
Timing analysis by model checking

Dimitri Naydich and David Guaspari *

Odyssey Research Associates

33 Thornwood Drive, Suite 500

Ithaca, NY 14850-1250

naydich@ clarityconnect.coin

davidg@ oracorp.coIn

Abstract: The safety of modern avionics

relies on high integrity software that can be

verified to meet hard real-time requirements. The

limits of verification technology therefore

determine acceptable engineering practice. To

simplify verification problems, safety-critical

systems are commonly implemented under the

severe constraints of a cyclic executive, which

make design an expensive trial-and-error process

highly intolerant of change. Important advances

in analysis techniques, such as rate monotonic

analysis (RMA), have provided a theoretical and

practical basis for easing these onerous
restrictions. But RMA and its kindred have two

limitations: they apply only to verifying the

requirement of schedulability (that tasks meet

their deadlines) and they cannot be applied to

many common programming paradigms.

We address both these limitations by

applying model checking, a technique with

successful industrial applications in hardware

design. Model checking algorithms analyze finite

state machines, either by explicit state

enumeration or by symbolic manipulation. Since

quantitative timing properties involve a

potentially unbounded state variable (a clock),

our first problem is to construct a finite

approximation that is conservative for the

properties being analyzed if the approximation

satisfies the properties of interest, so does the

infinite model. To reduce the potential for state

space explosion we must further optimize this

finite model. Experiments with some simple

optimizations have yielded a hundred-fold

efficiency improvement over published

techniques.

The safety of hard real-time
software

Modern avionics relies fundamentally on

high integrity software that meets hard real-time

requirements such as schedulability--the

guaranty that all tasks meet their deadlines. It is

common to implement a high integrity real-time

system by means of a cyclic executive, in which

programmers explicitly allocate the execution of

processes or process fragments to portions of a

master control loop. This technique has the

strengths of requiring essentially no runtime

support and of making schedulability analysis

trivial. But the design of a cyclic executive is

expensive and time-consuming, relies heavily on

trial-and-error rather than systematic design

principles, and is highly intolerant of change.

Small modifications to individual processes may

require complete redesign of the master control

loop. In addition, this narrowing of the design

space potentially constrains the introduction of

automation technologies that could improve both

safety and performance.

The alternative to a cyclic executive is some

form of preemptive scheduling in which

processes are scheduled dynamically. Preemptive

scheduling immediately presents two problems:

First, static analysis of program behavior

becomes much more difficult. Second, the

runtime support required to carry out dynamic

scheduling must be efficient and must admit an

implementation simple enough to satisfy the

certification requirements for high integrity

systems. Raven [32] is an example of such a
runtime.

The best-known analysis technique for

preemptive scheduling is Rate Monotonic

Analysis (RMA) [19], which applies to a

restricted but useful class of systems and reduces

schedulability analysis to checking a set of

simple algebraic inequalities. However, RMA

does not provide information about properties

other than schedulability and is not applicable to

*This work was partially supported by NASA Langley, contract NAS 1-20335



manycommonprogrammingparadigms:Figure
1providesanexampleof sucha program.Nor
does RMA cover propertiesother than
schedulability.

Thispaperdescribesanongoinginvestigation
of modelchecking as a supplement to RMA.

Model checking comprises automated techniques

that apply, in principle, to any system

representable as a finite state machine. These

techniques are of two general kinds: explicit

search (clever strategies for visiting all possible

states) and symbolic model checking (combining

symbolic execution and automated reasoning).

Both styles can be used to analyze properties

other than schedulability and systems that do not

meet the design restrictions imposed by RMA.

Our work shows that model checking can be

applied to some systems beyond the reach of

current analytical techniques. The technical

barrier to making these applications practical and

routine is the possibility of state space explosion.

We are investigating optimization techniques

that generate efficient representations of the

system to be analyzed.

1.1 Ravenscar and Raven

The general principles we employ are not tied

to any particular implementation, though the

details will necessarily depend on the

programming language and rtmtime system

being modeled. The Ravenscar Profile [8]

defines a set of Ada tasking features rich enough

to support (among other things) rate monotonic

scheduling, but requiring a minimal runtime.

Ravenscar is supported by the Raven runtime,

developed at Aonix to meet the highest FAA

certification standards for safety critical systems.

The tasking subset we consider can be regarded

as a generalization of Ravenscar, together with a

technical requirement, which we call frame

synchronization, that reduces nondeterminism by

eliminating arbitrary task phasings. Thus, the

analysis we propose can be directly applied to

real systems.
1. The main features of the Ravenscar

subset are as follows:

2. The ntunber of tasks, and the base

priority of each, is fixed and statically
determined.

3. Scheduling is preemptive, using the

priority ceiling protocol.

4. Tasks interact only through protected

objects. No more than one task may ever

be queued on the entry of any protected

call. (This limit on the size of the entry

queues is a dynamic requirement that

cannot in general be enforced by

syntactic restrictions.)
5. Task behavior is deterministic.

Figure 1, based on an example from [16],

illustrates a simple Ravenscar program to which

RMA does not apply. Three sensors periodically

sample flight data and send it via a bounded

buffer to an analyzer that periodically reads the

data from the buffer. The buffer is implemented

as a protected object containing a protected entry

for writing data and a protected procedure for

reading it. A read from an empty buffer returns
some conventional value. The buffer's write

entry blocks the sensors from writing when the

buffer is full. The protected read procedure

blocks the analyzer from reading while the buffer

is being written to. (We make the read operation

a procedure rather than an entry because

Ravenscar forbids protected objects with more

than one entry. That is why read does not block

on any empty buffer, but reads some

conventional value.) RMA does not apply

because each of the periodic sensor tasks

contains a protected entry call, at which it can be
blocked.

1.2 Model-checking real-time

properties

Many existing models for real-time systems

are based on timed automata [2] or, more

generally, hybrid automata [1]. These models

contain state variables that represent the values
of real-time clocks. Notice that a direct model of

time, by means of a variable containing the

current value of the clock, leads to an infinite

state space, since the clock may increase without

bound. Some form of temporal abstraction is

required. The abstraction used to analyze hybrid

automata is to represent regions--sets of

states--symbolically, via logical formulas.

Symbolic manipulation of such formulas [20] is

the heart of model checking tools such as [4].

In [10], Corbett presents a two-stage

construction that models real-time Ada tasking

programs (together with the supporting runtime)

as hybrid automata. The first stage translates a

program to a transition system representing the

possible interleavings of the tasks' execution.

The second stage captures the timing constraints

of the program by transforming the transition



Sensor1

Sensor2

Sensor3
_ Buffer

_1 Analyzer ]"1

Figure h A Ravenscar example to which RMA does not apply

system into a hybrid automaton. This hybrid

automaton is then analyzed by the HyTech

verifier [11], which can be regarded as symbolic
model checker.

In [16], we developed a method for

constructing models of real-time tasking

programs in Promela [12], a language for

specifying commtmicating sequential processes.

The program's tasks and the rtmtime system are

represented as Promela processes. The frame

synchronization requirement mentioned above
allows us to eliminate the real-time clocks from

the system's model altogether and thereby to

represent the system as a simple transition

system rather than a hybrid automaton. We

introduce state variables to keep track of upper

and lower bounds on the completion time of each

process, and perform a "dynamic abstraction" of
these time-related state variables to make the

state space finite. In essence, the pair of

completion times for each process defines the

region of states in which the process is running.

This representation is much simpler than

representation by a logical formula. We then

analyzed the Promela program with the Spin

verifier [12].

Many other formal models have been

proposed for concurrent real-time systems [3].

These include Petri nets [14], timed automata

[2], timed process algebras [17], and real-time

logics [13]. For the most part, these models are

intended to represent specification, not

implementation. In [5], general timed automata

are extended to represent such implementation

details as the assignment of tasks to processors,

priorities, worst-case execution times of

operations, and scheduling policies. Our model

compares to [5] much as it does to [10].

2 Asimple illustration

This section uses a trivial example to show

how the "dynamic time abstraction" of [16] can

be combined with reduction techniques from

[10] and illustrate its effectiveness. Although

there are enough differences that a quantitative

comparison is not strictly scientific, we obtain a

htmdred-fold advantage over [10] in both speed

and memory usage and a ten-fold advantage over

[161.

2.1 A schedulability problem

Consider two periodic, non-interacting tasks,

A and B, run on a single processor trader

preemptive scheduling. Task A has higher

priority than B. Although this trivial tasking

pattern can be analyzed by RMA, it allows us to

illustrate essential features of our proposed

strategy and to perform a simple comparison

with Corbett's analysis via a hybrid automaton
model.

A code skeleton is given in Figure 2. We
assume that the variable StartTime records the

value of the system clock at some moment after

the tasks have been initialized but before they

start running. In effect, this implements the

frame synchronization assumption. StartTime

can be initialized to satisfy the assumption by

using a simple Ada coding idiom given in [16].

The code fragments <statements l > and

<statements2> implement periodic activities

whose functionality is irrelevant to the tasks'

timing. Let estimA and estimB be upper bounds

on the amount of CPU time necessary to execute

the bodies of the loops in task A and task B

respectively. We assume that CPU time is the

tasks' only shared resource. The parameters



task A is

pragma Priority(20);
end A;

task body A is
nextA: Time = Starffime;

begin

loop
<statements 1>

nextA := nextA + periodA;
delay until nextA;

end loop;
end A;

task B is

pragma Priority(10);
end B;

task body B is
nextB: Time = Starffime;

begin

loop
<statements2>

nextB := nextB + periodB;
delay until nextB;

end loop;
end B;

Figure 2 : A two-task problem

and periodA and periodB define the periods of

task A and task B. Execution of "delay until t"

blocks a task until the system clock has value t.

If task A reaches its "delay until nextA"

statement when the clock time is greater than

nextA, then task A has missed a deadline. We can
characterize a missed deadline for task B

similarly.

With this definition of deadline, we analyze

the schedulability of tasks A and B in terms of

the task periods periodA and periodB, and the
CPU time estimates estimA and estimB. As

noted, RMA handles the problem easily, but the

point of the example is to exhibit simple

optimization strategies that can dramatically

improve the efficiency of analysis by model

checking.

2.2 A discrete model

In the program of Figure 2, the only variables

affecting the timing behavior of the program are

nextA and nextB. They are the only data variables

represented in our model.

To model the program's control state, we

completely abstract from the code fragments

within the task loops. We represent the

fragments as abstract actions whose executions
take time, and whose executions can be

preempted by higher priority actions. We model

execution of tasks A and B as periodic
invocations of these abstract actions.

In [16] we represented the runtime and each

task as a separate process. As observed in [10],

this simple-minded representation introduces

unnecessary states because the actions of the

runtime are so tightly coupled to the actions of

the tasks. That is, we know a strong im,ariant

that permits a more efficient abstraction of the

state space. Because task A has higher priority

than task B, we can partition the system states as

follows: task A can be either running or blocked

by its "delay until" statement; task B can be

running, or blocked by its "delay until"

statement, or preempted by task A; and the

system as a whole enters an error state if either

task misses a deadline. Thus, we represent the

status of the program by introducing a variable

runtime status that can have the following

symbolic values: runningA2reemptedB,

blockedA runningB, blockedA blockedB,

runningA blockedB, and missed deadline.
We also introduce several variables to model

timing information:

1. The integer variables lb and ub specify

lower and upper bounds for the clock

time at which the currently executing

abstract action will (if not preempted)

complete. The values of these time

bounds vary dynamically, according to

the program's control flow.

2. The integer variable delta contains an

upper bound for the CPU time needed to

complete the currently executing abstract

action. When a preempted action
resumes its execution the value of delta

will typically be revised to reflect the

progress made before preemption.

3. The integer variable preemptB, called the

preemption bound, stores the value of

delta when task B is preempted by A.

We specify the schedulability requirement by



assertingthatthertmtimestatusmissed deadline
never occurs:

Invariant "hard deadline"
! runtime status = missed deadline

The states and transitions of our model are

shown graphically in Figure 3. We define the

effect of each transition using the notation of the

Murphi model-checker [33]. The meaning of

guard = = > Begin <statements> End

is that the transition may take place when the

boolean guard is true; and, if it does take place,

the effect on the state variables is defined by the
Pascal-like code in statements. If several

transitions may take place, then the choice of
which transition to fire is non-deterministic.

(Even if the Ada code is deterministic our model

may be a conservative, non-deterministic,

approximation.) The simple model shown here

does not represent the overhead attributable to

runtime actions such as preempting a task or

restoring the state of a preempted task. Those

costs are accounted for explicitly in [16].

Figure 4 provides definitions for three

representative transitions: 1, 2, and 4. Transition

rules 1 and 2 describe the program's behavior

when A is rmming and B is preempted. Rule 4

describes one of the possible behaviors of the

system when task A is blocked and task B is

running--namely, the possibility that task A may

preempt task B.

Rule 1: If the upper estimate of the clock

time for completing task A is greater than or

equal to the next deadline that is, ub _>

nextA+periodA_en it is possible that A may
miss its deadline; and therefore a deadline

violation will be reported. Our model is a

conservative approximation of the program. The

program will satisfy any invariant satisfied by
the model, but the converse need not be true.

Rule 2: If ub < nextA+periodA, this iteration
of task A will meet its deadline. Transition 2

represents the successful completion of A, after

which A becomes blocked until the beginning of

its next period, and hands off to task B (as

reflected by changing the value of

runtime status to blockedA runningB). To do

the necessary bookkeeping, the other state
variables are modified as follows:

• nextA, the next clock time at which task

A becomes ready to run, is incremented

by the value of its period,

• delta, the estimate of the remaining CPU

time to complete task B, is restored to

the preemption bound of B,

• ub, which now represents an upper
estimate of the clock time at which task

B will complete, is increased by delta,

• since the preemption of B has now been

accounted for, we reset preemptB to
zero.

Rule 4: The guard for transition 4 represents

the following possibility: task B will, if not

preempted, meet its deadline; but task A becomes

ready before the action of task B completes and

therefore preempts B. Among the actions of rule

4, the interesting new feature is a call to

procedure time wrap, which is essential for

making our model finite.

The state variables nextA, nextB, lb, and ub

are regularly incremented. If we allowed them to

increase without bound our model's state space

would be infinite. However, the presence or

absence of a deadline violation depends only on

the relative values of these variables, not on their

absolute values. Therefore, the relevant timing

behavior of our model does not change if we

recalibrate by simultaneously decreasing nextA,

nextB, lb, and ub by the same amount. Procedure

time wrap does the recalibration, decrementing

all these variables by the current value of lb. Our

transition rules will invoke time wrap

immediately after any increment to lb. This is a

form of rolling, dynamic time abstraction.

This recalibration strategy will succeed in

bounding the values of these variables if the

differences between the values of nextA, nextB,

lb, and ub are bounded. It is shown in [16] that,
for all the executions of the model in which no

deadline is missed, the absolute values

InextA-lbl,lnextB-lbl, and lub-lbl will all be less

than 2*max(periodA, periodB). Therefore we can

statically restrict the range of the time variables

to MAX .. MAX, where MAx=2*max(periodA,

periodB). To be more precise, if there is a

deadline violation in the infinite model (from

which all occurrences of time wrap have teen

deleted), then there is a deadline violation in the

recalibrated model, and it will be detected before



runningA blockedB

blockedA blockedB

+
runningA preemptedB

missed deadline

Figure 3: The transition system model

blockedA runningB

Rule"1"
runtime status=

runningA_)reemptedB
& ub>= nextA+ periodA

==>
Begin

runtime status
missed_deadline;

End;

_=

Rule"2"
runtime status

runningA_)reemptedB
& ub< nextA+ periodA

==>
Begin
nextA:=nextA+ periodA;
runtime status

blockedA_runningB;
delta :=preemptB;
ub :=ub+ preemptB;
preemptB:=0;
End;

_=

Rule"4"

runtime_status= blockedA_runningB
& ub< nextB+ periodB
& nextA< ub

==>

Begin

runtime status:=runningA_)reempte
dB;

preemptB:= (ub- nextA< delta)?
(ub nextA) :

delta;
delta :=estimA;
Ib :=nextA;
ub :=nextA+ estimA;
time wrap();
End;

Figure 4: Representative transition rules

execution of the model attempts an update that
puts these variables out of range.

2.3 A comparison

Our experiment analyzed the example of
section 2.1 in three ways: We applied Murphi to
the transition system defined in section 2.2; we

applied HyTech to the hybrid automaton
constructed by the methods of [10] alone; we
applied SPIN to the model constructed by the
methods of [16] alone. The comparison with
[10], for various values of the parameters, is
shown in the charts below.

We suspect that that the advantage of these



estimA=5, periodA = 10, Transition system Hybrid automaton

estimB = 10,periodB = 30

Number of states�regions 11 8

CPU time (see) 0.10 0.24

Memory used 1K 0.82M

estimA = 29, periodA = 59, Transition system Hybrid automaton

estimB = 61, periodB = 181

Number of states�regions 1002 480

CPU time (see) 0.10 13.73

Memory used 25K 4.53M

Transition system Hybrid automatonestimA = 167, periodA = 353,

estimB = 313, periodB = 997

Number of states�regions 5013 2700

CPU time (see) 0.40 106.95

Memory used 163K 20.13M

Figure 5 : A comparison

optimizations will increase as the timing

constraints become more complex, because

manipulating integers is more efficient than

manipulating linear formulas with integer

coefficients. We cannot quantify how much of

the difference might be attributable to the fact

that Murphi is a more mature tool than HyTech.

The advantage over [16] is not quite so

dramatic the improvement is one order of

magnitude, not two.

2.4 Other properties

This section briefly considers problems other

than schedulability. The model and the size of

the state space depend on the property analyzed.

For example, in the terminology of Figure 2, it is

easier to analyze the assertion that "Both tasks

always meet their deadlines" than to analyze the

assertion "Task B always meets its deadlines,"

because uncertainty about the behavior of A
would add nondeterminism to the model. Since

the tasks of Figure 2 do not interact (except

implicitly, via preemption) there is not much to

ask about this example aside from its

schedulability.

When tasks do interact, things become more

interesting. The Ravenscar rules require that no

more than one task be waiting on the entry of

any protected call. The main purpose of this

requirement is to avoid the overhead of

maintaining queues. In general, it is undecidable

whether a program meets the requirement,

though compliance could be guaranteed by

making severe static semantic restrictions on the
code. The Raven runtime raises an error

dynamically if execution ever violates the

requirement. Thus, it is important to be able to

check this rule by static analysis. A

schedulability model of the kind suggested in

this section already encodes enough information

in its state to answer this question. Analysis of

the length of entry queues is insensitive to the
recalibration trick.

Deadlock freedom is another interesting



questionthat shouldbe amenableto our
techniques.Thepriorityceilingprotocolitself
sufficesto guaranteethat a certainclassof
taskingprogramscannotdeadlock,but the
generalquestionisundecidable.(Thisproblem
isalsoinsensitivetorecalibration.)

2.5 Limitations

We might hope for a divide-and-conquer

approach whereby knowing that the system is

schedulable for example, in cases where RMA

is applicable--might permit us to produce a

simpler model with which we might verify other

properties. However, if the precise timing

behavior of the program is necessary to

guarantee those properties, we must represent
that behavior in our model and therefore encode

the schedulability problem within it. In effect,

verifying schedulability is automatically part of

verifying any property at all. Unfortunately, the

intricacies and timing of task interleavings are

the principal source of state space explosion.

Our experience thus far suggests that the

effectiveness of our methods will depend more

on the underlying set of tasking primitives than

on a discipline restricting the patterns in which

they are used. Interrupts are especially

interesting, and present special problems. In the

model of [16] we found that code with interrupts

typically resulted in a state space explosion.

Symbolic model checking may be applicable to

this case. On the other hand, several tasking

constructs omitted by the Ravenscar Profile seem

amenable to model checking analysis: absolute

delay statement; rendezvous; select statements.

3 More realistic examples

This section briefly describes the application

of our model-checking techniques to more

realistic examples. We summarize experiments

using the methods of [16] on a modest work

station, which we have not had the opportunity

to repeat with the optimizations proposed above.

These examples employ the main Ravenscar

tasking constructs such as "delay until"

statements, protected procedures and entries,

interrupts, and sporadic tasks triggered by

interrupts.

The modeling of interrupts and sporadic tasks

is the most complicated part of the model of

[16]. Conceptually, a sporadic task is triggered

by an interrupt and must complete its response

interrupt within a specified response time. Each

interrupt is characterized by its minimum
interarrival time the minimum time between

two consecutive occurrences of the interrupt.

The minimum interarrival time and the response

time for each interrupt are parameters of the
model.

To implement sporadic tasks we use an Ada

idiom required by the Ravenscar programming

discipline: The response to an interrupt I is

performed by a sporadic task T whose body is a

loop. The head of that loop is a call on a

protected entry E, so that task T is blocked at the

head of the loop so long as entry barrier of E is

false; and the last act of the loop is to reset the

entry barrier of E to true. The text of an Ada

program binds interrupt I to a protected

procedure P, which will be executed by the

runtime whenever I occurs; and, in this

programming idiom, P must be implemented so

that its only effect is to change the entry barrier

of E from false to true. Thus, when interrupt I

occurs, the runtime executes P, which sets the

barrier of E to true; that unblocks task T, which

performs the response to the interrupt, resets the

barrier of E to false, and becomes suspended.

We permit tasks to contain both "delay

until" statements and entry calls. For our

purposes, a task containing a "delay until"

statement is periodic. A sporadic task contains a

call on a protected entry whose barrier is set by

an interrupt handler. Since we impose no upper

limit on the interrupt interarrival time, a sporadic

task cannot be guaranteed to satisfy any periodic

deadline. For this reason, sporadic tasks may not

contain 'delay until' statements. The Promela

code checks that all periodic tasks meet their

deadlines and that the response to every interrupt

completes within the response time.

We have analyzed several systems containing

both periodic and sporadic tasks, all on a

SparcServer20 with 64 megabytes of memory.

One is a toy pump control system [29] often

used as a benchmark example, which our

techniques handled in seconds. With some more

complicated systems, however, the model of [16]

encountered a state space explosion. We describe

two such examples:

1. the Olympus attitude and orbital control

system (AOCS) [30],

2. a brewery control program [31].

A pump controller

The pump control system has the following

components:



1. fourperiodictasksgettingdatafromthefour
sensorsandcontrollingthepump,

2. a sporadictask,triggeredby theinterrupt
froma high/lowwaterleveldetector,that
controlsthepump,and

3. twoprotectedobjectsforthepumpandthe
interruptinterface.

Verificationofthisprogramtook20seconds.

TheAOCS
The AOCSdesigncontains17 protected

objects,4 sporadictasksdrivenby interrupts
(withshortinterarrivaltimes),and10periodic
tasks(withrelativelylongperiods).Wewere
ableto verifya reducedversionwithall 10
periodictasksand only one sporadictask
(roughly1.5hoursof computation).Addinga
secondsporadictaskresultedin a statespace
explosionthatSPINcouldnothandle.

A Brewerycontroller

Our techniques successfully identified a

timing error in the brewery control program, but

the analysis required some abstractions

performed by hand, not merely the "standard"

abstractions used to represent the pump
controller.

The brewery control program contains no

interrupts. It consists of an alarm task suspended

on a protected entry, several short-period tasks,

and one long-period task that calculates a

"pattern temperature." One of the short-period

tasks compares the actual temperature to the

pattern and, if the difference between the

temperatures is too great, opens the entry barrier

to trigger the alarm. We model the decision

about whether to trigger the alarm as a

completely nondeterministic event (a

conservative approximation).

We may eliminate the long-period task

altogether if we assume that the pattern

temperature is constant. Under that assumption

(also conservative) our methods took 6 minutes

of computation to find a timing violation.

If we do not assume that the pattern

temperature is constant, the combination of a

long-period task with a short-period task

nondeterministically triggering another task

results in a state space explosion (as explained

below).

The size of our model's state space is

proportional to SP, where:

1. P is the number of possible patterns of the

periodic tasks' arrival times. (A task arrives

whenever it begins a new period.). P is

roughly proportional to (M/D), where M is

the least common multiple of the task

periods and interrupt interarrival times, and

D is their greatest common divisor.

2. S is the average number of non-deterministic

choices exercised by the model during the

execution of any one pattern of arrival times.
A common source of non-determinism is the

runtime process controlling task preemption.

However, this nondeterminism is usually

restricted, since the control-delegating

conditions in the runtime process are often

mutually exclusive. Thus, the runtime

process does not contribute much to the size

of S. On the other hand, nondeterministic

behavior in a short-period task will increase

S, since this behavior is exercised in the

many patterns where the task is running.

Our problem with the brewery control

program is that the short-period task

nondeterministically triggers the alarm, which

increases S. We can still analyze the program if

P is low, but including the long-period task
increases P. This combination increases SP

sufficiently to cause a state explosion.

As for the interrupts, in [16] we model each

interrupt by a Promela process representing a

"quasi-task" that makes calls on the protected

procedure that is its handler. The behavior of

such a task is in many respects similar to the

behavior of a periodic task that non-

deterministically executes the interrupt handler

and has a period equal to the interrupt's
minimum interarrival time.

4 Future research

Our primary technical problem is how to

optimize the model for efficient model-checking.

The optimizations described in section 2 the

rtmtime status abstractions, the encoding of

regions as pairs of integers--are specific to our

problem domain and to the kinds of properties

being analyzed. There is an extensive literature

on general-purpose algorithms for abstractions

and optimizations of untimed transition systems,

and on the automated discovery of invariants.

(See, for example, [21-24]). Future research will

consider the applicability of that literature to our

problem.

Symbolic model checking is another

possibility for dealing with state space explosion.

Problems that do not yield to explicit search



techniquescansometimesbesolvedbysymbolic
modelchecking(andviceversa).Thestate-
machinemodelacceptedbya symbolicmodel
checkeris typically quite low-level and
constrained.Notall symbolicmodelcheckers
permitvariablesofintegertype.Butsome,such
asWSMV[9], areableto treatintegersand
certainintegeroperationssymbolicallybyusing
specialencodingtechniquesthatpermitefficient
representationof addition and integer
comparisons,and thoseare preciselythe
arithmeticaloperationsour methodsrequire.
Thus, WSMV is a promisingenginefor
extendingour resultswith symbolicmodel
checking.

References

[1] R. Alur, C. Coucoubetis, T.A. Henzinger,
P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and

S. Yovine. The algorithmic analysis of hybrid

systems. Theoretical Computer Science 138, pp.
3-34, 1995.

[2] R. Alur and D. L. Dill. A theory of timed

automata. Theoretical Computer Science 126,

pp. 183-235, 1994.

[3] R. Alur and T.A. Henzinger. Logics and

Models of Real Time: A Survey. In Real-Time:

Theory in Practice, REX Workshop, LNCS 600,

pp. 74-106, 1991.

[4] R. Alur, T.A. Henzinger, and P.-H. Ho.

Automatic Symbolic Verification of Embedded

Systems. IEEE Transactions on Software

Engineering 22, pp. 181-201, 1996.

[5] K. Brink, J. Katwijk, R. Spelberg, and H.

Toetenel. Analyzing schedulability of Astral

specifications using extended timed automata.

Proceedings of the Third International Euro-Par

Conference, LNCS 1300, pp. 1290-1297,

Springer-Verlag, 1997.
[6] J. R. Burch, E. M. Clarke, K. L.

McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10^20 states and

beyond, Information and Computation, vol. 98,

pp. 142-170, 1992.

[7] A. Bums. Preemptive Priority-Based

Scheduling: An Appropriate Engineering

Approach. In Advances in Real-Time Systems, S.

H. Son, Ed.: Prentice Hall, pp. 225-248, 1994.

[8] A. Bums, B. Dobbing, and G. Romanski.

The Ravenscar tasking profile for high integrity

real-time programs. Proceedings of Reliable

Software Technologies - Ada-Europe'98, LNCS

1411, pp. 263-275, 1998.

[9] E.M. Clarke, M. Khaira, and X. Zhao.

Word-level symbolic model checking: a new

approach for verifying arithmetic circuits. In

Proceedings of the 33rd ACM/IEEE Design

Automation Conference, IEEE Computer Society

Press, 1996.

[10] J. C. Corbett. Timing analysis of Ada

tasking programs. IEEE Transactions on

software engineering, 22(7), pp. 461-483, 1996.

[11] T.A. Henzinger, P.-H. Ho, and H.

Wong-Toi. HyTech: A Model Checker for

Hybrid Systems. Software Tools for Technology

Transfer 1, pp. 110-122, 1997.

[12] G. J. Holzmann. Design and validation

of computer protocols: Prentice Hall, 1991. (The

current version of Spin can be found at

http://netlib.bell-

labs. com/netlib/spin/whatispin, html. )

[13] C. Ghezzi, D. Mandriolli, and A.

Morzenti. Trio: A logic language for executable

specifications of real-time systems. Journal of

Systems and Software, 12(2), pp. 107-123, 1990.

[14] C. Ghezzi, D. Mandriolli, S. Morasca,

and M. Pezze. A unified high-level Petri net

model for time-critical systems. IEEE

Transactions on software engineering, 17(2),
1991.

[15] K. G. Larsen, P. Pettersson and Wang

Yi. UPPAAL in a Nutshell. In Springer

International Journal of Software Tools for

Technology Transfer 1(1+2), 1997.

[16] D. Naydich and D. Guaspari. Analyzing

Ravenscar Profile tasks by model checking.

Technical report TM-98-0034, Odyssey

Research Associates, 1998.

[17] G. M. Reed and A. W. Roscoe. A timed

model for communicating sequential processes.

Theoretical Computer Science, 58:249-261, June
1988.

[18] G. Romanski Safety critical software

handbook. Aonix, 1997.

[19] L. Sha, R. Rajkumar, and S. S. Sathane.

Generalized Rate-Monotonic Scheduling Theory:

A Framework for Developing Real-Time

Systems. Proceedings oflEEE, vol. 82, pp. 68--

82, 1994.

[20] S. Wolfram. Mathematica: A system for

doing mathematics by computer. Adisson-

Wesley, 1988.

[21] The SAL Group. The SAL Intermediate

Language.

[22] S. Bensalem and Y. Lakhnech. Automatic

generation of invariants. To appear in Formal

Methods of System Design.



[23] S. Bensalem,Y. Lakhnech, and S. Owre.

Computing abstractions of infinite state systems

compositionally and automatically.

[24] E. M. Clarke, O. Grumberg, and D. E.

Long. Model checking and abstraction. ACM

Transactions on Programming Languages and

Systems, 16(5), 1994.

[25] M. Bickford and D. Naydich. Hardware

verification technology transfer: Application of

formal methods and modeling to the ARM6.

Tech. Rep. TM98-0021, ORA, 1998.

[26] Sast User Manual (version 0.2). Odyssey

Research Associations, 1997.

[27] Z. Chen and D. Hoover. TableWise, a

decision table tool. Proceedings of the Tenth

Annual Conference on Computer Assurance

(Compass '95).

[28] D. Guaspari, C. Marcean, and W. Polak.

Formal verification of Ada programs. IEEE

Transactions on Software Engineering, vol. 16,

no. 9, September, 1990. Reprinted in

proceedings of the First International Workshop

on Larch, Springer-Verlag, 1993.

[29] A. Burns and A. J. Wellings, HRT-HOOD:

A Structured Design Method for Hard Real-Time

Ada Systems: Elsevier, 1995.

[30] A. Burns, A. J. Wellings, C. M. Bailey, and

E. Fyfe, "The Olympus Attitude and Orbital

Control System: A Case Study in Hard Real-

Time System Design and Implementation,"

Proceedings of Ada sans frontiers -- 12th Aria-

Europe Conference, LNCS 688, pp. 19-35, 1993.

[31] G. Romanski, "Ada, Concurrency and a

Safety Critical Subset," Personal

communications, 1998.

[32] "Raven Fact Sheet", Aonix, 1999.

[33] David L. Dill, Andreas J. Drexler, Alan J.

Hu and C. Han Yang, "Protocol Verification as a

Hardware Design Aid," 1992 IEEE International

Conference on Computer Design: VLSI in

Computers and Processors, IEEE Computer

Society, pp. 522-525.


