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Abstract

A three-dimensional nacelle acoustics code that

accounts for uniform mean flow and variable surface

impedance liners is developed. The code is linked to

a commercial version of the NASA-developed Gen-

eral Purpose Solver (for solution of linear systems of

equations) in order to obtain the capability to study

high frequency waves that may require millions of

grid points for resolution. Detailed, single-processor

statistics for the performance of the solver in rigid-

and soft-wall ducts are presented. Over the range

of frequencies of current interest in nacelle liner re-

search, noise attenuation levels predicted from the

code were in excellent agreement with those pre-

dicted from mode theory. The equation solver is

memory efficient, requiring only a small fraction of

the memory available on modern computers. As

an application, the code is combined with an opti-

mization algorithm and used to educe the impedance

spectrum of a ceramic liner. The primary problem

with using the code to perform optimization stud-

ies at frequencies above llkHz is the excessive CPU

time (a major portion of which is matrix assembly).
The research recommends that research be directed

toward development of a rapid sparse assembler and

exploitation of the multiprocessor capability of the
solver to further reduce CPU time.
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diagonal matrix
error function

source frequency
vector of source effects

width, height, and length of duct
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27rf/co, free-space wave number

Uo/co, mean flow Mach number
total number of spanwise,

transverse, and axial nodes
three-dimensional basis

outward unit normal

lower triangular matrix

acoustic pressure field
unknown node coefficients

source pressure
liner resistance

real part of complex expression

uniform ftow speed

axial acoustic velocity
Cartesian coordinates

upper triangular matrix
intermediate vector

noise attenuation level

r + I_, wall impedance

exit impedance
liner reactance

ambient density

axial acoustic power

global vector of unknowns
local vector of element unknowns

element number

basis function counter

minor blocks counter

source plane index

number of unknown nodal coefficients

matrix transposition

complex conjugate
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Introduction

Fan noise accounts for a significant portion of com-

munity noise radiated from both conventional and

high bypass ratio engines. Noise reduction research

today focuses on reducing the perceived noise levels

of future aircraft by half relative to current levels

within ten years. Installation of acoustic treatment

(i.e., liners) into the nacelles of aircraft engines re-
mains one of the most effective means for achieving

these noise reduction goals. 1 However, future air-

craft engines are being designed with higher bypass

ratios, which have much shorter inlet ducts than con-
ventional inlets. The shorter inlet duct associated

with the higher bypass ratios has severely taxed the

ability of conventional liners to absorb inlet noise ef-

fectively. To achieve the required noise reduction in

the inlet for the higher bypass ratios, more advanced

liners are needed. These include double- and triple-

layer liners as well as those liners with variable sur-

face impedances. 1 The acoustic treatment must be

highly tuned (optimized) in order to provide suffi-
cient noise reduction over the shorter length of the
inlet duct.

To optimize the treatment for maximum sound

suppression, fully three-dimensional nacelle aeroa-
coustic codes that account for the increased liner

complexity and the mean flow are needed. Recent
research in impedance eduction techniques has also

highlighted the need for the development of three-

dimensional codes to perform accurate impedance

measurements in the presence of flow. 2 Currently,

industry and government design codes treat only two

dimensional nacelle designs. Although several ap-

proximate three-dimensional models are available, 3

these models make simplifying assumptions that are

not generally valid for acoustic disturbances propa-

gating within the walls of an aircraft nacelle.

Within an aircraft nacelle, the engine noise is often

dominated by a few harmonics of a fundamental fre-

quency. It is therefore convenient to use a frequency
domain analysis in order to take full advantage of

the presence of only a few harmonics in the acoustic

field. The equations resulting from frequency do-

main analysis in aeroacoustics are indefinite and are

generally solved by band solvers. However, when ap-

plied in three-dimensional computational methods,

band solvers require excessive amount of central pro-

cessing unit (CPU) time and memory (RAM). This

requirement has limited nacelle aeroacoustic codes
to the study of low frequency sound sources through

axisymmet ric nacelles.

The purpose of this work is to develop a fully
three-dimensional code for nacelle aeroacoustics.

First, the frequency domain differential equation and

boundary conditions in the presence of flow are pre-

sented. The solution for the acoustic field is then ap-
proximated by a conventional finite element method.

The finite element method leads to a large, sparse,

linear system of equations. A commercial version of

the NASA-developed General-Purpose Solver (GPS)

is applied to reduce the CPU time and RAM re-

quired to obtain three-dimensional solutions. Sev-

eral insights concerning the efficiency of the solver

are revealed via numerical experimentation. Noise

attenuation levels are compared to those predicted

from mode theory for the range of frequencies of cur-

rent interest in liner research. As an application,
the three-dimensional model is used to educe the

impedance of a ceramic liner for frequencies ranging
from 4kHz to llkHz.

Governing Equations and Boundary Conditions

Figure 1 is a sketch of the three-dimensional rect-

angular duct geometry used in this study. For the

sake of simplicity, the mean flow in the duct is con-

sidered to have only a uniform subsonic axial compo-

nent, that flows subsonically at a uniform speed, u0,

as shown. The computational volume enclosed by

the duct is W units in width, H units in height and

L units in length. At the source and exit bound-

ary of the domain, respectively, the source plane

pressure Ps and the exit plane impedance _exit are

known. In addition, the walls of the duct are lined

with a sound-absorbing material whose impedance

is denoted by _. Note that the three critical acous-

tic paramete_-s (Ps, _exit, and _) are allowed to vary

along their respective boundaries with position (see

equations (2) and (3)).
The equations that describe the propagation of

acoustic pressure disturbances within the duct de-

picted in fig. 1 are derived from the Navier-Stokes

and energy equations, neglecting viscous and heat

conducting effects. The justification for the neglect

of viscosity and heat-conduction is that the passage

of sound waves through a uniformly moving fluid is

an isentropic process. The equations that will be

the subject of this investigation result from two ad-
ditional assumptions:

1. Nonlinear acoustic effects can be neglected.

2. The acoustic disturbance has reached a periodic

steady state.

Under these assumptions the equations which de-
scribe the conservation of mass, momentum, and

energy for the flowing fluid may be combined into

a single, second order, partial differential equation

which describes the propagation of acoustic pressure
disturbances in the duct: 4
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02p
O'2p +O2p_2ikA,[O_zz+k2pC_n = 0 (1)+ o-

Although not considered here, Eq. (I) may be gener-

alized to include mean flows with gradients, or may
be suitably transformed to cylindrical coordinates

and used to study cylindrical duct geometries. The
source and exit plane boundary conditions are 2

p = p, (2)

or(s) -ikp(S)
0--7 - [;o,it(S) + M0] (3)

where S denote the (x,y,z) location along the

boundary surface. The wall impedance boundary
condition iss

• ps A/_ a

where s denote position along the surface of the liner.

The Finite Element Method

The numerical method chosen to solve the govern-

ing equation (1) coupled with the boundary condi-

tions (2)-(4) is the finite element method. Details

of the implementation of the finite element method

in three dimensions closely parallels that described

in an earlier two-dimensional paper. 2 Only sufficient

detail is presented here to highlight the major dif-
ferences between the two- and three-dimensional for-

mulations.

When applied to the current three-dimensional

nacelle aeroacoustics problem, the finite element

method may be interpreted as an approximation to

the continuous acoustic field as an assemblage of

rectangular prism elements as shown in Fig. 2. Here

N, M and Q evenly spaced points are assumed in
the spanwise, transverse, and axial directions, re-

spectively. A typical rectangular prism element with

spanwise, transverse, and axial dimension w, h and

I is shown in Fig. 3. The rectangular prism element

consists of eight local node numbers labeled 1, 2,

..., 8, respectively as shown in Fig. 3. The objective

is to obtain the unknown acoustic pressures at the

nodes of each of the (N- 1)(M - 1)(Q - 1) elements.
A conventional Galerkin finite element method is

used to minimize the field error. The field error func-

tion is defined as

E(x,u,z)= (1 - o J Oz_ + _-t-

_ - 2ikMo_+

k2p(x, y, z)
(5)

Within each element, the acoustic pressure field

p(x, y, z) is approximated by using a set of linearly

independent basis functions, Nl(x, y, z):

IMAX

p(x,y, z) = E Nl(x,y, z)p! (6)
I=l

Linear and cubic Hermite basis functions are used

with and without flow, respectively. For a two-
dimensional rectangular element, the functional

forms of these basis functions are given in Ref. 6,

and these functional forms are easily generalized to

three space dimensions• The variable exit impedance
_exit and wall impedance ( are represented in a

similar manner along each boundary element. The

impedance boundary conditions (3) and (4) are sat-
isfied using a weak formulation, just as in Ref. 2.

The contribution to the minimization of the field

error for each element is expressed in matrix form as

_ot _oh _WEN, dxdydz = [Ae]{_e} (7)

Assembly of the global equations for the computa-

tional domain is a basic procedure in the finite el-

ement method. Appropriate shifting of rows and

columns is all that is required to add the local el-

ement matrix [Ae] directly into the global stiffness
matrix. Assembly of the elements for the entire do-

main results in a matrix equation of the form

[A]{_} = {0} (S)

The source pressure boundary condition must be ap-

plied to the system of equations (8) before a solution
can be obtained. To satisfy the noise-source bound-

ary condition, all nodal values of the acoustic pres-

sure at the source plane are simply set to the known

value of source pressure, ps(x, y). The insertion of

these source boundary conditions leads to a modified
set of equations of the form

[A(¢)]{_} = {F} (9)

The global matrix [A(¢)] generated by Galerkin's

method is a complex indefinite matrix. The struc-

ture of the matrix [A(()] is shown in Eq. (10) for the
zero flow case

[AIF
[B F

[A(()] =

[B2]
[A2] [B3]

". ". *,o

[BQ]T [AQI

(10)

Note that in the absence of flow, [A(()] is a square

symmetric block-tridiagonal matrix. This global

3
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matrixcontainsseveralmajorblocks,[At] and[Bt],
as shownin Eq (10). Eachmajor blockis an
NMxNM block-tridiagonal matrix as shown in the

Expression (11) below

[all
[a:] [b3]

(11)

Each minor block [aj], [bj], and [cj] is an MxM

tridiagonal complex matrix. The order of [A(_)] is
NMQxNMQ. When flow is present, the structure

of the coefficient matrix [A(C)], is similar to that

without flow. However, when flow is present, the

coefficient matrix [A(_)] will not be symmetric and

each minor blocks [aj], [bj], and [Cd] will be block

tridiagonal.

Many practical considerations regarding storage

and solution efficiency arise from the structure of

[A(¢)]. In Ref. 2, the solution to the discrete sys-

tem in two space dimensions was obtained by us-

ing a band solver. However, in three dimensions,

the bandwidth of [A(¢)] is considerably larger than

its two-dimensional counterpart. Thus, the band

solver severely taxed computer resources by requir-

ing storage and arithmetic operations on the inner

null bands of [A(_)]. This paper will focus on the

use of an efficient sparse solver that will minimize

the"filr' within the inner null bands of [A(C)].

The Equation Solver

In this research effort, the Vector Sparse Solver TM

(VSS) software t,7 (a commercial version of NASA's

GPS s developed by Solversoft) was exercised to ob-

tain the solution to the aeroacoustic system defined

by Eq. (9). The GPS equation solver had its genesis
in the solution to large aerospace structures in com-

putational mechanics. It was subsequently extended

to support matrices that are sparse or dense, indefi-
nite, real or complex. In addition, Solversoft TM has

extended VSS TM to solve nonsymmetric systems of

equations often generated for example, in aeroacous-

tics problems containing mean flow. The method of

solving used to obtain the solution to the aeroacous-

tic system defined by Eq. (9) was as follows:

1. Reorder the system of equations (Note that re-

ordering of the equations reduces RAM and

tThe use of trademarks or names of manufacturers in this

report is for accurate reporting and does not constitute an of-

ficial endorsement, either expressed or implied, of such prod-

ucts or manufacturers by the National Aeronautics and Space

Administration.

CPU time by minimizing the"filr' within the

inner null bands of the coefficient matrix.)

2. Factorize the reordered matrix as

[A] = iLl[U] (12)

A fairly general scheme exists for computing iLl

and [U]. When the matrix is symmetric (i.e.,

M0 = 0), [U] may be obtained from [L] with
negligible computational effort:

[U] = [D][L] T (13)

where [D] is a diagonal matrix

3. Use a forward solution phase to obtain an in-

termediate vector {Z}:

[L]{Z} = {f} (14)

4. The solution for the vector {(I)} is obtained by
using backward substitution:

= (z} (15)

The key innovation of the VSS software is that

in] and [U] are computed efficiently, with due at-

tention given to eliminating computations with zero

elements, while maintaining low storage and CPU
time. A second innovation is a novel reorder-

ing method that retains the benefit of a multiple-

minimum degree (MMD) reordering at a fraction of

the MMD reordering time. This benefit is accom-

plished by reordering a subset of the equations. The

solver software requires that only the nonzero co-

efficients in A[(C)] be stored in RAM. Further, the
nonzero coefficients are stored in row format and as

a single vector to facilitate the solution procedure.
The VSS software exploits the matrix character-

istics (real/complex, symmetric/nonsymmetric, in-

core/out-of-core) of the application and also exploits

the hardware features of the computing system.

Only a small fraction of the capability of the solver

was used in this research effort (i.e., only the com-

plex, symmetric, in-core capability was required).
The equation solver used in this work included sev-
eral other recent innovations that are discussed in

detail elsewhere, s

Results

An in-house computer code that assembles the co-

efficient matrix [A(¢)] in the required solver format

was combined with the VSS software in order to pro-
vide the capability to solve three-dimensional aeroa-

coustics problems. Three-dimensional solutions are

4
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presented for both rigid- and soft-wall ducts in the

absence of flow. Results were computed on an in-

house SGI ORIGIN 2000 TM computer that con-

tained slightly more than 12 gigabytes of RAM and

eight processors. Computations presented in this pa-

per were run on only a single processor with double-

precision (64-bit) arithmetic. Computations are pre-

sented for a geometry identical to that of the Lang-

ley Flow Impedance Tube. 2 This three-dimensional

duct has a square cross section 0.508 m in width

(W = H = 0.508 m). The duct is .812 m in length

(L=0.812 m) with the liner located on the lower wall.

The upper and two side walls of the duct are rigid.

A much more complete description of the duct is

given in Ref. 2. All calculations were performed

at standard atmospheric conditions and the source

frequency was chosen to span the full range of fre-

quencies that are currently of interest in duct liner
research.

The left ordinate in Fig.4 shows a plot of the high-
est order mode cut on in the spanwise and transverse

direction of the rigid-wall (_ = _) duct for frequen-
cies of current interest in liner research. The right

ordinate in the figure shows the order of the ma-

trix [A(_)] needed to resolve all cut on modes in the

three-dimensional duct. Here, the author used the

general rule that approximately 12 points per wave-

length is required in each of the three coordinate di-

rections to accurately resolve a propagating (cut on)

mode. Results are not shown for frequencies below

4kHz because only the plane wave mode was cut on

in the duct. Source frequencies below 4kHz may be

analyzed with a two-dimensional code such as that

developed in an earlier paper. 2 Note that at the high

frequency end of the spectrum (17kHz) in each co-

ordinate direction, five modes are cut on in addition

to the plane wave mode. A matrix order of slightly

more than 434000 is required to accurately resolve

all cut on modes that propagate at this frequency.

Figure 5 shows the CPU time and RAM required

to solve for the acoustic field in the rigid-wall duct.
The source was a plane wave source and the exit

boundary condition was chosen so that the exit plane

was reflection free (_exit = 1). The CPU times shown

in the figure correspond to those required to obtain

the solution vector {_} after matrix assembly. Gen-

erally, the CPU times required to perform the for-
ward and backward solutions were less than 1% of

that required to perform the [L][U] factorization of
the matrix. The CPU times required to obtain the

solution range from 0.9 sec at 4kHz to a maximum

of nearly three hr at 17kHz. The RAM range from a

low of 4.4 megabytes at 4kHz to slightly more than
2.1 gigabytes at 14kHz. The RAM requirements are

not monotonic because there is more "fill" within

the inner null bands of [A(()] at 14kHz than 17kHz.

Note that all solutions consumed only a fraction of

the 12 gigabytes of RAM available on the SGI ORI-
GIN 2000 TM.

To check the accuracy of the solution vector, the

author used the reduction in the sound power from

the entrance to the exit of the duct (i.e., AdB) as

a metric. This quantity is a physically more mean-

ingful norm than the error norm of the computed

solution because it is the quantity perceived by the
human ear as the noise source propagates down the

duct. This metric has units of decibels and is defined

as

(1/2)Re{¢(0)} (16)
AdB = 10log10 (1/2)Re{¢(n)}

H¢(z)= {p(x,y,z)u*(x,y,z)}dxdy (17)

For the zero flow calculations considered here, the

acoustic velocity is related to the pressure gradient

via the axial momentum equation:

u(x, y, z) = -1 Op(x, y, z) (18)
(2ipolrfco) Oz

An exact mode solution shows that no sound is at-

tenuated in the rigid-wall duct (i.e., AdB = 0).

The solution vector {(I,}, obtained from the equa-

tion solver was used to numerically compute the

noise attenuation level, AdB. The attenuation levels

computed from the VSS solution vector in the rigid

wall duct, were in excellent agreement with the ex-

act mode solution of zero. Figure 6 shows a plot of
the VSS solution time and the sparse matrix assem-

bly time in the rigid wall duct. Note that at the

high frequency end of the spectrum, sparse matrix

assembly time is approximately twice that required
to obtain the VSS solution.

Statistics have also been computed for a ceramic

liner with the resistance (R) and reactance (_) spec-

trum shown in Fig. 7. At each frequency, the sound

source was chosen as the highest order cut on mode
in the duct and the exit impedance was chosen to
eliminate reflections from the duct exit. Soft wall re-

sults in this paper have been purposely restricted to

this range of parameters because approximate modal
solutions are available to check the solver solution for

the noise attenuation levels. The CPU and RAM

statistics for the soft-wall duct were nearly identical

to those of the rigid-wall duct. Figure 8 compares
the noise attenuation levels over the ceramic liner

to those of mode theory. Noise attenuation levels

5
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predicted with the model are in excellent agreement

with mode theory.

In a recent paper 2 a numerical method for ex-

tracting the impedance of an acoustic material lo-

cated in a two-dimensional duct was developed

and validated. The impedance extraction method

required input of the source pressure Ps, exit

impedance _exit, and upper wall pressure. The three-
dimensional model described here has been linked to

this impedance extraction technique in order to pro-

vide the capability to extract impedances in three-
dimensional sound fields. Because measured three-

dimensional data was not available, the boundary

data required to educe the impedance was synthe-

sized from the analytical mode solution. Figure 9

compares the resistance and reactance educed by

using the current model to the known values for

frequencies of 4kHz, 7kHz, and llkHz. Excellent
comparisons were obtained between the known and

educed resistance and reactance values. Impedance

eductions for frequencies above 1 lkHz were not per-

formed because the CPU times (a significant part is

matrix assembly) to educe the impedances became
excessive.

Concluding Remarks

A three-dimensional nacelle acoustic code to ac-

count for uniform mean flow and variable surface

impedance liners has been developed. The code
was linked to a commercial version of the NASA-

developed General Purpose Solver to obtain the ca-

pability to study high frequency sound waves that

may require millions of grid points for resolution.

Over the range of frequencies of current interest in

nacelle liner research, noise attenuation levels pre-

dicted from the code were in excellent agreement

with those predicted from mode theory. The equa-

tion solver is RAM efficient, requiring only a small

fraction of the RAM available on a modern computer
such as the SGI ORIGIN 2000 TM used in this study.

The code is tractable for optimization studies with

source frequencies up to llkHz. The problem with

using the code to perform optimization studies at
frequencies above 11kHz is the excessive CPU time

(a major portion of which is matrix assembly time).
This research therefore recommends that research

be directed toward development of a rapid sparse as-

sembler and that the multiprocessor capability of the

solver be exploited to further reduce CPU time so
that optimization studies become tractable for fre-

quencies above 1 lkHz.
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