NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration ApplicationsSeveral lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.
Document ID
20000055761
Acquisition Source
Headquarters
Document Type
Other
Authors
Vargo, S. E.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Muntz, E. P.
(University of Southern California Los Angeles, CA United States)
Tang, W. C.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2000
Subject Category
Mechanical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available