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Abstract - The paper wesents the hardware

implementation and initial tests from a low-power, high-
speed reconfigurable sensor fusion processor. The Extended
Logic InteLligent Processing System (1/LIPS) is described,
which combines rule-breed systems, fuzzy logic, and neural
networks to achieve parallel fusion of sensor signals in
compact low power VLSI. The development of the ELIPS
concept is being done to demomUate the imegcep_
fmctionality, which lamicularly underlines the high qaaai
and low power requitcmcms. The hardware progrmnmabfllty
allows the processor to reconfigure into different machines,
taking the most efficient hardware implementation &wing
each phase of information wocessing. Processing speeds of
microseconds have been demonstrated using our test
hardware.
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1. Introduction:

most pertinent examples of such problems are in

pattern recognition and decision-making applications.
These techniques are essentially parallel, and thus it is

natural to build dedicated processors efficient for these
types of operations, which would function in stand-

alone mode or as co-processors to provide high-speed

computation on massive amounts of data in parallel

mode. While these processors can be built both in
digital or analog hardware, the massive amount of

interconnection lines of a'parallel implementation and
the power requirements encountered in certain space,

military or commercial applications such as hand-held

devices make the idea of an analog ASIC processor
preferable. An example of such an application

requiring low power and fast processing of sensor data
is associated with the discrimination performed
onboard interceptors.

1.1. A general need for sensor fusion processors:

With the advent of high-performance sensors and

increased processing power more real time
applications are now possible. Novel architectures,

algorithms, and hardware ate required to address the
challenges of high sensor bandwidth and the oRen

noisy, sometimes contradictory data present in these

new applications. The problem of using more sensors
with higher data rates is combined with the need for
faster response in real time scenarios, which demands

higher levels of computational power. The traditional

approach is to build/use increasingly powerful
general-purpose processors. Yet, classical algorithms

for fusing data (originating in preponderant Bayesian
approaches) face challenges in addressing the sensor-
fusion problem and more novel approaches, such as

the ones coming from the computational intelligence

research, can complement or replace the traditional
schemes.

Computational intelligence techniques, such as
fuzzy logic and neural networks combined with the

more traditional Artificial Intelligence paradigm of
expert systems proved efficient in solving a category
of problems for which an accurate mathematical
formalation of models was either not feasible or

practically impossible to compute in useful time. The

1.2. Discriminating Interceptor Technology require-
ments for an on-board sensor fusion processor:

The Ballistic Missile Defense Organization

(BMIX)) is conducting the Discriminating Interceptor
Technology Program (DITP) for the development of

advanced and enabling fast frame seeker capabilities.
The challenge for the technology is to combat more
complex future threats facing the National and Theater

Missile Defense (NMDfFMD). The objective is to
develop miniaturized interceptor components and

subsystems to meet serious space, weight, and power

constraints [1]. In this regard, part of a major effort is
•directed towards the development of new sensor data

fusion processing technology that will particularly
address high speed and on-board autonomy. This

capability can achieve earlier target acquisition,
thereby extending the time-to-engage and reducing the

dependence on the external battle management and
off-board surveillance assets[ I ].

Once the initially required off-board battle

management intelligence is provided to the seeker, the

primary goal of the DITP is to exploit the multi-
phenomenoiogical sensor data obtained _om on-board

LADAR and infrared detector arrays for threat
engagement via development and integration of real-

time sensor fusion algorithms and processors. The
overriding hypothesis is that sensor data fusion at
three levels (i.e., signal, feature, and decision) is



necessary to improve its capability and to
accommodate a wide variety of missions and targets.

In order to meet the challenge of compact, low
power, and high-specd on-board data processing, a
novel intelligent sensor data fusion processing
architecture, termed the Extended Logic Intelligent
Processing System (ELIPS), has been developed.
ELIPS integrates the analog hardware technology of
neural networks, fuzzy logic, and expert rule

?_rocessing with the conventionaldigitalprocessing

usinga hostcomputer.The individualmodulesare

designedto be reconfigurableand cascadable.In

addition, the overallarchitecturehas been developed
to be flexible enough for rerouting of signals to any
required processing module by having an
interconnecting network with switching arrays.

This paper briefly describes the ELI_S concept
and architecture, focusing more on the hardware
implementation of the individual ELIPS component
modules. Experiments with test chips implementing
ELIPS modules illustrate the performance of the
analog ASIC implementation.

2. Fuzzy, Expert, And Neural Computation:
Expert systems have been employed in a variety

of sensor fusion applications; a recent example is
detailed for guiding the user in defining the
architecture for the sensor fusion system[2]. Fuzzy
logicand neuralnetworksarealsobecoming widely
accepted in the sensor fusion community as techniques
with proven capabilities in sensor fusion
applications[3-4].

Conditional rule-based systems are using rules of
the form "IF a is A AND b is B THEN y is Y' where
a, b, and y are the input and 'outputvariables
respectively, and A, B, Y are classes - in particular
fuzzy classes/sets. Thus, a rule-base system can be
seen as accepting input data from measurements or
preprocessing and providing outputs as transformed by
the rules. In particular the outputs could be associated
with classes to which the inputs cluster and the
magnitude of the outputs associated to the degree of
membership to these classes. (Another possible
interpretation is that the numbers represent the
confidence in the classification, e.g. 70% confidence
that the object is target I, 20% that it is target 2, 10%
confidence that it is a decoy.)

New concepts from fi_zy set theory have
revitalized the use of rule-base systems, which can
cope with the imprecision in matching antecedent
clauses. The main operations of fuzzy reasoning are
fuzzification, rule evaluations and defuzzification.

Fuzzification transforms a crisp input to a degree of
membership to a fuzzy set and certain rules are
evaluated depending on which fuzzy sets are matched.
For certain problems such as classification, this is the

end of fuzzy reasoning - the output results are fuzzy
sets and degrees to which they are matched. Fro"

example,theoutputresultcan be thatinputsignals
match the characteristicsof targetA to 0.8 extent,
targetsB in degree0.4 and decoysin degree0.3;

sometimesthiscan be (improperly)expressedas

probabilities,i.e.,thereis 80% chance/probability/
confidencethatobjectistargetA, etc.Ifthedeshed

output is a crisp one, for example an output control
signal - the output sets and the associated degrees of
memberships are transformed by a defiazzifier into a
crisp value. Amongst the most popular methods for
defuzzification is the center of gravity method, which
requires mainly additions and multiplication.

Neural networks are parallel computation
structures characterizedby somatic operation between
inputs and weights and somatic operations aggregating
the weighted inputs and usually passing them through
a nonlinearfunction. Different neural architectures

were explored, with different ways of interconnecting
the neurons in feed-forward only or in recurrent mode
as well, and with a variety of learning rules.

Requirements for fast processing, compact or low
power implementation lead to efforts for developing
various hardware implementations. The nature of
computations involved in fuzzy reasoning is
essentially parallel (for example, rule evaluations arc
independent of each other and can be calculated
concurrently). Therefore, a dedicated parallel H/W
solution is preferable to a S/W solution on a general-
purpose processor and even to a RISC processor with
fuzzy-oriented instructions such as VY86C570 (70-
microsecond inference speed)[5] or Motorola's
68HC12 (the 1'_standard microcontroller family with
a comprehensive fuzzy logic instruction set, and the 1a
16-bit engine for fuzzy logic)[6]. Ideally one would
want to preserve high versatility of general-purpose
processors while reaching low-power high-speed
operation. Analog offers the advantage of lower power
consumption. While better precision can be obtained
in digital implementations, precise computations are
not required for fuzzy processing; usually 8 bits are
considered sufficient for most applications. (This is
because membership functions representing fuzzy
classes are usually defined by humans, who can not
and do not specify fuzzy set borders with high
precision - usually with less than 8 bits). Specific
implementations of fuzzy processors are described in
the literature[7-I I ].

The sameparallelism is true for neuralprocessing,
and ideally H/W implementations should be parallel
for maximum efficiency. Similarly for fuzzy expert
systems, large number of intereonnections and low
power justify analog VLSI neural processors. A
detailed justification of analog neural processors is
presented in Ref. [12].



3. ELIPSConcept And Architecture:
The main assumption behind ELIPS is that _zzy, rule-
based and neural forms of computation can serve as
the main primitivesof an "intelligent"processor.
Thus, in the same way as classicprocessorsare

designedtooptimizethehardwareimplementationof

a set of fundamental operations, ELIPS is developed
as an efficient implementation of computational
intelligence primitives, and relies on a set of fuzzy set,
fuzzy inference and neural modules, built in
programmable analog hardware. The hardware
programmability allows the processor to be
reconfigured into different machines, taking the most
efficient hardware implementation during each phase
of information processing.

The ELIPS architecture (Figure i) is designed to
accomplish, for the first time, a fully parallel
implementation and seamless integration of three
artificial/computational intelligence technologies[13]:
(1) memhership-function-based fuzzy logic; (2) rule-
based expert systems; and (3) massively parallel
artificial neural networks. In its initial demonstration,
ELIPS will perform functions of discrimination,
recognition,tracking,and homing [I].Itisnecessary
to develop a design that is hardware-implementable
using very large scale integration (VLSI)technology.
Additionally, it should provide an ultra low power
embodiment in a compact package, with an
unprecedented signal processing speed (10 to 15
microseconds for each operation), at least three orders
of magnitude faster compared to a conventional digital
machine (e.g. several millisecondson a personal
computer, PC).

ELIPS is envisaged as a synergistic processor
incorporating four processing mndules illustrated in
Figure 1. PFN and PRN refer to Programmable Feed-
forwardand Recurrent(feedback)Neuralnetwod_
respectively, FSP is a Fuzzy Set Processor, and
MERP stands forMultistage Expert Rule Processor.
ELIPS modules are destined tOwork cooperatively in
a variety of configuration sequences. For example, to
implement fuzzy expert reasoning as a processing
sequence of PFN, FSP, and MERP modules,
fuzzification is performed by FSP, rule evaluation is
done by MERP, while defuzzification (when needed)
is done using the PFN.

4. EHps Building Blocks And Their Hardware
Implementations:

4. I.The neural (PFN andPRN) modules:
Neuralnetwork modulesare implemented around

a neuralchip-architecturedevelopedat JPL[12,14].

The chip, termed NN64, consists of a 64 x 64 arrayof
8-bit synapseswith 8-bit local static memory, 64

neurons, and registers for data and control. The chip is
designed to implement a feed-forward or a recurrent
neural network with various network topologieswith
up to 64 neurons.

4. !. 1 Functional description of analog processing in
NN64: The 64 analog voltageinputsfirstget
convertedtocurrentsby arow ofV-[convertersatthe

top of the 64 x 64 synaptic array. Each V-I circuit
actually produces two currents: I and 16 x I. These
signals are then broadcast down each column for each

of the 64 inputs so that all the synapses in a column
receive the same input.

The building block for the NN64 array is a
current-mode multiplying analog to digital converter
(MDAC) which forms the basis ofthe synapse (Figure
2). A byte, which controls switches DI to D7 to scale
current copies of the input, is stored in a local static

memory (SRAM) for each synapse. By switching in
different multiples of the input currentand adding
them together, the input current is effectively
multiplied by the digital weight stored in the local
SRAM. The most significant bit (MSB) of the digital
weight (D8+/DS-) controlsthe sign of the product by
steering the synapse output currentso that it is either
sunk or sourced through the output node.Synapses on
the same row have their outputs summed by attaching
them allto the same wire. These 64 signals, one for
each row of the array, are then sent to 64 sepa_tte

neurons where they are either processed through the
neuron or sent directly out, depending on how the
neurons are programmed. If the neuron is on,the

current is converted to a voltage through a small
resistor and applied to a small differential amplifier
that outputs a voltage. Should the neuron be oR the
output current is routeddirectly out off the chip as a
curreflL

4.1.2. Digital programming of NN6: The synapses
are loaded single row at a time. The data for a given
row is clocked into a 64 long g-bit wide shiR register,
one byte at a time. After 64 clock cycles, the data for
an entire row of synapses is ready to be loaded into the
local memory of each MDAC. A 6-bit row address is
supplied and an active-low load signal is asserted,
which dumps the data into the synapses on the row
specified. Alternatively, a synchronous loading
scheme may be used. This method employs a single
bit shift register to act as a token ring and specify
consecutive rows for loading. When reset is asserted,
the top of the token ring corresponding to row 1 is set
while the rest of the shift register is reset. As data is
clocked in, a 6-bit counter keeps track of how many
bytes have been loaded. When the carry-out of the
counter indicates that the entire data has been loaded,

a load signal is automatically generated that activates



the row on its rising edge and passesthe token to the
next row on its falling edge. In this way the entire
array of synapses can be loaded from the top row
down by simply clocking in 4096 bytes of data.
Neurons are also programmed with a single bit shi_
register. If a control signal is asserted, all neuronsare
automatically bypassed since the entire register is
reset. Otherwise, a single bit is clocked 64 times by a
special clock. The register loads fi-om the bottom up so
that the first data loaded correspondsto the first row
neuron. More details on the NN64, including its
configuration as a recurrent neural network can be
found in the literature[14]. The chip was tested in a
variety of applications where neural networks proved
efficient. A particular application was interpretation of
visual input data for automatic tracking of a path by a
mobile robot[l 3].

4.2. The fuzzy set processor (FSP) module:
The main function of a fuzzy set processor is

signal transformation, which can be interpreted as,
* fuzzification - i.e. association between an input

crisp signal and a degree of membership to a
fuzzy set/class,or

• signal conditioning/ non-linear transformation,
coordinate transformation.

The FSP was designed as a processing
module with 16 inputs of 5 membership classes each.
The chip has 16 analog voltage inputs and 16x5
outputs, and allows digital programmability of the
membership functions for each input variable. The
membership functions have trapezoidal shape, with
programmable parameters for the legs and slopes as
illustrated in Figure 3. The position.of the legs can be
specified with g-bit resolution and the slope with 5-bit
resolution. The equations that describe the output of a
trapezoidal membership function are:

IfX < = A, Y = Low
If A < X = < (CD+AB)/(B+C), Y=MIN(BX-AB +
Low, High)
If (CD+AB)/(B+C) < X < D, Y=MIN(-CX + CD
+ Low, High)
If X> = D, Y= Low,

where A is the location of the lef leg. B is the
unsigned slope of the left leg, C is the unsigned slope
of the right leg, and D is the location of the right leg.
The chip design currently uses Low = i volt and High
= 4 volts with Vdd = 5 volts.

The schematic diagram in Figure 3 details the
processing path of a single membership function
circuit (MFC). While inputs and outputs are in voltage
mode for external compatibility, the internal MFC
implementation is in current-mode. The input voltage
enters the first processing blocL which is a Voltage to
Current (V/I) converter. Currents proportional to the
digital values of the legs, A and D, are generated in

Multiplying Digital to Analog Converters (MDACs).
The current corresponding to the left leg
subtracted from a copy of the input current, while a
different copy of the input current gets subtracted from
the right leg current. The resulting currents, which
correspond to the left and right sides of the trapezoid,
enter their appropriate Dividing Digital to Analog
Converter (divDAC) where the signals are divided by
5-bit digital values to scale the slopes. The minimum
of the two resulting values is then selected which
chooses the side that is along the trapezoid. The top of
the trapezoid is achieved by taking the minimum of
the resulting currentand the full-scale current, and this
result is converted to the voltage output of the MFC. A
test chip for 2 input variables with 5 membership
functions calculating the degree of membership has
been implemented and tested. A variety of
membership functions generated by the chip is
illustrated in Figure 4.

Signals obtained_,om the chip are also illustrated
below in a discrimination task. The results are
compared with the software implementation and show
accurate reproduction in hardware of the results

obtained by simulation. Figure 5 shows an example of
how the membership functions are used to separate the
spaces containing targets and decoys. The soRwaro
simulated membership function shapes are compared
with the programmed hardware output of the
membership as shown in the lower graph in Fig. 5.
The variables are transformations of some measured

parameters characterizing target and decoy signals.
The software results show that signals processed using
these membership functions would result in

discrimination of targets and decoys, as well as targets
of different types based on available DITP data. Figure
5 shows discrimination between two targets.
Similarly, discrimination distinguishing targets from
decoys was also performed successfully by
programming the chip.The hardwaretestsshow that
the fitzzification/discrimination ofthistypewouldtake
less than a microsecond.

4.3. The multistage expert-ruleprocessor (MERP)
module:

The main function of a rule processor is to
evaluate matches between input data and classes of
knowledge (the satisfaction of certain conditions by
the input) and prescribe the implications for such
cases. The general structure of processing in MERP is
by inference on a collection of rules of the form:

Rule 1. IF a, is Atl AND a: is Ai, AND ...am is
Aa= THEN y is Y_

Rule n. IF at is A,t AND a., is A_ AND ...am is
A,= THEN y is Y,



whereA,jarefuzzy sets or their complements, i.e. if

A)m is a predetermined trapezoidal membership
function/fuzzy set and A_ is its complement then Aa, =
NOT(AIm). Consider the degree of membership/
matching a fuzzy set/class being calculated by the
FSP, and thus "a is A" being replaced with u, which is
the degree to which "a is A". The complement is
commonly calculated either as the difference to unity,
i.e. NOT(u) -- l-u, or as the maximum of all other
classes except the one to be complemented, i.e. ff
classes covering input space are ul,u2,u3,u4 then the
complement is NOT(u3) = MAX(ul,u2,u4). We built

test circuitry to calculate the complement in both ways
but only the second version was so far integrated
within a rule-system chip. The conjunction AND is
treated as the MIN operator. Thus, the antecedent "a,
is _,_ AND _ is ._ AND ...a, is _=" can be
after fitzzificafion as (u_l AND u,a AND urn) and
calculated as u. = MIN(u,,, ga ..... urn). The collection
of rules in the rules base can be read as Rulel OR

Rule 20IL..Rulen; several rules may refer to the same
conclusion/class. The logical connective OR is
calculated as MAX, thus the degree of supporting an
output class is the maximum of all the degrees of
supporting that class coming from different rules in
the rule=base.

The processing stages calculating complement,
conjunction and disjunction are reflected directly in
the MERP architecture presented schematically in
Figure 6. Stage 1 calculates the complement by MAX
operation; Stage 2 calculates the conjunction within
the same rule by MIN operator, Stage 3 calculates the
disjunction of all rules that refer to the same

conclusion by MAX operator. The controls specify
which components are selected for MIN and MAX in
different rules.

The MERP module is designed as a processing
module with 16 inputs with 5 membership classes
each; a complement is calculated for each membership
class inside the module. The module supports rules
with up to 64 conjunctions; up to 128 rules can be
programmed in the module and 32 decisions can be
obtained as outputs. The implementation of the MERP
module is performed in four development phases
allowing testing of various circuits (such as analog
MIN and MAX circuits) and system/integration
solutions before a full-scale more expensive chip is
attempted. Figure 7 shows test results from a
fabricated MIN circuit (the upper waveforms are the
input and the lower one is the output, which is the
minimum of the two).

A smaller version of MERP (called miniMERP)
with 2 inputs and 4 rules was laid out on a test chip.
The chip was fabricated and tested successfully. The
propagation time of a signal from inputs to output was
around two microseconds. Phase 3 of development

consists in integrating 8 analog inputs, 40 membership
functions and 9 rules circuits on the same Fuzzy
Expert System (FES) chip. The membership functions
are digitally programmable trapezoids. The rules are
digitally programmed to select from various
membership functions for each input variable,,
including membership fimction complements. Each
rule performs a conjunction amongst selected
membership functions and their complements (one per
variable). All analog circuitry is current-mode and the
rule output currents are available in parallel on nine
separate lines. The chip was fabricated and is
currently under test.

4.4. Integration of ELIPS components
Efforts are ongoing for testing the synergistic

operation of ELIPS components before the final cut-
off design. In this sense a board is prepared to test a
Hybrid Neuro Fuzzy Export System (NFES).

4. 4. I Hybrid Neuro Fuzzy Expert System (NFE$):
A new test chip, termed ELIPS3, contains the second
generation Membership Function Circuit (MFC)
which is a voltage input/output circuit that uses

current-mode processing and is digitally
programmable with a generic trapezoidal shape
membership function. ELIPS3 contains ten MFCs,
five ofwhich are associated with each of the two input
variables. Another test chip, termed FES1, contains a
similar circuit for the membership function processing
but the IN output conversion is eliminated and the
current is directly passed to the rule circuits, which are
part of the MERE Current-mode rule circuits process
the membership function information on the same chip
before creating as output the conclusions of nine
different digitally programmed rules. The rules are
conjunctive (AND) and complemented or non-
complemented membership function values may be
used for processing. FESI contains forty membership
function circuits with five associated with each of
eight input variables. Each of the nine rules may be
configured to process any combination of
.complemented or non-complemented membership
values from any of the eight input variables.

4.4.2 FANN Board: The Fuzzy-Artificial Neural
Networks (FANN) test-board was designed to test the
FESI fuzzy-expert chip as well as to allow
configurations of neural and fuzzy systems that
combine two NN64 chips and four FES! chips. The
board also includes four analog multifunction
converters capable of performing defuzzification
processing and enabling a fuzzy system entirely in
hardware. A photograph of the test-board is shown in
Figure 8. The different system architecture
configurations are achieved by setting the appropriate



jumper blocks, while the membership function shapes,
rules, and neural network weights can be programmed

through the computer interface. LabVIEW Full

Development System 5.1 software is used to program
the FANN via National [nstrmnents ATMIO64E-3,
PCI-DIO-96, and AT-AO-10 interface boards, which

provide the required analog and digital I/O. The

LabVIEW Fuzzy Toolbox is used to provide a high-
level user interface for pmgamming the FES 1 chips,

allowing the user to specify a high-level fuzzy system
that then gets translated and downloaded to the fuzzy
hardware on the FANN board.

The board allows 4 FES chips to be mounted on

it,such thatup to 36 rulescan be programmed. In

addition, the board incorporates the design for testing

of the neural network chips, with 2 NN64 chips and a
group of 16 quad - A/D chips. The board aims to play

multiple roles, allowing:

• the test of the FES and NN64 chips individually,

• the test of the chips in tandem configuration, e.g.

FES followed by NN64, etc.

• the test of the fusion algorithm in hardware, using
the neural chips.

5. Conclusions:

Current technology allows the realization of a
sensor fusion processor as a multi-chip module
(MCM). A trade-off is to be made between the

performance and cost of such a processor.

Computational intelligence elements such as fuzzy

reasoning and neural networks technology are

considered fundamental for a sensor fusion chip.

Several test chips implementing components of the
ELIPS sensor fusionarchitecturehav.ebeen fabricated

inanalogVLSI hardware and demonstratedprocessing

times of the order of microsecond for a varietyof

tasks, such as target classification from preprocexsed
daUL
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Figure 2. Circuit for the 8-bit synapse
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generated on the MFC test chip
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Figure 5 (a), A simulation result showing the required
trapezoidal membership functions for discrimination
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Figure 3. Block diagram of HW implementation for a
MFC.

Figure 5 (b), Membership function circuit test result
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Figure 6. A schematic of the MERP architecturo

Figure8._A photographofthe Fuzzy-ArtificialNeural

Networks (FAN]q) test-boardpopulated with two

NN64 and fourFES Ichips.

Figm'e 7. Propagation delay test on a miniMERP

circuit. Bottom curve is the output, as the smaller of
the two inputs.


