Validating Advanced Technologies for Future Space Missions

Philip Luers
Goddard Space Flight Center
Greenbelt, MD 20771
email: philip.luers@gsfc.nasa.gov

Charles P. Minnig
Jet Propulsion Laboratory
Pasadena, CA 91109-8099
email: charles.p.minnig@jpl.nasa.gov
Topics

- Program Objective
- Program Focus
- NMP Flight Team Partners and IPDT Members
- Microelectronics IPDT
- NMP Missions
 - Mission objectives
 - Technologies validated
- Summary
NMP Program Objective

- Conduct space flight validation of breakthrough technologies which will significantly benefit future Space Science and Earth Science missions

 - Breakthrough technologies focused on:
 * Enabling new capabilities to fulfill the Science Enterprises’ needs
 * Reducing costs of future missions

 - Flight validation to mitigate risks to first users and enable rapid infusion into future missions
Program Focus

NMP

Revolutionary Nature Of Breakthrough
IPDT's Represent Broad Spectrum of Government Agencies, Universities and Industry

<table>
<thead>
<tr>
<th>Member Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microelectronics</td>
</tr>
<tr>
<td>USAF Research Lab, Boeing, Georgia Tech, GSFC(^1), Hughes, Honeywell, Irvine Sensors, JPL(^2), APL(^3), LeRC(^4), Lockheed-Martin, MIT/LL(^5), Optivision, Sandia National Lab, Space Computer Corp., Space Electronics Inc., TRW, UC/San Diego, Univ. of New Mexico, USC</td>
</tr>
<tr>
<td>Telecommunications</td>
</tr>
<tr>
<td>Boeing, GSFC, JPL, APL, Lockheed-Martin, Raytheon</td>
</tr>
<tr>
<td>Multifunctional Structures and Modular Systems</td>
</tr>
<tr>
<td>GSFC, Honeybee Robotics, JPL, LaRC(^6), L'Garde, MIT, ARC(^7), NOAA(^8), Primex, SGG, Univ. of Arizona, Univ. of Colorado, USAF Research Labs, Yardney, NRL(^9)</td>
</tr>
<tr>
<td>In-Situ Instrument and Micro Electro-mechanical Systems</td>
</tr>
<tr>
<td>DARPA, USAF Research Labs, Ball Aerospace, JPL, APL, LANL(^10), NSF, U.S. Navy Postgraduate School, Sandia National Lab, Southwest Research Institute, Stanford Univ., Univ. of So. Calif./ISI</td>
</tr>
<tr>
<td>Autonomy</td>
</tr>
<tr>
<td>Instrument Technologies and Architecture</td>
</tr>
<tr>
<td>Ball Aerospace, GSFC, ITT Aerospace, JPL, APL, Lockheed-Martin, MSFC(^11), MIT/LL, LaRC, NRL, NOAA, Orbital Sciences Corp., Raytheon, SGG Corp., TRW, Univ. of Wisconsin</td>
</tr>
</tbody>
</table>

\(^1\)NASA Goddard Space Flight Center \(^2\)Jet Propulsion Laboratory \(^3\)Johns Hopkins Applied Physics Lab \(^4\)NASA Lewis Research Center
\(^5\)MIT/Lincoln Laboratory \(^6\)NASA Langley Research Center \(^7\)NASA Ames Research Center \(^8\)National Oceanic and Atmospheric Administration
\(^9\)Naval Research Laboratory \(^10\)Los Alamos National Laboratory \(^11\)NASA Marshall Space Flight Center
NMP Mission Launch Schedule

<table>
<thead>
<tr>
<th>Mission</th>
<th>FY98</th>
<th>FY99</th>
<th>FY00</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Missions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-1 (Asteroid/Comet Flyby)</td>
<td></td>
<td></td>
<td>10/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-2 (Mars Impact Lander)</td>
<td></td>
<td>01/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO-1 (Formation Flying/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperspectral Imager)</td>
<td></td>
<td></td>
<td>12/99</td>
<td></td>
<td>03/01</td>
<td></td>
</tr>
<tr>
<td>EO-2 (Coherent Lidar Expt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Missions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-3 (Multi S/C Interferometer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>09/03</td>
<td>(target)</td>
</tr>
<tr>
<td>DS-4 (Comet Lander)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04/03</td>
<td>(target)</td>
</tr>
<tr>
<td>ST-5 target launch window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO-3 target launch window</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Representative Technologies Validated on DS-1 (Cont'd)

- NSTAR ion propulsion system
- Plasma experiment for planetary exploration
- Autonomous onboard optical navigation
- Advanced solar concentrator array
- Miniature integrated camera spectrometer
- Small deep space transponder
Technologies to be Validated on DS-2

Advanced Microcontroller

Power Microelectronics Unit

Evolved Water Experiment / Soil Thermal Conductivity Experiment
Technologies to be Validated on DS-2 (Cont’d)

- Lithium-Thionyl Chloride Primary Battery
- Aeroshell/Entry System
- Flexible Cable Interconnect
- Compact Telecom System
Technologies to be Validated on EO-1

- Carbon-Carbon Radiator
- Pulsed Plasma Thruster
- X-Band Phased Array Antenna
- Wideband Advanced Recorder Processor
Technologies to be Validated on EO-1 (Cont’d)

Atmospheric Corrector

Lightweight Flexible Solar Array

Advanced Land Imager

Hyperion Instrument
Other NMP Microelectronics Technologies

Fiber-Optic Data Bus

3D Flight Computer
Summary

- DS-1 launched 24 October 1998
 - Low Power Electronics Experiment operational/data analysis underway
 - Power Activation and Switching Module operational/data analysis underway
 - Multi-Functional Structures operational/performance parameters verified
 - All other technologies operational/performance analysis in progress

- DS-2 launched 3 January 1999
 - Expected to impact near Mars southern polar region on 3 December 1999

- EO-1 on schedule for launch in December 1999

More details on microelectronics technologies in this Session and in Session 8A