols, and land-surface changes. Nevertheless, the balance of evidence suggests that there is a discernible human influence on global climate.

- The IPCC has developed a range of scenarios, IS92a-f, for future greenhouse gas and aerosol precursor emissions based on assumptions concerning population and economic growth, land use, technological changes, energy availability, and fuel mix during the period 1990 to 2100. Through understanding of the global carbon cycle and of atmospheric chemistry, these emissions can be used to project atmospheric concentrations of greenhouse gases and aerosols and the perturbation of natural radiative forcing. Climate models can then be used to develop projections of future climate.

- Estimates of the rise in global average surface air temperature by 2100 relative to 1990 for the IS92 scenarios range from 1 to 3.5°C. In all cases the average rate of warming would probably be greater than any seen in the last 10,000 years. Regional temperature changes could differ substantially from the global mean and the actual annual to decadal changes would include considerable natural variability. A general warming is expected to lead to an increase in the occurrence of extremely hot days and a decrease in the occurrence of extremely cold days.

- Average sea level is expected to rise as a result of thermal expansion of the oceans and melting of glaciers and ice-sheets. Estimates of the sea level rise by 2100 relative to 1990 for the IS92 scenarios range from 15 to 95 cm.

- Warmer temperatures will lead to a more vigorous hydrological cycle; this translates into prospects for more severe droughts and/or floods in some places and less severe droughts and/or floods in other places. Several models indicate an increase in precipitation intensity, suggesting a possibility for more extreme rainfall events.

Water vapor, SO₄ (which form sulfate particles) and soot play both direct and indirect roles in climate change and ozone chemistry.

5 Airborne sulfate particles and soot particles are both examples of aerosols. Aerosols are microscopic particles suspended in air.
3. HOW ARE AVIATION EMISSIONS PROJECTED TO GROW IN THE FUTURE?

Global passenger air travel, as measured in revenue passenger-km, is projected to grow by about 5% per year between 1990 and 2015, whereas total aviation fuel use—including passenger, freight, and military— is projected to increase by 3% per year, over the same period, the difference being due largely to improved aircraft efficiency. Projections beyond this time are more uncertain so a range of future unconstrained emission scenarios is examined in this report (see Table 1 and Figure 1). All of these scenarios assume that technological improvements leading to reduced emissions per revenue passenger-km will continue in the future and that optimal use of airspace availability (i.e., ideal air traffic management) is achieved by 2050. If these improvements do not materialize then fuel use and emissions will be higher. It is further assumed that the number of aircraft as well as the number of airports and associated infrastructure will continue to grow and not limit the growth in demand for air travel. If the infrastructure were not available, the growth of traffic reflected in these scenarios would not materialize.

![Figure 1. Total aviation carbon dioxide emissions resulting from six different scenarios for aircraft fuel use. Emissions are given in Gt C or billion (10^9) tonnes of carbon] per year. To convert Gt C to Gt CO₂ multiply but 3.67. The scale on the righthand axis represents the percentage growth from 1900 to 2050. Aircraft emissions of carbon dioxide represent 2.4% of total fossil fuel emissions of carbon dioxide in 1992 or 2% of total anthropogenic carbon dioxide emissions. (Note: Fa2 has not been drawn because the difference from scenario Fa1 would not be discernible on the figure.)

IPCC [1992] developed a range of scenarios, IS92a-f, of future greenhouse gas and aerosol precursor emissions based on assumptions concerning population and economic growth, land use, technological changes, energy availability, and fuel mix during the period 1990 to 2100. Scenario IS92a is a mid-range emissions scenario. Scenarios of future emissions are not predictions of the future. They are inherently uncertain because they are based on different assumptions about the future, and the longer the time horizon the more uncertain these scenarios become. The aircraft emissions scenarios developed here used the economic growth and

6 The historical breakdown of aviation fuel burn for civil (passenger plus cargo) and military aviation was 64 and 36%, respectively, in 1976, and 82 and 18%, respectively, in 1992. These are projected to change to 93 and 7%, respectively, in 2015, and to 97 and 3%, respectively, in 2050.

population assumptions found in the IS92 scenario range (see Table 1 and Figure 1). In the following sections, scenario Fal is utilized to illustrate the possible effects of aircraft and is called the reference scenario. Its assumptions are linked to those of IS92a. The other aircraft emissions scenarios were built from a range of economic and population projections from IS92a-e. These scenarios represent a range of plausible growth for aviation and provide a basis for sensitivity analysis for climate modeling. However, the high growth scenario Edh is believed to be less plausible and the low growth scenario Fc1 is likely to be exceeded given the present state of the industry and planned developments.

Table 1: Summary of future global aircraft scenarios used in this report.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fal</td>
<td>3.1%</td>
<td>2.9%</td>
<td>1.4%</td>
<td>6.4</td>
<td>2.7</td>
<td>Reference scenario developed by ICAO Forecasting and Economic Support Group (FESG); mid-range economic growth from IPCC [1992]; technology for both improved fuel efficiency and NOx reduction</td>
</tr>
<tr>
<td>Fa1H</td>
<td>3.1%</td>
<td>2.9%</td>
<td>1.4%</td>
<td>6.4</td>
<td>2.7</td>
<td>Fal traffic and technology scenario with a fleet of supersonic aircraft replacing some of the subsonic fleet</td>
</tr>
<tr>
<td>Fa2</td>
<td>3.1%</td>
<td>2.9%</td>
<td>1.4%</td>
<td>6.4</td>
<td>2.7</td>
<td>Fal traffic scenario; technology with greater emphasis on NOx reduction, but slightly smaller fuel efficiency improvement</td>
</tr>
<tr>
<td>Fc1</td>
<td>3.1%</td>
<td>2.9%</td>
<td>1.4%</td>
<td>6.4</td>
<td>2.7</td>
<td>FESG low-growth scenario technology as for Fal scenario</td>
</tr>
<tr>
<td>Fe1</td>
<td>3.1%</td>
<td>2.9%</td>
<td>1.4%</td>
<td>6.4</td>
<td>2.7</td>
<td>FESG high-growth scenario technology as for Fal scenario</td>
</tr>
<tr>
<td>Eab</td>
<td>4.0%</td>
<td>3.2%</td>
<td></td>
<td>10.7</td>
<td>6.6</td>
<td>Traffic-growth scenario based on IS92a developed by Environmental Defense Fund (EDF); technology for very low NOx assumed</td>
</tr>
<tr>
<td>Edh</td>
<td>4.7%</td>
<td>3.8%</td>
<td></td>
<td>15.5</td>
<td>9.4</td>
<td>High traffic-growth EDF scenario; Technology for very low NOx assumed</td>
</tr>
</tbody>
</table>

\(^1\) Traffic measured in terms of revenue passenger-km.
\(^2\) All aviation (passenger, freight, and military).
4. WHAT ARE THE CURRENT AND FUTURE IMPACTS OF SUBSONIC AVIATION ON RADIATIVE FORCING AND UV RADIATION?

The summary of radiative effects resulting from aircraft engine emissions is given in Figures 2 and 3. As shown in Figure 2, the uncertainty associated with several of these effects is large.

4.1. Carbon Dioxide

Emissions of carbon dioxide by aircraft were 0.14 Gt C/year in 1992. This is about 2% of total anthropogenic carbon dioxide emissions in 1992 or about 13% of carbon dioxide emissions from all transportation sources. The range of scenarios considered here projects that aircraft emissions of carbon dioxide will continue to grow and by 2050 will be 0.23 to 1.45 Gt C/year. For the reference scenario (Fal) this emission increases 3-fold by 2050 to 0.40 Gt C/year, or 3% of the projected total anthropogenic carbon dioxide emissions relative to the mid-range IPCC emission scenario (IS92a). For the range of scenarios, the range of increase in carbon dioxide emissions to 2050 would be 1.6 to 10 times the value in 1992.

Concentrations of and radiative forcing from carbon dioxide today are those resulting from emissions during the last 100 years or so. The carbon dioxide concentration attributable to aviation in the 1992 atmosphere is 1 ppmv, a little more than 1% of the total anthropogenic increase. This percentage is lower than the percentage for emissions (2%) because the emissions occurred only in the last 50 years. For the range of scenarios in Figure 1, the accumulation of atmospheric carbon dioxide due to aircraft over the next 50 years is projected to increase to 5 to 13 ppmv. For the reference scenario (Fal) this is 4% of that from all human activities assuming the mid-range IPCC scenario (IS92a).

4.2. Ozone

The NO_x emissions from subsonic aircraft in 1992 are estimated to have increased ozone concentrations at cruise altitudes in northern mid-latitudes by up to 6%, compared to an atmosphere without aircraft emissions. This ozone increase is projected to rise to about 13% by 2050 in the reference scenario (Fal). The impact on ozone concentrations in other regions of the world is substantially less. These increases will, on average, tend to warm the surface of the Earth.

Aircraft emissions of NO_x are more effective at producing ozone in the upper troposphere than an equivalent amount of emission at the surface. Also increases in ozone in the upper troposphere are more effective at increasing radiative forcing than increases at lower altitudes. Due to these increases the calculated total ozone column in northern mid-latitudes is projected to grow by approximately 0.4 and 1.2% in 1992 and 2050, respectively. However, aircraft sulfur and water emissions in the stratosphere tend to deplete ozone, partially offsetting the NO_x-induced ozone increases. The degree to which this occurs is, as yet, unquantified. Therefore, the impact of subsonic aircraft emissions on stratospheric ozone requires further evaluation. The largest increases in ozone concentration due to aircraft emissions are calculated to occur near the tropopause where natural variability is high. Such changes are not apparent from observations at this time.
4.3. Methane

In addition to increasing tropospheric ozone concentrations, aircraft NO\textsubscript{x} emissions are expected to decrease the concentration of methane, which is also a greenhouse gas. These reductions in methane tend to cool the surface of the Earth. The methane concentration in 1992 is estimated here to be about 2% less than that in an atmosphere without aircraft. This aircraft-induced reduction of methane concentration is much smaller than the observed overall 2.5-fold increase since pre-industrial times. Uncertainties in the sources and sinks of methane preclude testing the impact of aviation on methane concentrations with atmospheric observations. In the reference scenario (Fal) methane would be about 5% less than that calculated for a 2050 atmosphere without aircraft.

Changes in tropospheric ozone are mainly in the Northern Hemisphere, while those of methane are global in extent so that, even though the global average radiative forcings are of similar magnitude and opposite in sign, the latitudinal structure of the forcing is different so that the net regional radiative effects do not cancel.

4.4. Water Vapor

Most subsonic aircraft water vapor emissions are released in the troposphere where they are rapidly removed by precipitation within 1 to 2 weeks. A smaller fraction of water vapor emissions is released in the lower stratosphere where it can build up to larger concentrations. Because water vapor is a greenhouse gas, these increases tend to warm the Earth's surface, though for subsonic aircraft this effect is smaller than those of other aircraft emissions such as carbon dioxide and NO\textsubscript{x}.

4.5. Contrails

In 1992, aircraft line-shaped contrails are estimated to cover about 0.1% of the Earth's surface on an annually averaged basis with larger regional values. Contrails tend to warm the Earth's surface, similar to thin high clouds. The contrail cover is projected to grow to 0.5% by 2050 in the reference scenario (Fal), at a rate which is faster than the rate of growth in aviation fuel consumption. This faster growth in contrail cover is expected because air traffic will increase mainly in the upper troposphere where contrails form preferentially, and may also occur as a result of improvements in aircraft fuel efficiency. Contrails are triggered from the water vapor emitted by aircraft and their optical properties depend on the particles emitted or formed in the aircraft plume and on the ambient atmospheric conditions. The radiative effect of contrails depends on their optical properties and global cover, both of which are uncertain. Contrails have been observed as line-shaped clouds by satellites over heavy air traffic areas and covered on average about 0.5% of the area over Central Europe in 1996 and 1997.

4.6. Cirrus Clouds

Extensive cirrus clouds have been observed to develop after the formation of persistent contrails. Increases in cirrus cloud cover (beyond those identified as line-shaped contrails) are found to be positively correlated with aircraft emissions in a limited number of studies. About 30% of the
Earth is covered with cirrus cloud. On average an increase in cirrus cloud cover tends to warm the surface of the Earth. An estimate for aircraft-induced cirrus cover for the late 1990s ranges from 0 to 0.2% of the surface of the Earth. For the Fal scenario, this may possibly increase by a factor of 4 (0 to 0.8%) by 2050; however, the mechanisms associated with increases in cirrus cover are not well understood and need further investigation.

4.7. Sulfate and Soot Aerosols

The aerosol mass concentrations in 1992 resulting from aircraft are small relative to those caused by surface sources. Although aerosol accumulation will grow with aviation fuel use, aerosol mass concentrations from aircraft in 2050 are projected to remain small compared to surface sources. Increases in soot tend to warm while increases in sulfate tend to cool the Earth’s surface. The direct radiative forcing of sulfate and soot aerosols from aircraft is small compared to those of other aircraft emissions. Because aerosols influence the formation of clouds, the accumulation of aerosols from aircraft may play a role in enhanced cloud formation and change the radiative properties of clouds.

4.8. What are the Overall Climate Effects of Subsonic Aircraft?

The climate impacts of different anthropogenic emissions can be compared using the concept of radiative forcing. The best estimate of the radiative forcing in 1992 by aircraft is 0.05 Wm\(^{-2}\) or about 3.5% of the total radiative forcing by all anthropogenic activities. For the reference scenario (Fal), the radiative forcing by aircraft in 2050 is 0.19 Wm\(^{-2}\) or 5% of the radiative forcing in the mid-range IS92a scenario (3.8 times the value in 1992). According to the range of scenarios considered here, the forcing is projected to grow to 0.13 to 0.56 Wm\(^{-2}\) in 2050, which is a factor of 1.5 less to a factor of 3 greater than that for Fal and from 2.6 to 11 times the value in 1992. These estimates of forcing combine the effects from changes in concentrations of carbon dioxide, ozone, methane, water vapor, line-shaped contrails, and aerosols, but do not include possible changes in cirrus clouds.

Globally averaged values of the radiative forcing from different components in 1992 and in 2050 under the reference scenario (Fal) are shown in Figure 2. Figure 2 indicates the best estimates of the forcing for each component and the two-thirds uncertainty range. The derivation of these uncertainty ranges involves expert scientific judgment and may also include objective statistical models. The uncertainty range in the radiative forcing stated here combines the uncertainty in calculating the atmospheric change to greenhouse gases and aerosols with that of calculating radiative forcing. For additional cirrus clouds, only a range for the best estimate is given; this is not included in the total radiative forcing.

The state of scientific understanding is evaluated for each component. This is not the same as the confidence level expressed in previous IPCC documents. This evaluation is separate from the uncertainty range and is a relative appraisal of the scientific understanding for each component. The evaluation is based on the amount of evidence available to support the best estimate and its uncertainty, the degree of consensus in the scientific literature, and the scope of the analysis. The total radiative forcing under each of the six scenarios for the growth of aviation is shown in Figure 3 for the period 1990 to 2050.
Figure 2. Estimates of the globally and annually averaged radiative forcing (Wm\(^{-2}\)) (see Footnote 4) from subsonic aircraft emissions in 1992 (2a) and in 2050 for scenario Fa1 (2b). The scale in Figure 2b is greater than the scale in 2a by about a factor of 4. The bars indicate the best estimate of forcing while the line associated with each bar is a two-thirds uncertainty range developed using the best knowledge and tools available at the present time. (The two-thirds uncertainty range means that there is a 67% probability that the true value falls within this range.) The available information on cirrus clouds is insufficient to determine either a best estimate or an uncertainty range; the dashed line indicates a range of possible best estimates. The estimate for total forcing does not include the effect of changes in cirrus cloudiness. The uncertainty estimate for the total radiative forcing (without additional cirrus) is calculated as the square root of the sums of the squares of the upper and lower ranges for the individual components. The evaluation below the graph ("good," "fair," "poor," "very poor") are a relative appraisal associated with each component and indicates the level of scientific understanding. It is based on the amount of evidence available to support the best estimate and its uncertainty, the degree of consensus in the scientific literature, and the scope of the analysis. This evaluation is separate from the evaluation of uncertainty range represented by the lines associated with each bar. This method of presentation is different and more meaningful than the confidence level presented in similar graphs from Climate Change 1995: The Science of Climate Change.

The total radiative forcing due to aviation (without forcing from additional cirrus) is likely to lie within the range from 0.01 to 0.1 Wm\(^{-2}\) in 1992, with the largest uncertainties coming from contrails and methane. Hence the total radiative forcing may be about 2 times larger or 5 times smaller than the best estimate. For any scenario at 2050, the uncertainty range of radiative forcing is slightly larger than for 1992, but the largest variations of projected radiative forcing come from the range of scenarios.

Over the period from 1992 to 2050, the overall radiative forcing by aircraft (excluding that from changes in cirrus clouds) for all scenarios in this report is a factor of 2 to 4 larger than the forcing by aircraft carbon dioxide alone. The overall radiative forcing for the sum of all human activities is estimated to be at most a factor of 1.5 larger than that of carbon dioxide alone.
Figure 3. Estimates of the globally and annually averaged total radiative forcing (without cirrus clouds) associated with aviation emissions under each of six scenarios for the growth of aviation over the time period 1990 to 2050. (Fa2 has not been drawn because the difference from scenario Fa1 would not be discernible on the figure.)

The emissions of NOx cause changes in methane and ozone, with influence on radiative forcing estimated to be of similar magnitude but of opposite sign. However, as noted above, the geographical distribution of the aircraft ozone forcing is far more regional than that of the aircraft methane forcing.

The effect of aircraft on climate is superimposed on that caused by other anthropogenic emissions of greenhouse gases and particles, and on the background natural variability. The radiative forcing from aviation is about 3.5% of the total radiative forcing in 1992. It has not been possible to separate the influence on global climate change of aviation (or any other sector with similar radiative forcing) from all other anthropogenic activities. Aircraft contribute to global change approximately in proportion to their contribution to radiative forcing.

4.9. What are the Overall Effects of Subsonic Aircraft on UV-B?

Ozone, most of which resides in the stratosphere, provides a shield against solar ultraviolet radiation. The erythemal dose rate, defined as UV irradiance weighted according to how effectively it causes sunburn, is estimated to be decreased by aircraft in 1992 by about 0.5% at 45°N in July. For comparison, the calculated increase in the erythemal dose rate due to observed ozone depletion is about 4% over the period 1970 to 1992 at 45°N in July. The net effect of subsonic aircraft appears to be an increase in column ozone and a decrease in UV radiation, which is mainly due to aircraft NOx emissions. Much smaller changes in UV radiation are associated with aircraft contrails, aerosols, and induced cloudiness. In the Southern Hemisphere, the calculated effects of aircraft emission on the erythemal dose rate are about a factor of 4 lower than for the Northern Hemisphere.

For the reference scenario (Fal), the change in erythemal dose rate at 45°N in July in 2050 compared to a simulation with no aircraft is -1.3% (with a two-thirds uncertainty range from -0.7 to -2.6%). For comparison, the calculated change in the erythemal dose rate due to changes in the concentrations of trace species, other than those from aircraft, between 1970 to 2050 at 45°N is about -3%, a decrease that is the net result of two opposing effects: (1) the incomplete recovery of stratospheric ozone to 1970 levels because of the persistence of long-lived halogen-containing compounds, and (2) increases in projected surface emissions of shorter lived pollutants that produce ozone in the troposphere.

5. WHAT ARE THE CURRENT AND FUTURE IMPACTS OF SUPERSONIC AVIATION ON RADIATIVE FORCING AND UV RADIATION?

One possibility for the future is the development of a fleet of second generation supersonic, high speed civil transport (HSCT) aircraft, although there is considerable uncertainty whether any such fleet will be developed. These supersonic aircraft are projected to cruise at an altitude of about 19 km, about 8 km higher than subsonic aircraft, and to emit carbon dioxide, water vapor, NOx, SOx, and soot into the stratosphere. NOx, water vapor, and SOx from supersonic aircraft emissions all contribute to changes in stratospheric ozone. The radiative forcing of civil supersonic aircraft is estimated to be about a factor of 5 larger than that of the displaced subsonic aircraft in the Fa1H scenario. The calculated radiative forcing of supersonic aircraft depends on the treatment of water vapor and ozone in models. This effect is difficult to simulate in current models and so is highly uncertain.

Scenario Fa1H considers the addition of a fleet of civil supersonic aircraft that was assumed to begin operation in the year 2015 and grow to a maximum of 1,000 aircraft by the year 2040. For reference, the civil subsonic fleet at the end of the year 1997 contained approximately 12,000 aircraft. In this scenario, the aircraft are designed to cruise at Mach 2.4, and new technologies are assumed that maintain emissions of 5 g NOx per kg fuel (lower than today's civil supersonic aircraft which has emissions of about 22 g NOx per kg fuel). These supersonic aircraft are assumed to replace part of the subsonic fleet (11%, in terms of emissions in scenario Fa1). Supersonic aircraft consume more than twice the fuel per passenger-km compared to subsonic aircraft. By the year 2050, the combined fleet (scenario Fa1H) is projected to add a further 0.08 Wm² (42%) to the 0.19 Wm² radiative forcing from scenario Fa1 (see Figure 4). Most of this additional forcing is due to accumulation of stratospheric water vapor.

The effect of introducing a civil supersonic fleet to form the combined fleet (Fa1H) is also to reduce stratospheric ozone and increase erythemal dose rate. The maximum calculated effect is at 45°N where, in July, the ozone column change in 2050 from the combined subsonic and supersonic fleet relative to no aircraft is -0.4%. The effect on the ozone column of the supersonic component by itself is -1.3% while the subsonic component is +0.9%.

The combined fleet would change the erythemal dose rate at 45°N in July by +0.3% compared to the 2050 atmosphere without aircraft. The two-thirds uncertainty range for the combined fleet is -1.7% to +3.3%. This may be compared to the projected change of -1.3% for Fa1. Flying

The two-thirds uncertainty range means that there is a 67% probability that the true value falls within this range.
higher leads to larger ozone column decreases, while flying lower leads to smaller ozone column decreases and may even result in an ozone column increase for flight in the lowermost stratosphere. In addition, emissions from supersonic aircraft in the Northern Hemisphere stratosphere may be transported to the Southern Hemisphere where they cause ozone depletion.

Figure 4. Estimates of the globally and annually averaged radiative forcing from a combined fleet of subsonic and supersonic aircraft (in Wm^-2) due to changes in greenhouse gases, aerosols, and contrails in 2050 under the scenarios Fa1H. In this scenario, the supersonic aircraft are assumed to replace part of the subsonic fleet (11%, in terms of emissions in scenario Fa1). The bars indicate the best estimate of forcing while the line associated with each is a two-thirds uncertainty range developed using the best knowledge and tools available at the present time. (The two-thirds uncertainty range means that there is a 67% probability that the true value falls within this range.) The available information on cirrus clouds is insufficient to determine either a best estimate or an uncertainty range; the dashed line indicates a range of possible best estimates. The estimate for total forcing does not include the effect of changes in cirrus cloudiness. The uncertainty estimate for the total radiative forcing (without additional cirrus) is calculated as the square root of the sums of the squares of the upper and lower ranges. The level of scientific understanding for the supersonic components are carbon dioxide, "good;" ozone, "poor;" and water vapor, "poor."

6. WHAT ARE THE OPTIONS TO REDUCE EMISSIONS AND IMPACTS?

There is a range of options to reduce the impact of aviation emissions, including changes in aircraft and engine technology, fuel, operational practices, and regulatory and economic measures. These could be implemented either singly or in combination by the public and/or private sector. Substantial aircraft and engine technology advances and the air traffic management improvements described in this report are already incorporated in the aircraft emissions scenarios used for climate change calculations. Other operational measures, which have the potential to reduce emissions, and alternative fuels were not assumed in the scenarios. Further technology advances have the potential to provide additional fuel and emissions reductions. In practice, some of the improvements are expected to take place for commercial reasons. The timing and scope of regulatory, economic, and other options may affect the introduction of improvements and may affect demand for air transport. Mitigation options for water vapor and cloudiness have not been fully addressed.
Safety of operation, operational and environmental performance, and costs are dominant considerations for the aviation industry when assessing any new aircraft purchase or potential engineering or operational changes. The typical life expectancy of an aircraft is 25 to 35 years. These factors have to be taken into account when assessing the rate at which technology advances and policy options related to technology can reduce aviation emissions.

6.1. Aircraft and Engine Technology Options

Technology advances have substantially reduced most emissions per passenger-km. However, there is potential for further improvements. Any technological change may involve a balance among a range of environmental impacts.

Subsonic aircraft being produced today are about 70% more fuel-efficient per passenger-km than 40 years ago. The majority of this gain has been achieved through engine improvements and the remainder from airframe design improvement. A 20% improvement in fuel efficiency is projected by 2015 and a 40 to 50% improvement by 2050 relative to aircraft produced today. The 2050 scenarios developed for this report already incorporate these fuel efficiency gains when estimating fuel use and emissions. Engine efficiency improvements reduce the specific fuel consumption and most types of emissions; however, contrails may increase and without advances in combustor technology NOx emissions may also increase.

Future engine and airframe design involves a complex decision-making process and a balance of considerations among many factors (e.g., carbon dioxide emissions, NOx emissions at ground level, NOx emissions at altitude, water vapor emissions, contrail/cirrus production, and noise). These aspects have not been adequately characterized or quantified in this report.

Internationally, substantial research programs are in progress, with goals to reduce Landing and Take-off cycle (LTO) emissions of NOx by up to 70% from today's regulatory standards, while also improving engine fuel consumption by 8 to 10%, over the most recently produced engines, by about 2010. Reduction of NOx emissions would also be achieved at cruise altitude, though not necessarily by the same proportion as for Landing and Take-off. Assuming that the goals can be achieved, the transfer of this technology to significant numbers of newly produced aircraft will take longer—typically a decade. Research programs addressing NOx emissions from supersonic aircraft are also in progress.

6.2. Fuel Options

There would not appear to be any practical alternatives to kerosene-based fuels for commercial jet aircraft for the next several decades. Reducing sulfur content of kerosene will reduce SOx emissions and sulfate particle formation.

Jet aircraft require fuel with a high energy density, especially for long-haul flights. Other fuel options, such as hydrogen, may be viable in the long term, but would require new aircraft designs and new infrastructure for supply. Hydrogen fuel would eliminate emissions of carbon dioxide from aircraft, but would increase those of water vapor. The overall environmental
impacts and the environmental sustainability of the production and use of hydrogen or any other alternative fuels have not been determined.

The formation of sulfate particles from aircraft emissions, which depends on engine and plume characteristics, is reduced as fuel sulfur content decreases. While technology exists to remove virtually all sulfur from fuel, its removal results in a reduction in lubricity.

6.3. Operational Options

Improvements in air traffic management (ATM) and other operational procedures could reduce aviation fuel burn by between 8 and 18%. The large majority (6 to 12%) of these reductions comes from ATM improvements which it is anticipated will be fully implemented in the next 20 years. All engine emissions will be reduced as a consequence. In all aviation emission scenarios considered in this report the reductions from ATM improvements have already been taken into account. The rate of introduction of improved ATM will depend on the implementation of the essential institutional arrangements at an international level.

Air traffic management systems are used for the guidance, separation, coordination, and control of aircraft movements. Existing national and international air traffic management systems have limitations which result, for example, in holding (aircraft flying in a fixed pattern waiting for permission to land), inefficient routings, and sub-optimal flight profiles. These limitations result in excess fuel burn and consequently excess emissions.

For the current aircraft fleet and operations, addressing the above mentioned limitations in air traffic management systems could reduce fuel burned in the range of 6 to 12%. It is anticipated that the improvement needed for these fuel burn reductions will be fully implemented in the next 20 years, provided that the necessary institutional and regulatory arrangements have been put in place in time. The scenarios developed in this report assume the timely implementation of these ATM improvements, when estimating fuel use.

Other operational measures to reduce the amount of fuel burned per passenger-km include increasing load factors (carrying more passengers or freight on a given aircraft), eliminating non-essential weight, optimizing aircraft speed, limiting the use of auxiliary power (e.g., for heating, ventilation), and reducing taxiing. The potential improvements in these operational measures could reduce fuel burned, and emissions, in the range 2 to 6%.

Improved operational efficiency may result in attracting additional air traffic, although no studies providing evidence on the existence of this effect have been identified.

6.4. Regulatory, Economic, and Other Options

Although improvements in aircraft and engine technology and in the efficiency of the air traffic system will bring environmental benefits, these will not fully offset the effects of the increased emissions resulting from the projected growth in aviation. Policy options to reduce emissions further include more stringent aircraft engine emissions regulations, removal of subsidies and incentives that have negative environmental consequences, market-based options such as
environmental levies (charges and taxes) and emissions trading, voluntary agreements, research programs, and substitution of aviation by rail and coach. Most of these options would lead to increased airline costs and fares. Some of these approaches have not been fully investigated or tested in aviation and their outcomes are uncertain.

Engine emissions certification is a means for reducing specific emissions. The aviation authorities currently use this approach to regulate emissions for carbon monoxide, hydrocarbons, NO, and smoke. The International Civil Aviation Organization has begun work to assess the need for standards for aircraft emissions at cruise altitude to complement existing Landing and Take-off standards for NO, and other emissions.

Market-based options, such as environmental levies (charges and taxes) and emissions trading, have the potential to encourage technological innovation and to improve efficiency, and may reduce demand for air travel. Many of these approaches have not been fully investigated or tested in aviation and their outcomes are uncertain.

Environmental levies (charges and taxes) could be a means for reducing growth of aircraft emissions by further stimulating the development and use of more efficient aircraft and by reducing growth in demand for aviation transportation. Studies show that to be environmentally effective, levies would need to be addressed in an international framework.

Another approach that could be considered for mitigating aviation emissions is emissions trading, a market-based approach which enables participants to cooperatively minimize the costs of reducing emissions. Emissions trading has not been tested in aviation though it has been used for sulfur dioxide (SO) in the United States of America and is possible for ozone-depleting substances in the Montreal Protocol. This approach is one of the provisions of the Kyoto Protocol where it applies to Annex B Parties.

Voluntary agreements are also currently being explored as a means of achieving reductions in emissions from the aviation sector. Such agreements have been used in other sectors to reduce greenhouse gas emissions or to enhance sinks.

Measures that can also be considered are removal of subsidies or incentives, which would have negative environmental consequences, and research programs.

Substitution by rail and coach could result in the reduction of carbon dioxide emissions per passenger-km. The scope for this reduction is limited to high density, short haul routes, which could have coach or rail links. Estimates show that up to 10% of the travelers in Europe could be transferred from aircraft to high-speed trains. Further analysis, including trade-offs between a wide range of environmental effects (e.g., noise exposure, local air quality, and global atmospheric effects) is needed to explore the potential of substitution.
7. ISSUES FOR THE FUTURE

This report has assessed the potential climate and ozone changes due to aircraft to the year 2050 under different scenarios. It recognizes that the effects of some types of aircraft emissions are well understood. It also reveals that the effects of others are not, because of the many scientific uncertainties. There has been a steady improvement in characterizing the potential impacts of human activities, including the effects of aviation on the global atmosphere. The report has also examined technological advances, infrastructure improvements, and regulatory or market-based measures to reduce aviation emissions. Further work is required to reduce scientific and other uncertainties, to understand better the options for reducing emissions, to better inform decisionmakers, and to improve the understanding of the social and economic issues associated with the demand for air transport.

There are a number of key areas of scientific uncertainty that limit our ability to project aviation impacts on climate and ozone:

- The influence of contrails and aerosols on cirrus clouds
- The role of NOx in changing ozone and methane concentrations
- The ability of aerosols to alter chemical processes
- The transport of atmospheric gases and particles in the upper troposphere/lower stratosphere
- The climate response to regional forcings and stratospheric perturbations.

There are a number of key socio-economic and technological issues that need greater definition, including inter alia the following:

- Characterization of demand for commercial aviation services, including airport and airway infrastructure constraints and associated technological change
- Methods to assess external costs and the environmental benefits of regulatory and market-based options
- Assessment of the macroeconomic effects of emission reductions in the aviation industry that might result from mitigation measures
- Technological capabilities and operational practices to reduce emissions leading to the formation of contrails and increased cloudiness
- The understanding of the economic and environmental effects of meeting potential stabilization scenarios (for atmospheric concentrations of greenhouse gases), including measures to reduce emissions from aviation and also including such issues as the relative environmental impacts of different transportation modes.
SECTION E

EXECUTIVE SUMMARY

INTRODUCTION

This report assesses the potential atmospheric impacts of a proposed hypothetical fleet of high speed civil transport (HSCT) aircraft. Civil supersonic transport aircraft were first developed in the 1970s, but, due to economic and environmental concerns, the number of commercial supersonic aircraft in regular service has been small (fewer than 20 aircraft). Recent developments in aviation technology and passenger demand, however, indicate that a substantially larger fleet of HSCTs may be environmentally and economically feasible in the next few decades. During the 1990s, the National Aeronautics and Space Administration (NASA) and the aerospace industry have embarked on a technology research and development program, the High-Speed Research Program, to facilitate technology development and help make widespread supersonic travel possible. The purpose of this report is to assess the effects of HSCTs on atmospheric composition and climate in order to provide a scientific basis for making technical, commercial, and environmental policy decisions regarding the HSCT fleet.

The work summarized here was carried out as part of NASA's Atmospheric Effects of Aviation Project (AEAP) (a component of the High-Speed Research Program) as well as other NASA, United States, and international research programs. Impacts of supersonic aircraft have been assessed previously in 1975 by the Climate Impact Assessment Program and by NASA in 1993 and 1995. Here we describe progress in understanding atmospheric processes and the current state of understanding of the atmospheric effects of HSCTs. The principal focus is on change in stratospheric ozone concentrations. The impact on climate change is also a concern. We delineate the principal uncertainties in atmospheric predictions and estimate the associated errors in predicted effects of HSCTs. The findings represent a broad consensus of the atmospheric research community, comprising the authors, contributors, and reviewers.

A. What are the emissions of greatest concern for the HSCT aircraft fleet?

The HSCT emissions of primary concern for stratospheric ozone and climate are oxides of nitrogen (NO$_x$), water (H$_2$O), and aerosol particles and particle precursor gases.

NO$_x$

Nitrogen oxides participate in a wide range of chemical processes that affect ozone. (a) The principal loss process for ozone in the middle and upper stratosphere involves NO$_x$ radicals, and thus, exhaust that is transported to these regions will reduce ozone. The transport of NO$_x$ from
HSCTs to altitudes above 22 km and accumulation at these altitudes is a critical question for the assessment. (b) In the lower stratosphere, NOx radicals moderate ozone loss due to other radical species (hydrogen oxides (HOx), chlorine oxides (ClOx), bromine oxides (BrOx)); thus addition of NOx from HSCT exhaust can either increase or decrease ozone in this region depending on the relative balance among the radicals. (c) In the polar winter stratosphere, nitrogen oxides participate in formation of polar stratospheric clouds (PSCs), which lead to large seasonal ozone loss in these regions, e.g., the Antarctic ozone “hole.” The net effect of increasing NOx depends on interactions between transport, heterogeneous chemistry, homogeneous chemistry, and the composition of the unperturbed atmosphere.

Water

HSCT emissions could increase lower stratospheric water vapor by about 0.5 parts per million by volume (ppmv) (10 to 15% for a fleet of 500 aircraft) affecting climate, aerosol processes, and rates for chemical reactions. Warming of the lower atmosphere as a result of increased stratospheric water is predicted to be the main climatic effect of HSCTs, although the magnitude of this effect is not well determined at this time. The composition and growth of aerosol particles, including PSCs, is influenced because increased water vapor raises the condensation temperature. Increased water also increases the reactivity of aerosol toward gases, such as hydrogen chloride (HCl) and chlorine nitrate (ClONO2), thus influencing the relative concentrations of radical species. Since water is the source of HOx radicals, increased water leads directly to higher concentrations of HOx. Model calculations suggest that the associated increase in HOx is as important as changing NOx for enhancing ozone loss.

Aerosol Particles

Repeated observations since 1994 consistently show that a large number of ultrafine (<20 nm diameter) aerosol particles exist in jet engine exhaust plumes, and that particle production increases as the sulfur content of fuel increases. Emission of small particles and sulfur dioxide (SO2) can potentially increase aerosol surface area throughout the stratosphere which suppresses NOx and enhances ozone loss by ClOx and HOx. Proposed mechanisms for small particle formation are still controversial, and the effects on particle abundance throughout the stratosphere are uncertain, but atmospheric ozone is definitely sensitive to changing aerosol conditions.

B. What factors determine the impact of HSCTs on stratospheric ozone?

The impacts of HSCTs depend on:

- The quantity of exhaust deposited (water, NOx, particle mass and surface area) and its location in altitude and latitude;

- Atmospheric transport, especially the eventual accumulation of exhaust products in various parts of the stratosphere. The integration of changes in chemical rates for ozone loss and transport of ozone produces the perturbed ozone distribution;
• Microphysics (formation, growth, coagulation, and settling) of aerosol particles in the atmosphere;

• Chemical reactions of the exhaust products with aerosols, atmospheric radicals, and ozone; and

• The background state (meteorology and composition) of the future atmosphere onto which the HSCT perturbation is superimposed.

The linkage between transport, chemistry, aerosol microphysics, and the atmospheric background makes predicting ozone change due to HSCT emissions challenging.

C. What major progress has been accomplished since the previous HSCT assessment?

Great progress has been made in ozone assessment science since the previous HSCT assessment. Progress is led by new atmospheric observations and numerical model development. Observations pave the way for improved understanding and simulation of transport, chemistry, and emission processes. Models have been developed which are more soundly based in physical principles with fewer restrictive assumptions.

TRANSPORT DIAGNOSIS

Observations of chemical tracers, studies using analyzed meteorological fields and idealized models, and advances in theory have improved understanding and quantification of several key components of transport necessary to predicting the distribution of HSCT exhaust. In situ measurements of chemical tracers have been obtained within the previously data-sparse tropics. These observations permit quantitative diagnosis of key pathways for dispersal of HSCT exhaust into the upper stratosphere where chemical sensitivity to NO_x is high. Measurements of carbon dioxide (CO_2), sulfur hexafluoride (SF_6), and hydrogen fluoride (HF) over a range of latitude and altitude have enabled mean ages of air in the stratosphere to be determined. Age of air is a directly measured diagnostic related to stratospheric residence time and hence to the potential accumulation of HSCT exhaust in the stratosphere. The quantitative analysis of tropical transport and mean age provide stringent new tests of transport within numerical models. Comparison between observations and models is essential for assessing the uncertainty in the ozone perturbation and in developing more accurate models.

MODEL DEVELOPMENT

Three-dimensional (3-D) atmospheric models have been applied to the HSCT assessment for the first time. Three-dimensional models incorporate a more physically realistic representation of the atmosphere than two-dimensional (2-D) models. The modular design of the Global Modeling Initiative 3-D model has made it possible to test the different components of the model (e.g., the numerical transport algorithm and the source of the wind and temperature fields). Objective criteria for performance with respect to data have been applied. Thus, we discern differences among models in their response to the HSCT perturbation and begin to weigh their results. A major model-measurement comparison and model intercomparison (M&M II) has been conducted, and all
models in this assessment have been tested in comparison to a standard set of performance benchmarks. Also, the 2-D models have incorporated more complete process representations including those for aircraft aerosol exhaust, PSCs, heterogeneous reaction rates, and wave-driven mixing. These model developments give us more confidence in our physical representation of the stratospheric system.

CHEMISTRY

Improved confidence in chemistry has come about largely through observational data on chemicals not previously measured and more accurate data over a more comprehensive range of conditions, including the first in summer polar regions. Observations of key species and new laboratory measurements, placed in a diagnostic model framework, show good accuracy in partitioning components of reactive nitrogen, chlorine, and hydrogen in the models. This establishes confidence that we are not missing significant reactions or unknown species that would alter the calculated response of the chemical system to the HSCT perturbation.

EMISSIONS

The most important progress on emissions comes in confirming the importance of near-field production of small sulfate aerosol particles by HSCTs. New direct measurements for existing aircraft show formation of volatile ultra-fine aerosol particles in exhaust plumes from all aircraft sampled. In-flight measurements indicate that the number of particles is dependent on fuel sulfur content, while altitude chamber measurements show that sulfur emissions at the engine exit plane are primarily \(\text{SO}_2 \). These observations support earlier inferences of a composition of sulfuric acid \((\text{H}_2\text{SO}_4)/\text{H}_2\text{O} \) for the volatile particles detected in the plume. Soot emissions from current aircraft engines are roughly two orders of magnitude lower in particle number density than volatile aerosols, and soot from HSCTs is expected to have a negligible effect on ozone and climate. Measurements of gaseous constituents, including \(\text{HO}_x \) and \(\text{NO}_x \), emitted from current aircraft are consistent with expected emissions and plume models of gas-phase chemistry and dispersion. This reduces our uncertainty in applying current knowledge of emissions to the proposed future fleet.

D. What are the predicted impacts of the HSCT fleet on stratospheric ozone and climate?

Predictions of the impact of the future HSCT fleet have been calculated using a set of numerical models of chemistry and transport. Model calculations have been performed for a variety of scenarios to test a range of HSCT design parameters and atmospheric variations.

Based on a combination of model calculations and expert judgement, the estimated column ozone change in the Northern Hemisphere is -0.4% for a fleet of 500 HSCTs flying Mach 2.4 with an \(\text{NO}_x \) emission index (EI\(\text{NO}_x \)) of 5 g/kg, \(\text{EI}_{\text{SO}_2} \) of 0.4 g/kg, and 10% of fuel sulfur converted to particles. Based on the same combination of model calculations and expert judgement for the uncertainty in component processes, the hemispheric ozone response will likely be in the range of -2.5 to +0.5%.
We also note that the maximum seasonal and latitudinal ozone changes will be greater than the hemispheric annual mean. Polar regions are a special concern. All models show their largest amount of column ozone loss at high latitudes and a minimum change in the tropics. The column ozone change is the sum of an ozone increase at lower stratospheric/upper tropospheric altitudes plus a decrease generally at and above the HSCT flight altitude. This balance between net production and loss is different for different models and depends strongly on latitude. The season of maximum change is not consistent among the models, with most predicting a springtime maximum ozone decrease but others a maximum in the summer or fall. These variations are connected to the models’ sensitivity to chemical reactions in cold polar regions and PSC processes.

The climate forcing attributable to an HSCT fleet in the year 2050 is predicted to result in a warming which is small relative to that expected from other anthropogenic sources. The total radiative forcing from 1000 HSCTs is calculated to be +0.1 W m\(^{-2}\) in 2050. This HSCT number is a concern because the radiative forcing is disproportionately large for the amount of fuel used and equivalent to about 50% of the forcing from the entire projected subsonic fleet. Climate forcing is sensitive to HSCT emissions because the H\(_2\)O accumulation is localized in the lower stratosphere. The uncertainty in the HSCT climate forcing is estimated to be about a factor of 3 due to uncertainty in the exhaust accumulation and uncertainty in the temperature adjustment to a non-uniform perturbation of radiatively active gases in the stratosphere.

Several findings relevant to HSCT design issues come out of the atmospheric assessment. These are considered reliable notwithstanding uncertainties in model results, because they derive from basic understanding of stratospheric processes.

- The HSCT impact on ozone depends directly on total emissions, i.e., fleet size and fuel use.

- Water vapor, which is inherent to jet fuel combustion, accounts for a major part of the calculated stratospheric ozone impact. Increased water vapor in the stratosphere may also contribute to global climate warming.

- NO\(_x\) emissions are important. Although current atmospheric models do not show much relative sensitivity to very low (EIN\(_{NOx} = 5\) to 10) emissions, higher NO\(_x\) emissions clearly increase the impact, especially for larger fleet sizes.

- Production of sulfate aerosol particles makes a significant contribution to the calculated ozone impact. This implies that low-sulfur fuel options and methods to control production of particle precursors should be explored.

- Flying the HSCT at lower altitudes reduces stratospheric impacts. The atmospheric residence time of the exhaust is decreased and the chemical sensitivity is reduced.

- Special issues are associated with exhaust build-up in polar regions, both winter and summer. Under current HSCT route scenarios, direct emissions into the polar vortex are minimal.
E. What are the major uncertainties in the prediction of HSCT impacts?

In several key areas, comparisons of model simulations and observational data challenge current model predictions.

TRANSPORT

Most exhaust will be emitted in the lower stratosphere in the Northern Hemisphere. Observations and models show that much of this exhaust will be carried downward into the troposphere and lost, but a fraction will be transported into the tropics, where it will be carried upward and mixed back into the mid-latitudes at higher altitudes. This material will increase stratospheric concentrations of total reactive nitrogen (NO$_y$), water vapor, and small particles globally. Predicting the magnitude of the fraction dispersed globally, and its residence time in the stratosphere, is a critical part of the assessment. There is a large difference among the models in the calculated accumulation of HSCT exhaust. Current models, both 2-D and 3-D, differ from diagnostic observations that test global stratospheric residence times. In particular, models predict a smaller mean age of stratospheric air, by about a factor of two, than inferred from observations. This tendency suggests that models may underestimate stratospheric residence times and the actual accumulation of exhaust that would occur in the atmosphere.

Transport uncertainties are also primarily responsible for models differing in their simulation of key trace species distributions, both from each other and from observations. To the extent that these model distributions do not match reality, the HSCT perturbation is superimposed on an incorrect background atmosphere. In particular, the model background NO$_y$ controls the HSCT ozone response to a large extent, and no solution is known to simultaneously fix model comparisons to mean age and NO$_y$ measurements.

AEROSOL EMISSIONS

The impact of HSCT emissions on stratospheric sulfate aerosol and the resultant effect on chemistry and ozone has emerged as one of the most important effects of aircraft in the stratosphere. Multi-phase reactions on sulfate particles strongly influence the balance among chemical ozone loss pathways in the lower stratosphere globally. More small volatile particles are formed in jet aircraft exhaust than previously expected, and the mechanism and control of this production are currently not well understood. Particle production has been shown to depend on fuel sulfur, but the particle emission yield for the HSCT is still very uncertain. Model calculations testing the atmospheric sensitivity to a range of particle emissions under differing atmospheric aerosol loadings, which are mainly controlled by volcanic eruptions, result in a range of impacts larger than that attributed to nitrogen oxides or water.

POLAR PROCESSES

Processes occurring at cold polar temperatures in winter are important to ozone because they initiate chlorine-catalyzed ozone destruction that is responsible for large seasonal ozone depletions (e.g., the "ozone hole"). Properly predicting the interaction of aircraft water, nitrogen oxides, and
particles with cold polar processes is an important component of the HSCT assessment. However, our basic understanding of how polar stratospheric clouds, sulfate aerosol, and gases interact to produce rapid polar ozone loss is not complete and simulation in global models is difficult. Test calculations show that inclusion of these processes does significantly alter the calculated impact of HSCT emissions by increasing polar ozone loss, but the amount of loss varies between models depending on their method of parameterization. In this assessment we have begun to quantify these previously unquantified effects, but the uncertainty is still significant.

CHEMISTRY

Recent measurements suggest inaccuracies in the chemical kinetic rates used in current model calculations of the partitioning of nitrogen oxides between NO\textsubscript{x} radical and non-radical species. In general, models using current rates predict lower concentrations of radicals than observed, a tendency that would underestimate reductions in ozone. Known deficiencies in both transport and chemistry appear to lead to underestimation of ozone reduction due to HSCTs. Also, changes in the total ozone column due to HSCT exhaust result from a balance between ozone increases in the lower, aerosol-rich lower stratosphere and ozone losses in the NO\textsubscript{x}-rich middle and upper stratosphere. Models differ in the magnitude of the vertical and latitudinal contributions to this critical balance.

THE FUTURE ATMOSPHERE

HSCTs would operate in a future stratosphere that will likely have different trace constituent mixing ratios and aerosol abundances. Climate change from increasing CO\textsubscript{2} will also change stratospheric temperatures and winds. Future changes in these and related quantities cannot be predicted with high accuracy. Since the effect of HSCT exhaust depends on the composition and meteorology of the background atmosphere, estimates of future changes in ozone are correspondingly uncertain. Changes in polar regions deserve special attention. In addition, the response to HSCT emissions has been tested in models with observations from current and past atmospheric conditions. The applicability to future conditions is less certain.

CLIMATE FORCING

The uncertainty in the HSCT climate forcing is estimated to be about a factor of 3. This is due to uncertainty in the exhaust accumulation and uncertainty in the temperature adjustment to a non-uniform perturbation of radiatively active gases in the stratosphere. This level of uncertainty, combined with the small magnitude of the calculated effect, makes it difficult to assess whether the HSCT climate impact is a serious concern or not.

F. Where do we stand now?

As a result of the progress on numerous aspects of the HSCT prediction problem, we are now able to predict the effects of stratospheric aviation with greater certitude than ever before. In this assessment a central value for the column ozone perturbation has been estimated based on model calculations, our understanding of the fundamental physics and chemistry of the atmosphere, and knowledge of the potential exhaust emissions. Uncertainties have been estimated for the key
processes in calculating HSCT ozone impacts and a range of uncertainty about the central value has been estimated. The sensitivity of the ozone change to a set of aircraft design and atmospheric variables has been assessed. Along with the assessment of ozone change, uncertainty, and sensitivity, we have identified the significant issues and reasons for concern about the accuracy and reliability of HSCT predictions. Taken together, these results should provide useful guidance for informed decisions on environmental policy and technology development for the HSCT aircraft. The status of several specific issues follows.

On stratospheric transport, the new measurement diagnostics and model comparisons allow us to begin to quantitatively evaluate model performance. Rapid model improvement will follow as specific shortcomings are addressed. Although the means to improvement are not all apparent, the new metrics will become part of standard procedure and models will respond. A limited number of 3-D model runs have been made for this assessment. A major emphasis will be diagnosing transport in 3-D models. These models are now on the verge of major advancement, almost certain to follow with further analysis and maturity. Until that time, though, stratospheric transport remains a major uncertainty for HSCT assessment.

Although the formation of particles in HSCT exhaust is not quantitatively predictable, the parametric studies used in this assessment limit the range of uncertainty in the chemical effect from this source. Continued process modeling and measurements should allow a mechanistic understanding of particle formation in current aircraft engine exhaust sufficient to better predict the formation of particles in HSCT plumes, thereby reducing the range used in this assessment. The processes controlling the background stratospheric aerosol distribution also need to be better quantified through systematic analysis of satellite and in situ observations.

Gas-phase photochemical mechanisms are generally understood and most are modeled within the combined uncertainties of the measurements and rate coefficients. Recent laboratory measurements are likely to resolve the NOx/NOy chemical issue identified for models used in this assessment. The possibility of missing chemical processes, which could invalidate our HSCT assessment, is significantly decreased, but continued observations are needed to minimize the risk.

We continue to be cautious about the potential effects of HSCTs in polar regions because of the demonstrated high sensitivity of ozone to changes there. This assessment does not find unexpectedly large changes near the poles, but we allow the possibility that we have not probed the full possible range of response. An upcoming measurement campaign should help to improve our ability to simulate ozone in polar regions and enhance HSCT assessment confidence. The natural evolution of climate research directed toward international climate assessments will further limit uncertainties in the state of the future atmosphere and the potential climate effects of HSCTs.

In summary, great progress has been made in understanding the potential effects of HSCTs in the atmosphere. However, we are not yet able to establish statistically rigorous error bounds on the effects of supersonic aircraft. We can carefully and critically develop a set of expert opinions on the likely ranges for future effects. To be more quantitative requires improvements in understanding and model capabilities not yet realized. We believe a strong foundation for future advances has been built: the enhanced capability to test models should pave the way for improved models in the future.
G. What can be done to reduce the uncertainties?

Research objectives consistent with the assessed sensitivities and the largest known uncertainties should include improved quantitative understanding of:

- *Transport and dynamics of the stratosphere.* Model differences from tracer observations (especially NO\textsubscript{x}), underestimates of mean age, and the relation of residence time with HSCT exhaust accumulation make it a high priority to obtain improved knowledge of the rates for the residual mean circulation and improvements in data in the tropopause region.

- *Production of ultrafine aerosol particles by jet engines.* We need to understand the mechanism for particle production in current engines and the dependence on fuel sulfur well enough to predict HSCT particle production. Progress in understanding this phenomenon will follow from studying the process in the engine components, through the aircraft near field, and out to global scales.

- *Polar studies,* especially the mechanism for polar denitrification and the sensitivity of ozone loss in the Arctic to changes in H\textsubscript{2}O, aerosols, and NO\textsubscript{y}. These issues are the focus of the upcoming SAGE III Ozone Loss and Validation Experiment (SOLVE) mission.

- *Photochemistry,* laboratory studies, atmospheric observations, and analysis should continue with an emphasis on quantifying uncertainties and evaluating the potential for missing chemistry. Specific discrepancies in NO\textsubscript{x}/NO\textsubscript{y} partitioning must be resolved.

- *Continued development, evaluation, and refinement of models.* Fundamental processes represented in current models, with particular attention to transport, model resolution, and numerical artifacts require continued scrutiny. Methods for evaluating model performance, uncertainty quantification, and use of 3-D models should be continued.
EXECUTIVE SUMMARY

The Second Workshop on Stratospheric Models and Measurements (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior.

The choice of the measurements for M&M I was limited by data availability, and the emphasis on 2-D and 3-D assessment models. Other models such as climate models, air-trajectory models and assimilation models were not included in the consideration. In M&M II, the GSFC DAO assimilation model provided results for a number of transport experiments. In this report, we emphasize what was accomplished beyond M&M I.

A. New Data Used for M&M II

Almost all the data sets that were used for M&M I have been revised or replaced with better and more complete compilations. UARS satellite data sets are the primary ones being used for the middle and upper stratosphere. We chose to use the 1992 data as the basis for our comparison because it is the only full year for which there is CLAES data available. The CLAES data provide the very useful global coverage of N₂O, CH₄, HNO₃, and ClONO₂. In addition, data for O₃, ClO, H₂O and CH₄ were available from MLS and HALOE. Many of the evaluations in M&M II relied on individuals to compile the UARS datasets for comparisons with the models. Future model comparisons will benefit from the climatological datasets constructed by the UARS Science Team, which were not available for M&M II but are now accessible (see http://hyperion.gsfc.nasa.gov/Analysis/UARS/urap/home.html).

The M&M II exercise has also benefited from additional data from various ER-2 aircraft campaigns (AASE II 91/92; SPADE 92/93; ASHOE/MAESA 94; STRAT 95/96; POLARIS 96/97) and balloon launches from the OMS program (Brazil, Alaska, Bill Brune, Geoff Toon). New data on SF₆, CO₂ and H₂O provide diagnostics for transport rates, mean age of air, and propagation of seasonal cycles into the tropical lower stratosphere. Enhanced payload of the ER-2 provided in situ measured concentrations of OH and HO₂. Data from the new ClONO₂ instrument also place additional contraints on partitioning of the chlorine species. Simultaneous measurements of NOₓ and NO₃ allow determination of the NOₓ/NO₃ ratio. New data on aerosol
surface areas and photolysis rates measurements provide additional constraints on our understanding of photochemical partitionings.

A climatology for ozone, consisting of monthly zonal mean column ozone and monthly ozone profiles as a function of latitude, was put together for M&M II. The column ozone climatology is based on ozone column data from 1988 to 1996 using TOMS on Nimbus-7, Meteor 3 and Earth Probe. The ozone profile is based on ozone sonde data between 0 and 28 km and SAGE II data between 20 and 60 km. In the region where the two datasets overlap (20-30 km), a weighted average is used with a heavier weighting for the sonde data at lower altitudes and a heavier weighting for the SAGE II data at higher altitudes.

B. Strategy for Model Testing

Ozone is the only species where there is long-term global coverage to derive a reliable climatology. However, using ozone by itself as a guide to choose the best transport and chemistry representations in a model is problematic since it is never clear whether a good ozone simulation in a particular model is achieved by having the correct combination of transport and chemistry or simply good fortune. A wrong transport rate in the model will give erroneous Cl and NOy, which will produce an incorrect local ozone removal rate. The combination of the wrong transport with the wrong ozone removal rate could fortuitously result in a “correct” ozone simulation. This makes it impossible to use the agreement between observed and calculated ozone as the only criterion for having the correct transport.

Direct comparison of model simulated tracer distributions with observed distributions has limited value. In the case of observations from satellite platforms, one must take into account that the observations represent a specific year while the model results represent a climatological mean. Comparison of 3-D data with 2-D model results requires additional work since straight zonal averaging of the observation may overlook the effects from the wave motions that should be taken into account. This is particularly important for the winter hemisphere where planetary wave activities are stronger. In those cases, averaging by potential vorticity (PV) may help (see e.g. Randel et al., 1998). Finally, observations from aircraft and balloon platforms may be affected by short term motions so that observations taken at a particular latitude and altitude may be sampling air that has been transported from another location. In those cases, use of alternative co-ordinates such as N2O and PV would also help.

Comparison of radical species with model results are even more problematic. For example, discrepancies between model calculated and observed NO2 concentration at a particular location could be due either to differences in NOx concentrations, differences in partitioning (because of differences in local temperature, overhead ozone or air trajectory, treatments of heterogeneous reactions), or a combination of the two. In this report, the simulation is carried out for 1992, a period when the stratosphere was heavily perturbed by Pinatubo aerosols. Hence, the exercise provides a test bed for volcanic perturbations to stratospheric chemistry and the ways in which it is described in the models. However, the approaches to polar stratospheric cloud and volcanic heterogeneous chemistry were not 'standardized', and each modelling group made their own choices.
A number of theoretical developments enable us to develop a new strategy for model testing. Successful simulation of ozone depends on several processes. Therefore, it is difficult to identify the causes of the discrepancy between model results and observation. The current approach in M&M II identifies a number of independent tests for individual process simulated in the model (see Figure 1 and discussion below). Having the independent tests for the components provides a theoretical framework in which further adjustments could be made.

B.1 Focus on Transport

Current thinking considers the lower stratosphere as being separated into the tropics, extratropics and the polar regions. The tropical lower stratosphere is dominated by upwelling from the tropopause. It is the region where source gases from the troposphere are transported into the stratosphere. In this region, the local concentration of ozone is maintained by a balance between net photochemical production and transport away from the region. Downward motions occur in the extra-tropics and the polar region. In both regions, local ozone concentration is determined by the balance between photochemical removal and transport into the region. In addition to the large scale motion as determined by advection, neighboring regions also communicate by irreversible transport associated with wave motions. In 2-D models, these are simulated by exchange of air between the two regions along isentropes whose rate is related to the horizontal eddy diffusion coefficient (K_{yy}). If the mixing ratio of a species is different in two neighboring
regions, this exchange of air will lead to a net transport of the species. Vertical motion (downward) and vertical mixing will carry material out of the extra-tropical lower stratosphere into the troposphere. Exchange along isentropes across the middle world is also thought to be important. This mixing connects the extra-tropical lower stratosphere and the tropical upper troposphere. Within this framework, the transport can be described by specifying the upwelling in the tropics, downward motions in the extra-tropical lower stratosphere, vertical mixing in each region, and the values of K_{yy} linking neighboring regions.

Progress has been made on understanding the individual components of transport in 2-D models. Heating rates calculated from observed ozone, temperature and aerosol [Eluszkiewicz et al., 1996; Jackman et al., 1996; Rosenlof, 1995] can be used to verify the heating rates associated with the residual circulation used in the models. In fact, several models (e.g. CSIRO, GSFC and LLNL) use heating rates calculated using observed fields to derive the residual circulation. Work by Minschwaner et al. [1996], Volk et al. [1996] and Schoeberl et al. [1997] provide a quantitative measure of the mixing rate between the tropics and mid-latitudes. Work by Hall et al. [1997] and Mote et al. [1998] provide measures of K_{yy} in the tropics in addition to upwelling velocity and mixing rate from mid-latitudes. With these works, a conceptual framework has been developed to identify the key transport processes in the lower stratosphere. Some of these parameters are related directly to observations (e.g., SF$_6$, CO$_2$) on the one hand, and can be derived as diagnostics from model output. Comparison of these model diagnostics with the values derived from observations provides a measure of how well the transport processes are simulated in each model.

The combinations of the data on long-lived tracers from satellite, aircraft and balloon platforms provide ample opportunity to study the correlation diagram for these species. As shown by Plumb and Ko [1992] and Plumb [1996], the slope of the correlation curve can be related to the ratio of the stratospheric lifetimes of the two species. The knowledge on the tropospheric growth rate of SF$_6$ allows one to translate relative lifetime to absolute lifetimes for comparison with model calculations [Volk et al., 1997].

B.2 Focus on Chemistry

The local production and removal rates of long-lived species such as ozone, N$_2$O, and CH$_4$ depend on the local concentrations of the radicals and photolysis rates. Partitioning of the radicals in an air parcel is determined by the local concentration of ozone, H$_2$O, Cl$^-$, NO$_y$, Br$^-$, and CH$_4$; and the solar illumination to which it is exposed. The solar illumination depends on the overhead column ozone and the exact trajectory of the motion. This is particularly important near the terminator as excursions in latitude would bring the parcel in and out of sunlight. Away from the terminator, the observed concentrations of the radicals at a particular latitude and longitude are found to correspond to the partitioning calculated for the air-parcel by assuming that the parcel is in photochemical equilibrium while executing exact zonal motion at the same latitude and altitude.

In situ observations of atmospheric trace species provided data for process studies of the partitioning of the radical species over a range of conditions with different sulfate loading and solar illumination. In a series of studies performed by Ross Salawitch [see e.g. Salawitch et al.,
it was demonstrated that a photostationary box model constrained by observed values of sulfate surface area, temperature, NO$_y$, Cl$_y$, Br$_y$, H$_2$O, ozone, overhead column ozone and CH$_4$ can produce the observed partitioning of the radical species under a range of conditions. This method has been validated in the lower stratosphere using the data from the AASE II, ASHOE/MAESA, SPADE and POLARIS aircraft campaigns, and in the mid- to upper stratosphere using balloon data.

The above approach used to analyze the observations can be modified to examine photochemical partitioning in the models. Specifically, appropriate parameters are taken from the outputs of the assessment models to constrain the photostationary model. The radical concentrations calculated by the constrained photostationary model can be compared to the radical concentrations calculated by the assessment models. To the extent that the photostationary model can simulate the observed radicals using appropriate rate data, this provides verification of the photochemical solvers in the assessment models. The production and removal rates of the reservoir species calculated by the assessment models are also partially verified since they are determined by the radicals. The limitations of this approach are discussed in section 5.2.

C. Results of M&M II

The numerical experiments for M&M II were chosen so that the results from different models could be easily compared and that specific diagnostics which can be related to observations provide guidelines for the correct answers. The experiments can be separated into two groups. The first group involves simulations of chemical inert tracers and is used to provide diagnostics for transport. The second group uses the distributions (as functions of latitude, height and seasons) of chemical tracers simulated in the models (H$_2$O, Cl$_y$, NO$_y$, various source gases and ozone) for comparison with observations.

C.1 TRANSPORT EXERCISES

The transport exercises include the following:

1. simulation of a special tracer for diagnosing the age spectrum, and seasonal variation of the transport parameters (A-1 and A-2),

2. simulation of the distribution of an inert tracer using the boundary condition corresponding to the emission history of SF$_6$ (A-5),

3. simulation of the distribution of an inert tracer using the seasonally varying boundary condition corresponding to that of CO$_2$ (A-6),

4. simulation of the distributions of inert tracers released in the lower stratosphere, which represent HSCT emissions (A-3 and A-4).

The age spectrum [Hall and Plumb, 1994] encapsulates all the information required to reconstruct the stratospheric response to any tropospheric time series of a conserved tracer, and as such it summarizes transport in a chemistry-independent way. From this, the mean age can be
directly determined and compared with determinations from observations of SF₆ [e.g., Elkins et al., 1996; Harnisch et al., 1996] and from the observed trend in CO₂ [Boering et al., 1995, 1996]. The response to a seasonally varying source can also be reconstructed. In principle, the full seasonal variation of the age spectrum, which cannot be fully determined from the single experiment A-1, is required to do this, and so experiment A-2 was designed to simulate seasonal tracers explicitly. However, it was found that the results of the seasonal tracer experiments could be reconstructed with little error from the age spectrum derived from experiment A-1.

The model calculations of mean age for the stratosphere were found to vary widely, by as much as a factor of 4. Moreover, compared to mean ages determined from observed SF₆ and CO₂ data, most models produced air that is too young throughout the stratosphere. Theoretical arguments indicate that stratospheric ages that are too young could result from a mean meridional circulation that is too strong, horizontal mixing between tropics and middle latitudes that is too weak, or vertical diffusion that is too strong [analyses of observed tracers indicates that vertical diffusion is negligible in the tropical atmosphere [Hall and Waugh 1997], but this may not be true of all the models]. Controlled comparisons between models differing in one or more of these circulation features are consistent with these arguments. A contribution from numerical errors (to which age calculations may be sensitive) cannot be ruled out, as no experiments were designed to compare transport schemes, but it is noteworthy that one pair of models, essentially identical except for their advection schemes, produced very similar magnitudes and distributions of stratospheric age.

The observation of propagation of the seasonal cycle of CO₂ [Boering et al., 1996], and that of H₂O [Mote et al., 1998] allows one to examine the upward propagation of a signal into the tropical lower stratosphere. Most models attenuated the signal too quickly; those that did not showed too rapid upward phase propagation. From the phase velocity and attenuation, and a third measurement such as mean age, one can deduce the tropical upwelling rate, the vertical eddy diffusion coefficient, and the rate extratropical air mixes into the tropics [Hall and Waugh, 1997; Mote et al., 1998]. Compared to such deductions from observations, tropical upwelling in most models is too fast, consistent with the circulation being too strong from the age comparison. Vertical diffusion is also too large in many 2D models. Compared to the mixing rate time constant of about 15 months derived from several independent analyses of observations, most models are mixing the tropics and mid-latitudes too fast. This suggests that weak horizontal mixing is not the reason for the excessively young ages in most models.

Boering et al. [1996] suggested that the model-calculated mean age should be related to the residence time of materials deposited at the same rate (in mixing ratio unit) in the whole stratosphere. Indeed, it was found that model simulations of trace gases, not only of those with stratospheric sources, but also those with tropospheric sources, correlated extremely well with the age simulations. Model-to-model variation for tropospheric source gases is modest, but that for gases with stratospheric sources is substantial, being as large as a factor of 2 for Cl, in the lower stratosphere and as much as a factor of 3 for the idealized HSCT emission simulation (experiments A-3 and A-4). Thus, model deficiencies in the simulation of age are indicative of serious transport errors that may impact the models' ability to simulate stratospheric composition, especially the stratospheric burden of HSCT emissions. This is an important step in the verification of model-computed changes in NOₓ and H₂O due to aircraft emission, and
these results indicate that improvements in the simulation of stratospheric transport should be a high priority in future model development.

C.2 CHEMISTRY PARTITIONING

Testing chemistry partitioning in the models is performed as follows. First, the individual model was asked to simulate the 1992 atmosphere providing the calculated concentrations of the trace gases including the radical species. Appropriate parameters are taken from the outputs of the individual model to constrain the photostationary model of Salawitch. The radical concentrations calculated by the constrained photostationary model are used to verify the radical concentrations calculated by the assessment models.

The M&M I report identified a 30% difference in model calculated partitioning. Two separate photochemical benchmark exercises were carried out in 1994 to resolve this. As a result of these calculations, the participating models have identified the causes of these differences for their own models and modified them accordingly so that they produce the correct benchmark answers. As expected, the comparison with the constrained photostationary model confirms that the photochemical solvers used in most assessment models are in good agreement with the photostationary model.

In interpreting the chemistry test, one should be aware of the following two caveats. First, results of the photostationary model depend on the reaction rate constants used. With the current JPL-97 recommendation, some discrepancies between calculated results and observed results still exist. Most notable of these is the model ozone deficit at 40 km [Clancy et al. 1987 and references cited; Natarajan and Callis, 1991; Eluszkiewicz and Allen, 1993; Crutzen et al., 1995; Dessler et al., 1996; Osterman et al., 1997; Summers et al., 1997]. There are indications that models may underestimate the NOy/NO2 ratio in the summer lower extra-tropical stratosphere [Sen et al., 1998, Gao et al., 1999, Danilin et al., 1999]. Recent laboratory measurements [Brown et al. 1999 a,b] suggest that the rate recommendations for OH + NO2 and OH + HNO3 in JPL-97 may have to be revised. Second, the above procedure provides a valid test only for situations where heterogeneous chemistry is easily parameterized and where local photochemistry is rapid. It is well-known that behavior of the radicals depends on the air-parcel trajectory (temperature and solar illumination) in regions when the temperature is cold enough to trigger heterogeneous chemistry on surfaces. In addition, the long photochemical lifetimes of some reservoirs in the lowermost stratosphere (such as HNO3 and HCl) imply that transport can influence chemical partitioning, and the local photostationary solution may not be appropriate. There remains a need to find ways to verify the PSC treatments in the models.

C.3 CHEMICAL TRACERS

In the following comparison, we emphasize specific aspects rather than direct comparison with observed concentrations:

- The model calculated atmospheric lifetimes of N2O and several CFCs from the models are longer than those derived from observations by Volk et al. [1997] and Minschwaner et al. [1998]. Assuming that the photolysis rates are correct, the models would need a stronger
upwelling in the tropics and/or less mixing between the tropics and mid-latitudes to get longer lifetimes. Unfortunately, this conflicts with the requirement to get greater mean age of air at mid-latitudes.

- Because of zonal asymmetric motions, computation of the zonal mean of observed N₂O and CH₄ would underestimate the latitudinal gradient across the tropical barrier and polar vortex. The alternative way is to use PV to define an equivalent latitude. The gradient across the barrier defined this way is more pronounced. It is likely that unsuccessful simulations of the correct gradients across the region boundaries would imply incorrect exchange rates across the boundary.

- Analyses of the HNO₃ and N₂O measurements in the polar vortex suggest that correlative measurements of those two species provides an indication of removal of gas-phase HNO₃ by heterogeneous reactions and recovery of HNO₃ on the polar region.

- Model results show significant differences in NOₓ and Clₓ (>50% at mid-latitudes, larger in the polar region) in the lower stratosphere. Differences in model calculated NOₓ and Clₓ computed using specified source gases (N₂O for NOₓ, CFCs for Clₓ) are even larger, indicating differences in transport as a major contributor.

- The UARS measurements provide information on seasonal behavior of NO, NO₂, HNO₃, HCl, ClONO₂, and ClO. The differences among model calculated concentrations for these species are large, reflecting the differences in NOₓ and Clₓ, and different partitionings because of different local ozone. Given the large ranges covered by the model calculated values, the observed values generally lie within the model ranges most of the time. However, there is no one model that matches the observation in a consistent way.

C.4 OZONE COMPARISON

The comparison between model ozone and the ozone climatology shows the following:

- The model predicted columns are within ±5% of the climatology in the tropics, ±15% at mid-latitudes, and as much as 30% in polar region. The general tendency is to underestimate the tropical column and overestimate the column in the extra-tropics, consistent with too strong a circulation.

- Models that follow the JPL recommendation underestimate the ozone amount above 40 km (about 10% too little around 40 km, up to 30% less at 60 km). Calculations have shown that including a 6% yield of HCl from OH + ClO will increase the model calculated ozone in this region.

- The calculated ozone is within 10% of the climatology between 25 km and 35 km in the tropics and mid-latitudes. The differences are as large as 30% at high latitudes in some models. Larger differences also occur in the lower stratosphere. The differences are largest in the extra tropics below 20 km where some models overestimate ozone by as much as 100% around 14 km.
• Concentrations of tropospheric ozone are more than a factor of 2 too low for many of the models.

Several other exercises were also included. While these results cannot be easily compared to observations, they provide some useful insights.

• The local ozone production and removal rates for the simulation of the 1992 atmosphere from different models were compared to each other. In spite of the large differences in NO\textsubscript{y}, Cl\textsubscript{y}, Br\textsubscript{y} and H\textsubscript{2}O concentrations, the calculated production and removal rates show many similarities. This suggests that there is internal buffering of the system.

• In another exercise, all the models used the same fixed ozone production and loss rates to compute ozone. This exercise highlighted how differences in transport affect the model computed ozone. Generally, the column ozone computed in this exercise for a model was fairly close to the column ozone calculated by the same model for the 1992 atmosphere even though the ozone production and loss rates used in two simulations were quite different.

REFERENCES

Brown, S.S., R.K. Talukdar, and A.R. Ravishankara, Rate constants for the reaction OH + NO\textsubscript{2} + M \rightarrow HNO\textsubscript{3} + M under atmospheric conditions, \textit{Chem. Phys. Lett.}, 299, 277-284, 1999a.

INTRODUCTION

The POLARIS aircraft campaign was designed to understand the seasonal behavior of polar stratospheric ozone as it changes from very high concentrations in spring down to very low concentrations in autumn. This behavior has been attributed to an increased role of NO$_x$ catalytic cycles for ozone destruction during periods of prolonged solar illumination such as occur at high latitudes during summer. The detail with which current photochemical models can describe this large natural change in ozone serves as an indication of how well the role of increased stratospheric NO$_x$ from anthropogenic sources can be quantified.

The campaign primarily utilized the NASA ER-2 and balloon platforms based in Fairbanks, Alaska to make measurements of select species within the reactive nitrogen (NO$_y$), halogen (Cl$_y$), and hydrogen (HO$_x$) families; aerosols; and other long-lived species in the lower and middle stratosphere. The POLARIS campaign included a total of 30 ER-2 flights and 3 balloon flights in 3 deployment periods in 1997: 17 April to 15 May, 24 June to 13 July, and 3 to 27 September. The flight dates for each are included in the Appendix. These measurements along with computer models of the atmosphere as well as meteorological and satellite data are being used to evaluate spring-summer-fall ozone changes due to chemistry and transport at high latitudes.

The POLARIS web page (http://cloud1.arc.nasa.gov/polaris/index.html) provides additional details on the mission, including overview, goals, logistics, schedule, platform payloads, and science and support team members. The POLARIS flight logs and science and support team lists are included in the Appendix.
DEPLOYMENT DESCRIPTIONS

Phase I

This ER-2 flight series covered a latitude range from 13°N to 90°N at cruise altitudes near 20 km in the lower stratosphere. On most flights, vertical coverage extended from ~15 to 21 km at selected latitudes. Several vertical profiles were obtained between cruise altitude and the surface at the two deployment sites, NASA Ames Research Center (37°N) and Fairbanks (65°N).

This flight series achieved a number of science goals including: 1) penetration into the northern polar vortex on 26 April 1997 (the polar vortex had unusually low ozone and persisted for an exceptionally long period during the spring of 1997; see Geophysical Research Letters, 24, at http://www.agu.org/pubs/toc/gl/gl_24_22.html for a series of articles describing these low ozone values); 2) completion of both sunrise (30 April 1997) and sunset (9 May 1997) flights at high latitudes in the stratosphere, with the data indicating unusual asymmetries in trace-gas behavior in low-angle illumination; 3) penetration into stratospheric air masses that had experienced continuous sunlight for periods ranging from 1 to 12 days (2, 6, and 13 May 1997) and that revealed important observational-model (photochemical steady-state and trajectory) discrepancies with respect to NOx concentrations; and 4) a launch of the Advanced Earth Observing System (ADEOS) Validation Campaign balloon payload.

Phase II

With the ER-2 based solely in Fairbanks during Phase II, the latitude survey range extended only from 47.7°N to 90°N in the lower stratosphere. Vertical coverage to 21 km in the Fairbanks region was quite good because of stacked flights on 30 June 1997 and 10 July 1997, with vertical profiles over the 15- to 20-km altitude range near 47.7°N and 90°N.

This flight series achieved a number of science goals including: 1) sampling of midsummer polar air that had undergone continuous solar exposure for an extended period; 2) Observations from the Middle Stratosphere (OMS) balloon flights using the in situ and MkIV solar absorption interferometer payloads to altitudes in excess of 30 km (performed coincidentally with the ER-2); and 3) sampling of winter polar vortex fragments in midsummer.

Phase III

Phase III ER-2 flights included latitudes extending from 90°N to 3°S in the lower stratosphere. Both sunrise and sunset flights in late summer were conducted over the Fairbanks region, similar to those flown in Phase I. In addition, a midday solar zenith angle flight was flown on 19 September 1997, providing a nearly full scan of solar zenith angles from sunrise to sunset.

As the final component of this phase, the ER-2 transited to Barbers Point, Hawaii on 21 September 1997, performed a flight to slightly south of the equator on 23 September 1997, and returned to Ames on 25 September 1997. Vertical profiles from the ground to 21 km occurred at Fairbanks, Hawaii and NASA Ames Research Center, with profiles over the 15- to 20-km altitude range near 3°S and 90°N.
POLARIS SCIENCE SUMMARY

Ozone Evolution during the Summer of 1997

The total ozone values during 1997 generally followed the typical summer evolution. Figure 1 displays longitudinally (zonally) averaged total ozone between November 1996 and October 1997 as observed by the Earth Probe Total Ozone Mapping Spectrometer (TOMS) satellite instrument. Superimposed on the plots are the POLARIS ER-2 flight tracks over the course of the deployment (dark vertical lines). The TOMS satellite data display the very strong mid-latitude maximum of ozone during the northern spring. Note also the anomalous polar low of ozone in late March and April 1997 (see GRL articles referred to earlier). POLARIS flights nearly sampled the entire equator-to-pole ozone gradient at an altitude of about 20 km during the first deployment. The TOMS data show the April polar low quickly recovered to normal high values in May. As the season evolved, total ozone gradually decreased in the mid- to high latitudes, with the largest decreases in the polar region. This differential decrease led to the development of the normal summer polar low and mid-latitude belt of high ozone. The second POLARIS deployment sampled the period of greatest total ozone decline during late June, and covered the region of the mid-latitude belt of high ozone. The final POLARIS deployment in September sampled the polar region during the period of minimum ozone values in the Northern Hemisphere annual cycle.

In situ sampling of ozone occurred over the entire POLARIS period via the ER-2, ozone sondes, and the OMS flights. Remote sensing measurements of ozone were conducted from both ground and balloon observations. Figure 2 displays ozonesonde profile data taken over the course of the summer period at Fairbanks, Alaska (triangles at bottom indicate sonde launch dates) with ER-2 flights superimposed as white vertical lines, and the tropopause indicated by the thick white horizontal line. The contours of ozone partial pressure decrease over the course of the summer period. For example, 16-nbar contours are apparent during April, but only values of ~12 nbar are present during September. Ozone levels above ~28 km show small changes over the entire period, while the tropopause shows rather minor variations. These ozone partial pressure decreases are reflected in the decrease of total ozone concentrations during summer as observed by TOMS in Figure 1, and illustrate how the ozone changes are confined to the lower stratosphere.

1997 Northern Summer Meteorology

The meteorological situation was generally consistent with climatology. The spring (April and early May) was anomalous because of the persistence of the winter polar vortex. Figure 3 displays zonally averaged winds for the Northern Hemisphere as determined from the Goddard Space Flight Center (GSFC) Goddard Earth Observing System-Stratospheric Transport of Atmospheric Tracers (GEOS-STRAT) analyses over the course of the POLARIS period. The temperature contours are shown with long dashed lines and the tropopause is shown as a thick horizontal line. POLARIS ER-2 flight tracks during the respective months are indicated by the white lines.

Westerly stratospheric winds (solid line contours) during April 1997 were much stronger than expected, since the polar vortex usually breaks down in late March or early April. The first POLARIS flight to the north pole on 26 April 1997 was able to reach just inside the northern polar
vortex. The zonal monthly mean gives a somewhat distorted picture, since the vortex was offset into the Eastern Hemisphere over northern Siberia, and the winds considerably weakened over the course of the month. By mid-May, the vortex had deteriorated, with winds slowed to their normal easterly circulation (dotted line contours). By June, the stratosphere was generally dominated by easterlies, although atmospheric waves of considerable amplitude extended into the stratosphere over the course of the deployment. By the final phase of the deployment in September, polar winds were beginning to make the transition to the winter westerly circulation. The descending westerly phase of the quasi-biennial oscillation (QBO) dominated the tropical circulation during the entire POLARIS period. These descending westerlies are seen at the equator above 30 hPa in April, and centered at about 50 hPa in September.

Twice-daily balloon observations at Fairbanks show the descent of the easterly winds during the early-May period. Figure 4 displays zonal winds from these sondes over the course of the POLARIS period over Fairbanks (contours are 10 m s⁻¹ with westerly winds as solid line contours, and easterly winds as dashed line contours). The disappearance of the strong westerly winds is just apparent at the end of April, with the corresponding appearance of the normal summer easterlies. The westerlies reappear over Fairbanks in August, just prior to the third POLARIS deployment.

In addition to the general wind behavior, note that the variability of the winds decreases quite dramatically with altitude. At altitudes near the tropopause, the day-to-day variation of the zonal wind is quite large. At higher altitudes this variation is markedly less. Because of the easterly winds in the stratosphere, synoptic-scale waves cannot penetrate into the middle stratosphere, and wind variability falls off with increasing altitude. This lessening of wind variability results in reduced mixing by these synoptic systems. Based on this type of wind variability, mixing ought to be strongest near the tropopause, and significantly decrease at altitudes above ~400 K.

Air will remain on an isentropic surface in the absence of any diabatic heating processes. Typical diabatic heating rates are quite small during the summer period, hence the cross isentropic mass flux should be small. The diabatic heating rates have been calculated for the entire summer period over the polar region (see Figure 5). At the start of the first POLARIS deployment, diabatic heating rates (contours with thin solid lines denote positive values while those with thin dotted lines denote negative values) were positive because of the colder polar temperatures resulting from the persistent vortex. This situation quickly changed, and there were generally small diabatic cooling rates in the polar region. Typical values of diabatic cooling were approximately -0.5 K/day or about 15 K per month isentropic change. Since ozone has a vertical gradient of ~0.02 ppmv/K in the lower stratosphere, this diabatic cooling rate leads to an ozone increase of ~0.3 ppmv over a 1-month time scale, representing an ~15% increase of ozone on the 480-K isentropic surface solely from downward diabatic advection.

Observations Highlights

- Stratospheric Nitrogen Chemistry

NO, NO₂, and total odd nitrogen were measured during all three of the POLARIS deployments. The measurements of the ratio NOₓ/NOₙ (NOₓ = NO + NO₂) were consistently higher than
modeled (photochemical steady-state, trajectory, and three-dimensional (3-D)) values throughout the POLARIS campaign. Flights in May and September that revisited the same airmass several times over the course of five hours provide important information on the possible explanations for this discrepancy. Specifically, we made observations that provide information on the rates of \(\text{N}_2\text{O}_5 \) formation after sunset, \(\text{N}_2\text{O}_5 \) photolysis at sunrise, and on the rate of change of \(\text{NO}_x \) during the afternoon. Simultaneous observations of \(\text{OH} \) in the afternoon provide further restrictions on the possible mechanisms for the unexpectedly high \(\text{NO}_x \). Models that reproduce the observations may be more sensitive (exhibit greater ozone loss) to added nitrogen oxide such as might occur via the emissions from aircraft than the current generation of models. However, buffering by \(\text{HO}_2 \) and halogens modify the \(\text{NO}_x \) impact on ozone, and complicate the issue of whether additional \(\text{NO}_x \) from aircraft will increase ozone loss.

The \(\text{NO}_x/\text{NO}_y \) ratio changed dramatically over the three phases of the mission. \(\text{NO}_x/\text{NO}_y \) ratios varied from 0.07 to 0.28 and maximized around summer solstice when periods of photolysis were nearly continuous at high latitudes over the course of the day. These observations are consistent with a reduction in heterogeneous \(\text{N}_2\text{O}_5 \) hydrolysis due to the suppression of \(\text{N}_2\text{O}_5 \) formation. In addition, the concentration of \(\text{BrONO}_2 \) is reduced around summer solstice due to higher photolysis loss, which further reduces formation of \(\text{HNO}_3 \).

The \(\text{NO}_2 \) measurements from the laser-induced fluorescence instrument compared well with the photolysis-chemiluminescence measurements. In addition, these observations compared well with simple, constrained models based on measurements of \(\text{NO}_x \), ozone, and the solar radiation field. Small differences in calibration between the two measurement approaches will be evaluated in the laboratory over the next few months.

While the \(\text{NO}_x/\text{NO}_y \) ratio is poorly represented by most models, the observed \(\text{NO}_2/\text{NO} \) ratio is accurately predicted using a photochemical steady-state model. Photolysis of \(\text{NO}_2 \) (i.e., \(J(\text{NO}_2) \)) is derived from standard photolysis models using satellite data, ER-2 constituent observations, and Ultraviolet-Visible (UV-Vis) observations from the Composition and Photodissociative Flux Measurement (CPFM) instrument. These rates show some discrepancies, but generally agree to within 5%. Calculations of \(J(\text{NO}_2) \) at high solar zenith angles (SZA) \((89^\circ < \text{SZA} < 91^\circ) \) have been evaluated using in situ measurements of \(\text{NO}_x \) and ozone. It was found that the height of clouds beneath the ER-2 can affect the calculated value of \(J(\text{NO}_2) \) at high SZAs by as much as 20%. With cloud height values derived from satellite observations, the calculated \(J(\text{NO}_2) \) values agree well with those derived from \(\text{NO}_x \) and ozone measurements.

- **Ozone Loss Rates**

Preliminary calculations using in situ measurements of \(\text{NO}_x \), \(\text{HO}_x \), and \(\text{ClO} \) show that \(\text{NO}_x \) dominates the destruction of ozone in the summer Arctic stratosphere, with significant contributions from the \(\text{HO}_x \) cycles. Calculations of mid-latitude spring ozone loss rates during the Stratospheric Photochemistry, Aerosol, and Dynamics Expedition (SPADE) campaign showed that \(\text{HO}_x \) catalysis was the dominant ozone loss process. Near the summer solstice, the ozone destruction rate due to \(\text{NO}_x \) reached 13% per month, compared to 5% per month by \(\text{HO}_x \) and halogen cycles combined. The net ozone change reached -16% per month during that period.
Estimates of ozone loss (without production) have been computed using the GSFC 3-D chemical transport model (CTM) which is driven by winds derived from the Data Assimilation Office (DAO) GEOS data assimilation system (DAS). Figure 6 displays these ozone loss rates (percent per month) as a function of latitude and time on the 525-K isentropic surface over the course of the POLARIS campaign (white vertical lines show latitudinal range of POLARIS flights). Shown are total loss rates from all species (top), NO\textsubscript{x} (middle panel), and HO\textsubscript{x} (lower panel). Ozone losses in the model are principally driven by HO\textsubscript{x} and NO\textsubscript{x} chemistry. The NO\textsubscript{x} catalytic loss exceeds that of the HO\textsubscript{x} cycles at polar latitudes. These loss processes are largest in the polar region during periods of continuous sunlight in midsummer during the second POLARIS deployment, and fall to smaller values in the third deployment.

The net photochemical change of ozone using a photochemical steady-state model was -10 to -15% per month near 20 km, peaking during Phase I and at high latitudes during Phase II. The altitude range of net photochemical loss of ozone extended to ~24 km for the first MkIV flight during May, and extended to ~30 km for the second flight during July. The net photochemical loss rate of ozone is sensitive to the production rate of ozone, which increases as overhead ozone column falls and as the noontime solar zenith angle experienced by an airmass falls. Indeed, changes in the net photochemical change of ozone between various phases of POLARIS, and as a function of latitude during a specific phase, are driven as much by a variation in ozone production as by changes in NO\textsubscript{x}. Both the ozone loss rates based on radical measurements, and the model based ozone loss rates generally were consistent with the observed ozone decreases over the course of the summer.

- **Stratospheric Chlorine Budget**

The payload of the ER-2 includes a number of measurements of chlorine-containing species, including ClO, HCl, ClONO\textsubscript{2}, CFC-11, CFC-12, CFC-113, CCl\textsubscript{4}, and CH\textsubscript{3}CCl; plus a number of other halocarbons. These observations represent a large fraction of both the organic and inorganic chlorine reservoirs in the lower stratosphere. The ClONO\textsubscript{2} instrument provided its first measurements during the POLARIS deployments. ER-2 measurements of ClO, HCl, and ClONO\textsubscript{2} are very consistent with measurements of organic chlorine compounds. In addition, the measured ratio of ClO/ClONO\textsubscript{2} is in excellent agreement with the modeled photochemical steady-state value. The sum of the inorganic chlorine species, ClO, ClONO\textsubscript{2}, and HCl, is in excellent agreement with the value inferred from organic chlorine measurements from the Airborne Chromatograph for Atmospheric Trace Species (ACATS) and Whole Air Sampler (WAS) instruments. These measurements place exacting constraints on our understanding of the chemical mechanisms involved in chlorine partitioning, and suggest that our current understanding of stratospheric chlorine chemistry is very good.

In addition to the ER-2 observations, MkIV and Far-Infrared Spectrometer (FIRS) balloon-borne observations during Phases I and II also showed excellent agreement with our understanding of chlorine partitioning. The new in situ ER-2 measurements of ClONO\textsubscript{2} obtained during POLARIS add great confidence to our understanding of processes that regulate reactive chlorine at 20 km, and are entirely consistent with these balloon-borne remote measurements of ClONO\textsubscript{2} obtained by MkIV and FIRS.
• Sunrise and Sunset Flights and HO\textsubscript{x} Chemistry

Early summer sunrise/sunset flights were conducted during the first POLARIS deployment, while late summer sunrise/sunset flights were flown in the third deployment. These observations will be of value in addressing the diurnal chemistry of radicals in the lower stratosphere. In particular, the flights confirm the important role of the heterogeneous reaction of BrONO\textsubscript{2} + H\textsubscript{2}O in explaining the behavior of HO\textsubscript{x}, since concentrations of OH and HO\textsubscript{2} are significantly higher at high solar zenith angle than expected. The observations of HO\textsubscript{x} radicals during the third deployment are very consistent with observations made during Phase I, suggesting that our current understanding of diurnal HO\textsubscript{x} chemistry in the lower stratosphere is quite good.

• Polar Vortex Samples

Unusually low ozone values were observed in March 1997 inside the polar vortex by the Earth Probe TOMS, ADEOS TOMS, and Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) satellite instruments. Because of these unusual observations, the first POLARIS flight from Fairbanks on 26 April 1997 was directed at making measurements inside the stratospheric polar vortex. The ER-2 flight went on a direct path from Fairbanks to the north pole. Meteorological forecasts showed that the edge of the polar vortex was near the pole, with the bulk of the vortex offset into the Eastern Hemisphere. The vortex edge was observed near the pole, based upon various trace gas observations (e.g., methane, N\textsubscript{2}O, SF\textsubscript{6}, NO\textsubscript{y}, and CO\textsubscript{2}). Nitrous oxide (N\textsubscript{2}O) dropped to ca. 80 parts per billion by volume (ppbv), while other chemical and particle tracers showed comparable behavior. Measurements made inside the vortex on this flight did indeed show low values of ozone with respect to long-lived tracers such as nitrous oxide. The most convincing evidence for a polar ozone deficit was observed in the polar dive on this flight, between 400 and 470 K. Measurements of ozone deep within the vortex were inaccessible because the stationary position of the vortex was beyond the permitted ER-2 operational flight region.

• Midsummer Vortex Fragments

Long-lived trace-gas measurements during the second POLARIS deployment showed anomalously low values in a relatively narrow layer near 20 km. A particular filament sampled by the ER-2 showed N\textsubscript{2}O values down to 50 ppbv. The OMS payload also made measurements in this anomalous layer and in a higher layer at ~30 hPa. These layers are too vertically narrow to be observed by satellite instruments (such as Stratospheric Aerosol and Gas Experiment (SAGE) or HALOE). Three-dimensional transport model predictions of such layers have been previously described in the literature, but have heretofore been unobserved. The layers appear to be remnants of the polar vortex following the late spring breakup. These observations indicate that vortex fragments can survive at least two months following vortex breakup. Previous analysis using an advection-diffusion model together with SPADE ER-2 data and trajectory calculations, suggested that during spring, vortex filaments are mixed into the background field within 25 to 30 days [Waugh et al., 1997]. Preliminary results indicate that during summer the time scale for the large-scale flow to reduce the scale of these filaments down to mixing scales is twice as large as during winter/spring.
• Ozone Transport Effects

Ozone changes on a potential temperature surface are not solely a result of photochemistry. As was observed in the second POLARIS deployment, transport significantly altered the CO$_2$-N$_2$O relationship for values of N$_2$O less than 200 ppbv. The CO$_2$ data suggest that features of the ozone-N$_2$O correlation plots are due primarily to end-point mixing between vortex remnants and mid-latitude air.

Long-lived tracer-tracer relationships are relatively independent of potential temperature. Hence, CO$_2$ data suggest that a significant region of middle stratospheric air at high latitudes was not significantly affected by transport during the summer, although the influence of transport on ozone is difficult to define accurately because gradients between mid- and high latitudes are weak. However, the persistence of winter vortex remnants well into the summer (see previous item) provides direct support for the idea that high-latitude air is isolated from lower latitudes.

Tracer correlations from the WAS in the lower stratosphere suggest that the Arctic stratosphere was dynamically isolated during the spring-through-autumn period of POLARIS. One example of this behavior was the relatively slow increase inferred for hydrochlorofluorocarbons (HCFCs) (e.g., HCFC-141b) in the 20-km region compared to temporal increases in the troposphere and the stratospheric increases found during the STRAT missions at lower latitudes.

Survey flights to the tropics in early summer and late summer show the development of a very strong latitude gradient in long-lived trace gases such as N$_2$O, CO$_2$, SF$_6$, H$_2$O, and CH$_4$. This gradient development indicates that these long-lived trace gases were continuously injected into the tropical stratosphere, but had not intruded into the high latitudes.

• Stratospheric Transport

The mean age of air provides extremely important information for our understanding of the stratosphere, and an important test of transport in two-dimensional (2-D) and 3-D models. The mean age also provides a measure of the time that high-speed civil transport (HSCT) exhaust will spend in the stratosphere. The mean age of air observed over Fairbanks on 20 June was 6.8 years. This air is older than calculated by models, indicating that at high summertime latitudes, HSCT exhaust will likely accumulate in greater amounts than models currently predict.

Tracer-tracer correlations obtained from aircraft and balloons show clear differences among tropical, mid-latitude, and polar vortex air. These differences are pronounced in correlation diagrams for species such as CH$_4$, N$_2$O, and CFC-11. These correlation diagrams show evidence of mixing between the tropics and mid-latitudes, and between the polar vortex and mid-latitudes.

• Gravity Wave Mixing

The POLARIS wind measurements on all three deployments were dominated in the vertical profiles by inertia-gravity waves with peak-to-peak amplitudes of about 10 m/s. The correlations of these wind fluctuations with tracer profiles were generally quite low, consistent with the generally accepted idea that these waves are NOT responsible for the major filamentation of trace constituents.
in the stratosphere. Horizontal excursions associated with inertial period fluctuations of these amplitudes are at most ~100 km, creating relatively small perturbations of trace-gas profiles. A number of observed small "dents" in the tracer profiles were associated with these wind fluctuations.

Weak turbulence (as indicated by high-frequency vertical wind fluctuations) was correlated with strong vertical shears associated with the inertia-gravity waves. This observation, and the small dents in the tracer profiles related to the waves, suggests that the role of inertia-gravity waves in the summer Arctic stratosphere is to generate some of the mixing that breaks down the strong tracer filaments.

An interesting case arose on 10 July 1997, where a fortuitous and unplanned change in the flight path caused the aircraft to fly back and forth through a breaking mountain wave. Notably, the turbulence in this case was five times greater than in the strongest inertia-gravity wave case. Also, the amplitude of the mountain wave decreased to very small values at the highest flight leg, indicating that the mountain wave energy is absorbed by the decreasing very weak winds in the summer Arctic stratosphere.

- **Organic Fluorine Growth Rate**

Analysis of air from tropospheric samples collected in the Northern Hemisphere by L. Heidt and W. Pollock of the National Center for Atmospheric Research (NCAR) allowed a reasonable definition of the growth rate of selected organic fluorine gases since 1977. Preliminary examination of the measurements from POLARIS, still underway as of this writing, indicate concentration distributions in the stratosphere that are consistent with measured tropospheric growth rates. As a result, HFC-143a (CH₃CF₃) appears to have tropospheric growth rates and mixing ratios of sufficient magnitude that this compound could be used as another independent tracer of stratospheric age, in addition to SF₆ and CO₂.

- **Particle Observations**

The Focused Cavity Aerosol Spectrometer-Condensation Nucleus Counter (FCAS-CNC) data contain many interesting features, including aircraft plumes and large increases in nuclei-mode particle concentrations near 20 km in mid-latitudes not associated with any obvious plumes or tracer fluctuations. These regions of unexpectedly high particle concentration are unprecedented in our measurement record and will be investigated further.

Preliminary analysis of samples indicates that the sulfate aerosol concentration is in agreement with estimates for this region of the atmosphere. Soot, as collected on wire impactor samples, is found at concentrations one to two orders of magnitude less than sulfate aerosol. The soot results will be used to evaluate the potential role of soot surface reactions in the partitioning of reactive nitrogen and ozone loss rates.
FIGURE CAPTIONS

Figure 1. Values of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite shown as a function of latitude during 1997. Contour lines are labeled in Dobson Units (DU, m-atm cm) and separated by 25 DU. No observations are available for the white open areas at high latitudes. The dark vertical lines represent the range of latitude on individual ER-2 flight tracks during POLARIS.

Figure 2. Values of ozone in nbar as a function of altitude and pressure during the April to September period of 1997. Contours are separated by 2 nbars. Observations are from ozone sondes launched from Fairbanks, Alaska, (65°N) on dates marked by triangles at the bottom of the figure. The thin white vertical lines represent the altitude range of ER-2 flights during POLARIS. The thick white horizontal line represents the tropopause.

Figure 3. Vertical distribution of winds and temperatures as function of latitude and month during POLARIS. Zonally averaged winds for the Northern Hemisphere are determined from the Goddard Space Flight Center (GSFC) Goddard Earth Observing System-Stratospheric Transport of Atmospheric Tracers (GEOS-STRAT) analyses over the course of the POLARIS period. Contours show wind in units of m s\(^{-1}\) with intervals of 5 m s\(^{-1}\) (thin solid lines (westerly) and dotted lines (easterly)). The temperatures are superimposed as dashed lines, while the tropopause is superimposed as the thick solid line. POLARIS ER-2 flights during the respective months are indicated by the white lines.

Figure 4. Vertical distribution of zonal winds over Fairbanks, Alaska (65°N) as a function of time during POLARIS as observed with twice-daily balloon soundings. Contours are in intervals of 10 m s\(^{-1}\) with westerly winds as solid lines and easterly winds as dashed lines. The tropopause is shown as the thick white line and POLARIS ER-2 flights are indicated by the white vertical lines. The thin dot-dash lines are potential temperature contours in K.

Figure 5. Vertical distribution of diabatic heating rates as a function of northern latitudes for each month of POLARIS. Contours with thin solid lines denote positive values and those with thin dotted lines denote negative values. The thick solid line denotes zero heating rate. Contours intervals are 0.5 K day\(^{-1}\). The tropopause is shown as the unlabelled thick solid line and POLARIS ER-2 flights are indicated by the white lines. The long dashed lines indicate potential temperature in K with contour intervals of 100K.

Figure 6. Estimates of ozone loss (without production) using the GSFC 3-D chemical transport model (CTM) as driven by winds derived from the Data Assimilation Office (DAO) GEOS data assimilation system (DAS). Ozone loss rates in percent per month are shown as a function of latitude and time on the 500-K isentropic surface over the course of the POLARIS campaign where the white vertical lines show the latitudinal range of POLARIS flights. Loss rates are shown for all species (top), NO\(_x\) (middle panel), and HO\(_x\) (lower panel).
APPENDIX

POLARIS ER-2 Flight Log

Requested Flight Hours: 190.00
Augment (5/97): 40.00
Total: 230.00

<table>
<thead>
<tr>
<th>DATE (YYMMDD)</th>
<th>Sortie</th>
<th>POLARIS fl.</th>
<th>Flt. time</th>
<th>Pilot</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Flights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>970106</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>CIONO₂ test flight</td>
</tr>
<tr>
<td>970108</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td>CIONO₂ test flight</td>
</tr>
<tr>
<td>970112</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td>CIONO₂ test flight</td>
</tr>
<tr>
<td>970114</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td>CIONO₂ test flight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal: 20.00 hours</td>
</tr>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>970416</td>
<td>97-081</td>
<td>97-01</td>
<td>2.00</td>
<td>Collette</td>
<td>2-hr check flight</td>
</tr>
<tr>
<td>970418</td>
<td>97-082</td>
<td>97-02</td>
<td>5.00</td>
<td>Nystrom</td>
<td>5-hr check flight</td>
</tr>
<tr>
<td>970422</td>
<td>97-083</td>
<td>97-03</td>
<td>7.75</td>
<td>Porter</td>
<td>8-hr south survey from Ames</td>
</tr>
<tr>
<td>970424</td>
<td>97-085</td>
<td>97-04</td>
<td>6.00</td>
<td>Collette</td>
<td>Transit Ames to Ft. W.</td>
</tr>
<tr>
<td>970426</td>
<td>97-086</td>
<td>97-05</td>
<td>8.00</td>
<td>Nystrom</td>
<td>8-hr to NP/into vortex</td>
</tr>
<tr>
<td>970430</td>
<td>97-087</td>
<td>97-06</td>
<td>6.50</td>
<td>Collette</td>
<td>SZA flight (2:10-08:45)</td>
</tr>
<tr>
<td>970502</td>
<td>97-088</td>
<td>97-07</td>
<td>7.58</td>
<td>Nystrom</td>
<td>Photolysis - Canada</td>
</tr>
<tr>
<td>970506</td>
<td>97-089</td>
<td>97-08</td>
<td>6.83</td>
<td>Collette</td>
<td>Photolysis - 2 dips, Canada</td>
</tr>
<tr>
<td>970509</td>
<td>97-090</td>
<td>97-09</td>
<td>6.17</td>
<td>Collette</td>
<td>Sunset flight</td>
</tr>
<tr>
<td>970511</td>
<td>97-091</td>
<td>97-10</td>
<td>4.92</td>
<td>Nystrom</td>
<td>Stack flight</td>
</tr>
<tr>
<td>970513</td>
<td>97-092</td>
<td>97-11</td>
<td>6.67</td>
<td>Collette</td>
<td>Photolysis</td>
</tr>
<tr>
<td>970515</td>
<td>97-093</td>
<td>97-12</td>
<td>5.33</td>
<td>Collette</td>
<td>Return transit Ft. W. to Ames</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subtotal: 72.75 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cumulative: 92.75 hours</td>
</tr>
</tbody>
</table>
Phase II

<table>
<thead>
<tr>
<th>Date</th>
<th>Flight</th>
<th>Flight</th>
<th>Duration</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>970623</td>
<td>97-115</td>
<td>97-13</td>
<td>5.25</td>
<td>Broda</td>
</tr>
<tr>
<td>970626</td>
<td>97-116</td>
<td>97-14</td>
<td>7.75</td>
<td>Porter</td>
</tr>
<tr>
<td>970629</td>
<td>97-117</td>
<td>97-15</td>
<td>6.75</td>
<td>Broda</td>
</tr>
<tr>
<td>970630</td>
<td>97-118</td>
<td>97-16</td>
<td>4.58</td>
<td>Porter</td>
</tr>
<tr>
<td>970704</td>
<td>97-119</td>
<td>97-17</td>
<td>8.25</td>
<td>Porter</td>
</tr>
<tr>
<td>970708</td>
<td>97-120</td>
<td>97-18</td>
<td>8.00</td>
<td>Broda</td>
</tr>
<tr>
<td>970710</td>
<td>97-121</td>
<td>97-19</td>
<td>5.50</td>
<td>Broda</td>
</tr>
<tr>
<td>970712</td>
<td>97-122</td>
<td>97-20</td>
<td>5.50</td>
<td>Porter</td>
</tr>
</tbody>
</table>

Subtotal: 51.58 hours
Cumulative: 144.33 hours

Phase III

<table>
<thead>
<tr>
<th>Date</th>
<th>Flight</th>
<th>Flight</th>
<th>Duration</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>970902</td>
<td>97-115</td>
<td>97-13</td>
<td>5.50</td>
<td>Barrilleaux</td>
</tr>
<tr>
<td>970905</td>
<td>97-116</td>
<td>97-14</td>
<td>0.00</td>
<td>Barrilleaux</td>
</tr>
<tr>
<td>970906</td>
<td>97-117</td>
<td>97-15</td>
<td>0.00</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970907</td>
<td>97-118</td>
<td>97-16</td>
<td>0.00</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970908</td>
<td>97-152</td>
<td>97-22</td>
<td>7.75</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970909</td>
<td>97-153</td>
<td>97-23</td>
<td>0.50</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970910</td>
<td>97-154</td>
<td>97-24</td>
<td>4.25</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970911</td>
<td>97-155</td>
<td>97-25</td>
<td>6.40</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970912</td>
<td>97-156</td>
<td>97-26</td>
<td>6.70</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970913</td>
<td>97-157</td>
<td>97-27</td>
<td>0.00</td>
<td>Barrilleaux</td>
</tr>
<tr>
<td>970914</td>
<td>97-158</td>
<td>97-28</td>
<td>7.30</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970915</td>
<td>97-159</td>
<td>97-29</td>
<td>7.33</td>
<td>Broda</td>
</tr>
<tr>
<td>970916</td>
<td>97-160</td>
<td>97-30</td>
<td>8.00</td>
<td>Nystrom</td>
</tr>
<tr>
<td>970917</td>
<td>97-161</td>
<td>97-31</td>
<td>6.00</td>
<td>Nystrom</td>
</tr>
</tbody>
</table>

Subtotal: 62.23 hours
Cumulative: 206.56 hours
POLARIS Balloon Flight Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>970430</td>
<td>ADEOS payload</td>
</tr>
<tr>
<td>970508</td>
<td>ADEOS - MkIV payload</td>
</tr>
<tr>
<td>970630</td>
<td>OMS in situ payload</td>
</tr>
<tr>
<td>970704</td>
<td>MkIV payload</td>
</tr>
<tr>
<td>970708</td>
<td>OMS in situ</td>
</tr>
</tbody>
</table>

POLARIS Principal Investigators

POLARIS ER-2 Aircraft Instruments

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Institution</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Anderson and E. Hintsa</td>
<td>Harvard University</td>
<td>Water Vapor (H₂O)</td>
</tr>
<tr>
<td>J. Anderson, R. Stimpfle, and R. Cohen</td>
<td>Harvard University</td>
<td>Chlorine Nitrate (ClONO₂)</td>
</tr>
<tr>
<td>J. Anderson and P. Wennberg</td>
<td>Harvard University</td>
<td>High-Altitude OH Experiment (HO₂)</td>
</tr>
<tr>
<td>E. Atlas</td>
<td>National Center for Atmospheric Research</td>
<td>Whole Air Sampler (WAS)</td>
</tr>
<tr>
<td>D. Baumgardner and B. Gandrud</td>
<td>National Center for Atmospheric Research</td>
<td>Multiangle Aerosol Spectrometer Probe (MASP)</td>
</tr>
<tr>
<td>K. Boering and S. Wofsy</td>
<td>Harvard University</td>
<td>High-Sensitivity Fast-Response CO₂ Analyzer</td>
</tr>
<tr>
<td>P. Bui</td>
<td>NASA Ames Research Center</td>
<td>ER-2 Meteorological Measurement System (MMS)</td>
</tr>
<tr>
<td>J. Elkins</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>Airborne Chromatograph for Atmospheric Trace Species (ACATS)</td>
</tr>
<tr>
<td>R.-S. Gao</td>
<td>NOAA Aeronomy Lab</td>
<td>Reactive Nitrogen (NO/NOᵧ)</td>
</tr>
<tr>
<td>B. Gary</td>
<td>Jet Propulsion Laboratory</td>
<td>Microwave Temperature Profiler (MTP)</td>
</tr>
<tr>
<td>M. Loewenstein</td>
<td>NASA Ames Research Center</td>
<td>Airborne Tunable Laser Absorption Spectrometer (ATLAS)</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T. McElroy</td>
<td>Atmospheric Environment Service/Canada</td>
<td>Composition and Photodissociative Flux Measurement (CPFM)</td>
</tr>
<tr>
<td>R. May</td>
<td>Jet Propulsion Laboratory</td>
<td>Water Vapor (H₂O)</td>
</tr>
<tr>
<td>M. Proffitt and J. Margitan</td>
<td>NOAA Aeronomy Lab</td>
<td>Dual-Beam UV-Absorption Ozone Photometer (O₃)</td>
</tr>
<tr>
<td>R. Stachnik</td>
<td>Jet Propulsion Laboratory</td>
<td>Submillimeterwave Limb Sounder</td>
</tr>
<tr>
<td>A. Strawa</td>
<td>NASA Ames Research Center</td>
<td>Ames Particle Measurement System (APS)</td>
</tr>
<tr>
<td>C. Webster</td>
<td>Jet Propulsion Laboratory</td>
<td>Aircraft Laser Infrared Absorption Spectrometer (ALIAS)</td>
</tr>
<tr>
<td>J. Wilson</td>
<td>University of Denver</td>
<td>Focused Cavity Aerosol Spectrometer (FCAS) and Condensation Nuclei Counter (CNC)</td>
</tr>
<tr>
<td>K. Boering and S. Wofsy</td>
<td>Harvard University</td>
<td>Carbon Dioxide (CO₂)</td>
</tr>
<tr>
<td>J. Elkins</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>Lightweight Airborne Chromatograph Experiment (LACE)</td>
</tr>
<tr>
<td>M. Loewenstein</td>
<td>NASA Ames Research Center</td>
<td>Argus</td>
</tr>
<tr>
<td>J. Margitan</td>
<td>Jet Propulsion Laboratory</td>
<td>Dual-Beam UV-Absorption Ozone Photometer (O₃)</td>
</tr>
<tr>
<td>S. Oltmans</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>Water Vapor (H₂O)</td>
</tr>
<tr>
<td>C. Webster</td>
<td>Jet Propulsion Laboratory</td>
<td>Aircraft Laser Infrared Absorption Spectrometer II (ALIAS II)</td>
</tr>
</tbody>
</table>

Observations from the Middle Stratosphere (OMS) Balloon Instruments
Theoretical Modeling Projects, Ancillary Measurements, and Mission Support

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Hitchman</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>R. Kawa</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>M. Ko</td>
<td>Atmospheric and Environmental Research, Inc.</td>
</tr>
<tr>
<td>L. Lait</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>S. Lloyd</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>L. Pfister</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>R. Pierce</td>
<td>NASA Langley Research Center</td>
</tr>
<tr>
<td>R. Salawitch</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>S. Solomon</td>
<td>NOAA Aeronomy Laboratory</td>
</tr>
<tr>
<td>S. Strahan</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>A. Tuck</td>
<td>NOAA Aeronomy Laboratory</td>
</tr>
<tr>
<td>D. Waugh</td>
<td>Monash University (Australia)</td>
</tr>
<tr>
<td>S. Wofsy</td>
<td>Harvard University</td>
</tr>
</tbody>
</table>

Operations Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Barrilleaux</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>A. Cartledge</td>
<td>NASA Ames Research Center</td>
</tr>
</tbody>
</table>

ER-2 Pilots

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Barrilleaux</td>
<td>NASA Ames Research Center</td>
</tr>
<tr>
<td>K. Broda</td>
<td>Lockheed</td>
</tr>
<tr>
<td>W. Collette</td>
<td>Lockheed</td>
</tr>
<tr>
<td>J. Nystrom</td>
<td>Lockheed</td>
</tr>
<tr>
<td>D. Porter</td>
<td>Lockheed</td>
</tr>
</tbody>
</table>

Project Office

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Fahey</td>
<td>NOAA Aeronomy Laboratory</td>
<td>Project Scientist</td>
</tr>
<tr>
<td>P. Newman</td>
<td>NASA Goddard Space Flight Center</td>
<td>Project Scientist</td>
</tr>
<tr>
<td>S. Hipskind</td>
<td>NASA Ames Research Center</td>
<td>Project Manager</td>
</tr>
<tr>
<td>M. Craig</td>
<td>NASA Ames Research Center</td>
<td>Deputy Project Manager</td>
</tr>
<tr>
<td>K. Wolfe</td>
<td>Computer Sciences Corporation</td>
<td>Project Coordinator</td>
</tr>
<tr>
<td>Q. Allison</td>
<td>SIMCO</td>
<td>Logistics Coordinator</td>
</tr>
<tr>
<td>S. Gaines</td>
<td>Sterling Software</td>
<td>Archive/Network Manager</td>
</tr>
</tbody>
</table>
Program Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Kurylo</td>
<td>NASA Headquarters</td>
<td>Program Scientist/UARP Manager</td>
</tr>
<tr>
<td></td>
<td>and National Institute of Standards and Technology</td>
<td></td>
</tr>
<tr>
<td>R. Lawrence</td>
<td>NASA Goddard Space Flight Center</td>
<td>AEA Project Manager</td>
</tr>
<tr>
<td>R. Kawa</td>
<td>NASA Goddard Space Flight Center</td>
<td>AEA Project Scientist</td>
</tr>
<tr>
<td>J. Kaye</td>
<td>NASA Headquarters</td>
<td>ACMAP Manager</td>
</tr>
<tr>
<td>J. Huning and G. Shelton</td>
<td>NASA Headquarters</td>
<td>Airborne Science Office Program Managers</td>
</tr>
<tr>
<td>E. Condon</td>
<td>NASA Ames Research Center</td>
<td>Atmospheric Observations Mgr.</td>
</tr>
<tr>
<td>P. DeCola</td>
<td>Johns Hopkins University and NASA Headquarters</td>
<td>Assistant UARP Manager</td>
</tr>
</tbody>
</table>
SECTION H

CHEMICAL KINETICS AND PHOTOCHEMICAL DATA FOR USE IN STRATOSPHERIC MODELING: SUPPLEMENT TO EVALUATION NUMBER 12 OF THE NASA PANEL FOR DATA EVALUATION

SCOPE OF THE EVALUATION

In the past, the NASA Panel on Data Evaluation reviewed the entire set of reactions presented in the previous compilations, updating the recommendations and increasing the scope of the review in response to changes in the published literature. For the current release, the Panel has focused on a selected subset of the kinetic and photochemical parameters presented in the JPL 97-4 evaluation [1]. The most important criterion which guided the scope of the present evaluation was an analysis of the sensitivities and uncertainties of reactions with respect to ozone depletion. Guidance in this selection was obtained from several recent sensitivity analysis studies including those of Dubey et al. [2], Thompson and Stewart [3] and Chen et al. [4]. The reaction lists from these studies were used to identify those processes which play a particularly important role in ozone depletion calculations. Reactions were selected for inclusion (somewhat subjectively) if there were significant uncertainties in the laboratory data or if significant time had elapsed since the last evaluation. Another selection criterion was importance in the interpretation of atmospheric field measurements. For example, the OH + NO₂ reaction has a significant effect on the ratio of NOₓ and NOᵧ which is measured with high precision by aircraft instruments. On this basis, this reaction and several others were included in the present update.

Because of the significant impact of heterogeneous reactions in the polar and mid-latitude lower stratosphere and rapid progress in laboratory investigations of these processes, several heterogeneous reactions were included in the present evaluation. We currently lack guidance from multi-dimensional model sensitivity analyses as to which heterogeneous processes contribute the largest degrees of uncertainty to current models of stratospheric chemistry. However, available box model calculations indicate that uncertainties in heterogeneous reactions can lead to significant uncertainties in calculated ozone levels. Six reactions were identified as key heterogeneous processes most often included in current stratospheric photochemical models. These reactions are:

- \(\text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow 2 \text{HNO}_3 \)
- \(\text{ClONO}_2 + \text{H}_2\text{O} \rightarrow \text{HOCl} + \text{HNO}_3 \)
- \(\text{ClONO}_2 + \text{HCl} \rightarrow \text{Cl}_2 + \text{HNO}_3 \)
- \(\text{HOCl} + \text{HCl} \rightarrow \text{Cl}_2 + \text{H}_2\text{O} \)
- \(\text{BrONO}_2 + \text{H}_2\text{O} \rightarrow \text{HOBr} + \text{HNO}_3 \)
- \(\text{HOBr} + \text{HCl} \rightarrow \text{BrCl} + \text{H}_2\text{O} \)
While each of these six reactions occurs to a greater or lesser extent on the full range of stratospheric aerosol surfaces, we have restricted this review to the three most frequently studied and/or believed to be the most likely present in the stratosphere: water ice, nitric acid trihydrate, and liquid sulfuric acid/water mixtures (typically ~40 to 80 wt.% H$_2$SO$_4$). This selection of aerosol surface compositions covers those found in most current stratospheric models.
Table 1. Rate Constants for Second Order Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A-Factora</th>
<th>$E/R±ΔE/R$</th>
<th>$k(298 \text{ K})^b$</th>
<th>$f(298)^b$</th>
<th>Notes c</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1D) Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{O}(1\text{D}) + \text{H}_2\text{O} \rightarrow \text{OH} + \text{OH}$</td>
<td>2.2×10^{10}</td>
<td>$0±100$</td>
<td>2.2×10^{10}</td>
<td>1.2</td>
<td>A2 A6</td>
</tr>
<tr>
<td>$\text{O}(1\text{D}) + \text{N}_2\text{O} \rightarrow \text{N}_2 + \text{O}_2$</td>
<td>4.9×10^{11}</td>
<td>$0±100$</td>
<td>4.9×10^{11}</td>
<td>1.3</td>
<td>A2 A7</td>
</tr>
<tr>
<td>$\rightarrow \text{NO} + \text{NO}$</td>
<td>6.7×10^{11}</td>
<td>$0±100$</td>
<td>6.7×10^{11}</td>
<td>1.3</td>
<td>A2 A7</td>
</tr>
<tr>
<td>HOx Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{O} + \text{HO}_2 \rightarrow \text{OH} + \text{O}_2$</td>
<td>3.0×10^{11}</td>
<td>$(200±50)$</td>
<td>5.9×10^{11}</td>
<td>1.1</td>
<td>B2</td>
</tr>
<tr>
<td>$\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2$</td>
<td>1.5×10^{13}</td>
<td>$880±100$</td>
<td>7.8×10^{14}</td>
<td>1.2</td>
<td>B6</td>
</tr>
<tr>
<td>$\text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2$</td>
<td>4.8×10^{11}</td>
<td>$(250±100)$</td>
<td>1.1×10^{10}</td>
<td>1.3</td>
<td>B10</td>
</tr>
<tr>
<td>$\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2$</td>
<td>2.0×10^{14}</td>
<td>$680±200$</td>
<td>2.0×10^{15}</td>
<td>1.3</td>
<td>B12</td>
</tr>
<tr>
<td>NOx Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{O} + \text{NO}_2 \rightarrow \text{NO} + \text{O}_2$</td>
<td>5.6×10^{12}</td>
<td>$-(180±50)$</td>
<td>1.0×10^{11}</td>
<td>1.1</td>
<td>C1</td>
</tr>
<tr>
<td>$\text{OH} + \text{HNO}_3 \rightarrow \text{H}_2\text{O} + \text{NO}_3$</td>
<td>(See Note)</td>
<td></td>
<td></td>
<td>1.2</td>
<td>C9</td>
</tr>
<tr>
<td>$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$</td>
<td>3.0×10^{12}</td>
<td>$1500±200$</td>
<td>1.9×10^{14}</td>
<td>1.1</td>
<td>C20</td>
</tr>
<tr>
<td>ClOx Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{O} + \text{ClO} \rightarrow \text{Cl} + \text{O}_2$</td>
<td>3.0×10^{11}</td>
<td>$-(70±70)$</td>
<td>3.8×10^{11}</td>
<td>1.15</td>
<td>F1</td>
</tr>
<tr>
<td>$\text{OH} + \text{ClO} \rightarrow \text{Cl} + \text{HO}_2$</td>
<td>7.4×10^{12}</td>
<td>$-(270±100)$</td>
<td>1.8×10^{11}</td>
<td>1.4</td>
<td>F10</td>
</tr>
<tr>
<td>$\rightarrow \text{HCl} + \text{O}_2$</td>
<td>3.2×10^{13}</td>
<td>$(320±150)$</td>
<td>9.5×10^{13}</td>
<td>3</td>
<td>F10</td>
</tr>
<tr>
<td>$\text{OH} + \text{HCl} \rightarrow \text{H}_2\text{O} + \text{Cl}$</td>
<td>2.6×10^{12}</td>
<td>$350±100$</td>
<td>8.0×10^{13}</td>
<td>1.1</td>
<td>F12</td>
</tr>
<tr>
<td>$\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2$</td>
<td>2.3×10^{11}</td>
<td>$200±100$</td>
<td>1.2×10^{11}</td>
<td>1.15</td>
<td>F49</td>
</tr>
<tr>
<td>$\text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3$</td>
<td>9.6×10^{12}</td>
<td>$1360±75$</td>
<td>1.0×10^{13}</td>
<td>1.05</td>
<td>F55</td>
</tr>
</tbody>
</table>

125
TABLE 1. (Continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A-Factor<sup>a</sup></th>
<th>E/R±ΔE/R</th>
<th>k(298 K)<sup>b</sup></th>
<th>f(298)<sup>b</sup></th>
<th>Notes<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>BrO<sub>3</sub> Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrO + ClO → Br + OClO → Br + ClOO → BrCl + O<sub>2</sub></td>
<td>9.5 x 10<sup>-13</sup></td>
<td>-550±150</td>
<td>6.0 x 10<sup>-12</sup></td>
<td>1.25</td>
<td>G36</td>
</tr>
<tr>
<td></td>
<td>2.3 x 10<sup>-12</sup></td>
<td>-260±150</td>
<td>5.5 x 10<sup>-12</sup></td>
<td>1.25</td>
<td>G36</td>
</tr>
<tr>
<td></td>
<td>4.1 x 10<sup>-13</sup></td>
<td>-290±150</td>
<td>1.1 x 10<sup>-12</sup></td>
<td>1.25</td>
<td>G36</td>
</tr>
</tbody>
</table>

Notes:

- **a** Units are cm³/molecule-s.
- **b** f(298) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

 \[
 f(T) = f(298) \exp \left(\frac{\Delta E}{R} \left(\frac{1}{T} - \frac{1}{298} \right) \right)
 \]

 Note that the exponent is absolute value.
- **c** Notes refer to detailed information which is provided in the full NASA Data Panel report issued as a Jet Propulsion Laboratory Laboratory publication. Shaded areas indicate changes or additions since JPL 97-4.
Table 2. Rate Constants for Association Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Low Pressure Limit<sup>a</sup></th>
<th>High Pressure Limit<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_0(T) = k_0 300 (T/300)^{-n}$</td>
<td>$k_w(T) = k_w 300 (T/300)^{-m}$</td>
</tr>
<tr>
<td>$O + O_2$</td>
<td>$k_0 300$</td>
<td>$k_w 300$</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>m</td>
</tr>
<tr>
<td>$O + NO$</td>
<td>$(6.0\pm0.5) (-34)$</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>$O + NO_2$</td>
<td>$(9.0\pm2.0) (-32)$</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>$OH + NO_2$</td>
<td>$(2.4\pm0.1) (-30)$</td>
<td>3.1 ± 0.2</td>
</tr>
<tr>
<td>$NO_2 + NO_3$</td>
<td>$(2.0\pm0.2) (-30)$</td>
<td>4.4 ± 0.4</td>
</tr>
<tr>
<td>$ClO + NO_2$</td>
<td>$(1.8\pm0.3) (-31)$</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>$ClO + ClO$</td>
<td>$(2.2\pm0.2) (-32)$</td>
<td>3.1 ± 0.2</td>
</tr>
<tr>
<td>$BrO + NO_2$</td>
<td>$(5.2\pm0.4) (-31)$</td>
<td>3.2 ± 0.8</td>
</tr>
</tbody>
</table>

The values quoted are suitable for air as the third body, M.

^a Units are cm⁶/molecule²-sec.

^b Units are cm³/molecule-sec.

^c Notes refer to detailed information which is provided in the full NASA Data Panel report issued as a Jet Propulsion Laboratory Laboratory publication. Shaded areas indicate changes or additions since JPL 97-4.

$$kf([M], T) = \left(\frac{k_0(T)[M]}{1 + \left(\frac{k_w(T)[M]}{k_w(T)} \right)} \right)^{-1}$$
Table 3. Equilibrium Constants

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A/cm3 molecule$^{-1}$</th>
<th>B±ΔB/°K</th>
<th>Keq(298 K)</th>
<th>f(298 K)a</th>
<th>Noteb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NO_2 + NO_3 \rightarrow N_2O_5$</td>
<td>3.0x10$^{-27}$</td>
<td>10991±200</td>
<td>3.1x10$^{-11}$</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>$ClO + ClO \rightarrow Cl_2O_2$</td>
<td>1.27x10$^{-27}$</td>
<td>8744±500</td>
<td>7.0x10$^{-15}$</td>
<td>1.3</td>
<td>11</td>
</tr>
</tbody>
</table>

K/cm3 molecule$^{-1} = A \exp (B/T)$ [200 < T/K < 300]

a f(298) is the uncertainty factor at 298 K. To calculate the uncertainty at other temperatures, use the expression:

$$f(T) = f(298) \exp \left(\frac{\Delta E}{R \left(\frac{1}{T} - \frac{1}{298} \right)} \right)$$

b Notes refer to detailed information which is provided in the full NASA Data Panel report issued as a Jet Propulsion Laboratory Laboratory publication. Shaded areas indicate changes or additions since JPL 97-4.
Table 4. Gas/Surface Reaction Probabilities (γ)

<table>
<thead>
<tr>
<th>Gaseous Species</th>
<th>Surface Type</th>
<th>Surface Composition</th>
<th>T(K)</th>
<th>γ</th>
<th>Uncertainty Factor</th>
<th>Notes a</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2O5 + H2O → 2HNO3</td>
<td>Water Ice</td>
<td>H2O(s)</td>
<td>188-195</td>
<td>0.02</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Liquid Water</td>
<td>H2O(l)</td>
<td>260-295</td>
<td>See Note*</td>
<td>See</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Nitric Acid Ice</td>
<td>HNO3•3H2O(s)</td>
<td>200</td>
<td>4×10⁻¹</td>
<td>Note</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Sulfuric Acid</td>
<td>H2SO4•nH2O(l)</td>
<td>195-300</td>
<td>See Note*</td>
<td>See</td>
<td>17</td>
</tr>
</tbody>
</table>

HOCl + HCl(s) → Cl2 + H2O

HOCl	Water Ice	H2O(s)•HCl(s)	195-200	0.2	2	40
Nitric Acid Ice	HNO3•3H2O(s)•HCl(s)	195-200	0.1	2	40	
Sulfuric Acid	H2SO4•nH2O(l)	200-209 See Note*	See	41		

ClONO2 + H2O(s) → HOCl + HNO3

ClONO2	Water Ice	H2O(s)	180-200	0.3	3	43
Nitric Acid Ice	HNO3•3H2O(2)	185-202 0.004	3	44		
Sulfuric Acid	H2SO4•nH2O(l)	200-265 See Note*	See	45		

ClONO2 + HCl(s) → Cl2 + HNO3

ClONO2	Water Ice	H2O(s)	180-200	0.3	3	47
Nitric Acid Ice	HNO3•3H2O•HCl	185-210 0.2	2	48		
Sulfuric Acid	H2SO4•nH2O(l)•HCl(l)	195-235	See Note*	See	49	

HOBr + HCl(s) → BrCl + H2O

| HOBr | Water Ice | H2O(s)•HBr(s) | 228 | 0.3 | 3 | 57 |
| Sulfuric Acid | H2SO4•nH2O (60-69 wt% H2SO4) | 198-218 | See Note | 57 |

BrONO2 + H2O → HOBr + HNO3

| BrONO2 | Water Ice | H2O(s) | 190-200 | 0.3 | 2 | 59 |
| Sulfuric Acid | H2SO4•nH2O | 210-300 See Note* | See | 60 |

*γ is temperature dependent

Notes refer to detailed information which is provided in the full NASA Data Panel report issued as a Jet Propulsion Laboratory Laboratory publication. Shaded areas indicate changes or additions since JPL 97-4.
REFERENCES

SECTION I

AUTHORS, CONTRIBUTORS, AND REVIEWERS

SECTION A: Introduction

AUTHORS

Philip L. DeCola NASA Headquarters US
Jack A. Kaye NASA Headquarters US
Michael J. Kurylo National Institute of Standards and Technology/NASA Headquarters US

COORDINATING EDITORS

Rose M. Kendall Computer Sciences Corporation US
Kathy A. Wolfe Computer Sciences Corporation US

SECTION B: Scientific Assessment Of Ozone Depletion: 1998

ASSESSMENT CO-CHAIRS

Daniel L. Albritton National Oceanic and Atmospheric Administration US
Piet J. Aucamp Ptersa Environmental Consultants South Africa
Gérard Mégie Service d'Aéronomie du CNRS France
Robert T. Watson The World Bank US

AUTHORS AND CONTRIBUTORS

FREQUENTLY ASKED QUESTIONS ABOUT OZONE

Coordinator

Gerard Megie Service d'Aéronomie du CNRS France

PART 1. HALOCARBON, OZONE AND TEMPERATURE CHANGES

Chapter 1: Long-Lived Ozone-Related Compounds

Chapter Lead Authors

Ronald G. Prinn Massachusetts Institute of Technology US
R. Zander Université de Liège Belgium
Coauthors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derek M. Cunnold</td>
<td>Georgia Institute of Technology</td>
<td>US</td>
</tr>
<tr>
<td>James W. Elkins</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Andreas Engel</td>
<td>Universität Frankfurt</td>
<td>Germany</td>
</tr>
<tr>
<td>Paul J. Fraser</td>
<td>CSIRO Division of Atmospheric Research</td>
<td>Australia</td>
</tr>
<tr>
<td>Michael R. Gunson</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Malcolm K.W. Ko</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Emmanuel Mahieu</td>
<td>Université de Liège</td>
<td>Belgium</td>
</tr>
<tr>
<td>Pauline M. Midgley</td>
<td>M & D Consulting</td>
<td>Germany</td>
</tr>
<tr>
<td>James M. Russell III</td>
<td>Hampton University</td>
<td>US</td>
</tr>
<tr>
<td>C. Michael Volk</td>
<td>Universität Frankfurt</td>
<td>Germany</td>
</tr>
<tr>
<td>Ray F. Weiss</td>
<td>University of California at San Diego</td>
<td>US</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald R. Blake</td>
<td>University of California at Irvine</td>
<td>US</td>
</tr>
<tr>
<td>James H. Butler</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>David W. Fahey</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Jochen Harnisch</td>
<td>Max-Planck-Institut für Aeronomie</td>
<td>Germany</td>
</tr>
<tr>
<td>Dana E. Hartley</td>
<td>Georgia Institute of Technology</td>
<td>US</td>
</tr>
<tr>
<td>Dale F. Hurst</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory/CIRES</td>
<td>US</td>
</tr>
<tr>
<td>Nicholas B. Jones</td>
<td>National Institute of Water & Atmospheric Research Ltd. (NIWA)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Manfred Maiss</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>Archie McCulloch</td>
<td>ICI Chemicals & Polymers Ltd.</td>
<td>UK</td>
</tr>
<tr>
<td>Stephen A. Montzka</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>David E. Oram</td>
<td>University of East Anglia</td>
<td>UK</td>
</tr>
<tr>
<td>Stuart A. Penkett</td>
<td>University of East Anglia</td>
<td>UK</td>
</tr>
<tr>
<td>Curtis P. Rinsland</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>Ross J. Salawitch</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Sue M. Schauffler</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>Ulrich Schmidt</td>
<td>Universität Frankfurt</td>
<td>Germany</td>
</tr>
<tr>
<td>Peter G. Simmonds</td>
<td>University of Bristol</td>
<td>UK</td>
</tr>
<tr>
<td>Thayne M. Thompson</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Geoffrey C. Toon</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
</tbody>
</table>

Chapter 2: Short-Lived Ozone-Related Compounds

Chapter Lead Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael J. Kurylo</td>
<td>National Institute of Standards and Technology; NASA Headquarters</td>
<td>US</td>
</tr>
<tr>
<td>José M. Rodríguez</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
</tbody>
</table>
Coauthors

Meinrat O. Andreae
Elliot L. Atlas
Donald R. Blake
James H. Butler
Shyam Lal
David J. Lary
Pauline M. Midgley
Stephen A. Montzka
Paul C. Novelli
Claire E. Reeves
Peter G. Simmonds
L. Paul Steele
William T. Sturges
Ray F. Weiss
Youko Yokouchi

Contributors

Derek M. Cunnold
Ed Dlugokencky
James W. Elkins
David E. Etheridge
Paul J. Fraser
Dana E. Hartley
Malcolm K.W. Ko
Sasha Madronich
Emmanuel Mahieu
Andrew Matthews
Archie McCulloch
David E. Oram
John J. Orlando
Stuart A. Penkett
Sue M. Schauffler
Shari A. Yvon-Lewis

Chapter 3: Global Distributions and Changes in Stratospheric Particles

Chapter Lead Authors

Sophie Godin
Lamont R. Poole
Chapter 4: Ozone Variability and Trends

Chapter Lead Authors

Rumen D. Bojkov
World Meteorological Organization
Switzerland

Robert Hudson
University of Maryland
US

Coauthors

Lane Bishop
AlliedSignal Inc.
US

Vitali Fioletov
Atmospheric Environment Service
Canada

James M. Russell III
Hampton University
US

Richard Stolarski
NASA Goddard Space Flight Center
US

Osamu Uchino
Japan Meteorological Agency
Japan

Christos Zerefos
Aristotle University of Thessaloniki
Greece

Contributors

Roger Atkinson
Bureau of Meteorology
Australia

Dimitrios S. Balis
Aristotle University of Thessaloniki
Greece

P.K. Bhartia
NASA Goddard Space Flight Center
US
Chapter 5: Trends in Stratospheric Temperatures

Chapter Lead Authors

Marie-Lise Chanin Service d’Aéronomie du CNRS France
V. Ramaswamy NOAA Geophysical Fluid Dynamics Laboratory US

Coauthors

Dian J. Gaffen NOAA Air Resources Laboratory US
William J. Randel National Center for Atmospheric Research US
Richard B. Rood NASA Goddard Space Flight Center US
Masato Shiotani Hokkaido University Japan

Contributors

James K. Angell NOAA Air Resources Laboratory US
J. Barnett Oxford University UK
Piers M. de F. Forster University of Reading UK
Melvyn E. Gelman NOAA NWS Climate Prediction Center US
James Hansen NASA Goddard Institute for Space Studies US
Philippe Keckhut Service d’Aéronomie du CNRS France
Yuri Koshelkov Central Aerological Observatory Russia
Karin Labitzke Freie Universität Berlin Germany
J.-J. Roger Lin Research and Data Systems Corporation US
E. V. Lysenko Central Aerological Observatory Russia
John Nash U.K. Meteorological Office UK
PART 2. ADVANCES IN UNDERSTANDING THE PROCESSES INVOLVED

Chapter 6: Upper Stratospheric Processes

Chapter Lead Authors

Rolf Müller
Ross J. Salawitch

Coauthors

Paul J. Crutzen
William A. Lahoz
Gloria L. Manney
Ralf Toumi

Contributors

David B. Considine
Simon J. Evans
Jens-Uwe Grooß
Charles H. Jackman
Kenneth W. Jucks
Douglas E. Kinnison
Alvin J. Miller
Gary A. Morris
Gerald E. Nedoluha
Cynthia D. Nevison
William J. Randel
A.R. Ravishankara
James M. Russell III
Karen H. Sage
Michelle L. Santee
David E. Siskind
Michael E. Summers
Jörg Trentmann
Ray H.J. Wang
Jerry Ziemke

Alan O’Neill
M. Daniel Schwarzkopf
Keith P. Shine
Richard Swinbank
Osamu Uchino

University of Reading
NOAA Geophysical Fluid Dynamics Laboratory
University of Reading
NASA Goddard Space Flight Center
Japan Meteorological Agency

UK
US
UK
US
Japan

UK
US
UK
US
UK

Germany
US
UK
US
UK

Germany
UK
US

UK
US

136
Chapter 7: Lower Stratospheric Processes

Chapter Lead Authors

A.R. Ravishankara NOAA Aeronomy Laboratory US
Theodore G. Shepherd University of Toronto Canada

Coauthors

Martyn Chipperfield Centre for Atmospheric Science, University of Cambridge UK
Peter Haynes Centre for Atmospheric Science, University of Cambridge UK
Randy Kawa NASA Goddard Space Flight Center US
Thomas Peter Max-Planck-Institut für Chemie Germany
Alan Plumb Massachusetts Institute of Technology US
Bob Portmann NOAA Aeronomy Laboratory US
William J. Randel National Center for Atmospheric Research US
Darryn Waugh Johns Hopkins University US
Doug Worsnop Aerodyne Research, Inc. US

Contributors

Stephan Borrmann Universität Mainz Germany
Byron Boville National Center for Atmospheric Research US
Ken Carslaw Max-Planck-Institut für Chemie Germany
Rod Jones Centre for Atmospheric Science, University of Cambridge UK
Mike Mozurkewich York University Canada
Rolf Müller Forschungszentrum Jülich Germany
Donal O’Sullivan NorthWest Research Associates, Inc. US
Gilles Poulet Laboratoire de Combustion et Systèmes Réactifs du CNRS France
Michel Rossi Ecole Polytechnique Fédérale de Lausanne Switzerland
Stan Sander California Institute of Technology/Jet Propulsion Laboratory US

Chapter 8: Tropospheric Ozone and Related Processes

Chapter Lead Authors

Jos Lelieveld Institute for Marine and Atmospheric Research
Utrecht (IMAU) The Netherlands
Anne M. Thompson NASA Goddard Space Flight Center US

Coauthors

Roseanne D. Diab University of Natal South Africa
Oystein Hov Norsk Institutt for Luftforskning (NILU) Norway
Dieter Kley Forschungszentrum Jülich Germany
Jennifer A. Logan Harvard University US
Contributors

Robert Guicherit Netherlands Organization for Applied Scientific Research (TNO) The Netherlands
Daniel J. Jacob Harvard University US
Michael Kuhn Fraunhofer-Institut für Atmosphärische Umweltforschung Germany
Jana B. Milford University of Colorado US
Howard W. Sidebottom University College Dublin Ireland
Johannes Stühelin Eidgenössische Technische Hochschule Hönggerberg Switzerland

PART 3. IMPACTS OF OZONE CHANGES

Chapter 9: Ultraviolet Radiation At The Earth’s Surface

Chapter Lead Authors

Jay R. Herman NASA Goddard Space Flight Center US
Richard L. McKenzie National Institute of Water & Atmospheric Research Ltd. (NIWA) New Zealand

Coauthors

Susana Diaz Centro Austral de Investigaciones Científicas (CADIC) Argentina
James B. Kerr Atmospheric Environment Service Canada
Sasha Madronich National Center for Atmospheric Research US
Gunther Seckmeyer Fraunhofer-Institut für Atmosphärische Umweltforschung Germany

Contributors

Germar Bernhard Fraunhofer-Institut für Atmosphärische Umweltforschung Germany
Mario Blumthaler Universität Innsbruck Austria
Barry A. Bodhaine NOAA Climate Monitoring and Diagnostics Laboratory US
C. Rocky Booth Biospherical Instruments, Inc. US
Edward Celarier Software Corporation of America US
Piers M. de F. Forster University of Reading UK
Nickolay Krotkov Raytheon STX Inc. US
Jacqueline Lenoble Université des Sciences et Technologies de Lille 1 France
Kirsti Leszczynski Radiation and Nuclear Safety Authority (STUK) Finland
Craig S. Long NOAA NWS Climate Prediction Center US
Bernhard Mayer Fraunhofer-Institut für Atmosphärische Umweltforschung Germany
Forrest Mims Sun Photometer Atmospheric Network US
Patrick Neale Smithsonian Environmental Research Center US
Chapter 10: Climate Effects of Ozone and Halocarbon Changes

Chapter Lead Authors

Claire Granier
Service d’Aéronomie du CNRS; NOAA Aeronomy Laboratory, France/US
Keith P. Shine
University of Reading, UK

Coauthors

John S. Daniel
NOAA Aeronomy Laboratory, US
James Hansen
NASA Goddard Institute for Space Studies, US
Shyam Lal
Physical Research Laboratory, India
Frode Stordal
Norsk Institutt for Luftporskning (NILU), Norway

Contributors

Slimane Bekki
Service d’Aéronomie du CNRS, France
Lane Bishop
AlliedSignal Inc., US
Jan Fuglestvedt
Universitetet I Oslo Centre for International Climate and Environmental Research, Norway
Jan-Eiof Jonson
Universitetet I Oslo, Norway
Sasha Madronich
National Center for Atmospheric Research, US
Gunnar Myhre
Universitetet I Oslo, Norway

PART 4. PREDICTIONS OF FUTURE CHANGES

Chapter 11: Halocarbon Scenarios for the Future Ozone Layer and Related Consequences

Chapter Lead Authors

Sasha Madronich
National Center for Atmospheric Research, US
Guus J.M. Velders
National Institute of Public Health and the Environment (RIVM), The Netherlands
Coauthors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>John S. Daniel</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Murari Lal</td>
<td>Indian Institute of Technology</td>
<td>India</td>
</tr>
<tr>
<td>Archie McCulloch</td>
<td>ICI Chemicals & Polymers Ltd.</td>
<td>UK</td>
</tr>
<tr>
<td>Harry Slaper</td>
<td>National Institute of Public Health and the Environment (RIVM)</td>
<td>The Netherlands</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mack McFarland</td>
<td>DuPont Fluoroproducts</td>
<td>US</td>
</tr>
<tr>
<td>Pauline M. Midgley</td>
<td>M & D Consulting</td>
<td>Germany</td>
</tr>
<tr>
<td>Nelson A. Sabogal</td>
<td>United Nations Environment Programme</td>
<td>Kenya</td>
</tr>
<tr>
<td>Susan Solomon</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Donald J. Wuebbles</td>
<td>University of Illinois</td>
<td>US</td>
</tr>
</tbody>
</table>

Chapter 12: Predicting Future Ozone Changes and Detection of Recovery

Chapter Lead Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>David J. Hofmann</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>John A. Pyle</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
</tbody>
</table>

Coauthors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Austin</td>
<td>U.K. Meteorological Office</td>
<td>UK</td>
</tr>
<tr>
<td>Neal Butchart</td>
<td>U.K. Meteorological Office</td>
<td>UK</td>
</tr>
<tr>
<td>Charles H. Jackman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Douglas E. Kinnison</td>
<td>Lawrence Livermore National Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Franck Lefèvre</td>
<td>Météo-France, Centre National de Recherches Météorologiques</td>
<td>France</td>
</tr>
<tr>
<td>Giovanni Pitarì</td>
<td>Università degli Studi dell’Aquila</td>
<td>Italy</td>
</tr>
<tr>
<td>Drew Shindell</td>
<td>NASA Goddard Institute for Space Studies</td>
<td>US</td>
</tr>
<tr>
<td>Ralf Toumi</td>
<td>University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>Peter von der Gathen</td>
<td>Alfred Wegener Institute</td>
<td>Germany</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slimane Bekki</td>
<td>Service d’Aéronomie du CNRS; University of Cambridge</td>
<td>France/UK</td>
</tr>
<tr>
<td>Christoph Brühl</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>Peter S. Connell</td>
<td>Lawrence Livermore National Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Martin Dameris</td>
<td>Deutsche Forschungsanstalt für Luft- and Raumfahrt</td>
<td>Germany</td>
</tr>
<tr>
<td>Eric L. Fleming</td>
<td>Space Applications Corporation</td>
<td>US</td>
</tr>
<tr>
<td>Stacey M. Hollandsworth</td>
<td>Space Applications Corporation</td>
<td>US</td>
</tr>
<tr>
<td>Samuel J. Ottmans</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Lakshman Randeniya</td>
<td>CSIRO Telecommunications and Industrial Physics</td>
<td>Australia</td>
</tr>
<tr>
<td>Markus Rex</td>
<td>Alfred Wegener Institute</td>
<td>Germany</td>
</tr>
</tbody>
</table>
CHAPTER EDITORIAL CONTRIBUTORS

Chapter 1: Long-Lived Ozone-Related Compounds

Nada Derek
L. Kubrick
Kathy A. Wolfe
Diane Zander
CSIRO Division of Atmospheric Research
Massachusetts Institute of Technology
Computer Sciences Corporation
Université de Liège
Australia
US
US
Belgium

Chapter 2: Short-Lived Ozone-Related Compounds

Kathy A. Wolfe
Computer Sciences Corporation
US

Chapter 5: Trends in Stratospheric Temperatures

Gail Haller
Cathy Raphael
Jeff Varanyak
NOAA Geophysical Fluid Dynamics Laboratory
NOAA Geophysical Fluid Dynamics Laboratory
NOAA Geophysical Fluid Dynamics Laboratory
US
US
US

Chapter 6: Upper Stratospheric Processes

Stephan Böttcher
Tel Aviv University
Israel

Chapter 7: Lower Stratospheric Processes

LeAnn Droppleman
NOAA Aeronomy Laboratory
US

Chapter 8: Tropospheric Ozone

Matthew G. Seybold
Steven Myers and Associates Corporation/
NASA Goddard Space Flight Center
US

Chapter 11: Scenarios for the Future Ozone Layer and Related Consequences

Chris Fischer
National Center for Atmospheric Research
US

Chapter 12: Predicting Future Ozone Changes and Detection of Recovery

Ann Thorne
NOAA Climate Monitoring and Diagnostics Laboratory
US
REVIEWERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel L. Albritton</td>
<td>National Oceanic and Atmospheric Administration</td>
<td>US</td>
</tr>
<tr>
<td>Georgios T. Amanatidis</td>
<td>European Commission</td>
<td>Belgium</td>
</tr>
<tr>
<td>James K. Angell</td>
<td>NOAA Air Resources Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Pieter J. Aucamp</td>
<td>Ptera Environmental Consultants</td>
<td>South Africa</td>
</tr>
<tr>
<td>Linnea Avalone</td>
<td>University of Colorado</td>
<td>US</td>
</tr>
<tr>
<td>Darrel Baumgardner</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>Lane Bishop</td>
<td>AlliedSignal Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Mario Blumthaler</td>
<td>Universität Innsbruck</td>
<td>Austria</td>
</tr>
<tr>
<td>Greg Bodeker</td>
<td>National Institute of Water & Atmospheric Research Ltd. (NIWA)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Barry A. Bodhaine</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Rumen D. Bojkov</td>
<td>World Meteorological Organization</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Guy Brasseur</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>Christoph Brühl</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>William H. Brune</td>
<td>Pennsylvania State University</td>
<td>US</td>
</tr>
<tr>
<td>Neal Butchart</td>
<td>U.K. Meteorological Office</td>
<td>UK</td>
</tr>
<tr>
<td>Pablo O. Canziani</td>
<td>Universidad de Buenos Aires</td>
<td>Argentina</td>
</tr>
<tr>
<td>Daniel Carolle</td>
<td>Météo-France, Centre National de Recherches Météorologiques</td>
<td>France</td>
</tr>
<tr>
<td>Marie-Lise Chanin</td>
<td>Service d'Aéromnie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Cathy Clerbaux</td>
<td>Service d'Aéromnie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Michael Coffey</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>R.A. Cox</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>Paul J. Crutzen</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>John S. Daniel</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Richard Derwent</td>
<td>U.K. Meteorological Office</td>
<td>UK</td>
</tr>
<tr>
<td>Susana Diaz</td>
<td>Centro Austral de Investigaciones Científicas (CADIC)</td>
<td>Argentina</td>
</tr>
<tr>
<td>Ed Dlugokencky</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Thomas Duafala</td>
<td>Tri-Cal Research Division</td>
<td>US</td>
</tr>
<tr>
<td>Dieter H. Ehhalt</td>
<td>Institut für Chemie und Dynamik der Geosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>James W. Elkins</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Christine A. Ennis</td>
<td>NOAA Aeronomy Laboratory/CiRES</td>
<td>US</td>
</tr>
<tr>
<td>David W. Fahey</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Jack Fishman</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>Piers M. de F. Forster</td>
<td>University of Reading</td>
<td>UK</td>
</tr>
<tr>
<td>J. Paul F. Fortuin</td>
<td>Koninklijk Nederlands Meteorologisch Instituut (KNMI)</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Paul J. Fraser</td>
<td>CSIRO Division of Atmospheric Research</td>
<td>Australia</td>
</tr>
<tr>
<td>Lucien Froidevaux</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Marvin A. Geller</td>
<td>State University of New York at Stony Brook</td>
<td>US</td>
</tr>
<tr>
<td>Sophie Godin</td>
<td>Service d'Aéromnie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Allen Goldstein</td>
<td>College of Natural Resources</td>
<td>UK</td>
</tr>
<tr>
<td>George S. Golitsyn</td>
<td>Russian Academy of Sciences</td>
<td>Russia</td>
</tr>
<tr>
<td>Claire Granier</td>
<td>Service d'Aéromnie du CNRS; NOAA Aeronomy Laboratory</td>
<td>France/US</td>
</tr>
<tr>
<td>William B. Grant</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
</tbody>
</table>

142
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Guicherit</td>
<td>Netherlands Organization for Applied Scientific Research (TNO)</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Neil R.P. Harris</td>
<td>European Ozone Research Coordinating Unit</td>
<td>UK</td>
</tr>
<tr>
<td>Alain Hauchecome</td>
<td>Service d'Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Didier Hauglustaine</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>Jay R. Herman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>David J. Hofmann</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>James R. Holton</td>
<td>University of Washington</td>
<td>US</td>
</tr>
<tr>
<td>Robert Hudson</td>
<td>University of Maryland</td>
<td>US</td>
</tr>
<tr>
<td>Drusilla Hufford</td>
<td>U.S. Environmental Protection Agency</td>
<td>US</td>
</tr>
<tr>
<td>Abdel Moneim Ibrahim</td>
<td>Egyptian Meteorological Authority</td>
<td>Egypt</td>
</tr>
<tr>
<td>Mohammad I. Ilyas</td>
<td>Universiti Sains Malaysia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Ivar S.A. Isaksen</td>
<td>Universitetet I Oslo</td>
<td>Norway</td>
</tr>
<tr>
<td>Tomoyuki Ito</td>
<td>Japan Meteorological Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>Evgeny A. Jadin</td>
<td>Central Aerological Observatory</td>
<td>Russia</td>
</tr>
<tr>
<td>Rod Jones</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>Torben S. Jørgensen</td>
<td>Danmarks Meteorologiske Institut</td>
<td>Denmark</td>
</tr>
<tr>
<td>David Karoly</td>
<td>Monash University</td>
<td>Australia</td>
</tr>
<tr>
<td>Jack A. Kaye</td>
<td>NASA Headquarters</td>
<td>US</td>
</tr>
<tr>
<td>Hennie Kelder</td>
<td>Koninklijk Nederlands Meteorologisch Instituut (KNMI)</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>James B. Kerr</td>
<td>Atmospheric Environment Service</td>
<td>Canada</td>
</tr>
<tr>
<td>Jhoon Kim</td>
<td>Korea Aerospace Research Institute</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>Volker Kirchhoff</td>
<td>Instituto Nacional de Pesquisas Espaciais (INPE)</td>
<td>Brazil</td>
</tr>
<tr>
<td>Malcolm K.W. Ko</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Kunihiko Kodera</td>
<td>Meteorological Research Institute</td>
<td>Japan</td>
</tr>
<tr>
<td>Yutaka Kondo</td>
<td>Nagoya University</td>
<td>Japan</td>
</tr>
<tr>
<td>Janusz Krzyscin</td>
<td>Polish Academy of Sciences</td>
<td>Poland</td>
</tr>
<tr>
<td>Michael J. Kurylo</td>
<td>National Institute of Standards and Technology; NASA Headquarters</td>
<td>US</td>
</tr>
<tr>
<td>Murari Lal</td>
<td>Indian Institute of Technology</td>
<td>India</td>
</tr>
<tr>
<td>Yuan-Pern Lee</td>
<td>National Tsing Hua University</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Jos Lelieveld</td>
<td>Institute for Marine and Atmospheric Research</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Joel M. Levy</td>
<td>NOAA Office of Global Programs</td>
<td>US</td>
</tr>
<tr>
<td>Jennifer A. Logan</td>
<td>Harvard University</td>
<td>US</td>
</tr>
<tr>
<td>Craig S. Long</td>
<td>NOAA NWS Climate Prediction Center</td>
<td>US</td>
</tr>
<tr>
<td>Sasha Madronich</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>Jerry D. Mahlman</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Andrew Matthews</td>
<td>National Institute of Water & Atmospheric Research Ltd. (NIWA)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>M. Patrick McCormick</td>
<td>Hampton University</td>
<td>US</td>
</tr>
<tr>
<td>Archie McCulloch</td>
<td>ICI Chemicals & Polymers Ltd.</td>
<td>UK</td>
</tr>
<tr>
<td>Mack McFarland</td>
<td>DuPont Fluoroproducts</td>
<td>US</td>
</tr>
<tr>
<td>Danny McKenna</td>
<td>Forschungszentrum Jülich</td>
<td>Germany</td>
</tr>
<tr>
<td>Richard L. McKenzie</td>
<td>National Institute of Water & Atmospheric Research Ltd. (NIWA)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Gérard Mégie</td>
<td>Service d'Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Location</td>
<td>Country</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Pauline M. Midgley</td>
<td>M & D Consulting</td>
<td>Germany</td>
</tr>
<tr>
<td>Alvin J. Miller</td>
<td>NOAA NWS Climate Prediction Center</td>
<td>US</td>
</tr>
<tr>
<td>Philippe Mirabel</td>
<td>Université Louis Pasteur</td>
<td>France</td>
</tr>
<tr>
<td>Masa Miyauchi</td>
<td>Japan Meteorological Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>Mario J. Molina</td>
<td>Massachusetts Institute of Technology</td>
<td>US</td>
</tr>
<tr>
<td>Rolf Müller</td>
<td>Forschungszentrum Jülich</td>
<td>Germany</td>
</tr>
<tr>
<td>Hideaki Nakane</td>
<td>National Institute for Environmental Studies</td>
<td>Japan</td>
</tr>
<tr>
<td>Paul A. Newman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Samuel J. Oltmans</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Michael Oppenheimer</td>
<td>Environmental Defense Fund</td>
<td>US</td>
</tr>
<tr>
<td>Stuart A. Penkett</td>
<td>University of East Anglia</td>
<td>UK</td>
</tr>
<tr>
<td>Joyce Penner</td>
<td>University of Michigan</td>
<td>US</td>
</tr>
<tr>
<td>Thomas Peter</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>Michel Pirre</td>
<td>Service d’Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Jean-Pierre Pommereau</td>
<td>Service d’Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Lamont R. Poole</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>Michael Prather</td>
<td>University of California at Irvine</td>
<td>US</td>
</tr>
<tr>
<td>M. Margarita PrEndez</td>
<td>Universidad de Chile</td>
<td>Chile</td>
</tr>
<tr>
<td>Ronald G. Prinn</td>
<td>Massachusetts Institute of Technology</td>
<td>US</td>
</tr>
<tr>
<td>John A. Pyle</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>V. Ramaswamy</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>William J. Randel</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>A.R. Ravishankara</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>George C. Reid</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Henning Rodhe</td>
<td>Stockholms Universitet</td>
<td>Sweden</td>
</tr>
<tr>
<td>José M. Rodríguez</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>James M. Rosen</td>
<td>University of Wyoming</td>
<td>US</td>
</tr>
<tr>
<td>James M. Russell III</td>
<td>Hampton University</td>
<td>US</td>
</tr>
<tr>
<td>Keith R. Ryan</td>
<td>CSIRO Telecommunications and Industrial Physics</td>
<td>Australia</td>
</tr>
<tr>
<td>Nelson A. Sabogal</td>
<td>United Nations Environment Programme</td>
<td>Kenya</td>
</tr>
<tr>
<td>Ross J. Salawitch</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Eugenio Sanhueza</td>
<td>Instituto Venezolano de Investigaciones Científicas (IVIC)</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Ulrich Schmidt</td>
<td>Universität Frankfurt</td>
<td>Germany</td>
</tr>
<tr>
<td>Ulrich Schumann</td>
<td>Deutsche Forschungsanstalt für Luft- und Raumfahrt</td>
<td>Germany</td>
</tr>
<tr>
<td>Theodore G. Shepherd</td>
<td>University of Toronto</td>
<td>Canada</td>
</tr>
<tr>
<td>Keith P. Shine</td>
<td>University of Reading</td>
<td>UK</td>
</tr>
<tr>
<td>Susan Solomon</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Johannes Stähelin</td>
<td>Eidgenössische Technische Hochschule Hönggerberg</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Leopoldo Stefanutti</td>
<td>Istituto di Ricercia sulle Onde Elettromagnetiche</td>
<td>Italy</td>
</tr>
<tr>
<td>William R. Stockwell</td>
<td>del Consiglio Nazionale della Richere</td>
<td>Germany</td>
</tr>
<tr>
<td>B.H. Subbaraya</td>
<td>Fraunhofer-Institut für Atmosphärische Umweltforschung</td>
<td>Germany</td>
</tr>
<tr>
<td>Petteri Taalas</td>
<td>Physical Research Laboratory</td>
<td>Finland</td>
</tr>
<tr>
<td>Xiao-Yan Tang</td>
<td>Finnish Meteorological Institute</td>
<td>China</td>
</tr>
<tr>
<td>Anne M. Thompson</td>
<td>Peking University</td>
<td>US</td>
</tr>
<tr>
<td>Brian Toon</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Country</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Michael Trainer</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Osamu Uchino</td>
<td>Japan Meteorological Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>Jan C. van der Leun</td>
<td>University Hospital</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Karel Vanicek</td>
<td>Czech Hydrometeorological Institute</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Guus J.M. Velders</td>
<td>National Institute of Public Health and the Environment (RIVM)</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Guido Visconti</td>
<td>Università degli Studi dell’Aquila</td>
<td>Italy</td>
</tr>
<tr>
<td>Andreas Volz-Thomas</td>
<td>Forschungszentrum Jülich</td>
<td>Germany</td>
</tr>
<tr>
<td>Wei-Chyung Wang</td>
<td>State University of New York at Albany</td>
<td>US</td>
</tr>
<tr>
<td>Joe Waters</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Robert T. Watson</td>
<td>The World Bank</td>
<td>US</td>
</tr>
<tr>
<td>Ray F. Weiss</td>
<td>University of California at San Diego</td>
<td>US</td>
</tr>
<tr>
<td>Paul O. Wennberg</td>
<td>California Institute of Technology</td>
<td>US</td>
</tr>
<tr>
<td>James C. Wilson</td>
<td>University of Denver</td>
<td>US</td>
</tr>
<tr>
<td>Donald J. Wuebbles</td>
<td>University of Illinois</td>
<td>US</td>
</tr>
<tr>
<td>Vladimir Yushkov</td>
<td>Central Aerological Observatory</td>
<td>Russia</td>
</tr>
<tr>
<td>Ahmed Zand</td>
<td>Tehran University</td>
<td>Iran</td>
</tr>
<tr>
<td>R. Zander</td>
<td>Université de Liège</td>
<td>Belgium</td>
</tr>
<tr>
<td>Christos Zerefos</td>
<td>Aristotle University of Thessaloniki</td>
<td>Greece</td>
</tr>
</tbody>
</table>

OZONE PEER-REVIEW MEETING

Les Diablerets, Switzerland

June 1-5, 1998

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel L. Albritton</td>
<td>National Oceanic and Atmospheric Administration</td>
<td>US</td>
</tr>
<tr>
<td>Georgios T. Amanatidis</td>
<td>European Commission</td>
<td>Belgium</td>
</tr>
<tr>
<td>Pieter J. Aucamp</td>
<td>Ptersa Environmental Consultants</td>
<td>South Africa</td>
</tr>
<tr>
<td>Lane Bishop</td>
<td>AlliedSignal Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Rumen D. Bojkov</td>
<td>World Meteorological Organization</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Marie-Lise Chanin</td>
<td>Service d’Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>R.A. Cox</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>Paul J. Crutzen</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>John S. Daniel</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Susana Diaz</td>
<td>Centro Austral de Investigaciones Científicas (CADIC)</td>
<td>Argentina</td>
</tr>
<tr>
<td>Thomas Duafala</td>
<td>Tri-Cal Research Division</td>
<td>US</td>
</tr>
<tr>
<td>Dieter H. Ehhalt</td>
<td>Institut für Chemie und Dynamik der Geosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>James W. Elkins</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Christine A. Ennis</td>
<td>NOAA Aeronomy Laboratory/CIRES</td>
<td>US</td>
</tr>
<tr>
<td>David W. Fahey</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Paul J. Fraser</td>
<td>CSIRO Division of Atmospheric Research</td>
<td>Australia</td>
</tr>
<tr>
<td>Lucien Froidevaux</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Marvin A. Geller</td>
<td>State University of New York at Stony Brook</td>
<td>US</td>
</tr>
<tr>
<td>Sophie Godin</td>
<td>Service d’Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Claire Granier</td>
<td>Service d’Aéronomie du CNRS; NOAA Aeronomy Laboratory</td>
<td>France/US</td>
</tr>
<tr>
<td>Neil R.P. Harris</td>
<td>European Ozone Research Coordinating Unit</td>
<td>UK</td>
</tr>
<tr>
<td>Jay R. Herman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Country</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>David J. Hofmann</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>James R. Holton</td>
<td>University of Washington</td>
<td>US</td>
</tr>
<tr>
<td>Robert Hudson</td>
<td>University of Maryland</td>
<td>US</td>
</tr>
<tr>
<td>Abdel Moneim Ibrahim</td>
<td>Egyptian Meteorological Authority</td>
<td>Egypt</td>
</tr>
<tr>
<td>Mohammad I. Ilyas</td>
<td>Universiti Sains Malaysia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Ivar S.A. Isaksen</td>
<td>Universitetet I Oslo</td>
<td>Norway</td>
</tr>
<tr>
<td>Rod Jones</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>James B. Kerr</td>
<td>Atmospheric Environment Service</td>
<td>Canada</td>
</tr>
<tr>
<td>Michael J. Kurylo</td>
<td>National Institute of Standards and Technology; NASA Headquarters</td>
<td>US</td>
</tr>
<tr>
<td>Murari Lal</td>
<td>Indian Institute of Technology</td>
<td>India</td>
</tr>
<tr>
<td>Jos Lelieveld</td>
<td>Institute for Marine and Atmospheric Research</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Jennifer A. Logan</td>
<td>Harvard University</td>
<td>US</td>
</tr>
<tr>
<td>Sasha Madronich</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>M. Patrick McCormick</td>
<td>Hampton University</td>
<td>US</td>
</tr>
<tr>
<td>Mack McFarland</td>
<td>DuPont Fluoroproducts</td>
<td>US</td>
</tr>
<tr>
<td>Danny McKenna</td>
<td>Forschungszentrum Jülich</td>
<td>Germany</td>
</tr>
<tr>
<td>Richard L. McKenzie</td>
<td>National Institute of Water & Atmospheric Research Ltd. (NIWA)</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Gérard Mégie</td>
<td>Service d’Aéronomie du CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Rolf Müller</td>
<td>Forschungszentrum Jülich</td>
<td>Germany</td>
</tr>
<tr>
<td>Hideaki Nakane</td>
<td>National Institute for Environmental Studies</td>
<td>Japan</td>
</tr>
<tr>
<td>Paul A. Newman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Samuel J. Oltmans</td>
<td>NOAA Climate Monitoring and Diagnostics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Stuart A. Penkett</td>
<td>University of East Anglia</td>
<td>UK</td>
</tr>
<tr>
<td>Thomas Peter</td>
<td>Max-Planck-Institut für Chemie</td>
<td>Germany</td>
</tr>
<tr>
<td>Lamont R. Poole</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>M. Margarita Préndez</td>
<td>Universidad de Chile</td>
<td>Chile</td>
</tr>
<tr>
<td>John A. Pyle</td>
<td>Centre for Atmospheric Science, University of Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>V. Ramaswamy</td>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>William J. Randel</td>
<td>National Center for Atmospheric Research</td>
<td>US</td>
</tr>
<tr>
<td>A.R. Ravishankara</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>José M. Rodríguez</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>James M. Russell III</td>
<td>Hampton University</td>
<td>US</td>
</tr>
<tr>
<td>Nelson A. Sabogal</td>
<td>United Nations Environment Programme</td>
<td>Kenya</td>
</tr>
<tr>
<td>Ross J. Salawitch</td>
<td>California Institute of Technology/Jet Propulsion Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>Eugenio Sanhueza</td>
<td>Instituto Venezolano de Investigaciones Científicas (IVIC)</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Theodore G. Shepherd</td>
<td>University of Toronto</td>
<td>Canada</td>
</tr>
<tr>
<td>Keith P. Shine</td>
<td>University of Reading</td>
<td>UK</td>
</tr>
<tr>
<td>Susan Solomon</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>William R. Stockwell</td>
<td>Fraunhofer-Institut für Atmosphärische Umweltforschung</td>
<td>Germany</td>
</tr>
<tr>
<td>B.H. Subbaraya</td>
<td>Physical Research Laboratory</td>
<td>India</td>
</tr>
<tr>
<td>Petteri Taalas</td>
<td>Finnish Meteorological Institute</td>
<td>Finland</td>
</tr>
<tr>
<td>Osamu Uchino</td>
<td>Japan Meteorological Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>Jan C. van der Leun</td>
<td>University Hospital</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>Karel Vanicek</td>
<td>Czech Hydrometeorological Institute</td>
<td>Czech Republic</td>
</tr>
</tbody>
</table>
Computing and Networking Support

Catherine A. Burgdorf NOAA Aeronomy Laboratory/CIRES US
Walter J. Harrop NOAA Aeronomy Laboratory US
Ken Jamieson NOAA Aeronomy Laboratory/CIRES US
Sarah Thompson NOAA Aeronomy Laboratory/CIRES US

SECTION C: Summary of the Stratospheric Processes and Their Role in Climate/International Ozone Commission/Global Atmospheric Watch (SPARC/IOC/GAW) Assessment of Trends in the Vertical Distribution of Ozone

CO-CHAIRS

Neil Harris European Ozone Research Coordinating Unit UK
Robert Hudson University of Maryland US

CHAPTER 1

Lead Authors

David Hofmann NOAA Climate Monitoring and Diagnostics Laboratory US
Clive Rodgers University of Oxford UK

Authors

Dirk DeMuer Royal Meteorological Institute (KMI) Belgium
Lucien Froidevaux NASA Jet Propulsion Laboratory US
Sophie Godin Service d’Aéronomie, CNRS France
Larry Gordley GATS, Inc., VA US
Ernest Hilsenrath NASA Goddard Space Flight Center US
Rich McPeters NASA Goddard Space Flight Center US
Mike Newchurch University of Alabama US
Dave Rusch University of Colorado US
Sam Oltmans NOAA Climate Monitoring and Diagnostics Laboratory US
Joe Zawodny NASA Langley Research Center US

CHAPTER 2

Lead Authors

James M. Russell III Hampton University US
Herman G. J. Smit Forschungszentrum Jülich Germany
Co-Authors

Robert J. Atkinson Meteorology CRC, Bureau of Meteorology Australia
Brian J. Connor National Institute of Water and Atmospheric Research New Zealand
Derek M. Cunnold Georgia Institute of Technology US
Lawrence E. Flynn NOAA National Environmental Satellite, Data and Information Services US
Sophie Godin Service d’Aeronomie, CNRS France
Stacey Hollandsworth Space Applications Corporation US
James B. Kerr Atmospheric Environment Service Canada
A. J. Miller NOAA National Centers for Environmental Prediction US
Gary A. Morris University of Maryland, Baltimore US
Rich McPeters NASA Goddard Space Flight Center US
Mike Newchurch University of Alabama US
Dave Rusch University of Colorado US
Larry W. Thomason NASA Langley Research Center US
Ray H. J. Wang Georgia Institute of Technology US

Contributors

Gerard Ancellet Service d’Aeronomie, CNRS France
Matthias Beekmann Service d’Aeronomie, CNRS France
Greg Bodeker National Institute of Water and Atmospheric Research New Zealand
Rumen Bojkov World Meteorological Organization Switzerland
Ellen J. Brinksma Vrije Universiteit, Amsterdam Netherlands
Hans Claude Deutscher Wetterdienst Germany
Hugo De Backer Institute Royal Meteorologique de Belgique Belgium
Pierre Heannet Schweizerische Meteorologische Anstalt Switzerland
Bryan Johnson NOAA Climate Monitoring and Diagnostics Laboratory US
N. Kämpfer Universität Bern Switzerland
Gordon J. Labow NASA Goddard Space Flight Center US
Ulf Köhle Deutscher Wetterdienst Germany
I. Stuart McDermid NASA Jet Propulsion Laboratory/Caltech US
Thomas McGee NASA Goddard Space Flight Center US
Hideaki Nakane National Institute for Environmental Studies Japan
Samuel Oltmans NOAA Climate Monitoring and Diagnostics Laboratory US
Francis J. Schmidlin NASA Goddard Space Flight Center US
Johannes Staehelin Eidgenossische Technische Hochschule, Zurich Switzerland
Wolfgang Steinbrecht Deutscher Wetterdienst Germany
Daan P. J. Swart Rijksinstituut voor Volksgezondheid en Milieu Netherlands
David Tarasick Atmospheric Environment Service Canada
Osamu Uchino Japan Meteorological Agency Japan
Pierre Viatte Schweizerische Meteorologische Anstalt Switzerland
Joseph M. Zawodny NASA Langley Research Center US
CHAPTER 3

Lead Authors

Richard Stolarski
William Randel

Co-Authors

Lane Bishop
Derek Cunnold
Dirk DeMuer
Sophie Godin
Stacey Hollandsworth
Lon Hood
Jennifer Logan
Jim Miller
Mike Newchurch
Sam Oltmans
Osamu Uchino
Ray H. J. Wang

Co-Authors

Allied Signal, Inc.
Georgia Institute of Technology
Royal Meteorological Institute (KMI)
Service d'Aeronomie, CNRS
Space Applications Corporation
University of Arizona
Harvard University
NOAA National Centers for Environmental Prediction
University of Alabama
NOAA Climate and Diagnostics Laboratory
Meteorological Research Institute
Georgia Institute of Technology

REVIEWERS

Roger Atkinson
John Burrows
Arthur Downey
Herb Fischer
John Gille
Rod Jones
Brian Kerridge
Richard McKenzie
Howard Roscoe
Yasuhiro Sasano
Susan Solomon
Geraint Vaughan

Atmosphere Watch Section
University of Bremen
Atmosphere Watch Section
Forschungzentrum Karlsruhe
National Center for Atmospheric Research
University of Cambridge
Rutherford Appleton Laboratory
National Institute of Water and Atmospheric Research
British Antarctic Survey
National Institute for Environmental Studies
NOAA
University of Wales

Australia
Germany
Australia
Germany
US
UK
UK
New Zealand
UK
Japan
US
UK
SECTION D: Policymakers Summary of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Aviation and the Global Atmosphere

AUTHORS AND CONTRIBUTORS

Chapter 1: Introduction

Lead Authors

J. H. Ellis
Federal Express Corporation
US

N. R. P. Harris
European Ozone Research Coordination Unit
UK

D. H. Lister
DERA
UK

J. E. Penner
University of Michigan
US

Review Editor

B. S. Nyenzi
Directorate of Meteorology
Tanzania

Chapter 2: Impacts of Aircraft Emissions on Atmospheric Ozone

Coordinating Lead Authors

R. G. Derwent
Meteorological Office
UK

R. R. Friedl
Jet Propulsion Laboratory
US

Lead Authors

I. L. Karol
Main Geophysical Observatory
Russia

H. Kelder
KNMI
The Netherlands

V. W. J. H. Kirchoff
Instituto Nacional de Pesquisas Espaciais
Brazil

T. Ogawa
National Space Development Agency of Japan
Japan

M. J. Rossi
Ecole Polytechnique Federale de Lausanne
Switzerland

P. Wennberg
California Institute of Technology
US

Contributors

T. K. Berntsen
University of Oslo
Norway

C. H. Brühl
Max-Planck Institut für Chemie
Germany

D. Brunner
KNMI
The Netherlands

P. Crutzen
Max-Planck Institut für Chemie
Germany

M. Y. Danilin
Atmospheric and Environmental Research, Inc.
US

F. J. Dentener
Institute for Marine and Atmospheric Research
The Netherlands

L. Emmons
Space Physics Research Laboratory
US

F. Flatøy
Geophysics Institute
Norway

J. S. Fuglestvedt
University of Oslo
Norway
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution AND Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Gerz</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>V. Grewé</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>D. Hauglustaine</td>
<td>CNRS Service Aeronomie</td>
</tr>
<tr>
<td>G. Hayman</td>
<td>AEA Technology</td>
</tr>
<tr>
<td>O. Hov</td>
<td>Ministry of Environment</td>
</tr>
<tr>
<td>D. Jacob</td>
<td>Harvard University</td>
</tr>
<tr>
<td>C. E. Johnson</td>
<td>Meteorological Office</td>
</tr>
<tr>
<td>M. Kanakidou</td>
<td>Centre des Faibles Radioactivités</td>
</tr>
<tr>
<td>B. Kärcher</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>D. E. Kinnison</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>A. A. Kiselev</td>
<td>Main Geophysical Observatory</td>
</tr>
<tr>
<td>I. Köhler</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>J. Lelieveld</td>
<td>Institute of Marine and Atmospheric Research</td>
</tr>
<tr>
<td>J. Logan</td>
<td>Harvard University</td>
</tr>
<tr>
<td>J. F. Müller</td>
<td>Belgian Institute for Space Aeronomy</td>
</tr>
<tr>
<td>J. E. Penner</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>H. Petry</td>
<td>University of Köln</td>
</tr>
<tr>
<td>G. Pitari</td>
<td>Università Degli Studi dell’ Aquila</td>
</tr>
<tr>
<td>R. Ramaroson</td>
<td>ONERA</td>
</tr>
<tr>
<td>F. Rohrer</td>
<td>Forschungszentrum Jülich</td>
</tr>
<tr>
<td>E. V. Rozanov</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>K. Ryan</td>
<td>CSIRO</td>
</tr>
<tr>
<td>R. J. Salawitch</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>R. Sausen</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>U. Schumann</td>
<td>DLR Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>R. F. Slemr</td>
<td>Fraunhofer-Gesellschaft, Institut für Atmosphärische, Umweltforschung</td>
</tr>
<tr>
<td>D. Stevenson</td>
<td>Meteorological Office</td>
</tr>
<tr>
<td>F. Stordal</td>
<td>Norwegian Institute for Air Research</td>
</tr>
<tr>
<td>A. Strand</td>
<td>Geophysics Institute</td>
</tr>
<tr>
<td>A. Thompson</td>
<td>NASA Goddard Space Flight Center</td>
</tr>
<tr>
<td>G. Velders</td>
<td>RIVM</td>
</tr>
<tr>
<td>P. F. J. van Velthoven</td>
<td>KNMI</td>
</tr>
<tr>
<td>P. Valks</td>
<td>RIVM</td>
</tr>
<tr>
<td>Y. Wang</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>X. W. M. F. Wauben</td>
<td>KNMI</td>
</tr>
<tr>
<td>D. K. Weisenstein</td>
<td>Atmospheric and Environmental Research, Inc.</td>
</tr>
</tbody>
</table>

Review Editor

A. Wahner

Forschungszentrum Jülich
Chapter 3: Aviation-Produced Aerosols and Cloudiness

Coordinating Lead Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. W. Fahey</td>
<td>NOAA Aeronomy Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>U. Schumann</td>
<td>DLR Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
</tbody>
</table>

Lead Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Ackerman</td>
<td>University of Wisconsin</td>
<td>US</td>
</tr>
<tr>
<td>P. Artaxo</td>
<td>University of Sao Paulo, Instituto de Fisica</td>
<td>Brazil</td>
</tr>
<tr>
<td>O. Boucher</td>
<td>Université de Lille</td>
<td>France</td>
</tr>
<tr>
<td>M. Y. Danilin</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>B. Kärcher</td>
<td>DLR Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>P. Minnis</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>T. Nakajima</td>
<td>Center for Climate System Research, University of Tokyo</td>
<td>Japan</td>
</tr>
<tr>
<td>O. B. Toon</td>
<td>University of Colorado</td>
<td>US</td>
</tr>
</tbody>
</table>

Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. K. Ayers</td>
<td>Analytical Services and Materials, Inc.</td>
<td>US</td>
</tr>
<tr>
<td>T. K. Berntsen</td>
<td>Center for International Climate and Environmental Research</td>
<td>Norway</td>
</tr>
<tr>
<td>P. S. Connell</td>
<td>Lawrence Livermore National Laboratory</td>
<td>US</td>
</tr>
<tr>
<td>F. J. Dentener</td>
<td>Utrecht University, Institute for Marine and Atmospheric Research</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>D. R. Doelling</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>A. Döpelheuer</td>
<td>DLR Institut für Physik der Antriebstechnik</td>
<td>Germany</td>
</tr>
<tr>
<td>E. L. Fleming</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>K. Gierens</td>
<td>DLR Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>C. H. Jackman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>H. Jäger</td>
<td>Fraunhofer-Gesellschaft, Institut für Atmosphärische, Umweltforschung</td>
<td>Germany</td>
</tr>
<tr>
<td>E. J. Jensen</td>
<td>NASA Ames Research Center</td>
<td>US</td>
</tr>
<tr>
<td>G. S. Kent</td>
<td>NASA Langley Research Center</td>
<td>US</td>
</tr>
<tr>
<td>I. Köhler</td>
<td>DLR Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>R. Meerkötter</td>
<td>DLR Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>J. E. Penner</td>
<td>University of Michigan</td>
<td>US</td>
</tr>
<tr>
<td>G. Pitari</td>
<td>Università Degli Studi dell’ Aquila</td>
<td>Italy</td>
</tr>
<tr>
<td>M. J. Prather</td>
<td>University of California at Irvine</td>
<td>US</td>
</tr>
<tr>
<td>J. Ström</td>
<td>University of Stockholm</td>
<td>Sweden</td>
</tr>
<tr>
<td>Y. Tsushima</td>
<td>Center for Climate System Research, University of Tokyo</td>
<td>Japan</td>
</tr>
<tr>
<td>C. J. Weaver</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>D. K. Weisenstein</td>
<td>Atmospheric and Environmental Research, Inc.</td>
<td>US</td>
</tr>
</tbody>
</table>
Chapter 4: Modeling the Chemical Composition of the Future Atmosphere

Coordinating Lead Authors

I. Isaksen University of Oslo Norway
C. H. Jackman NASA Goddard Space Flight Center US

Lead Authors

S. L. Baughcum The Boeing Company US
F. J. Dentener Institute for Marine and Atmospheric Research The Netherlands
W. L. Grose NASA Langley Research Center US
P. Kasibhatla Duke University US
D. E. Kinnison Lawrence Livermore National Laboratory US
M. K. W. Ko Atmospheric and Environmental Research, Inc. US
J. C. McConnell York University Canada
G. Pitari Università Degli Studi dell’ Aquila Italy
D. Wuebbles University of Illinois US

Contributors

T. K. Berntsen University of Oslo Norway
M. Y. Danilin Atmospheric and Environmental Research, Inc. US
R. S. Eckman NASA Langley Research Center US
E. L. Fleming NASA Goddard Space Flight Center US
M. Gauss University of Oslo Norway
V. Grewe DLR Institut für Physik der Atmosphäre Germany
R. Harwood University of Edinburgh UK
D. Jacob Harvard University US
H. Kelder KNMI The Netherlands
J.-F. Muller Belgian Institute for Space Aeronomy Belgium
M. J. Prather University of California at Irvine US
H. Rogers University of Cambridge UK
R. Sausen DLR Institut für Physik der Atmosphäre Germany
D. Stevenson Meteorological Office UK
P. F. J. van Velthoven KNMI The Netherlands
M. van Weele KNMI The Netherlands
P. Vohralik CSIRO Australia
Y. Wang Georgia Institute of Technology US
D. K. Weisenstein Atmospheric and Environmental Research, Inc. US
Chapter 5: Solar Ultraviolet Irradiance at the Ground

Coordinating Lead Authors

J. E. Frederick
K. R. Ryan

Lead Authors

A. F. Bais
J. B. Kerr
B. Wu

Contributors

R. Meerkötter
I. C. Plumb

Review Editor

C. Zerefos

Chapter 6: Potential Climate Change from Aviation

Coordinating Lead Authors

M. J. Prather
R. Sausen

Lead Authors

A. S. Grossman
J. M. Haywood
D. Rind
B. H. Subbaraya

Contributors

P. M. Forster
A. K. Jain
M. Ponater
U. Schumann
W.-C. Wang
State University of New York at Albany
US

T. M. L. Wigley
NCAR
US

D. J. Wuebbles
University of Illinois
US

Review Editor
D. Yihui
China Meteorological Administration
China

Chapter 7: Aircraft Technology and Its Relation to Emissions

Coordinating Lead Authors
J. S. Lewis
Rolls Royce Plc.
UK
R. Niedzwiecki
NASA Lewis Research Center
US

Lead Authors
D. W. Bahr
G. E. Aircraft Engines (Retired)
US
S. Bullock
Rolls Royce Plc.
UK
N. Cumpsty
Cambridge University
UK
W. Dodds
General Electric Company
US
D. DuBois
The Boeing Company
US
A. Epstein
Massachusetts Institute of Technology
US
W. W. Ferguson
Pratt & Whitney Aircraft
US
A. Fiorentino
Pratt & Whitney Aircraft
US
A. A. Gorbatko
CIAM
Russia
D. E. Hagen
University of Missouri-Rolla
US
P. J. Hart
Allison Engine Company
US
S. Hayashi
National Aerospace Laboratory
Japan
J. B. Jamieson
Consultant
UK
J. Keerebrock
Massachusetts Institute of Technology
US
M. Lecht
DLR Institut für Physik der Antriebstechnik
Germany
B. Lowrie
Rolls Royce Plc.
UK
R. C. Miake-Lye
Aerodyne Research Inc.
US
A. K. Mortlock
The Boeing Company
US
C. Moses
Southwest Research Institute
US
K. Renger
Airbus Industrie
France
S. Sampath
Pratt & Whitney Canada Inc.
Canada
J. Sanborn
Allied Signal Engines
US
B. Simon
Motoren-und-Turbinen-Union
Germany
A. Sorokin
CLAM ECOLEN
Russia
W. Taylor
Exxon Research and Energy Co.
US
I. Waitz
MIT Gas Turbine Laboratory
US
C. C. Wey
Army Vehicle Propulsion Directorate
US
P. Whitefield
University of Missouri-Rolla
US
C. W. Wilson
Combustion and Emissions Group Propulsion
UK

156
Contributors

S. L. Baughcum The Boeing Company US
A. Döpelheuer DLR Institut für Physik der Antriebstechnik Germany
H. J. Hackstein AI/EE-T Engineering Directorate Germany
H. Mongia General Electric Company US
R. R. Nichols The Boeing Company US
C. Osonitsch Gulfstream US
R. Paladino University of Missouri-Rolla US
M. K. Razdan Allison Engine Company US
M. Roquemore WL/POSF US
P. A. Schulte DLR Institut für Physik der Atmosphäre Germany
D. J. Sutkus The Boeing Company US

Review Editor

M. Wright Consultant UK

Chapter 8: Air Transport Operations and Relation to Emissions

Coordinating Lead Author

G. Bekebrede NLR The Netherlands

Lead Authors

D. Dimitriu Romanian Air Transport Romania
L. Dobbie IATA
V. Galotti ICAO Belgium
A. Liewen Eurocontrol Agency Japan
S. Nakao Japan Airlines UK
D. Raper Manchester Metropolitan University UK
H. Somerville Bristish Airways
R. L. Wayson University of Central Florida US
S. Webb The Weinberg Group, Inc. US

Contributors

A. Gil Airports Council International Switzerland
D. R. Marchi Airports Council International US
B. Miaillier Eurocontrol Airspace and Navigation Belgium
B. O. Nas SAS Sweden
J. Templeman The Boeing Company US
Review Editor

C. V. Oster, Jr. Indiana University

Chapter 9: Aircraft Emissions: Current Inventories and Future Scenarios

Coordinating Lead Authors

S. C. Henderson The Boeing Company US
U. K. Wickrama ICAO

Lead Authors

S. L. Baughcum The Boeing Company US
J. J. Begin Northwest Airlines Inc. US
F. Franco Canada
D. L. Greene Center for Transportation Analysis US
D. S. Lee DERA UK
M.-L. McLaren Consulting and Audit Canada Canada
A. K. Mortlock The Boeing Company US
P. J. Newton DTI UK
A. Schmitt DLR Verkehrsforschung Germany
D. J. Sutkus The Boeing Company US
A. Vedantham Richard Stockton College of New Jersey US
D. J. Wuebbles University of Illinois US

Contributors

R. M. Gardner DERA UK
L. Meisenheimer Furman University US

Review Editor

O. Davidson University of Sierra Leone Sierra Leone

Chapter 10: Regulatory and Market-Based Mitigation Measures

Coordinating Lead Author

J. F. Hennigan Federal Aviation Administration US

Lead Authors

J. Aylesworth, Jr. Aerospace Industries Association US
J. Crayston ICAO
L. Dobbie IATA
E. Fleuti
M. Mann
H. Somerville

Review Editor

C. V. Oster, Jr.

EXPERT REVIEWERS

Albania

E. Demiraj Bruci
Hydrometeorological Institute

Australia

E. Curran
K. Ryan
J. Zillman

Bureau of Meteorology
CSIRO

Austria

M. Blumthaler
T. Glöckel
K. Radunsky

Innsbruck University
Federal Environment Agency

Belgium

G. T. Amanatidis
D. Brockhagen
A. Lieuwen
K. Smeekens
J.-P. van Ypersele
M. Vanderstraeten

EC/DGX11-DT
The Greens in the European Parliament
Eurocontrol Agency
VITO
Université Catholique De Louvain
OSTC

Brazil

V. W. J. H. Kirchhoff

Instituto Nacional de Pesquisas Espaciais

Canada

J. Masterton
T. McElroy

Atmospheric Environment Service
Atmospheric Environment Service
Chile

L. Gallardo Klenner
M. Fiebig-Wittmack

CONAMA
Universidad de La Serena

China

D. Yihui
Z. Jingmeng
B. Wu
S. Wu

China Meteorological Administration
China Meteorological Administration (Deceased)
Institute of Atmospheric Physics (Deceased)
Beijing University of Aeronautics and Astronautics

Czech Republic

J. Pretel

Hydrometeorological Institute

Denmark

T. S. Jorgensen
B. Kuemmel
N. Larsen
H. Lyse Nielsen

Danish Meteorological Institute
KVL
Danish Meteorological Institute
Danish Environment Protection Agency

European Commission

G. Angeletti
R. Dunker
M. Raquet

Finland

R. Korhonen
M. Kulmala
I. Savolainen

VTT-Energy
University of Helsinki
VTT-Energy

France

J.-J. Becker
O. Boucher
D. Cariolle
M. Desaulty
M. Gillet
M. Kanakidou
L. Michaelis
P. Vesseron
R. von Wrede

Mission Interministérielle de l’Effet de Serre
Laboratoire d’Optique Atmosphérique
Meteo-France
SNECMA
Mission Interministérielle de l’Effet de Serre
Centre des Faibles Radioactivités
OECD/International Energy Agency
Mission Interministérielle de l’Effet de Serre
Airbus Industrie
Germany

C. H. Brühl Max-Planck Institut für Chemie Germany
P. Crutzen Max-Planck Institut für Chemie Germany
M. Ernst Federal Ministry for the Environment Germany
P. Fabian LBI Germany
N. Gorisson Federal Environmental Agency Germany
B. Kärcher DLR Institut für Physik der Atmosphäre Germany
D. Kley Institut für Chemie der KFA Jülich GmbH Germany
H. G. Klug Daimler-Benz Aerospace Airbus GmbH Germany
P. Koepke Meteorologisches Institut München Germany
A. Petzold DLR Institut für Physik der Atmosphäre Germany
R. Sausen DLR Institut für Physik der Atmosphäre Germany
H. Schlager DLR Institut für Physik der Atmosphäre Germany
U. Schumann DLR Institut für Physik der Atmosphäre Germany
G. Seckmeyer Fraunhofer-Institut für Atmosphäre Germany
B. Simon Motoren-und-Turbinen-Union Germany
W. Stockwell Fraunhofer-Institut für Atmosphäre Germany
J. Szodruch Deutsche Aerospace Airbus GmbH Germany
M. Treber Germanwatch Germany
F. Walle Leiter Umweltfragen Germany
H. Weyer DLR Institut für Physik der Antriebstechnik Germany

IATA

B. Bourke
J. de la Camera
L. Dobbie
A. Hardeman
R. Walder
G. Zaccagnini

ICAO

A. Costaguta
J. Crayston
G. Finnsson

Israel

Y. Rudisch Weizmann Institute of Science
Italy
V. Satancesaria IROE-CNR
G. Visconti Università Degli Studi dell’ Aquila

Japan
Y. Kondo Nagoya University

Kenya
C. K. Gatebe University of Nairobi
P. M. Mbuthi Ministry of Energy
J. K. Njihia Kenya Meteorological Department

New Zealand
V. Gray Coal Research Association of New Zealand
M. R. Manning NIWA
R. McKenzie National Institute of Water and Atmospheric Research Ltd

Norway
K. Alfsen CICERO
M. Asen Ministry of Environment
T. K. Berntsen University of Oslo
O. Christophersen Ministry of Environment
J. S. Fuglestvedt University of Oslo
A. Gaustad Norwegian Civil Aviation Administration
O. Hov Ministry of Environment
I. Isaksen University of Oslo
S. Lindahl Norwegian Ministry of Transport
M. V. Pettersen State Pollution Control Authority
K. Rypdal Central Bureau of Statistics

Russia
A. A. Gorbatko CIAM
I. L. Karol Main Geophysical Observatory
A. Sorokin CLAM, ECOLEN

Sierra Leone
O. Davidson Sierra Leone University
Slovenia
A. Kranjc Hydrometeorological Institute

Spain
B. Artinano CIEMAT
J. M. Ciseneros National Meteorological Institute
E. Ferdinandez INTA
M. Gil INTA
J. C. Rodriguez Murillo Centro de Ciencias Medioambientales
I. Sastre DGAC

Sweden
N. E. Nertun Scandinavian Airlines
K. J. Noone University of Stockholm
K. Pleijel Swedish Environmental Research Institute
J. Ström University of Stockholm
L. Westermark Swedish Commission on Climate Change

Switzerland
W. Bula Federal Office for Civil Aviation
B. C. Cohen UNECE Committee on Energy
C. Frohlich World Radiation Center
J. Romero Federal Office of Environment, Forest, and Landscape
J. Staehelin ETH Atmospheric Physics Laboratory
S. Wenger Federal Office for Civil Aviation

The Netherlands
H. Kelder KNMI
J. W. Nieuwenhuis Ministry of Housing
M. Osterman Royal Netherlands Meteorological Institute
H. J. Pulles Netherlands Civil Aviation Authority
G. Velders Air Research Lab, RIVM

Uganda
B. Apuuli Department of Meteorology

UNEP
N. Sabogal
UNFCCC

N. Höhne
D. Tirpak

United Kingdom

I. Colbeck
P. M. Forster
B. Gardiner
J. Houghton
C. Hulme
C. Hume
L. R. Jenkinson
C. Johnson
P. R. Jonas
D. Lary
D. S. Lee
D. H. Lister
A. McCulloch
N. J. Mills
K. Morris
P. Newton
K. Pearson
A. Pyle
M. Rossell
K. Shine
J. Tilston

University of Essex
University of Reading
British Antarctic Survey
IPCC WGI Co-Chairman
British Airways
British Aerospace
Department of Aeronautical and Automotive Engineering and Transport Studies
DETR
UMIST
University of Cambridge
DERA
DETRA
AFEAS/ICI C&P
DETRA
British Airways
DTI
DETRA
University of Cambridge
DETRA
University of Reading
DETRA

United States of America

H. Aylesworth, Jr.
S. L. Baughcum
J. Begin
F. J. Beradino
K. Boering
T. Carmichael
L. Chang
U. Covert
R. Cuthbertson
P. J. De Mott
S. Dollyhigh
D. DuBois
J. H. Ellis
D. Ercegovic

Aerospace Industries Association
The Boeing Company
Northwest Airlines Inc.
Gellman Research Associates Inc.
University of California
Coalition for Clean Air
Environmental Protection Agency
Massachusetts Institute of Technology
The Boeing Company
Colorado State University
NASA Langley Research Center
The Boeing Company
Federal Express Corporation
NASA Langley Research Center

164
A. Fiorentino Pratt & Whitney Aircraft
N. Fitzroy GE (Retired)
S. Gander Center for Clean Air Policy
M. Geller New York State University
A. Gettelman US Climate Action Network
T. E. Graedel IGBP/IGAC, AT&T Bell Laboratories
K. Green Consultant
W. L. Grose NASA Langley Research Center
M. Guynn NASA Langley Research Center
P. Hamill San Jose State University
S. Henderson The Boeing Company
J. Holton University of Washington
C. H. Jackman NASA Goddard Space Flight Center
D. Jacob Harvard University
R. Kassel Natural Resources Defense Council
G. Kent NASA Langley Research Center
H. Kheshgi EXXON
E. Levina Center for Clean Air Policy
J. Levy NOAA
J. Logan Harvard University
S. P. Lukachko Massachusetts Institute of Technology
B. Manning Environmental Protection Agency
R. Marshall Pratt & Whitney Aircraft
J. Montgomery American Airlines
A. Mortlock The Boeing Company
C. Newberg Environmental Protection Agency
R. Nichols The Boeing Company
R. Niedzwiecki NASA Lewis Research Center
R. C. Oliver Institute for Defence Analyses
M. Oppenheimer Environmental Defense Fund
J. Pershing US Department of State
A. Petsonk Environmental Defense Fund
B. Pierce NASA Langley Research Center
L. R. Poole NASA Langley Research Center
R. Pueschel NASA Ames Research Center
V. Ramaswamy Geophysical Fluid Dynamics Laboratory
A. R. Ravishankara NOAA Aeronomy Laboratory
D. Rind NASA Goddard Institute of Space Studies
R. Rubenstein Environmental Protection Agency
C. Russo NASA Lewis Research Center
A. Schafer Massachusetts Institute of Technology
K. Shah NASA Goddard Institute of Space Studies
S. F. Singer Science and Environmental Policy Project
R. Stolarski NASA Goddard Space Flight Center
W. Strack Modern Technologies Corp
L. Thomason NASA Langley Research Center
A. Thompson
K. E. Trenberth
A. Vedantham
D. Victor
W.-C. Wang
S. G. Warren
S. Webb
H. L. Wesoky

SECTION E: Assessment of the Atmospheric Effects of High-Speed Aircraft in the Stratosphere: 1998

ASSessment CHAIR

S. Randolph Kawa
mixed

LEAD AUTHORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>James G. Anderson</td>
<td>Harvard University</td>
<td>US</td>
</tr>
<tr>
<td>Steven L. Baughcum</td>
<td>Boeing Company</td>
<td>US</td>
</tr>
<tr>
<td>Charles A. Brock</td>
<td>University of Denver</td>
<td>US</td>
</tr>
<tr>
<td>William H. Brune</td>
<td>Pennsylvania State University</td>
<td>US</td>
</tr>
<tr>
<td>Ronald C. Cohen</td>
<td>University of California, Berkeley</td>
<td>US</td>
</tr>
<tr>
<td>Douglas E. Kinnison</td>
<td>National Center for Atmospheric Research (formerly affiliated with Lawrence Livermore National Laboratory)</td>
<td>US</td>
</tr>
<tr>
<td>Paul A. Newman</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Jose M. Rodriguez</td>
<td>University of Miami</td>
<td>US</td>
</tr>
<tr>
<td>Richard S. Stolarski</td>
<td>NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Darryn Waugh</td>
<td>Johns Hopkins University</td>
<td>US</td>
</tr>
<tr>
<td>Steven C. Wofsy</td>
<td>Harvard University</td>
<td>US</td>
</tr>
</tbody>
</table>

COORDINATING EDITORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose M. Kendall</td>
<td>Computer Sciences Corporation</td>
<td>US</td>
</tr>
<tr>
<td>Kathy A. Wolfe</td>
<td>Computer Sciences Corporation</td>
<td>US</td>
</tr>
</tbody>
</table>

CONTRIBUTORS AND REVIEWERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald E. Anderson</td>
<td>The Johns Hopkins University Applied Physics Laboratory/NASA Goddard Space Flight Center</td>
<td>US</td>
</tr>
<tr>
<td>Kristie A. Boering</td>
<td>University of California, Berkeley</td>
<td>US</td>
</tr>
<tr>
<td>Lisa Chang</td>
<td>US Environmental Protection Agency</td>
<td>US</td>
</tr>
<tr>
<td>Martyn Chipperfield</td>
<td>University of Leeds</td>
<td>UK</td>
</tr>
<tr>
<td>Med Colket</td>
<td>United Technologies Research Center/Pratt & Whitney</td>
<td>US</td>
</tr>
<tr>
<td>David Considine</td>
<td>University of Maryland</td>
<td>US</td>
</tr>
<tr>
<td>Robert Cuthbertson</td>
<td>Boeing Commercial Airplane Group</td>
<td>US</td>
</tr>
</tbody>
</table>
SECTION F: Models and Measurements (M&M) Intercomparison II
Summary

N. Andronova University of Illinois, Urbana-Champaign US
Steven L. Baughcum Boeing Company US
Praful P. Bhatt Science Applications International Corporation US
Kristie A. Boering University of California, Berkeley US
Guy P. Brasseur
Max-Planck-Institut für Meteorologie
US
Donald E. Brown
Science Applications International Corporation
US
Christoph Brühl
Max-Planck-Institut für Chemie
Germany
Martyn P. Chipperfield
University of Leeds
UK
Peter S. Connell
Lawrence Livermore National Laboratory
US
David B. Considine
University of Maryland, College Park
US
Anne R. Douglass
NASA Goddard Space Flight Center
US
Victor L. Dvortsov
State University of New York, Stony Brook
US
Richard S. Eckman
NASA Langley Research Center
US
James W. Elkins
NOAA Climate Monitoring and Diagnostics Laboratory
US
Eric L. Fleming
Steven Myers and Associates, Corp.
US
Randall R. Friedl
Jet Propulsion Laboratory
US
Rolando R. Garcia
National Center for Atmospheric Research
US
Volker Grewe
DLR Institute for Atmospheric Physics
Germany
William L. Grose
NASA Langley Research Center
US
Timothy M. Hall
NASA Goddard Institute for Space Studies
US
Bryan J. Hannegan
University of California, Irvine
US
Matthew H. Hitchman
University of Wisconsin, Madison
US
Theresa Y. Huang
National Center for Atmospheric Research
US
Charles H. Jackman
NASA Goddard Space Flight Center
US
Dylan B. A. Jones
Harvard University
US
Igor L. Karol
A. I. Voelkov Main Geophysical Observatory
Russia
S. R. Kawa
NASA Goddard Space Flight Center
US
Jack A. Kaye
NASA Headquarters
US
Rose M. Kendall
Computer Sciences Corporation
US
Rashid Khosravi
National Center for Atmospheric Research
US
Douglas E. Kinnison
National Center for Atmospheric Research
US
Malcolm K. W. Ko
Atmospheric and Environmental Research, Inc.
US
Larissa Kogan
Harvard University
US
Gordon Labow
NASA Goddard Space Flight Center
US
Jean Lerner
Harvard University
US
Jennifer A. Logan
NASA Goddard Space Flight Center
US
Richard D. McPeters
Northwest Research Associates, Inc.
US
Philip W. Mote
University of Wisconsin
US
S. Nossal
NOAA Climate Monitoring and Diagnostics Laboratory
US
Samuel J. Oltmans
NASA Langley Research Center
US
Jae H. Park
Universita' degli Studi L'Aquila
Italy
Giovanni Pitari
Massachusetts Institute of Technology
US
R. Alan Plumb
University of California, Irvine
US
Michael J. Prather
Science Applications International Corporation
US
Patrick N. Purcell
National Center for Atmospheric Research
US
William J. Randel
Commonwealth Scientific and Industrial Research Organization (CSIRO)
Australia
Lakshman Randeniya
National Center for Atmospheric Research
US
Philip J. Rasch
NASA Langley Research Center
US
Ellis E. Remsberg
NASA Langley Research Center
US
David H. Rind
Curtis P. Rinsland
Jose M. Rodriguez
Helen L. Rogers
Richard B. Rood
Joan E. Rosenfield
Douglas Rotman
Eugene V. Rozanov
Keith R. Ryan
Karen H. Sage
Ross J. Salawitch
M. E. Schlesinger
Hans R. Schneider
Courtney Scott
Sergey P. Smyshlyaev
Randy Soderholm
Susan Solomon
Benedikt Steil
XueXi Tie
Peter F. Vohralik
Darryn W. Waugh
Clark J. Weaver
Chu-feng Wei
Debra K. Weisenstein
Kathy A. Wolfe
Donald J. Wuebbles
F. Yang
Valery A. Yudin
Xin Zhu
Vladimir A. Zubov

NASA Goddard Institute for Space Studies
NASA Langley Research Center
University of Miami
University of Cambridge
NASA Goddard Space Flight Center
General Sciences Corporation
Lawrence Livermore National Laboratory
University of Illinois, Urbana-Champaign
Commonwealth Scientific and Industrial Research Organization (CSIRO)
Science Applications International Corporation
Jet Propulsion Laboratory
University of Illinois, Urbana-Champaign
Harvard University
Atmospheric and Environmental Research, Inc.
State University of New York, Stony Brook
Computer Sciences Corporation
NOAA Aeronomy Laboratory
Max-Planck-Institut für Chemie
National Center for Atmospheric Research
Commonwealth Scientific and Industrial Research Organization (CSIRO)
The Johns Hopkins University
Applied Research Corporation
University of Illinois, Urbana-Champaign
Atmospheric and Environmental Research, Inc.
Computer Sciences Corporation
University of Illinois
University of Illinois, Urbana-Champaign
State University of New York, Stony Brook
University of California, Irvine
A. I. Voeikov Main Geophysical Observatory

Australia
US

SECTION G: POLARIS End-of-Mission Statement

David W. Fahey
Paul A. Newman

NOAA Aeronomy Laboratory
NASA Goddard Space Flight Center

Co-Project Scientists on behalf of the POLAIS Science Team
(see Section G for detailed list)
SECTION H: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Supplement to Evaluation Number 12 of the NASA Panel for Data Evaluation

AUTHORS

William B. DeMore
Randall R. Friedl
David M. Golden
Robert F. Hampson
Robert E. Huie
Charles E. Kolb
Michael J. Kurylo
Mario J. Molina
Geert Moortgat
A. R. Ravishankara
Stanley P. Sander

Jet Propulsion Laboratory
Jet Propulsion Laboratory
SRI International
National Institute of Standards and Technology
National Institute of Standards and Technology
Aerodyne Research, Inc.
National Institute of Standards and Technology
Massachusetts Institute of Technology
Max-Planck-Institut für Chemie
NOAA Aeronomy Laboratory
Jet Propulsion Laboratory

US
US
US
US
US
US
US
US
Germany
US

M. J. Kurylo, P. L. DeCola, and J. A. Kaye

NASA Office of Earth Science Research Division
Washington, DC 20546-0001

National Aeronautics and Space Administration

Subject Category: Distribution:
Availability: NASA CASI (301) 621-0390

This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to the Congress and the Environmental Protection Agency. NASA specifically is charged with the responsibility of reporting on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part I of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1997-1999. Part II (this document) is a compilation of several scientific assessments, reviews, and summaries. Section B (Scientific Assessment of Ozone Depletion: 1998), Section C (a summary of the 1998 Stratospheric Processes and their Role in Climate, SPARC, ozone trends report), Section D (the policymakers summary of the Intergovernmental Panel on Climate Change, IPCC, report on Aviation and the Global Atmosphere), and Section E (the executive summary of the NASA Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998) are summaries of the most recent assessments of our current understanding of the chemical composition and the physical structure of the stratosphere, with particular emphasis on how the abundance and distribution of ozone is predicted to change in the future. Section F (the executive summary of NASA's Second Workshop on Stratospheric Models and Measurements, M&M II) and Section G (the end-of-mission statement for the Photochemistry of Ozone Loss in the Arctic Region in Summer, POLARIS, campaign) describe the scientific results for a comprehensive modeling intercomparison exercise and an aircraft and balloon measurement campaign, respectively. Section H (Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Update to Evaluation Number 12 of the NASA Panel for Data Evaluation) highlights the latest of NASA's reviews of this important aspect of the atmospheric sciences. A list of contributors to each of the included documents appears in Section I of this report.