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Abstract: This paper describes the application of modeling and simulation in evaluating and predicting

the performance of the mass storage network environment. Network traffic is generated to mimic the

realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the
mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling
and simulation. Performance characteristics in throughput and delay demonstrate the important role of

modeling and simulation in network engineering and capacity planning.

Introduction

Advances in computer network and communication technologies have increased the important

role of modeling and simulation environment in system design, performance analysis, and development of
communication protocols. The apparent benefit of modeling and simulation comes from the cost-

effectiveness in evaluating the anticipated behavior of complicated systems. Since the system

performance usually depends upon many inter-related parameters, a parametric simulation experiment can

supplement and even replace the expensive and time-consuming hardware-based testing.

Many modeling and simulation tools are based on the discrete event simulation concept. In this

approach, communication processes are decomposed into many states that can make a transition to
different states depending upon the characteristics of the triggering events. Among several public domain

tools, NS [1] provides a modeling and simulation environment for protocol development with substantial
support for simulation of Transmission Control Protocol (TCP), routing, and multicast protocols. National
Institute of Standards and Technology (NIST) Asynchronous Transfer Mode (ATM) simulator [2] is

particularly suitable for performing research in ATM network. CSIM [3,4] is a flexible and general-
purpose discrete-event simulation language for developing process-oriented simulation models. NetSim
[5] is an event-driven simulator for packet networks with a simple X window interface to allow
interactive use. BONES and OPNET [6,7,8] are commercial tools that can be effectively utilized to predict

the behavior of communication network and distributed systems.

The benefit of modeling and simulation also applies to the design and performance analysis of

production network. As the trends in network management emphasize more proactive services for the
end-users, a simulation capability is becoming an enabling technology in examining and analyzing the

performance characteristics for network capacity planning. Modeling network configuration and

simulating its behavior in response to the varying design and operating conditions is not only an
economical way of evaluating the planned network but also provides network designers with a powerful

tool to test a variety of potential network architectures and configuration scenarios.
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In this work, the role of simulationand modelingin massstoragenetworkenvironmentis
considered.In thefirst part,theperformancecharacteristicsof themassstoragenetworkareexamined.
Basedontheobservedtraffictrends,themassstoragenetworkis modeledby twoprominentnetworking
technologies,FiberDistributedDataInterface(FDDI) andATM. Their performanceis comparedby
simulation.The effect of internetworkingdevicesand the link speedsupon the networkdelay
characteristicsisexaminedin thesecondpart.OPNET(OptimizedNetworkEngineeringTool)isusedfor
themodelingof thenetworkarchitecture,the performancemeasurement,andthe presentationof the
results.Among many performance-related statistics, the emphasis is given to the global parameters such
as the throughput and the response time of the network.

Performance Prediction of the Mass Storage Network

The core function of the server in the mass storage network is to permanently backup the data

that are sent from the client workstations. These client stations also serve as the temporary file storage

servers for the local subnet stations. Since the objective of the work is to evaluate the performance of the
mass storage network, the temporary file storing function of the client workstations is ignored and it is

assumed that the client workstations only generate traffic to the mass storage server. This appears to be a
reasonable assumption since it is likely that the network bottleneck is at the link between the client

stations and the server during the massive backup process.

In order to compare the overall performance of the different network technologies, FDDI ring and

ATM switched topologies are modeled with the link speed of 100 Mbits/sec and 155 Mbits/sec

respectively. Higher bandwidth (622 Mbits/sec) for the ATM uplink to the mass storage server was
considered but was not included in the simulation for more fair comparison between two topologies.

The network model for the FDDI ring architecture is shown in Figure 1. Each of the client
workstations is composed of a number of functional modules as in Figure 2 to mimic the layered

architecture of the data flow. The client stations can simulate the majority of the popular applications such

as E-mail, FTP, HTTP, Telnet, Video conferencing, X windows, database as well as user-specified
custom applications. The server station basically has the same modular architecture except that the client

module is replaced by the server module. Details of the module descriptions and the protocol parameters
are beyond the scope of this work.

In order to measure the performance statistics, data traffic has to be injected into the network.
Typical amount of the files for the mass storage network is reported at about 20 terabytes a month with

the file sizes varying from a few thousand to millions of bytes. This monthly traffic corresponds to nearly
62 Mbits/sec and it is highly probable that it will increase further in the future. The traffic characteristics
for the current simulation were established such that all nine client stations transfer files to the server at a

constant traffic rate and a constant file size. Note that the traffic characteristics could also be individually
established at a different rate and size for each client station.
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Figure 1. The FDDI network model.
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Figure 2. FDDI client node.
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An ATM switchedmassstoragenetworkcanbeaviableoptionto alleviatethepotentialtroubles
of theFDDIarchitecturedueto alongdelayandthesufferingof thethroughput.InFigure3,thenetwork
modelfor theATM switchedmassstoragearchitectureis shownalongwith thedepictionof theclient
station'smodulararchitecturein Figure4.
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Figure 3. The ATM network model.

Figure 4. ATM client node.
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Noteagainthattheclientworkstationconsistsof modulesin Figure4 thatmimicthedataflow
andthefunctionalityof thelayeredarchitecture.TheATM switchconsistsof themodulessimilartothose
of theclientstationbelowtheAAL(ATM AdaptationLayer)moduleandisconnectedto theclientsand
theserveratthelink speedof 155Mbits/sec.

In orderto comparetheperformanceof the FDDI model vs. the ATM model, an identical traffic

was injected into each of the models. In this work, the file transfer is the only application that generates
the traffic and all other applications were turned off. All files are destined to the server according to the

respective access protocols and there is no file that is extracted from the server. Performance can be
measured at each individual node of the model as well as in a global sense. In this work the focus was on

the global behavior of the network and thus among numerous performance related parameters, the global

throughput and the application response time were measured. The global application throughput is

defined by the average bits per second forwarded to the application by all transport layers in the network

and the application response time is measured from the time a client application sends a request to the
server to the time it receives a response packet.

Figure 5 shows the simulated results for these two parameters. The abscissa here corresponds to
the simulation time. The file transfer rate from each client station was set at 500 files/hr with the file size

fixed at 50 Kbytes.
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Figure 5. Performance statistics of FDDI and ATM models at the light traffic.

Application throughput (a) ATM (b) FDDI.
Mean application response time (c) ATM (d) FDDI.
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In this figure,bothFDDIandATM modelsareshownto handlethetrafficwithoutanytrouble,
buttheapplicationresponsetimefor theATM modelisunexpectedlylargerthanthatof theFDDImodel.
Thisdiscrepancyappearstobedueto thefactthattheapplicationresponsetimeistheaccumulationof all
delaysthatspanfromthephysicallayermoduleto theapplicationlayermoduleasdepictedin Figure4.
Thismeansthatthedelaysat the layerinterfacescouldsignificantlycontributeto thetotalapplication
responsetime.SincetheconversionbetweenATMcellsandIPpackets(segmentationandreassembly)at
IP-ATMinterfacecantakemuchof theapplicationresponsetimein ATM model,it mightbemore
desirablethattheeffectoftheinterfacedelaysis isolatedfor abettercomparison.

Figure6 supportsthisspeculation.Here,theFDDI end-to-enddelayandtheATM end-to-end
delayweremeasuredfor thesame network models and the traffic. This statistics is defined by the delay
that takes between the link layer modules of the sending and the receiving nodes and thus is the pure

measurement of the link layer module performance. The ATM model is shown to outperform the FDDI
model by more than an order of magnitude.
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Figure 6. End to end delay at the link layer level (a) ATM (b) FDDI.

Further investigation showed that the SAR (Segmentation and Reassembly) rate of the ATM
model plays a significant role for the application delay. This parameter is defined in the AAL module in

Figure 4 and controls the rate of conversion between the IP packets and the ATM cells. Figure 7 depicts

the application response time of the ATM model at an increased SAR rate and shows the smaller response
time compared to that of the FDDI model in Figure 5.

Figure 8 shows the statistics for the file transfer rate of 10,000 files/hr at the file size of

50 Kbytes. Both FDDI and ATM models again handle the injected traffic smoothly with decent
application response time.
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Anotherinterestingexperimentis to overloadtheFDDI networkmodelto observeits behavior
andcomparewith theATMmodel.Forthispurposeaheavytrafficof 25,000files/hratthefixedfile size
of 200Kbyteswasappliedto eachmodel.Thechangein thefile sizefromtheprevioussimulationswas
madeto decreasethesimulationruntimewhilekeepingthetotalquantityof thetrafficat 100Mbits/sec.
Alsodueto therestrictionin thesimulationruntime,theATM modelsimulationwasinterruptedafter
300seconds.It appearsthatthis interruptiondoesnotcauseanysignificantlossof usefulperformance
statistics.Figure9 showsthesimulationresultsfor thisheavytraffic scenario.WhiletheATM model
appearsto achievethefull throughputof 100Mbits/sec,theapplicationthroughputof theFDDI model
levels off at 90 Mbits/sec.More critically, the applicationresponsetime of the FDDI model
monotonicallyincreasesto anunacceptablevaluedueto theoverloadingof thenetwork.Samestatistics
for theATM modelstill graciouslyholdsatadecentvalue.
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Modeling and Simulation of a Client-Server LAN

The critical factors determining the performance characteristics in the previous section are the

speed of the communication link (FDDI:100 Mbps, ATM:155 Mbps) and shared (FDDI) vs. switched

(ATM) network. In this section, a simple client-server model is considered to investigate the effect of

these factors on the performance of a typical Ethemet LAN. As depicted in Figure 10, the network has a

star topology and consists of one server (node_31) and thirty client workstations connected through either
a hub or a switch (node_30). Client nodes request the server applications such as electronic mail, file

transfer, and web browsing. For modeling purpose, the server is assumed to have been configured to

handle all the requested applications. Four different network configurations are investigated; a shared

Ethernet (10BaseT to the hub, 10BaseT uplink to the server), a switched Ethernet ( 10BaseT to the switch,

10BaseT uplink to the server), a switched Ethernet with a 100BaseT uplink to the server, and a switched

Fast Ethernet with a Gigabit uplink to the server. The Ethernet delay is measured for each configuration

and compared. The Ethernet delay is defined as the end to end delay of all packets received by all the

stations and represents a global performance of the network.
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Figure 10. The Client-Server LAN Model.
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The characteristics of the application traffic are modeled to mimic the realistic loading on the
network as shown in Table 1. Although each of these traffic characteristics can be distinctively applied to
each client node, an identical traffic pattern was applied to each of the thirty client nodes in this work.

Table 1. Application Traffic Parameters.

Application Send

Rate(Messages/Hour)
E-Mail 10

Receive

Rate(Messages/Hour)
10

Average E-Mail

Size(Bytes)
2.000

Application

File Transfer

Command

Mix(Get/Total)

File Transfer

Rate(Files/Hour)
50% 10

Average File

Size(Bytes)
50,000

Application

Web Browsing

Page

Rate(Pages/Hour)
60

Page Average Object

Size(Objects/Page) Size(Bytes/Object)
10 12,000

A simulation was run for 10 minutes and the Ethemet delay was measured for each network

configurations. In order to minimize initial transient behavior during simulation, each of the client nodes

is configured to begin application request after the simulation is run for 100 seconds. Figure 11 shows the
time-averaged Ethernet delay for each network configurations. In symbol notation, each symbol is

followed by the internetworking device, link speed from the client node, and the uplink speed. The
simulation result demonstrates the performance advantage of the switched Ethernet over the shared

Ethernet. The effect of link speed is also apparent. Note that the 100BaseT switched Ethernet with Gigabit
uplink shows almost no delay in the current scale of the plot.
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Figure 11. Comparison of Ethernet Delay.
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Summary

In this work the performance of several different network technologies and topologies is

evaluated using a modeling and simulation. The simulation results appear to follow the realistic behavior

of the network under the applied traffic. This work demonstrates that modeling and simulation can be an
effective tool for designing and planning a future network under different scenarios. It provides an

enabling technology to proactively serve the networking demand of mission and business-critical

applications. It also augments the network equipment testing by minimizing the cost and time of hardware

testing.
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