NEW MILLENNIUM PROGRAM

Serving Earth and Space Sciences

Fuk Li

Jet Propulsion Laboratory
California Institute of Technology

March 18, 1999
Ambitious Plans

Office of Earth Science
- EOS Post 2002
- LandSat Follow-on
- NPOES
- Advanced Geostationary
- ESSP

Office of Space Sciences
- Mars Exploration
- Outer Planets
- Discovery
- Solar Terrestrial Probes
- UNEX/SMEX/MIDEX
- Gravity Probe B/LISA
- Next Generation Space Telescope
- Space interferometry Mission/Terrestrial Planet Finder
Advanced Technologies:
Essential to Achieve OES and OSS Objectives

Science Missions

Impediments to Rapid Technology Infusion:

- Lack of flight heritage
 - real or perceived risks
 - cost
 - schedule
 - performance
- Little visibility to mission planners
 - capabilities poorly understood
 - A complete paradigm shift is needed to fully exploit some technologies
The New Millennium Program

A cross-Enterprise program to identify and flight validate breakthrough technologies that will significantly benefit future Space Science and Earth Science missions

- Breakthrough technologies
 - Enable new capabilities to meet Earth and Space Science needs
 - Reduce costs of future missions

- Flight validation
 - mitigates risks to first users
 - enables rapid technology infusion into future missions
Common Processes for Earth & Space Sciences Programs

- Identification of Needs
- Identification of Tech.
- Project Formulation
- Technology Selection
- Project Implementation & Tech Validation
- Technology Infusion

Needs & Opportunities
Flight Project Formulation Process
Technology Validation and Infusion
Validation Flights Launch Schedule

<table>
<thead>
<tr>
<th>FY</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td></td>
<td>▼ 10/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td></td>
<td>▼ 01/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO1</td>
<td></td>
<td>▼ 12/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO2</td>
<td></td>
<td></td>
<td></td>
<td>▼ 03/01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST3 target launch window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼ 09/03</td>
<td></td>
</tr>
<tr>
<td>ST4 target launch date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▼ 04/03</td>
</tr>
<tr>
<td>Potential Small ST5 mission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential EO3 / EO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deep Space One: Asteroid Flyby

- Validate Technologies for Rapid Access in Deep Space Exploration

Advanced Solar Concentrator Array
Able Engineering Inc., BMDO, Entech, JPL, Lewis Research Center, & Teckstar

Miniature Integrated Camera
Boston U. JPL, Rockwell SSG Inc., USGS, & U of AZ

Autonomy Remote Agent Architecture
Ames Research Center Carnegie Mellon U & JPL

Plasma Experiment for Planetary Exploration
SwRI & Los Alamos National Lab

Autonomous Onboard Optical Navigation
JPL

NSTAR Ion Propulsion System
Hughes, JPL, Lewis Research Center, MSFC, Moog Inc., Physical Science & Spectrum Astro

Multifunctional Structures
Air Force Phillips Lab & Lockheed Martin

Spacecraft
Spectrum Astro, JPL

Small Deep Space Transponder
JPL & Motorola

Ka-Band Solid State Power Amplifier
Lockheed Martin
DS1 Technologies and Applications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Potential Earth Science Application/Benefit</th>
<th>Potential Space Science Application/Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Propulsion Engine</td>
<td>• save a factor of 2-3 in flight time while significantly increasing launch margin</td>
<td>• station keeping</td>
<td>• primary propulsion & station keeping</td>
</tr>
<tr>
<td>Solar Concentrator Array</td>
<td>• provides a 7:1 solar concentration factor, offers significant array cost reduction due to the reduced (1/7) quantity of cells</td>
<td>• power generation</td>
<td>• power generation</td>
</tr>
<tr>
<td>Ka-band Solid State Power Amplifier</td>
<td>• most efficient (13%), highest power (2.6 W), space qualified</td>
<td>• high band communication and freq. alternative</td>
<td>• high performance com</td>
</tr>
<tr>
<td>Deep Space Transponder</td>
<td>• 3 times mass reduction and single unit architecture</td>
<td>• autonomous operations, event detection</td>
<td>• small & low mass communication</td>
</tr>
<tr>
<td>Remote Agent Experiment</td>
<td>• provide faster response to in-flight situation (<1min vs. 3 days), reduce mission dev. cost and operations cost (>30%)</td>
<td>• autonomous operation</td>
<td>• autonomous operations, uncertainty handling</td>
</tr>
<tr>
<td>Beacon Monitor Operations</td>
<td>• achieves large reduction in ops. staffing; reduces the loading on an already over constrained DSN</td>
<td>• small camera/spectrometer</td>
<td>• autonomous operation</td>
</tr>
<tr>
<td>Autonomous navigation</td>
<td>• greatly reduce tracking, save nav. staff by a factor of 2-3, & enhance mission science</td>
<td></td>
<td>• deep space navigation</td>
</tr>
<tr>
<td>Miniature Imaging Camera Spectrometer</td>
<td>• SiC structure and optics will allow for alignment and focus of optics at ambient temp with no change for operation at cryogenic temps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miniature Ion and Electron Spectrometer</td>
<td>• 3x reduction in mass, volume, & telemetry over SOA</td>
<td>• characterize the solar wind & ions, & magnetosphere</td>
<td>• detection of ions & electrons</td>
</tr>
<tr>
<td>Low Power Electronics Experiment</td>
<td>• 30x power reduction relative to current SOA ASICs</td>
<td>• micro/nano spacecraft</td>
<td>• micro/nano spacecraft</td>
</tr>
<tr>
<td>Power Actuation and Switching Module</td>
<td>• 1/4 the weight and 1/10 the power relative to current SOA</td>
<td>• instrument & spacecraft functions</td>
<td>• instrument & spacecraft functions</td>
</tr>
<tr>
<td>Multi-Functional Structures</td>
<td>• 5-10x reduction in mass and volume; offers the flex architecture to interconnect MCMs, MEMS sensors, and power subsystem</td>
<td>• instrument & spacecraft</td>
<td>• instrument & spacecraft</td>
</tr>
</tbody>
</table>
Earth Observer 1
Validation of 9 Breakthrough Technologies

X-Band Phased Array Antenna:
Boeing, GSFC & Lewis Research Center

Carbon-Carbon Radiator:
Air Force Research Lab, Amoco Polymers, BF Goodrich, GSFC, Langley Research Center, Lockheed Martin, Naval Surface Warfare Center, & TRW

Wideband Advanced Recorder Processor:
GSFC, Litton, MIT Lincoln Lab, Swales, & TRW

Lightweight Flexible Solar Array:
GSFC, Lockheed Martin, & Phillips Lab

Leisa
Atmospheric Corrector:
GSFC

Spacecraft:
GSFC, Litton, SWALES

Advanced Land Imager:
MIT Lincoln Lab, GSFC, Raytheon, Santa Barbara Remote Sensing, & Sensor Systems Group

Pulsed Plasma Thruster:
GSFC, Lewis Research Center & PRIMEX

Hyperion:
GSFC, & TRW

Enhanced Formation Flying
GSFC, JPL
Earth Observer One

Technologies & Applications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Potential Earth Science Application/Benefit</th>
<th>Potential Space Science Application/Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hyperspectral/Multispectral imaging spectrometer</td>
<td>• multi-spectral (10 bands), high spatial resolution (30m) in the visible and near infrared spectral range with the goal of 5% absolute radiometric accuracy</td>
<td>• precursor for the Landsat instrument</td>
<td>• applicable to space science multi-spectral remote sensing</td>
</tr>
<tr>
<td>• Hyperion instrument with advanced E-Beam Gratings</td>
<td>• E-beam lithography produces high efficiency convex gratings at very low cost.</td>
<td>• possible replacement for multi-spectral (Landsat) imaging</td>
<td>• applicable to space science multi-spectral remote sensing</td>
</tr>
<tr>
<td>• Atmospheric Corrector</td>
<td>• low cost, bolt on instrument provides correction of land imaged data for atm absorption. Improves accuracy of land imaging product</td>
<td>• future Earth imaging missions (e.g. RESOURCE 21) is considering this tech.</td>
<td>• provide multi-spectral capability for deep space</td>
</tr>
<tr>
<td>• X-band Phased Array Low Cost Antenna Demo</td>
<td>• provides high gain downlinks while reducing the need for a mechanical gimbals</td>
<td>• baselined by future Earth science missions including EOS missions</td>
<td>• applicable to space science missions requiring X-band communication</td>
</tr>
<tr>
<td>• Enhanced Formation Flying</td>
<td>• synchronous science measurements on multiple spacecraft, weather & land-imaging collection 8-16 times faster than current Landsat or TIROS</td>
<td>• highly probable for use by EOS, Magnetospheric Multi-scale & Mag. Constellation missions</td>
<td></td>
</tr>
<tr>
<td>• Carbon-Carbon Radiator</td>
<td>• 30-50% mass savings w. thermal conductivity 10-500 W/m K</td>
<td>• being considered by SBIRS, lo & hi</td>
<td>• applicable to Solar Probe, Space Time- Midex</td>
</tr>
<tr>
<td>• Lightweight Solar Array (LSA)</td>
<td>• ≥100W/kg array, low storage volume, jitter free shockless deployment</td>
<td>• being considered by SBIR lo & hi, Nat Polar-Orbiting Operational Env. Sat.</td>
<td>• being considered by NGST, ST5 & other OSS missions</td>
</tr>
<tr>
<td>• Pulsed Plasma Thrusters (PPT)</td>
<td>• high specific impulse (900-1200 sec), very low impulse bits (10-1000uN-s) at low average power (<1 to 100W).</td>
<td>• being considered by Constellation X</td>
<td>• cited by Midex and SMEX proposals</td>
</tr>
<tr>
<td>• Wideband Advanced Recorder/ Processor</td>
<td>• > 40Gbits of storage, data throughout is 5.5x that of Landsat 7. It is</td>
<td>• applicable to Earth science missions with high data rate requirements</td>
<td>• applicable to space science missions with high data rate requirements</td>
</tr>
</tbody>
</table>
Common Benefits of Processes

- Enhanced NASA’s technology community through partnerships
 - Industry
 - Academia
 - Government Laboratories
- Infusions into future missions
 - Future projects using NMP validated technologies
 - Technology database for PI missions
 - New capabilities enable new opportunities
 - MIDEX/SMEX/Discovery/ESSP
Enhanced NASA's Technology Community through Partnerships
(NMP Flight Team & Technology Partners)
Solar Electric Propulsion Future Users

Space Science

Benefits of Solar Electric Propulsion:
- Transportation
- Formation Flying
- Station Keeping/Orbit Maintenance

Earth Science

Electric Propulsion

NISTAR
Ion Propulsion

EOI
Pulsed Plasma Thruster

ESSP
Hyper/Multi-Spectral Imagers & Spectrometers Future Users

Earth Science
- Potential replacement for multi-spectral Landsat imager
- Hyper-spectral imager/spectrometer provides new observatory capabilities

- Planetary & solar plasma scientists have proposed to use copies of the PEPE instrument for future missions
- Validation of an all SiC optical instrument covering the FUV to SWIR will enable many new miniature, low-mass cameras and spectrometers

Space Science
- MICAS camera design will be proposed for Pluto Flyby mission
Thinking Spacecraft Future Users

Earth Science

- Formation flying and/or autonomous operations for EOS and ESSP Missions
- Magnetospheric Multiscale, Magnetospheric Constellation
- Self monitoring for Europa Orbiter, MIDEX proposals & Earth orbiters

Space Science

- Autonomous optical navigation for Stardust, and Europa Orbiter
- Automatic sequencing & real time control for interferometer instruments such as TPF and LISA
Micro-Nano Spacecraft's Future Users

- Multifunctional structure
- Carbon-carbon radiator
- Wideband Advanced Recorder/Processor
- Small Deep Space Transponder
- Low Power Electronics
- Power switching module

Innovations that simplify design, fabrication, reduces mass & reduce resource requirements

Earth Science
- Potential for EOS Follow-On
- ESSP

Space Science
- Mars Micro missions
- STP Magnetospheric Multiscale Mission
- Discovery
- UNEX/SMEX/MIDEX
High Data Rate Future Users

Space Science
Mars '01

- Reduces mass, volume & mechanical complexity for high data rate missions
- Essential for high-bandwidth spectral imaging instrument and active instruments (radars/lidars)

Earth Science
Technology database for PI missions
Advanced Land Imager

New capabilities enable new opportunities

MIDEX/SMEX/Discovery/ESSP

Technology Readiness Database for Discovery 1998

<table>
<thead>
<tr>
<th>System or Subsystem (from Level 2 WBS)</th>
<th>POC Name/Org: Nick Speciale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Land Imager</td>
<td>POC Phone: (301)286-8704</td>
</tr>
<tr>
<td></td>
<td>POC E-mail: specialists@npg500.gsfc.nasa.gov</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology Name and Supporting UPN or other funding source</th>
<th>URL for Additional Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMP EO-1 UPN: 246</td>
<td>http://eo1.gsfc.nasa.gov/</td>
</tr>
</tbody>
</table>

Description of Technology:
The Advanced Land Imager (ALI) is the centerpiece of the New Millennium, Earth Orbiter-1 mission. It will validate technologies contributing to the reduction in cost of future land imaging missions such as the Landsat series or earth imaging missions. The ALI will provide multi-spectral (10 bands), high spatial resolution (30m) in the visible and near infrared spectral range (0.5 to 2.5 um) with the goal of 5% absolute radiometric accuracy. The EO-1 mission will fly in formation with Landsat 7 and collect more than 200 common scenes for comparison. The ALI will be a factor of 4 less in mass and 5 less in power than the Landsat 7 Enhanced Thematic Mapper (ETM+). The flight validation of key ALI technologies should lead to dramatically reduced cost and complex Landsat type missions. Some of the key technologies are:

1. Silicon Carbide Optics which are extremely lightweight optics that are stable over a wide range of temperatures. The goal is to demonstrate how well the Silicon Carbide maintain stable performance in a space environment.

2. Wide field, high resolution reflective optics which provides a full Landsat scene swath width (185km) and resolution using a simple push broom design. This technique will enable much lower cost instrumentation for future Landsat mission through use of non-mechanical scanning and reduced instrument complexity.

3. Multi-spectral imaging capability, the modular focal plane assembly provides substantial mass and power savings over comparable mechanical scanning instruments through innovative electro-optical design. Additionally, an innovative on-board calibration system will enable better characterization of instrument performance during observations.

Applicability
The ALI is a pathfinder to higher performance and lower cost land imaging instruments which meet the demanding Earth Science Enterprises requirements for remote sensing applications.

Benefit to Earth Science Missions
The ALI technologies reducing the mass, power, complexity and cost of future earth imaging systems for the Earth Science Program. A fully operational ALI has potential for reducing the cost and size of future Landsat type instruments by a factor of four to five.

Development Status and Plans for Flight Readiness

<table>
<thead>
<tr>
<th>Technology Maturity</th>
<th>Description</th>
<th>Date (to be) Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component and/or breadboard validation in relevant environment</td>
<td>The flight ALI is currently undergoing integration at Lincoln Labs. The flight telescope has been delivered and the flight focal plane will be delivered in the mid-June timeframe. Calibration will occur in the Aug to November 1998 timeframe.</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>System/subsystem model or prototype demonstration in a relevant environment (ground or space)</td>
<td>The ALI will be launched on the EO-1</td>
<td>May 1999</td>
</tr>
<tr>
<td>System prototype demonstration in a space environment</td>
<td>The ALI technologies will be fully flight qualified after it has completed one year of operation in the space environment</td>
<td>May 2001</td>
</tr>
<tr>
<td>Actual system completed and "flight qualified" through test and demonstration (ground or space)</td>
<td>ALI science objectives will be fully met after ALI completes land imaging for an entire growing season</td>
<td>Sept 2001</td>
</tr>
<tr>
<td>Actual system "flight proven" through successful mission operations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technology database for PI missions

NSTAR Electric Propulsion

New capabilities enable new opportunities

MIDEX/SMEX/Discovery/ESSP

Technology Readiness Database for Discovery 1998

<table>
<thead>
<tr>
<th>System or Subsystem (from Level 2 WBS)</th>
<th>POC Name/Org: J. F. Stocky</th>
<th>POC Phone: (818) 354-5358</th>
<th>POC E-mail: john.f.stocky@p1.nasa.gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft Propulsion System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology Name and Supporting UPN or other funding source

NSTAR Solar Electric Propulsion UPNs: 242, 632, 839

Description of Technology:

NSTAR is a high-specific impulse solar electric propulsion system for deep space primary propulsion. The NSTAR system consists of five principal elements:

1. A 30-cm ion thruster capable of processing 83 kg at power levels between 500 W and 2,500 W and providing 93 mili-N of thrust and an ion current of 3,120 lb/sec at maximum power.
2. A power processing unit (PPU) capable of providing the necessary voltages and currents required by the ion thruster from an input power source providing between 80 V and 160 V. Each power processing unit can control two ion thrusters sequentially, but not simultaneously.
3. A digital control interface unit (DCIU) that provides the command and telemetry interface with the spacecraft, which controls the power processing unit - establishing proper set points for each thruster level commanded by the spacecraft, and which controls the flow rates provided by the propellant storage and control system.
4. A propellant storage and control system (PSCS) that provides xenon to the ion engine at the flow rates commanded by the DCIU for each thruster level.
5. A diagnostics measurement system to measure induced fields during ion thruster operation to help verify the performance of the ion propulsion system and to measure the effect of its operation on the space plasma near the spacecraft. The diagnostics system is not required for operational use of the ion propulsion system.

Applicability

The NSTAR engine is applicable to many deep space missions, and particularly valuable for missions to distant or high delta-v targets.

Benefit to Deep Space Missions

NSTAR provides significantly higher specific impulse than conventional chemical propulsion. This translates into a smaller mass of fuel required to accelerate a spacecraft to a given velocity. On missions to distant objects or trajectories requiring a large delta-v, where the fuel mass is a significant factor, a smaller fuel load at launch can mean a smaller, lower cost launch vehicle, or it can be traded for higher spacecraft velocity or a shorter cruise time to the target for a given launch vehicle capacity.

Development Status and Plans for Flight Readiness

<table>
<thead>
<tr>
<th>Technology Maturation</th>
<th>Description</th>
<th>Date (to be) Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component and/or broad validation in relevant environment</td>
<td>An engineering model ion thruster, functionally identical to the flight ion thruster, was tested for 8,000 hours at full power. The flight ion thruster, PPU, and DCIU have been protolflight qualified.</td>
<td>Completed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System/subsystem model or prototype demonstration in a relevant environment (ground or space)</th>
<th>System prototype demonstration in a space environment</th>
<th>Actual system completed and "flight-qualified" through test and demonstration (ground or space)</th>
<th>Actual system "flight proven" through successful mission operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flight ion thruster, PPU, DCIU, and xenon feed system have been environmentally and functionally qualified to protolflight levels prior to use on DS1. A long-duration test with flight hardware processing 125 lb/sec of xenon and using the full thruster range of the system</td>
<td></td>
<td></td>
<td>Complete mission profile as primary propulsion system for DS1</td>
</tr>
</tbody>
</table>

| | | | |
| | | | |
Technology database for PI missions
- Advanced Micro Controller

New capabilities enable new opportunities
MIDEX/SMEX/Discovery/ESSP

Technology Readiness Database for Discovery 1998

<table>
<thead>
<tr>
<th>System or Subsystem (from Level 2 WBS)</th>
<th>POC Name/Org: Frank DeLong/AFRL and Jim Lyle/Air Force Research Lab</th>
<th>URL for Additional Information: http://prs.pi.ac.fh/A/MPIM/RG/adc.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Micro Controller (AMC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of Technology
The Advanced Microcontroller (AMC) is the world's smallest space-qualified self-contained computer, with
a 24-bit digital signal processor, a 16-bit CPU, and analog interface capability. It was designed for high-temperature
applications and the Martian surface (30,000 G's, 120-deg C). The AMC has modest amounts of computing power (about
an equivalent of an old "Apple II" computer), but achieves this in the size of a postage stamp (0.8" x 1.2"),
the mass of a few potato chips (13 grams), and 1/20" watt of electrical power. Unlike an "Apple II", the AMC
packs an impressive built-in instrumentation capability: six serial communications ports, 32 digital discrete
lines, an additional 32 analog input lines, and eight presentable analog outputs. The AMC runs off of its
own internal clocks (either 10 MHz or 200 Hz for ultra-low-power) or an externally provided time
reference. Perhaps one of the most intriguing features of the AMC is its reconfigurable programming.
Unlike many other computers, the AMC can be reprogrammed up until final integration, under electrical
control: no de-integration is required. This versatility can save many thousands of dollars in any
application. The AMC can also "save" data to its non-volatile memory, giving the AMC enough "smarts"
to finish a task when interrupted by power removal, which is expected to occur at several points during the
Deep Space II mission.

Applicability
Potential to support numerous applications where modest amounts of processing are required in
dimensionally-constrained and/or remote locations for a minimal size, weight, and power consumption.
Such applications include motor controllers, cryocooler refrigerator controllers, distributed health
and status monitoring systems, configuration management processors, safety interlock protocol management,
security systems, miniature weapons computers, space probe control central processor, beacon processor,
jet engine control. Will be useful in large satellites and high-performance systems as well, since those
systems also have needs for lower tier processing, which can be offloaded to one or more AMC units.
Benefit to Deep Space Missions
Extremely high function-to-power, measured not just in the raw processor performance but in the degree
of functionality accommodated. A single AMC can monitor and control a large variety of signals in low-level
instrumentation. Multiple units can be employed with less size, weight, and power penalty than a single
copy of any other system in its class. It can operate with extreme cold, radiation, and shock, and new
versions can be quickly developed with much higher radiation tolerance.

Development Status and Plans for Flight Readiness

<table>
<thead>
<tr>
<th>Technology Maturity</th>
<th>Description</th>
<th>Date (to be) Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component and/or breadboards</td>
<td>Prototyped breadboards and MCMs tested to -130 deg C, drop shock tests</td>
<td>Boards have operated since July 1997, MCMs since Feb 97, drop shocks planned for mid-1998</td>
</tr>
<tr>
<td>System/subsystem model or prototype demonstration in a relevant environment</td>
<td>Prototyped breadboards and MCMs tested to -130 deg C, drop shock tests</td>
<td>Boards have operated since July 1997, MCMs since Feb 97, drop shocks planned for mid-1998</td>
</tr>
<tr>
<td>System prototype demonstration in a space environment</td>
<td>In Deep Space II and Space Test Research Vehicle 1D; Analog portions in X2000</td>
<td>Both missions in 1999; DS2 is interplanetary, STRV is harsh radiation environment</td>
</tr>
<tr>
<td>Actual system completed and "flight qualified" through test and demonstration (ground or space)</td>
<td>MCM form only</td>
<td>Qualification summer 1998</td>
</tr>
<tr>
<td>Actual system "flight proven" through successful mission operations</td>
<td>After launch will be tested in STRV-1 d and operated in DS2</td>
<td>mid-1999 for STRV-1 d and late 1999 for DS2</td>
</tr>
</tbody>
</table>

Advanced Micro Controller
NMP Technology Covers Wide Spectrum of Opportunities

<table>
<thead>
<tr>
<th>Cross-Enterprise Technology Program Thrust Areas</th>
<th>Current NMP Validation Contributions (DS1,2 & EO1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
• Vibrant Validation Flight Schedule

<table>
<thead>
<tr>
<th>FY</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td></td>
<td></td>
<td>▼10/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS2</td>
<td></td>
<td></td>
<td>▼01/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO1</td>
<td></td>
<td>▼12/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO2</td>
<td></td>
<td>▼03/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ST3 target launch window
ST4 target launch date
Potential Small ST5 mission
Potential EO3 / EO4

• Continuous Improvement to Meet Changing Enterprises Needs
 - Flight Validation Technology Inventory
 - Process Improvements
 - Smaller & More Frequent Flights