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A REDUCED ORDER MODEL OF THE LINEARIZED INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS FOR THE SENSOR/ACTUATOR PLACEMENT PROBLEM

BRIAN G. ALLAN *

Abstract. A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a
distributed optimal feedback kernel. This approach is based on a Krylov subspace method where significant modes
of the flow are captured in the model. This model is then used in an optimal feedback control design where sensing
and actuation is performed on the entire flow field. This control design approach yields an optimal feedback kernel
which provides insight into the placement of sensors and actuators in the flow ficld. As an evaluation of this approach,

a two-dimensional shear layer and driven cavity flow are investigated.
Key words. Navier-Stokes equations, feedback control, sensor/actuator placement, active flow control
Subject classification. Applied Numerical Mathematics, Controls

1. Introduction. Experimental results using micro actuators and sensors have demonstrated that active flow
control has the potential to increase the performance of high-lift wings, cavity noise, and other flow systems [13, 18, 5].
Placement of these micro actuators and sensors can have a dramatic effect on the performance of the flow control
system. The location of the sensors and actuators is complicated by the distributed nature of the nonlinear flow
equations and the dynamics of the closed-loop system. The goal of this investigation is 1o identify the spatial regions
of the flow where sensing and actuation are favorable under feedback control.

By assuming control and sensing everywhere in the flow field, a distributed optimal feedback kernel can be
computed. Evaluation of this feedback kernel shows spatial regions of the flow field which are more significant.
in terms of actuation and sensing. than other regions of the flow field {11]. By identifying these regions of the
flow. the search space for the placement of sensors and actuators can be reduced. This methodology does not give
exact locations for point actuators/sensors and should be considered as a prefilter to a point actuator/sensor location
placement problem.

Calculation of the optimal feedback gains requires a finite dimensional approximation to the infinite dimensional
Riccati equations. The cost of computing this finite dimensional Riccati solution is order N? where N is the number of
states in the finite dimensional approximation to the dynamical system. Since the number of states needed to resolve
a flow field can become very large, the cost of computing a solution to the Riccati equations can grow prohibitively
expensive. However, this cost can be reduced by developing a reduced order model which contains significant dynam-
ics of the flow system. To generate this reduced order model, the linearized incompressible Navier-Stokes equations
are projected onto a Krylov subspace. This reduced order model is then incorporated into an optimal feedback control

design. To evaluate this methodology a two-dimensional shear flow and a driven cavity flow problem are investigated.

2. Governing Equations. This section describes the equations governing the dynamics of a viscous flow in
two-dimensions. In this investigation the incompressible Navier-Stokes equation are represented in vorticity stream
function form. This form of the Navier-Stokes equation was chosen over the primitive variable form, i.e. velocity and

pressure, because it has a reduced number of unknowns with no incompressibility condition. A disadvantage to the
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vorticity stream function form is that the no-slip boundary conditions produce two boundary conditions on the stream

function and none for vorticity [16].

2.1. Two-Dimensional Navier-Stokes Equations. This investigation considers a two-dimensional square do-
main D with a boundary 0. The governing equations are the incompressible Navier-Stokes equations. These
equations can be expressed in a vorticity stream function form. This form is achieved by taking the curl of the
nondimensional momentum equation and substituting the definition of vorticity and stream function. The vorticity
stream function form of the incompressible Navier-Stokes equations is then expressed as
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where 0. y. and u are the dimensionless scalar vorticity, stream function, and velocity vector respectively. Note that
the velocity at the boundary must satisfy a compatibility condition which follows from the integration of the continuity
equation over the domain 2. Integrating the continuity equation over D, applying the divergence theorem, and using

the velocity boundary condition, results in
2.2) V-u:}{ w,-n=0
D 9D
where n is the unit vector normal to 92 [16]. The scalar vorticity field © is the z-component of the vorticity vector
o=V x u which is given by
(2.3) w=2¢&-(Vxu)
where the velocity vector u(x,1) = (u,v) and €. is the unit vector normal to the xv plane. The stream function y is
defined such that

_y v
a0 VT Tw

This definition of the stream function produces a velocity ficld which exactly satisfies the incompressibility condition

(2.4) u

V -u = 0 for two-dimensional flows. The relation between the stream function and velocity vector can also be written

in the compact form u = Vy x é..

2.2. Linearized Navier-Stokes Equations. The optimal feedback control design in this investigation is base on
linear quadratic regulator (LQR) theory. Since the LQR control design is based on classical linear dynamic system
theory, the nonlinear governing equations in Eq. (2.1) can not be used for the feedback control design. Therefore the
equations in Eq. (2.1) are linearized about a desired base flow state where it is assumed that the flow is stabilized by the
controller resulting in small perturbations about the base flow. These linearized Navier-Stokes equations describe the
linear evolution of small perturbations about a given base flow field. It is desired that this base flow field be a steady
state solution to the nonlinear governing equations. By making the base flow a steady state solution to the nonlinear
equations, the time derivative of the base flow will drop out when the equations are linearized.

This perturbation of the flow variables about some base flow state can be expressed as

®(x,1) = Q(x) + ew(x,t)
(2.5) W(x,1) =Y(x)+ey(x,r)

a(x,r) = U(x) +eu(x,t)
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where the flow states @, , and i satisfy equations in Eq. (2.1) and € is some "small’ parameter. The perturbed states
are represented by the variables @, Y, and u and the base flow by Q, ¥, and U = (U,V). Here the base flow states are
assumed to be steady state solutions and are not function of time.

Substituting Eq. (2.5) into Eq. (2.1) and considering the terms which are of O(e") results in the equations,

0=—(U-V)Q+lvzg in D
Re
(2.6) V¥ =-Q in D

U=U, on dD

These equations are the nonlinear steady state incompressible viscous flow equations. The desired flow state which is
to be stabilized by the optimal feedback controller must satisfy the equations in Eq. (2.6). Considering now only the
terms which are of O(g) gives the equations,

ow
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These equations describe the linear evolution of the perturbed flow state about the base flow state. The nonlinear term
(u-V)wis of O(e*) and is dropped from above equations.
The equations in Eq. (2.7) can be rewritten in the following conservative form,
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where the fact that the base flow velocity and the perturbed flow velocity satisfy the continuity equations V-U = 0 and

V -u = 0 has been used.

2.3. Boundary Conditions. The physical boundary conditions on the velocity u at a wall result in two boundary
conditions on the stream function y. These two boundary conditions are derived by separating the normal and tangen-
tial components of the velocity u at the boundary. Quartapelle (1993) shows that the boundary condition u|yp =y

results in the two boundary conditions

(2.9a) \Ula:[) =da
(2.9b) vl _,
on {y3p

where a(s,1) = [} n(€) -uy(E,1)d€ and b = —7-u;,. The variable 5 is a coordinate along the boundary 99 and s, is
any fixed point along the boundary. The vector T is a unit vector tangential to the boundary. For the flows considered
in this investigation, the variable a(s,t) = 0.

The two boundary conditions used in this investigation are periodic and no-slip nonporous walls. On the no-slip
walls the Dirichlet boundary condition in Eq. (2.9a) was used to solve the Poisson equation for the stream function.
The Neuman boundary condition Eq. (2.9b) for the stream function was used to solve the vorticity transport equation

by deriving a Dirichlet boundary condition for vorticity.



3. Control Problem. The classical theory of control systems was developed for systems governed by finite
dimensional ordinary differential equations (ODE), also known as lumped parameter systems. In this investigation the
governing equations for fluid dynamics are partial differential equations (PDE) where the state of the system lies in
some infinite dimensional function space. A system of this type is also known as a distributed parameter system where
the states and control inputs are distributed spatially [10]. This section describes the LQR feedback control problem
for the infinite dimensional system and its finite dimensional approximation.

3.1. Infinite Dimensional Problem. The distributed control applied to the flow takes the form of a spatially
distributed body force f(x,r). The torque generated by the body force, normal to the xy plane, is given by g =
(V x f)-&.. This distributed control torque g(x,r) appears on the right-hand side of the linearized vorticity transport

cquation.
]
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These PDEs are now written in an abstract form which is conducive to the optimal feedback control design. Treating

this distributed parameter system as an evolution ODE, Eq. (3.1) can be written as

®=Aw+ Bg
(3.2)
w(x,0) = wy

where @ = dw(-.1)/dr and A and B are infinite dimensional operators. The operator B for the system given in Eq. (3.1)

is just the identity but is included for completeness. Given a flow field w, the action of the operator A on ® is
|-

(3.3) Aw = —V-(mU)—V-(Qu)+R—V*w
e

where the velocity u is an explicit function of the stream function y, which is an implicit function of vorticity ®.

The control input g i1s computed by using the state ®(x,#) in the following way
(3.4) g0 = [ KixEond

where K(x,&) is the distributed feedback kernel. Therefore the control input g, at a position x, is given by an integral
over the entire domain of the distributed gain K multiplied by the current vorticity field.
The goal of this control design is to find a feedback kernel K which produced an optimal control input g,,. In

order to define what optimal means, consider the following quadratic equation

(3.5) S, g) = /Om[(w(é»f),Q(i)w(ivf» +(8(8.1).R(E)g(E.1)]dr

where Q(x) and R(x) are weighting functions and the notation < -,- > represents an inner product over the domain D.
The term optimal is now defined as the control input which minimizes the quadratic cost function J. By minimizing
J. the perturbations in the vorticity from the desired state  are minimize and the needed control input g is also
minimized.

The LQR problem for the infinite dimensional system is stated as

(3.6) minJ(w(x,0),g(x.,7))

g(x1)



subject to the system in Eq. (3.2). The optimal control input gopt (X,1) which minimizes Eq. (3.6) is given by

(3.7) gopr(X,1) = /@—R-‘B*n (& 1)dE

where B* is the adjoint of B and IT is the nonnegative self-adjoint solution to the steady state, infinite dimensional,

algebraic Riccati equation (ARE)
(3.8) ATI+NA-TIBR™'BTI+Q=0

A solution T exists for Eq. (3.8) if the pair (A,B) is stabilizable and the pair (A,C) is detectable [4]. These two
conditions are satisfied since actuation and sensing are performed everywhere in the flow field. From Eq. (3.7) it can
be seen that the optimal feedback kernel K, is given by
(3.9) Koy =—-R7'B'TI
3.2. Finite Dimensional Approximation. A finite dimensional approximation to the infinite dimensional feed-
back kernel K is made using a finite difference method. In this approximation it is desired that the feedback kernel
KV — K, in an appropriate sense, as N — oo. The computational issues associated with this problem have been
addressed by Banks et al. [2] and Gibson [8].
The finite dimensional approximation to Eq. (3.5) is expressed as
o = AVo" + Bg"
(3.10)
o™ (0) = o
where ®" is a vector containing the spatially discrete values of the vorticity ficld and B is the identity matrix. The
matrix B has been included in this investigation for completeness.

The approximation to the quadratic cost function in Eq. (3.2) becomes
3.1 I (o g") =A ("), Q%" (1)) + (8" (1. R g" (1))] di

where Q" and RY are now matrices which weight the state vector ®" and the control input g¥ respectively.

The finite dimensional control problem is stated as
(3.12) min J¥(wf,g")
g

subject to the governing equations in Eq. (3.10). The optimal control input which minimizes Eq. (3.12) is given by

(3.13) gl (1) = —(RV)~' BV V(1)
where TV is the solution to the finite dimensional ARE
(3.14) AV IV VAN -V BY RNV IV + 0V =0
As in the infinite dimensional case, a solution [TV exists for Eq. (3.14) if the pair (AN_BN) is stabilizable and the pair
(A¥,CV) is detectable [4]. This is easily satisfied since actuation and sensing are performed everywhere in the flow
field.

Equation Eq. (3.13) shows that the finite dimensional approximation to the optimal feedback gain K, is

(3.15) KN = —(RM~'BN Y

()[7[
Note that the finite dimensional approximation KV to the infinite dimensional feedback control K is dependent on the
approximation to the ARE solution MY and the adjoint BY". In this study. the BY matrix is /y.y which means that the

approximation KV is primarily dependent on the approximation V.



4. Reduced Order Model. The computational cost of solving Eq. (3.14) is on the order of N* floating-point
operations (flops), where N is the number of states. For two dimensional flows the number of flow states, for a
computational simulation, can range anywhere from 10* to 10%. For a simple two dimensional flow problem, say
N = 10%. the cost would be on the order of 10'? flops. For a larger two dimensional flow problem, say N = 105,
the computational cost would increase by a factor of 1000, to 10'3 flops. For three dimensional flows the number of
states can range from 10° to 10°. Thus, the cost of solving the ARE can grow prohibitively expensive, even for two
dimensional flow problems.

The computational cost can be reduced significantly by using a Chandrasekhar system approach [3]. The only
draw back to the Chandrasekhar system is that the number of inputs must be much smaller than the number of states
in order 1o significantly reduce the cost of solving the Riccati equation. Since the number of inputs for this problem
are equal to the number of states, a different approach needs to be taken.

Another way to reduce the cost, and the approach taken here, is to develop a reduced order model of the system
given in Eq. (3.10). This reduced order model has a smaller number of states which reduces the cost of solving the
Riccati equation in the LQR control design. Since the goal is to approximate the infinite dimensional LQR feedback
gain, K. a reduced order model which gives a good approximation should be chosen. It would also be desirable for
the approximation to the infinite dimensional gain to converge in some reasonable way as the number of states in the

reduced model increase.

4.1. Krylov Space Method. Most model reduction methods for feedback control systems use a Hankel-norm
approach. This approach calculates Hankel singular values based on the controllability and observability of a given
system. The advantage of this approach is that the #£. norm of the modeling error is bounded by the sum of the Hankel
singular values not retained in the reduced order model. The draw back it that the cost of this approach is of order N-.
In this study a Krylov based method is used to project Eq. (3.10) onto a reduced Krylov subspace which includes the
leading modes of the larger system. This approach is significantly cheaper than the Hankel-norm approach but does not
take into account the controllability and observability of the closed-loop system. It can be argued, that since actuation
and sensing is performed everywhere in the flow field, that the leading modes of the homogeneous system are the
dominant modes for the closed-loop system. If the matrix BY had some structure other than identity and sensing was
not performed everywhere, then the leading modes of the homogeneous system are not necessarily the most dominant
modes (modes with the largest real part) for the closed-loop system.

Consider the homogeneous solution to Eq. (3.10),
(4.1) o (1) = T(no

where T(1) = s a Cy-semigroup. Equation (4.1) can also be written as,

oV (kAt + A1) = T(kAr+Ar)wf)
= T(ANT (kAo
4.2)
= T(AN)w"(kAr)
ot = T(AnNe

where @ = @V (kAr) and the superscripts N have been dropped for convenience. Using a Krylov method, the action
of the semigroup operator T(At) can be approximated by a reduced Krylov subspace. A k"-dimensional Krylov

subspace, given an operator T(Ar) and a vector v, is defined as

(4.3) Ki(T,v) = span{v,Tv.T*v,.... T*"'v}



This Krylov subspace is generated using the ARPACK software package which uses an Arnoldi/Lanczos scheme with

implicit restarts [ 19]. The orthonormal basis for the Krylov subspace is generated by following the Arnoldi Process [1].

vi=w;/[wil

(4.4) y
wit1=Tw;— Z Vin(Vin TV )

m=1
The vectors vj for j = 1,2,...,k are computed using a given starting vector wy. The resulting N x K vector V =
(V1.v2,...,v) is known as a Ritz Vector where V € K (T, w;). Note that the generation of the Krylov subspace only
requires the action of T on a given vector and not the explicit matrix 7. As shown in Eq. (4.2) the action of 7 on a
given vector is just the advancement of the vector, or in this case the vorticity field, by one time step Ar.

Equation (4.4) can be restated in the standard matrix form of the Arnoldi decomposition as
(4.5) TV =VH+w e

where wk+1e[ is a remainder term. The matrix H is a K x K upper Hessenberg matrix. The operator vvTisaNxN
projection operator onto the Krylov subspace and VTV is the K x K identity matrix.
The action of the semigroup operator T can be approximated by projecting it onto a Krylov subspace

(4.6) T~vIiTvv = vHVT
where H = VT TV for small wy 1] . Diagonalizing the matrix H yields
(4.7) H=EAE™'

where A is a diagonal matrix of eigenvalues and E is a matrix whose columns are the corresponding eigenvectors.
The Krylov subspace is generated by using implicit restarts which keep the leading eigenvalues of the T semigroup
operator. Using the definition of T(Af) = e* and Eq. (4.6) an approximation to the operator A results in
T(A) =™ ~ VHVT
(4.8)
= VEAE-'V!
Solving for A produces

A ~ vEDEWN oyt
(4.9) Ar

A = VHV!

where H, = E log(A)E~" /At.

4.2. Control Problem. Projection of the N’ dimensional system in Eq. (3.10) onto a k" dimensional Krylov

subspace results in the reduced system
z=Hz+ B,gN
(4.10)
z(0) =z

where B, = VT and the aggregated state vector z is defined as

(4.11) z=VT oY



Thus, the state vector 0" has been approximated by another state vector z, constrained to stay in the Krylov subspace
given by the basis V. The vorticity state vector is then approximated as @ = Vz.
The system in Eq. (4.10) is now used to compute an approximation to the the desired optimal feedback gain KV

given in Eq. (3.13). Using the Krylov subspace V the cost function in Eq. (3.11) results in

(4.12) J(zo.g") = /m [(z(1),Q2(1)) + (g" (1), R.g" (1))] dt

0

where R, = RY and Q, = VT Q"¥V. The control problem defined in Eq. (3.12) for the reduced system becomes

4.13) minJ(zo,g")
X

subject to the governing equations in Eq. (4.10). The optimal control input for this problem is
(4.14) gh (1) = —R;'BTa(r)

where the (k x k) matrix, I1,, is the solution to the finite dimensional ARE

(4.15) H T, +T,H, ~T,B,R;'B:T1, +Q, =0

Using Eq. (4.11) and Eq. (4.13). the approximation to the desired feedback gain KV becomes
(4.16) KV~ -r7'vn v’

where the adjoint B, = V.

5. Numerical Method. The calculation of T{Ar) on a given vector is achieved by computing a time accurate
solution to the linearized Navier-Stokes equations described in Eq. (2.8). A solution to Eq. (2.8) is computed using a
semi-implicit finite difference scheme. This scheme approximates the spatial derivatives using a second-order central
difference method for the viscous term and a third-order upwind scheme for the convection terms. These equations

are then solved using a multigrid acceleration method with Gauss-Seidel relaxation.

5.1. Time Discretization. The governing equations in Eq. (2.8) are discretized in time using an explicit up-
winding scheme on the convection terms and a implicit Crank-Nicolson scheme on the diffusive term. This scheme is

locally second-order accurate in space and first-order in time. The discretization of Eq. (2.8) has the form

el gy

w; j w,_, ] I ah 1
L = V- (Qut), =V (@0)+ 5V (0 )
5.1) Ar (C2u"); ( )i+ 2Re i T
hg "
Vi, = -l

. ) . o
where ', = @(ih, jh,nAt). The operators V", and V2" are discrete approximations to the operators V and V2, respec-

tively. The discretized vorticity transport equations in Eq. (5.1) can now be expressed as

Ar s ]
(5.2) (1 - —V-”) o = = V" (Qu)y =V (@0 4 5V

The nonlinear Navier-Stokes equations in Eq. (2.1) are similarly discretized by replacing Q with @" and U with u”
in the equation above. The steady state solution to the nonlinear equations in Eq. (2.1) are used in the linearized
Navier-Stokes equation for the base flow field.

The discretized equation tn Eq. (5.2) can be expressed in the form

(5.3) Mo = b



. . . . / . .
where b is the right hand side of Eq. (5.2) and M the discrete operator (/ — At/2Re V? "). Since M is a large and
sparse matrix, the solution for o”"*! favors an iterative method. To accelerate the iterative method, a multigrid routine
which uses Gauss-Seidel relaxation is used. Likewise the solution to the Poisson equation in Eq. (5.1) is solved using

an iterative method with multigrid acceleration.

5.2. Spatial Discretization. The Laplacian operator V2 is discretized using a standard second-order central dif-

ference scheme and has the form

® - 20+ o !

i—1) | Wij
i 2
Ax? Ay?

)1 /1 il
i1, — 2007+ 0

(5.4) v =

The first order derivatives in the linear convection terms are evaluated using a four-point upwind scheme. The x

derivative component for the term V/ - (Qu™); ;, for u > 0, is approximated by the upwind scheme

Q)i —(Qu),,r,\/- +3(Qu)[.j - 3(Qu),v_|‘j+ (Qu),-_lj . 2(Qu)i+u — (Qu)
T 3Ax 2Ax

where the parameter g controls degree of modification to the central difference term {6]. If ¢ = 0.5 then the scheme
in Eq. (5.5) becomes an upwind scheme of O(Ax*). If ¢ = 0 then the scheme is reduced to a second-order central

(5.5) L oA

difference scheme. The central difference approximation for the linear convection term has good accuracy but will
produce oscillations when the mesh Peclet number (B = u dx Re) becomes greater than 2. The upwind scheme will
reduce these oscillations for B > 2 but at a cost of reduced accuracy. This reduced accuracy is a result of artificial
diffusivity added by the upwind scheme. Therefore, a switch is used which sets g = 0 when B; ; <2 and ¢ = 0.5 when
Bi,; > 2. This switch results in a scheme which has better accuracy at low mesh Peclet numbers than a straight upwind

scheme, yet retains the advantages of an upwind scheme for large Mesh Peclet numbers.

5.3. Boundary Conditions. The boundary condition for the no-slip walls are computed using Jensen’s formula-
tion [9] attributed to Jensen by Roache [17]. This formulation, also known as Briley’s formulation and was used by
Pearson [14] and Ghia ct al. [7].

Jensen’s formulation computes a boundary value for the vorticity by taking a Taylor series expansion of the stream

function normal to the wall. Jensen’s formula is given by

_ Tvo,i—8yii+V¥2;  3uo

2
2h? h +O(h )

(5.6) 0y,

This boundary condition is claimed by [9, 17, 14, 7] to be O(h*) for the vorticity at the boundary. It has been shown
in [20] that this formulation can be thought of as an O(h*) approximation to the Neuman boundary condition on the

stream function in Eq. (2.9b) rather than a O(h?) boundary condition for vorticity. If Eq. (5.6) is rewritten as

h Tyo,; — 8Yy j+ V2 3
(5.7) F00,) = = — = — g+ O (1)
then the limy,_,o recovers the equation (0y/dn)|o,j = —up,j. This is consistent with Eq. (2.9b), which is the equation

being modeled. Therefore the condition on the vorticity at the houndary can be thought of as an O(h*) approximation
to Eq. (2.9b) instead of an O(h*) boundary condition for vorticity. Spotz used Jensen's formula using a compact 4h

order method and showed that this formula resulted in an O(#%) approximation.

5.4. Driven Cavity Problem. A numerical simulation of the driven cavity problem. using the full nonlinear
Navier-Stokes equations in Eq. (2.1), is used to give a measure of validation for the proposed numerical method. The
driven cavity problem is a typical two-dimensional model problem that is used to evaluate and compare numerical

methods for incompressible viscous flows. Most notable are the steady state results published by Ghia et al. [7].
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FIG. 5.1, Driven cavity problem

F1G. 5.2, Stream lines of the driven cavity problem at steadv F1G. 5.3. A contour plot of the steadv state vorticity field for
stute for Re=1000). the driven cavity problem at Re=1000).

The driven cavity problem, shown in Fig. 5.1, has a top wall which moves at a nondimensional velocity of
Urop = 1. The moving wall induces the flow as a result of the viscous forces generated at the moving wall. The steady
state solution is then computed on a uniform grid which has 129 grid points in both the x and y directions. A steady
state flow field is found by simply marching the impulsively started cavity in time, until a satisfactory steady state
solution is achieved. Its interesting to note that this problem has two singularities at the top two corners where the top
moving wall meets the two stationary side walls. The impact from these singularities are considered to be small since
the grid is relatively fine.

Figure 5.2 and 5.3 show the stream lines and vorticity contours for the steady state solution at Re = 1000. The
stream lines in Fig. 5.2 show two recirculation zones at the bottom corners of the cavity. The size and location of these
recirculation zones compare very well the numerical results given by Ghia et al. [7]. The minimum stream function
was computed to be &in = 0.117985 and compared very well to the minimum stream function, &, = 0.117929,
computed by Ghia. The location of the center of the main vortex is computed to be at x = (0.5312,0.5625) as
compared to x = (0.5313,0.5625) reported by Ghia. The contour plot of the vorticity field in Fig. 5.3 also compares
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very well with the results from Ghia.

Figure 5.4 shows the horizontal velocity profiles, v, at v = 0.5 for Re = 100,400, 1000, and 3200. These velocity
profiles are compared to the velocity profiles reported by Ghia et al. [7]. Likewise the vertical velocity profiles for
u at x = 0.5 are shown in Fig. 5.5 and then compared to the numerical data given by Ghia. These two figures show
good agreement between the current results and the data from the Ghia paper. Note that a 129x 129 grid was used for
all the Reynolds number cases except for the Re = 3200 case where a 257 x 257 grid was used as was done by Ghia.
Based on these results a measure of validation has been shown for the proposed numerical method for the calculation

of steady state flows.

6. Results. Application of the distributed feedback control design is now applied to an unstable shear layer
problem and a stable driven cavity problem. The computed eigenvalues and eigenvectors for the bounded shear layer
flow will be compared to eigenvalues and eigenvectors from an Orr-Sommerfeld analysis. This comparison will

provide a measure of validation for the reduced order model.

6.1. Shear Flow Problem. The method described above is now applied to a two-dimensional bounded shear
layer problem as shown in Fig. 6.1. In this problem there are two layers of parallel fluid traveling in opposite directions.
At the intersection of these two flows is a shear layer which has a hyperbolic tangent velocity profile. The large velocity
gradient in the shear layer results in a large concentration of vorticity. This type of flow pattern is inviscidly unstable

to small disturbances. The base flow field for this problem is described by the equations
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U(x,v) =[U(¥),0] = [Uptanh(v/b),0]

(6.1) (—1<x<1,=1<v< 1)

Q(xy) = sech?(v/b)
’ b
where b = 1/30, Re = 100 and the flow is periodic in the x direction. The Reynolds number for the shear layer
problem is typically defined using the characteristic length b, which determines the width of the shear layer. The

Reynolds number for the shear layer is defined as

(6.2) Re = ——

where Up is the nondimensional characteristic velocity and v the kinematic viscosity of the fluid. The U(v) profile is
shown in Fig. 6.1 where the boundaries moving walls with a no-slip boundary condition.

The velocity profile for this problem represents an exact solution to the steady state inviscid flow equations.
However it does not exactly satisfy the steady state equations for the incompressible viscous flow. The unsteadiness,
in this base flow, is due to the viscous diffusion term which wants to diffuse the high concentration of vorticity in
the shear layer. This causes the vorticity layer to spread out and diffuse away from the center region. In practice this

viscous diffusion effect is overlooked in the formulation of the linear stability problems. [15]

6.1.1. Reduced Order Model. Using the shear layer base flow field given in Eq. (6.1), a Krylov basis vector
V of dimension K = 201 was constructed to form the reduced order model in Eq. (4.10). These vectors were found
using the ARPACK software package where the top 201 eigenvectors with the largest real part were computed. This
program slarts by generating a large Krylov subspace of 600 Ritz vectors. It then performs an implicit restart which
removes unwanted Ritz vectors and then generates new Ritz vectors, replacing the discarded vectors. This process
is repeated until the desired number of leading eigenvectors has converged. For this problem, 2735 Tw operations
(time steps) were computed by the flow solver. The finite difference approximation was made using 64 grid points
in the streamwise direction and 128 grid points in the cross stream direction. Figure 6.2 shows the convergence of
the ARPACK routine where an implicit restart was performed at the start of a new iteration. The convergence rate is
dependent on the number of desired eigenvectors, the size of the Krylov subspace chosen, and the size of the time step.

The top 201 eigenvalues, with the largest real parts, are shown in Fig. 6.3. These eigenvalues are compared to the
eigenvalues computed from an Orr-Sommerfeld stability analysis using the spectral method presented by Orszag|12].
The numerical method used by Orszag was derived for the stability of plane Poiseuille flow which was then modified

for the shear layer problem. The comparison between the eigenvalues shows how the Krylov method was able to com-
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pute the cigenvalues of the shear layer problem reasonably well. From this figure it can be seen, that the eigenvalues
start o degrade as the imaginary parts become larger and as the real parts of the eigenvalues become increasingly
negative. The reduced accuracy of the eigenvalues in these areas show the limitations of the finite difference approxi-
mation and the computation of the eigenvalues using the Krylov time stepping method. As the imaginary and negative
real parts of the eigenvalues increase, so do the spatial oscillations of the eigenvectors. Therefore the spatial resolution
of the finite difference method governs how many of the eigenvectors can be resolved accurately. For the shear layer
problem. the number of modes that can be resolve are sufficient our investigation.

A sample of the eigenvectors computed using the Krylov method and the Orr-Sommerfeld analysis are shown in
Fig. 6.4. A Fast Fourier Transform (FFT) was taken of the eigenvectors, generated by the Krylov method. This FFT
showed that the eigenvectors have one dominant wave number in the x direction. Therefore the eigenvectors can be

expressed in the form
(6.3) V(ix,y) = d(v)e'

where Fig. 6.4 is showing the function ¥(y} for four different eigenvectors. Figure 6.4a shows the most unstable
eigenvector for the shear flow problem. This mode has a wave number of 6=21 and shows the form of the instability
of the shear layer. This eigenvector compares very well 1o the eigenvector computed using the Orr-Sommerfeld spectral
analysis. This unstable mode is the easiest mode to capture using this Krylov method since it grows very fast. The
other eigenvectors in Fig. 6.4b through d are stable modes. The eigenvectors shown in Fig. 6.4b and d both have
wave numbers ¢ = 1t and the eigenvector in Fig. 6.4d a wave number of 6 =2m. These modes compare very well with
the corresponding eigenvector from the Orr-Sommerfeld analysis. This comparison shows a measure of validation
in computing the leading eigenvectors and eigenvalues using the Krylov method. This comparison also shows that
the eigenvalues start to degrade in accuracy for eigenvalues with increasing wave numbers and negative real parts.
The accuracy of the eigenvalues and eigenvectors can be improved by increasing the spatial resolution and by using
a numerical scheme of higher order. It was also seen that decreasing the time step could improve the accuracy of the
eigenvatues up to some limit. Further reduction of the time step beyond this limit did not increase the accuracy of the

eigenvalues.

6.1.2. LQR Control Design. The optimal feedback kernel for the reduced system was computed by minimizing

the quadratic cost function in Eq. (4.12). The weights for the cost function in Eq. (3.11) were setto R =171 and Q = 1.



This resulted in the weights for Eq. (4.12)
(6.4) R =1, Q. =Vigv=viv=y

The ARE for the reduced system, given by Eq. (4.15), is then solved for I, using the MATLAB software package.
This reduced system results in an ARE solution with 201 states, which is large for typical ARE problems, but is
significantly smaller than the 8192 states of the full system. Figure 6.5 shows the diagonal clements of the ARE
solution T, as a function of the mode number. The modes are the eigenvectors of the linearized flow equations and the
eigenvalue A; corresponds to the i’ mode where Re(A;) > Re(A;+ (). This figure shows how the first six modes, which
are unstable modes, result in the largest contribution to the feedback kernel K and how the contribution decreases for
the higher mode numbers. This figure basically shows the convergence of the feedback kernel with respect to the size
of the reduced order system.

Substituting T1, into Eq. (4.16) results in the approximation to the finite dimensional feedback kernel KV, Using

the approximation to K" the optimal feedback control can be computed as
(6.5) g (1) =K o (1)

where KV is a (8256 x 8256) matrix, gly, a (8256 x 1) column vector, and o a (1 x 8256) row vector. It can be
seen from Eq. (6.5) that the #"" column of KN corresponds to the distributed control input g for a disturbance w = ¢,,.
Similarly, the " row of KV correspond to the distributed feedback gain for the control input at g,,,. To illustrate
this idea Fig. 6.6 shows the distributed control g,')/,,, given a unit disturbance at four different locations in the flow.
Figure 6.6a shows the point disturbance on the bottom wall and shows a local positive control near the point distur-
bance. Fig. 6.6b shows the disturbance just off the wall at v = —0.75 and shows the localized nature of this feedback
control. In Fig. 6.6¢ the disturbance is move closer to the shear layer. This figure shows the same type of localized
feedback control around the disturbance as before but with a large control force. The disturbance near the shear layer
also shows an interesting feedback control force which appears in the shear layer. The point disturbance is then moved
to the center of the shear layer as is shown in Fig. 6.64. This distributed feedback control shows a pattern which is
similar to the unstable modes in the flow. This should be expected since the unstable modes were associated with the
largest feedback gains computed in T1,.
In an effort to quantify the spatial structure of the control effort a norm is defined in the following way

N 172

> (Km)?

m=1

(6.6) Cn =

where ¢, is the n" element of a vector defining the control effort and ¢ = (¢y,c2,...,cn). The idea is for ¢, to be
a measure of the control effort in an Ly norm sense for a point disturbance located at = &,. Likewise the spatial
structure of the feedback gain can be evaluated by defining the norm

N 1/2
Z(K,,N,.,,f]

(6.7) fou =

n=1

where f = (f1, f2...., fv) 1s a vector describing the measure of the feedback effort. The value of f,, is an Ly norm of
the distributed feedback gain for actuation at g,,. Note that the feedback kernel is symmetric since the weight R and
the matrix B are symmetric. Therefore the the vectors ¢ and f, which describe the control effort and feedback effort,
are equal.

A plot of the control effort at a constant x value, for the shear flow problem, is shown in Fig. 6.7. This figure
shows how the control effort, and consequently the feedback gain, is large in the shear region. This figure also shows

that the shear region would be most favorable for actuation and sensing as might be expected.



6.2. Cavity Flow Problem. The second problem involved the design of a distributed feedback controller for a
driven cavity problem. Unlike the shear layer, the base flow field for the driven cavity was stable and satisfies the
finite difference approximation to the steady state flow equations. Since the flow is stable, the model will not contain
any unstable modes as was seen in the shear layer problem. This means that the cavity problem will not have a small

number of dominant modes in the reduced order model and feedback kernel as was seen in the shear layer problem.

6.2.1. Reduced Order Model. The base flow ficld for the cavity problem was the steady state flow ficld com-
puted in section 5.4 for Re = 1000. The vorticity for the base flow is shown in Fig. 5.3 and the stream function in
Fig. 5.2. Using this base flow field. a Krylov basis vector V of dimension K = 400 was constructed to form the reduced
order model of the linearized flow equations. Figure 6.8 show the convergence of the top eigenvalues with the largest
real parts. It took 50 implicit restarts and 15370 T o operations (time steps) by the flow solver in order for the top 400
modes to converge. The distribution of the top eigenvalues is shown in Fig. 6.9. A sample of the eigenvectors with the
largest real parts are shown in Fig. 6.10. This figure shows the real and imaginary parts of the eigenvectors. Notice

that some of the eigenvectors are real and do not have any imaginary parts.

6.2.2. LQR Control Design. Using the reduced order system for the linearized cavity flow. the optimal feedback
kernel is then computed using an LQR control design approach. As in the shear layer problem. the Riccati solution
M, to the ARE in Eq. (4.15) was computed which minimizes the cost function in Eq. (4.12). The weights for the cost
function in Eq. (3.11) are uniform and set to R = [ and Q = I which results in the weights R, = I and @, = /. Figure
6.11 shows the diagonal elements for [T, as a function of the mode number. This figure shows a similar decay rate for
the diagonal elements of the Riccati solution I, as compared to the shear flow problem.

The feedback kernel KV can now be approximated by substituting the Riccati solution to the reduced system
M, into Eq. (4.16). This results in a (16641 x 16641) feedback kernel K" where the approximation to the optimal

distributed control gff[,, is given by
(6.8) g () =K"o(r)

Using this optimal feedback kernel, the distributed control for a point disturbance can be computed. Figure 6.12 shows
the approximation 1o the distributed control given a point disturbance at four different locations in the cavity. A point
disturbance on the bottom wall is shown in Fig 6.124a with the resulting distributed control force. Figures 6.125 through
d show the point disturbance in the interior of the cavity away from the effects of the wall. The distributed feedback
for these interior points show a smooth circular pattern around the disturbance. This figure also shows that the applied
control force is a maximum at the point disturbance and then decays as it moves away from the disturbance location.
It is interesting to see how the control force decays as it moves away from the location of the point disturbance.
Figure 6.13a shows a mesh plot of the distributed control shown in Fig 6.12¢ and Fig 6.13b shows a plot of the
distributed control for y = 0.5. These figures illustrate how the control force decays from the point disturbance located
at (x,v) = (0.5,0.5).

The distributed control effort and feedback gain for the cavity problem is shown as a mesh plot in Fig. 6.14
and as a contour plot in Fig. 6.15. These two figurcs show how the distributed control effort and feedback gain are
concentrated in the center of the cavity. There are also some peaks near the center of the walls and one large peak
where the flow induced from the top moving lid impinges on the right stationary wall. The figure also shows that the
control effort is smaller at the corner of the cavity. Therefore sensing and actuation would be most favorable near the

center of the cavity, near the center of the wall, and on the top part of the right wall.

7. Conclusion. This study has demonstrated how a Krylov subspace method can be used to derive a reduced

order model of the linearized incompressible Navier-Stokes equations and applied to a two-dimensional shear flow



and driven cavity problem. By assuming sensing and actuation everywhere in the flow field an optimal feedback
kernel can be found. This feedback kernel provides insight into the regions of the flow where the control effort is
‘large’ and where the feedback gain is ‘large’. This information can be used (o isolate the regions of the flow field
where sensing and actuation are most favorable. This information also shows where one should be searching for the
best place to put actuators and sensor. This knowledge has the potential to reduce the search areas of the flow field for
the placement of actuators and sensors. In the shear layer case, the search area could be significantly reduced, where

as the driven cavity problem only showed a slight reduction in the search area was achieved.

The two-dimensional shear flow problem showed that sensing and actuation was most favorable in the shear layer
as might be expected. The driven cavity problem showed that a region in the center and parts of the walls were the
most favorable for the placement of sensors and actuators. It also showed that there was not a dominant region, as
in the shear layer problem, and that the corners of the cavity and a region near the walls were unfavorable for the

placement of sensors and acluators.

The advantage of this approach is that a simple time stepping vorticity stream function code could be used to
derive the linearized model of the incompressible Navier-Stokes equations. To improve on this approach, higher-order
spatial discretizations should be used to improve the spatial accuracy of the higher frequency modes. The drawback
to the time stepping approach used here is the convergence of the eigenvalues and eigenvectors. To solve this problem
a shift invert approach described by Sorensen [19] can be used but this requires an explicit representation of the flow

equations as oppose to the coupled vorticity stream function equations used here.
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F1G. 6.15. A contour plot showing the control and feedbuck effort for the forced caviry problem.
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