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Abstract

Lovelock actions(more precisely,extended Gauss-Bonnet forms) when

variedas Cartan forms on subspacesof higherdimensionalflatRiemannian

manifolds,generatewellset,causalexteriordifferentialsystems. In particu-

lar,the Einstein-Hilbertaction4-form, variedon a 4 dimensionalsubspace

of El0, yieldsa wellsetgeneralizedtheoryof gravityhavingno constraints.

Iticci-flatsolutionsareselectedby initialconditionson a bounding 3-space.

1. Introduction

Field theoretic Lagrangians (involving, say, p independent variables and n -p
dependent variables) can be systematically "extended" to derive so-called Cartan

forms, p-forms that are analogs of the Cartan Lagrangian 1-forms for variational

principles in the differential geometric formulation of classical mechanics [1] [2] [3]

[41 [51 [6] [71 [81 [9] [10] [11] [12] [131 [14]. Conversely, Caxtan forms of degree p can

often be postulated, and field theories in p dimensions can be obtained from them

by variation, using Cartan's formalism of exterior differential systems (EDS). Such

Cartan forms and the corresponding variational EDS live in a "target" space that

is a suitable bundle over the n dimensional space of all independent and dependent

variables. The target space may be a jet bundle over p, n - p variables, but other

targets occur in contexts such as geometry or string theory.

The sort of variational EDS we discuss in the following is generated by struc-

ture 1-forms and their closure 2-forms expressing the immersion of p-dimensions,



or a subbundle over it, into the target bundle, and by a set of p-forms express-

ing the field equations or equivalent geometric conditions. To justify use of a

proposed Cartan form it must be shown to lead, by arbitrary variation, to such

p-form field equations. The derived EDS must be closed (thereby including all

integrability conditions and being self-consistent), well set, and, in fact, causal,

i.e., it must satisfy Cartan's criteria for the so-called characteristic integers s; of

the EDS, and have sp = 0 [7] [15] [16] [17]. This is tantamount to the satisfaction

of a Cauchy-Kowalewski existence and uniqueness theorem for the implied set of

partial differential equations.

An EDS derived variationally in this way is constraint-free, since it is gener-

ated by no forms of degree less than p, other than those expressing the immersion.

An example from string theory is given in Section 2. Another example is vacuum

electrodynamics, formulated on the jet bundle J1(4,4) over a four-potential A_

[9]. Constraint-free dynamics can perhaps be adapted to efficient techniques for

numerical solution, with initial conditions set on p- 1 dimensional surfaces im-

mersed in the target space. Quantized versions may also be more straightforward

to formulate, as the example from electrodynamics shows.

Extremals of a p-form Lagrangian set with the frame coordinates of a larger

n dimensional immersing space as a target can be different - can satisfy different

dynamics and partial differential equations - from those derived from the same

Lagrangian intrinsically, that is to say set on a target that is a jet bundle over

p independent variables [18]. These target spaces have intrinsic basis forms that

satisfy different structure or contact equations. The classic Plateau soap bubble

and simple strings (the example in Section 2) are prototypes of Lagrangians set

on immersing orthonormal frame bundles, targets quite different from jet bundles.

We have calculated sets of Cartan characteristic integers for EDS derived

from Cartan forms expressing several of the so-called Lovelock Lagrangians [19].

Also known as dimensionally extended Gauss-Bonnet forms, these include mini-

mal area, Einstein-Hilbert, and, in higher than four dimensions, Lagrangians of

quadratic and higher order. We find that, in immersion in frame bundles, they

all lead to well set, causal and constraint-free theories. We speculate in Section 3

that this will be so generally.

We have recently discussed a well set and causal EDS for isometric immersion

of (an orthonormal frame bundle over) Ricci-flat, vacuum spacetime in, as a tar-

get space, the 55 dimensional orthonormal frame bundle over flat (Euclidean or

pseudo-Euclidean) ten dimensional space Elo [20] [21] [22]. In that EDS (which

was not derived from a Cartan form) there are four 3-forms, expressing both



energy-momentumconstraints and field equations. In Section 4 we introduce a

closely related new variational EDS for a more general theory of gravitation, de-

rived from a Cartan form that is just the Einstein-Hilbert Lagrangian, set on

immersion of four dimensions in E16. The resulting EDS has six 4-forms coding

its field equations, but no 3-form constraints. We calculate Cartan's character-

istic integers and show that the EDS is well set and causal. The new EDS is

contained in the former, so solutions of the former - Ricci-flat solutions - are a

subset of the solutions of the more general theory. We show the Ricci-flat solu-

tions to be selected when certain initial conditions are satisfied on an immersed

three dimensional surface from which the final, causal, integration proceeds. In

this final unique construction these conditions - the vanishing of the four 3-forms

- are no longer required to be applied at each step as constraints.

The Einstein-Hilbert Lagrangian gives in fact well set generalized gravity the-

ories on immersion of four dimensions in any higher dimensional frame bundle.

The setting of initial conditions to specialize to Ricci-flatness, however, only works

for immersion in El0. This is of course the maximum immersion class of a gen-

eral 4-geometry [24] [23]. Similarly treating 2 + 1 gravity, generalized in this

way, requires a (21 dimensional) frame bundle over six dimensional flat space E6.

This may be the natural first case to investigate for appropriateness of suggested

constraint-free numerical integration schemes.

There may well be close connections of this work with known results in topo-

logical gravity and supergravity, which explore renormalizable gauge theories and

lead on shell to the same extended Gauss-Bonnet Lagrangians that we use in im-

mersion [25] [26]. We nevertheless should emphasize the differences, especially for

dimension p > 3. The gauge groups we deal with arise as intertwined structure

equations for orthonormal frames and coframes, of dimension p (even or odd)

and n -p, respectively. They are not Poincare groups, but simply O(p) and

O(n - p), up to signature. We have found reason to prefer n = ½p(p + 1), the
classic embedding dimension that does not a priori restrict the immersed metric

[23] [24]. And we have not explored global implications of our results, much less

the acceptability of quantum versions.

2. Immersion geometries and the example of strings in four
dimensions

We will suppress the writing of the exterior multiplication operator throughout

this note. Let E,_ be n dimensional Euclidean or pseudo-Euclidean space. The



structure equations for the basisforms of the orthonormal frame bundle over E,
are

dw" + w_"_o_ = 0

" _=0, (2.1)

where #, v = 1,..., n. The w," are antisymmetric. The dimension of this space

is ½n(n + 1). Immersion of a p dimensional subspace of E, is accomplished by

(1) dividing the range of #, v into two ranges, namely, i,j = 1,... ,p and A, B =

p + 1,..., n, and rewriting the structure equations 2.1 as

d_i + ,,.,_,_k+ _ob_c = 0

d_A + _k + _,,.,c = 0

+'4'4 = o
= o

A k A C=0 _dw A + wk WB + WCWB

and then (2) forming the closed EDS generated by

(2.2)

{wA, wAw,}, (2.3)

the vanishing of which selects subspaces which are so-called Darboux bundles.

The first p + 1 Cartan characters of the EDS 2.3 are nonzero,

s = {n-p,...,n-p,O,...,O},

so from Cartan's theory the dimension g of the subspace is calculated to be

½p(p + 1) + ½(n - p)(n - p - 1).

It has the structure of a fiber bundle over a p dimensional base, since neither the

wj (]p(p- 1) in number) nor the w_ (](n- p)(n-p- 1)in number) appear in

the generators of the EDS. Corresponding to them are the Caftan characteristic

vectors that appear as fibers in the solution subspaces. Clearly, they express

the geometry of the orthonormal frames and coframes, induced at each point of a

subspace. Pulled back (restricted) into the subspace the fields w i are in involution,

i.e., at each point they remain independent and span every cross section. The wj
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constitute an orthonormal connection,and, from the third line of 2.2, weseethat
the Riemann curvature 2-forms induced in the subspaceare

R_ = -2wicw_. (2.4)

This explicit expression of the curvature in terms of basis forms whose struc-

ture equations are known is a key advantage of the immersion method. Given a

Lagrangian involving R_ it enables us to find an explicit EDS in terms of basis
forms.

The last nonzero character of 2.3 is sp, so this EDS is not causal: sp arbitrary

functions of p variables enter in the general solution. Additional dynamical equa-

tions must be added - in the guise of additional generating forms in the immersion

EDS - to achieve s n = 0.

For the example of strings, with two dimensions immersed in four, i,j = 1, 2

and A, B = 3, 4, we have explicitly, in a 10 dimensional frame bundle over E4, the
generating forms of the EDS from 2.3:

O33

Oj 4

o31o3 + o32o3 

o31o3¢+ jo3 . (2.5)

These are to be annulled on any solution submanifold. We find s = {2, 2, 2, 0} and

g = 4. Solutions are 0(2)_ 0(2) bundles over a 2 dimensional space, spanned

by o31, o32, o3_, and o343. A 2 dimensional cross section of a solution bundle gives

an orthonormal framing of a metric 2-space, together with a realization of the

connection o3_, the "second fundamental forms" w_ and o34, and also the field o34z

expressing arbitrary coframe orientation. With proper signs for signature the E4

is Minkowski space and the immersed 2 dimensional space is a string.
Now consider the Lagrangian for extremal area, the Caxtan form

A _ O31O32.

Using 2.2, its exterior derivative is immediate:

(2.6)

dA = o33(o3_o3_ _ o3_o3, ) + o34(o3_o32 _ o3_w' ) (2.7)

This result shows the "miracle" referred to by some authors [13]: a factor of

each term is a form already in the immersion EDS, viz., w 3 and o34. So if the other



(2-form) factors in 2.7 are added to the EDS 2.5, the result is that dA is quadratic

in the resulting EDS. This in turn means that, for an arbitrary vector field V (in

the bundle over E4) the arbitrary variation of A, given by the Lie derivative

Lv = V* dA + d(V * A),

is contained in the resulting EDS and so vanishes when pulled back into a solution

(modulo the exact or "boundary" term):

V • dA C EDS V V.

Thus this new EDS resulting from arbitrary variation of A is generated by

(2.8)

033

034

03 031+ 03 j

03 03 +

_ 03 031
_w2 _ w4wl. (2.9)

This is the geometric understanding of a functional variational principle. For

consistency, one must check closure, and calculate the Cartan characters to verify

existence and uniqueness. In this case closure is immediate, and we find that

s = {2, 4, 0, 0} and g = 4. And now s4 = 0. This extremal string theory is

well set and causal; general solutions are determined by four functions set on an
immersed line.

This process of construction of immersion EDS from postulated geometric
Lagrangians is used in the following. The "miracle" occurs in all cases considered.

But regardless of how they have been discovered the justification of the EDS is

always the explicit demonstration of closure and Monte Carlo calculation of the

causal Caftan characters [17].

3. Lovelock Lagrangians for immersion in flat spaces

We treat Lovelock Lagrangians [18] in p dimension as p-forms that are exterior

products of 1-forms 03k and 2-forms/_J, completely antisymmetrized on indices.



Also, w k must appear at least once, since in variation this generates the immersion

forms w a. These forms are known as dimensionally continued Gauss-Bonnet forms

[25] [26]. We have discovered that, in immersion, using 2.2 and 2.4, they are
Cartan forms leading to well set and causal EDS.

For an immersed 2 dimensional space, p = 2, as in our example in Section 2,

the only Lovelock form is 03iwJ¢,).

For an immersed 3 dimensional space there are two Lovelock 3-forms: wiwJwkeij k

and RiJ03k¢ijk. To check the latter we calculate, using 2.2 (and remembering the
range of i, j = 1, 2, 3),

d(03303 03  ,j ) B a-- -03 (03s03i wk_ijk). (3.1)

This has the desired quadratic structure, i.e., it is a sum of terms each of which

is the exterior product of an immersion 1-form and a dynamical 2-form. So we

must check for closure, and for properties of the variational EDS generated by

{03B, 03iB03,, , A Awk w i wj eij_}. (3.2)

Monte Carlo calculation of Cartan's characters indeed shows that this EDS is well

set and causal for any number of immersing dimensions. In particular, for three

dimensions immersed in six, (A,B = 4,5,6), which is the minimal immersion

dimension for Ricci-flat (in this case, fiat) 3 dimensional spaces, the orthonormal

frame bundle dimension of 6 dimensional space is 21 and we calculate the Cartan

characters to be s = {3, 3, 6, 0, 0, 0, 0, 0, 0}. Note that sa = 0. In the following

we will not explicitly write any final zeros, so this would appear as s = {3, 3, 6}.

Solutions are 9 dimensional bundles over 3 dimensional space with fibers allowing

free rotation of triads in a connection (w_-) and free rotation of the coframe at
each point (w_).

For an immersed 4 dimensional space, the Lovelock 4-forms are 03i,,._i03k03teiikl
and t_Jwkwtei.ij, t The first leads to a cosmological field. The second is the Einstein-

Hilbert Lagrangian. We discuss the theory which it leads to in Section 4. It turns

out that initial conditions can be adjoined to select Pdcci-fiat solutions.

For an immersed 5 dimensional space, the Lovelock forms axe wiafi03_03tw'_i./kt,n,

t_Jaokwtwm_ijklm, and RiJRJawmcij_tm The new one leads to a quadratic gravity

theory. Written out, this Lagrangian is

A A B B m
03i 03j 03k 031 03 _ijklra

from which we derive the closed ideal

03A 03A03i A A B B C' 03i 03j 03k 03t 03raCijklm}"



We calculated the characters of this, immersing/5 dimensions (i,j = 1,..., 5) in

15 (A, B = 6,..., 15) which has a 120 dimensional orthonormal frame bundle, to
be

{10, 10, 10, 10, 20}

well set, causal, 60 dimensional solutions that are bundles over 5, with 55 di-

i and w A. Fivemensional fibers expressing free rotation of frames and coframes wj
"initial condition" 4-forms can be adjoined to restrict solutions to those with

a quadratic constraint on the Riemann tensor. Such restriction is explained in
detail in Section 4 on Ricci-flat solutions.

In six dimensions the three Lovelock forms leading to well set immersion EDS

are similar. In seven dimensions a cubic gravity theory appears. The pattern

should now be evident. In all cases that we have calculated the variational EDS
has been well set and causal.

4. Constraint-free theories of gravity

We now adopt the Einstein-Hilbert Lagrangian Riiw*wteijkt for immersion of 4

dimensional Riemannian geometry in a higher dimensional flat geometry, in par-

ticular in ten dimensions, El0. Explicitly, this Lagrangian is

A A A k 1
"-" _)i _)j _ _ _ijkl.

Using 2.2 most terms in its exterior derivative cancel, leaving just

B B A i A
dA = -2w i wj w_ w w _ijkt,

which is quadratic in the immersion 1-forms w a and the six 4-forms B B a l
w i wj w k w _qkt.

So we consider the immersion EDS generated by

{wA, 0)Aodi B B A Iw i wj w k w _qkt}. (4.1)

This system lives in the 55 dimensional orthonormal frame bundle over El0. It may

readily be checked for closure. Monte Carlo calculation of Cartan's characteristic

integers yields s = {6, 6, 6, 12}. Solutions are 25 dimensional, with 21 dimensional
fibers over a 4 dimensional base.

Note in particular we have found s3 = 12 and s4 = 0, so, in Cartan's nested

construction of solutions [17], after vectors V1, V2, and V3 are found, spanning
an immersed 3 dimensional space, 12 initial value functions on it determine the
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final vector field V4 by quadrature, causally and essentially uniquely, i.e., up to

choice of arbitrary admixture of the 21 Cartan characteristic vectors. Vectors V1,

V2, and V3 are dragged along V4 as it is constructed. The w; are involutory, so

linear combinations of the Vi (i = 'i,.-., 4), may be taken at each point so that

Vi • w j = 6_ everywhere. The Riemann tensor components induced in a solution

with respect to this orthonormal frame are

and the Einstein tensor components are

(4.2)

Etp 1 A A t= -gV_ • Vj • V_ • w, w. w eiikte,,¢p. (4.3)

If entirely intrinsic tetraxi expressions for the theory are desired, six symmetric

second fundamental forms, denoted by K A, may be introduced to describe the
immersion at each point via

03¢ A '= Kij w_ (4.4)

and the inner products 4.2 and 4.3 may be expanded. The Einstein tensor becomes

E,q = K;,K A - KAK A + ½(KAKg _ KAKA)r],q (4.5)

In the case of positive definite signature we have ripq -- 6pq. Otherwise, of course,

the correct signature for ripq is used and the contractions in 4.5 axe to reflect the

correct signature.

The dynamical conditions, coded by the 4-forms in 4.1, are third order in the

K_. They lead to

KAE "t = O. (4.6)

Explicit differential equations for the generalized theory, with K A as dependent

variables, are obtained on Substitution of 4.4 into the structure equations 2.2, mod-

ulo 4.6. As with all tetrad (or spinor) formulations we get not exactly partial dif-

ferential equations, since the independent variables are implicit in the w i. Rather,

such sets of equations are derivational, i.e., first order in directional derivatives

along the Vii. Second order partial differential equations result from introducing
coordinates and metric fields gq.

Now, as explained in the Introduction, our previously discussed EDS for Ricci-

flat 4 dimensional spaces immersed in El0 was generated by immersion forms and
the Einstein 3-forms A A k

w i w) w ei ik_ [20]. The EDS of the more general theory, 4.1,

is contained in the former, so Ricci-flat solutions, i.e., Etp = 0, are special cases.



This is also clear from 4.6. Both theories are causal because s4 = 0. The vector 114

is unique. If 111,V2, and V3, which span a 3 dimensional surface E, satisfy already

the conditions for Ricci-flatness, i.e., they annul the 3-forms at every point of E,

the final unique quadrature for V, _using the 4-forms only) will, without further

constraint, construct a Ricci-flat solution. We have verified this by calculating

the Cartan characters, and explicit components of V1, V2, and V3 using equations

annulling the four 3-forms, whereas for V4 only using the 4-forms in 4.1. The

result was s = {6, 6, 10, 8}, and the four vectors, taken three at a time, annulled

all 10 components of the four 3-forms E_p.

The specialization to Ricci-flat solutions by imposition only of initial conditions

(without further 3-form constraints) may also be understood intrinsically. We

have six homogeneous hnear equations for the ten E_j in 4.6, and we impose the
four conditions Ei4 = 0 on E. Thus all E_,t = 0 on E. It is well known that the

components Ei4 then remain zero in a neighborhood of E. This follows from the

contracted Bianchl identities, which express energy-momentum conservation, in

Einstein's interpretation of Eij. So all ten Ept are zero in the neighborhood and

a Pdcci-flat solution has been selected, just by imposition of initial conditions.
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