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1. Introduction
LINER is a system of Fortran 77 codes which performs a 9D analysis of acoustic wave

propagation and noise suppression in a rectangular channel with a continuous liner at

the top wall. This new implementation is designed to streamline the usage of the several

codes making up LINER, resulting in a useful design tool. Major input parameters are

placed in two main data files, input.inc and num.prmm. Output data appear in the form

of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the

physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed

account of program usage, including input formats and graphical options. A sample run

is also provided. Finally, Section 5 briefly describes the :ndividual program files.

2. Physical Model

The physical model is based on the 9D compressible, inviscid fluid flow in a rectan-

gular channel, as depicted in Fig. 1. We employ Cartesian coordinates (z,y), where T

is the streamwise direction and y the normal direction. The governing equations are the
oD Euler equations,

Continuity : %Itl +V-(pV)=0

Copyright 1999 by R. S. Reichert and S. Biringen, Report and Associated Software
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Momentum : p%% +pV-VV =-Vp

Energy: %-&-V-EV:—V-(;}V)

where V = (u, )7 is the velocity, p is density, p is the pressure, and E is the total energy.
These are numerically integrated, along with the equation of state,
E= ;% + % pV?

where v is the ratio of specific heats, which we shall take as v = 1.4. Nonreflective inflow
and outflow boundary conditions are imposed. Boundary conditions at the normal walls
(y = £Ymaz) are rigid slip, allowing nonzero tangential velocity while maintaining zero
normal velocity. The initial conditions consist of a quiescent field, with an optional
y-directed bias flow superimposed. Although this model is inviscid, a small artificial
viscosity is used to stabilize the difference scheme.

The liner is incorporated as a source term in the momentum equations, rather than
through boundary conditions. This is done semi-empirically, with impedance parameters
chosen to match experimental data on the liner materials. As shown in Fig. 2, a steady
bias flow through the liner is also modelled. See Ref. 1-2 for a detailed description
of liner characteristics. Physically, the liner is composed of a face sheet and septum,
sandwiching a honeycomb core. A constant bias velocity may be directed through the

liner, if desired.
3. Numerical Method

The Euler equations are solved in space and time using the explicit (2,4) scheme of
Gottlieb & Turkel [3], with artificial viscosity incorporated as a sixth-order source term.

Spatial boundary conditions are implemented using the method of Thompson [4].
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4. Computer Programs

4.1 General Description

LINER consists of a suite of F77 codes, which may be classified functionally as data
input (relatively permanent or relatively ephemeral), computational, and data output
(numerical or graphical). An entire program execution is supervised by a single Unix

script, called RUN.

4.2 Input

Input parameters are found in tnput.inc and num.prm. The liner geometry is gen-
erated in Inrgeom.f, but the user need not edit this file. See section 4.5 (Sample Run)

for the specific contents of the two input files.

4.3 Output

Sound pressure level is written to ASCII file sound.idl, while power per span is

written to file powspan.
4.4 Graphical Options

All plotting is carried out in the GNUPLOT system, with a single Gnuplot macro
processing a number of ASCII datafiles. Plots are automatically made (using GHOSTVIEW )i
of Transmitted Power per Span and Sound Pressure Level (SPL) y-profiles at three se-
lected z-values. To page through plots, type in “q” after each plot. The four plots are
written to files pl.ps, p2.ps, p3.ps, and p4.ps. The user may produce additional SPL

profiles by running program splz.f with z1, 22, and z3 set as desired in input.inc.
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4.5 Sample Run

As a specific case, let us consider a 61 cm x 19.25 cm domain, discretized by a
489 x 155 grid in x and y, i.e. nT = 487, ny = 153. With these choices, dz = dy =
0.125 crn. The lower liner sheet is located at y index il = 122, with upper sheet (septum)
at iu = 142, corresponding to a total liner depth of 4 cm. The bias velocity, scaled by
the sound speed, is negative blowing out of the liner. Here we take vpiqs = —0.01. The
equations are advanced a total of nmz = 6000 steps with timestep dt = 0.02. The input
disturbance is a plane wave of nondimensional frequency w = 0.23099946 (f = 1250 Hz)
and normalized amplitude A = 0.002 (140dB). Specifically, f is scaled by u,/l,, where
u, is sea level sound speed and I, = 1 cm; A'is scaled by pruZ, where p, is sea level
density. Parameters nmz, dz, and dt are to be specified by the user in file num.prm.

The liner impedance parameters (defined in Ref. 1) are specified by the user in
file input.inc. This file also includes parameters dy, nz, ny, il, iu and Upiqs. FOT
this example, the liner impedance parameters were chosen to be al = 0.0283, au =
0.0905, bl = 21.8, bu = 233.0, zclsp = —1.14, and zcusp = -1.11338.

The Sound Pressure Level is to be plotted vs y at zl = 85 cm, 2 = 17.0 cm,
and z3 = 52.5 cm, as set in input.inc. SPL profiles may easily be generated for any
other desired values of z without rerunning the whole code, by resetting x1,x2, and x3

in input.inc, then recompiling and executing splz.f. Figure 3 shows the resulting plot of

Power Drop, while Fig. 4 presents the three SPL plots.

5. Glossary of Computer Programs

F.f: Creates forcing function field to prevent the mean bias field from evolving in time.

Writes file ff.in.

goplot: GNUPLOT macro to make plots of power drop and SPL.

4



input.inc: This is the basic input file, to be edited by the user. It is included in all

FORTRAN codes.
linchn_orig.f: This is the workhorse of the system, which numerically solves the differ-
ence equations representing the flow.

linchn_ppav.f: Same as linchn_orig.f, except that time-averaging is applied to the fluc-

tuating (acoustic) field. Writes final output files.
Inrgeom.f: Constructs liner forcing function distribution throughout domain.

mnbias.f: Creates solution field for any desired mean flow, such as a bias flow. Writes

file rstrt.in.

num.prm: Contains basic run parameters, to be edited by the user. Warning: do not

add any additional lines of comments to this file.
run: Unix script which supervises an entire run.

spl.f: Postprocessor to generate plot files for goplot

References
1. Reichert, R. S., Ph. D. Thesis, University of Colorado Dept. of Aerospace Engineering
Sciences, 1998.
2. Reichert, R. S. and Biringen, S., AIAA 97-1650 (1997).
3. Gottleib, D. and Turkel, E. Math. Comp. 115, 43 (1976).
4. Thompson, K. W., J. Comp. Phys. 68, 1 (1987).
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Script to run LINER system

Generate y-grid
install test for files

n newstrt.bin

n grid.out

77 -u grid.f -o gg
g

77 mnbias.f -o gmn

cho 'finished compiling grid.f and mnbias.f’
mrl

p rstrt.0 rstrt.in

77 lnrgeom.f -o gln

ln

77 f£.£ -o gft

y2E

.cho ’finished running lnrgeom.f and ff.£’
=77 linchn orig.f -02 -oO gln

;£77 line.f -o gln

jln
_cho ‘finished running linchn orig.f’

w newstrt.bin rstrt.in

rm pp.av jetdat.bin jetgrd.bin
cp num.prm numsave.prm

~cho 'starting addn’

£77 addn.f -0 ga

ga

echo ’finished running addn’

mv noums.prm num.prm

gln

echo ’finished gln’ :
rm newstrt.bin jetdat .bin jetgrd.bin
£77 linchn ppav.f -o gav

gav
echo ‘finished running linchn _ppav.f’ .

Cp num.prm NUMXX . prm
mv numsave.prm num.prm
f77 splx.f -0 gg

39
echo 'finished splx’

\gnuplot goplot

PPy » o'y »» » ry ry¥ sy s 7



input.inc
Main input file, to be edited by the user.

constants (to be changed by user)

[(e]
2]
'.J-
Q.

y index of lower porous sheet (face sheet)
y index of upper porous sheet (septum)
dely = dx = dy = mesh spacing

nx
ny
il
iu

integer nx,ny,1il,iu
real dely
parameter(nx=487,ny=153,dely = .125,11=122,iu=142)

physical constants (not to be changed)

real gam,gaml
parameter (gam=1.4, gaml = 0.4)

rba and pba are quiescent medium nondim density and pressure

real rba,pba
parameter(rba:l.O,pba:O.714285714286)

Print interval
integer npr
parameter (npr = 100)

x-values for SPL plot (in cm)
real x1lspl,x2spl,x3spl
parameter (x1spl = 8.5,x2spl = 17, x3spl = 52.5)

bias velocity
real vbias
parameter (vbias = -.01)

Liner Impedance Parameters

chc = honeycomb x resistive term

al = linear resistance term, lower pOIrous sheet

bl = nonlinear resistance term, lower porous sheet
sg = sigma for resistance distribution

sgxl = sigma_X lower,

au = linear resistance term, upper porous sheet

bu = nonlinear resistance term, upper porous sheet
xclsp = lower sheet linearized reactance term
xcusp = upper sheet linearized reactance term

real chc

parameter (chc=0.8)

real al,bl
parameter(al:0.0283,b1=21.8)
real sg,sgxl,sgxu
parameter (sg = 2.0*dely,sgxl=2.*sg,sgxu=4.4*sg)
real au,bu
parameter(au=0.0905,bu=233.0)
real xclsp

parameter (xclsp=-1.14)

real xcusp
parameter(xcusp=~l.1338)

number of interior x gridlines (nx+2 total, including boundsiies)
number of interior y gridlines (ny+2 total, including boundaries)

lower sheet sigma for reactance distribution
sgxu = sigma_x upper, upper sheet sigma for reactance distribution



- variable rs is .true. if this is a restart and .false. if
T

 variable nmx is the time step number to which to march
6000

not

+ variable ck is number of time steps between calls to chkval()

100

*+ mean ic: =0 -> top-hat inflow (Not used in LINER)
2 .

+ variables dx (= dely = dy) ,dt
0.1250000 2.0000000E-02

* level of sixth-order artificial dissipation vk
2.0000000E-02

* constant in reflective outflow condition of Poinsot and L
0.0000000E+0QO

* nondimensional reference pressure for SPL calculation
1.4100000E-10

*+ harmonic u disturbance amplitude and frequency
2.0000001E-03 0.23099946

""’b.’..”&i,ﬂo"laaw-" 4

ele (subscnic only)




program splx.f

generate SPL for gnuplot macro 'goplot’
include ’input.inc’

real xx (-1:nx+2) ,yy(-1:ny+1)

real spl(0:nx+1,0:ny+l), ¥

integer i,j,il,iz,i3,nl,n2

open(unit=35,file=’sound’,status:'unknown’)
open(unit=351,file='splplot',status=’unknown')

read(35,*) nl,n2
write(6,*) nl,n2

do 100 j = 0,n2-1

read (35, *) (spl(i,j),i=0,nl-1)
100 continue

il xlspl/dely + .0000001

x2spl/dely + .0000001
x3spl/dely + .0000001

i2
i3

write (351,98) xlspl,x25pl,x35pl
format ('# x1 =',£8.5, ' x2 =',f8.5,' X3 =',f8.5/)

\b'
[0 0]

do 200 j = 0,n2-1

y = j*dely

write(351,99) y,spl(il,j),spl(iz,j),spl(i3,j)
format (4el3.5)

continue

‘avy - e e
N WO
O W0
o

close {35)
close (351)

end

“"QQ"'."”Jf"'/’"'fI




"# goplot (gnuplot macro)
\set term postscript portrait
‘set samples 35000
"set size .75, 1.
A set autoscale
- set nokey
‘i
Nset title ‘Transmitted Power per Span’
.set xlabel ’x’
'set ylabel ‘Power / Span '
) set output ‘pl.ps’
\ D 'powspan’ w 1
T #
Nset title ’'SPL’
set xlabel 'y at x1’
set ylabel ’'SPL (dB)’
N set output ’‘p2.ps’
\P "splplot’ using 1:2 w 1
#
Vset title ‘SPL’
set xlabel 'y at x2’
" set ylabel ’'SPL (dB)’
N set output ’‘p3.ps’
zP ’splplot’ using 1:3 w 1
~#

M set title ’SPL’

yp set xlabel 'y at x3’
set ylabel ’'SPL (dB)'
set output ’'p4.ps’

2P ‘splplot’ using 1:4 w 1
#

‘lghostview pl.ps . -
B !ghostview p2.ps
_ !ghostview p3.ps

!ghostview p4.ps
N q '

vy ¥ & & vV v VvV

>y @9 v ¥ 9y
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TIME-DOMAIN SIMULATION OF
ACOUSTIC PROPAGATION IN A LINED DUCT

R.S. Reichert and S. Biringen Department of Aerospace Engineering Sciences
University of Colorado
Boulder, Colorado 80309-0429

Abstract

An inviscid, spatial time-domain numerical simulation is employed to compute acoustic wave
propagation in a duct treated with an acoustic liner. The motivation is to assess the effects on
sound attenuation of bias flow passed through the liner for application to noise suppression in jet
engine nacelles. Physically, the liner is composed of porous sheets with backing air cavities. The
mathematical model lumps the sheets’ presence into a continuous empirical source term which
modifies the right-hand side of the momentum equations. This source term specifies the time-
domain characteristics of the frequency-domain resistance and reactance of the liner’s component
sheets. Nonlinear behavior of the liner sheets at high sound pressure levels is included in the
form of the source term. The source term constants are empirically matched to frequency-domain
impedance data via a one-dimensional numerical impedance tube simulation. The resulting liner
model is then incorporated into a two-dimensional Euler solver and used for simulations of a realistic
duct configuration. Sound pressure levels and axially transmitted power are computed to assess the
attenuation effects of various magnitudes of bias flow. Simulation results are compared to available

experimental data from a geometrically similar lined duct.

Problem Introduction and Description

Reduction of noise emitted from jet engines continues to be a key component of aircraft design.
One major facet is inlet noise. Mechanical and hydrodynamic noise from the engine components
propagates upstream and out of the inlet. Current generation jet engine designs treat nacelle inlets

with acoustic liners composed of porous sheets with backing air cavities for acoustic attenuation. It

|
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is well known that the impedance of porous sheets varies at high sound pressure levels. Observations
show that incident sound pressure amplitude relates nonlinearly to particle velocity both for a single
orifice (Ingard & Ising!) and porous sheets (Melling®). One concept for varying the impedance
properties of liners is to exploi"t this nonlinear behavior by blowing a low level, steady bias flow
through them. In this concel;t, the bias flow, which might be generated naturally by redirecting
the oncoming air stream through the nacelle skin, can be adjusted to tune the liner impedance for
optimal attenuation over a range of off-design flight conditions. The simulations presented in this
work consider high amplitude acoustic propagation within a simple duct geometry in an effort to
model the physics and eventually validate this idea.

We implement the liner model into the governing (Euler) equations through a source term in
the interior of the computational domain. This approach enables the representation of complex
composite liner structures in terms of one set of empirical, adjustable constants. An alternative
way of representing the liner is advanced by Tam & Auriault,® where finite impedance boundary
conditions are imposed at the liner surface. However, because this model requires composite liner
impedance information at the boundary, it can be difficult to model complex liners. In the present
liner model, we lump the physical and geometric attributes of the liner into a source term in the
momentum equations. This source term is frequency-independent and contains several empirical
constants which are matched to impedance data (obtained in the frequency-domain), for a given
liner component. Consequently, the time-domain model so obtained produces the same impedance
behavior as the actual material. In this way, complex lining geometries, composed of multiple sheets
with various impedances, can be built up with ease, in contrast to boundary condition methods
which must know the liner’s composite impedance presented to the duct at the face sheet. The
governing equations are integrated forward in time to capture the evolution of the acoustic field in
the presence of the liner structure. The primary motivation is to assess and optimize the effect of
natural bias flow through the liner.

The geometry considered here approximates that of a lined duct test section constructed at

Rokhr, Inc., as detailed by Yu, Kwan, & Stockbam.? Depicted in Fig. 1, the section is 19.25 cm
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in height and 61 cm in length. The numerical simulation considers a two-dimensional planar cut
bounded by solid rigid walls at top and bottom and by open boundaries, indicated by dotted lines
in the figure, at left and right. The experiment also possessed upstream and downstream hard
walled duct extensions with reyerberation chamber terminations; the present simulations include
only the test section. The top surface of the duct is acoustically treated with a liner composed ofa
porous face sheet (18% open area) and backing septum (6% open area) sandwiching a honeycomb
core. Plane waves (i.e., lowest duct mode) are forced at the left boundary and allowed to propagate
along the duct to the right through a quiescent air medium. Although only plane wave cases are
reported here, the method allows examination of higher duct modes simply by changing the form
of the time-dependent forcing applied at the left boundary.

As implemented in the present study, time-domain modeling of acoustic lining materials has
several advantages over frequency-domain analysis. First, it provides a convenient means of imple-
menting complex liner structure. Composite liners of any number of sheets and backing cavities
may be built up. As mentioned above, only the component impedance of the sheets, rather than
the composite impedance at the face sheet, need be known. It is also simple to construct liners in
which impedance varies spatially, which is useful since segmented treatment allows attenuation of
widely disparate frequencies (Motsinger & Kraft5). Another strength of the current model is that
it accommodates both linear and nonlinear noise amplitudes and incorporates nonlinear impedance
of the porous sheets. Finally, time-domain analysis may treat multiple frequencies and acoustic

modes simultaneously. These many desirable qualities make time-domain analysis attractive for

computational aeroacoustic problems.

Development of Time-Domain Model Form

Our goal is to develop governing equations for a continuum which contains porous material.
While no universal form exists for the equations governing flow through porous media (Nayfeh,
Kaiser, & Telionis®), Morse & Ingard? provide a widely accepted form. The discussion below
justifies, to some degree, the form of their momentum conservation equations. Mass and encrgy

conservation equations could have analogous modifications. However, numerical impedance tube

3
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experiments, similar to those discussed below, reveal that the appropriate mass conservation modi-
fication produces only infinitesimal differences in results. Energy conservation plays only a passive
role in acoustics, so its modifications are neglected here as well. Consequently, we treat only
momentum conservation. 4

We consider the equations for conservation of momentum, which apply for a compressible,
viscous flow:

2 (o) + - ) = G2, )
for i = 1,2,3. Here, 7; is the stress tensor which includes stress due to pressure. Suppose that
porous acoustic lining material is distributed uniformly in some region of the flow field. The
material’s presence will cause flow resistance which can be modeled as as normal stress term across
an infinitesimal Aluid volume in each coordinate direction. This term augments the pressure gradient
as shown in Fig. 2. Consequently, denoting acoustic material resistance as N, we modify the stress
term to read

1i; = —(p + N)dy;. (2)

Here, we have assumed that the porous material imparts no net shear to the fluid. Following

Zorumski & Parrott,3® we write the gradient of N as a time-domain damping term R.q multiplied
by the local velocity u, so that
Ory _ _Dp

=22 _ . 3

Additionally, the effective fluid density within the volume is increased by a constant time-domain

factor X.q (typically between 1.5 and 5.0 for acoustic materials”) due to the material’s presence:
p —* Xiap Xu 2 1. (4)

The density factor accounts for an increase in effective mass as the fluid moves through constrictions,
as suggested by Morse & Ingard.” Substituting Eq. (3) into Eq. (1) and making the replacement

(4) yields a modified differential momentum equation:’

3 0 1 (0dp
—_ , —_— 7)) = e [ . 5
(pui) + 3z, (puiu;) o (61:,- + thu,) . (5)
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We must now substitute model relations for Ryq and X:q which properly represent the time-domain
behavior of acoustic lining materials. This is accomplished by using forms which reproduce the
porous material behavior in the proximity of each component porous sheet, as elaborated in the

following section. Y

Mathematical Model

The full governing equations are the two-dimensional Euler equations, which express conserva-
tion of mass, momentum, and energy for the inviscid motion of compressible fluids. They are here

written for a cartesian domain:

ow oF G 3
Lt == 6
5% T S, (6)
where
W=(p pu o ET, M
and
( (
- -
" 2 -
F= el G= puv- 1. (8)
puu pv?
\[E +3lu / \[E +3lv)
The state equation closes the system:
_ P 12 .2 9
E—7_1 2p(u + v°). 9

The above set has, as the dependent variables, the conserved quantities of mass p, z-directed
momentum pu, y-directed momentum pv, and total energy E, each expressed on a per volume basis.
The primitive variables are density p, z-directed velocity u, y-directed velocity v, and pressure p.
Note that § is the right-hand side term of Eq. (5). Specification of the open sides as nonreflective
and the solid walls as rigid slip boundaries in Fig. 1 completes the definition of the mathematical

problem.
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We have nondimensionalized the equation system using the following reference scales:

I, =001 m — Ilength scale,
U, =340.25 m/s — velocity scale,
1,/U, =2.939 x 1073 s — time scale,
or = 1.225 kg/m® -— density scale,
prU.%2 = 1418 x 10° Pa — pressure, energy
. scale.

Note that the density and velocity reference values correspond to standard atmosphere density and
sound speed. It is also worth noting that the equations will capture both linear and nonlinear
phenomena, which is important for high amplitude wave dynamics.

The presence of the discrete porous sheets is felt via the source term § which comes from the
right hand side of Eq. (5). We form R.q and X4 to capture the general experimental frequeii y-
domain behavior observed by Ingard & Ising,! Melling,> and Zorumski & Parrott.® Specilicaliy,

Rohr, Inc. provided impedance data in the form:
z=(Ro+SV) +1i&, (10)

where V is the root-mean-square particle velocity at the sheet surface. The real part is the velocity
dependent resistance, and the imaginary part is the reactance. Reactance is frequency dependent
and was provided as

X =mk,
where k is the incident wavenumber and m is a given constant for each porous sheet type. The
term S (the right-hand side of Eq. (5)) allows for simple nonlinear behavior in the resistance. For
R4, we use

R = fr(z,y)(A + Bluil),

where u; = u,v for the z and y momentum equations, respectively. The function f r(z,y) is a
smearing function meant to distribute the discrete effect of a porous sheet. It is introduced purely

for numerical convenience and is detailed below. Similarly, we substitute a model for X4 in S:

X =1 - X(fx(z,9)/[/x(2,y)]max)-



A 4y A S v S W W W W N

Ly W W W vy v

-w v ¥ v

Here again, we have introduced a convenient smearing function, this time fx(z,y). Once R4 and

X.q are specified, we can detail the entire right-hand side source term S:

( 0 Y[ o )

[ 1. [9p/0z + ufr(z,y)(4 + Blul)] wClEY) |y
1 - X y 1 max '
(Fx (2, 9)/[fx (2, y)lmax) (O0/3y + vf(z,)(A + Blol) 0

\ 0 JKO/

The velocities « and v are the same particle velocities present in the terms W, ﬁ, and G defined by

4

H

Egs. (7) and (8) and contain the bias flow velocity. In effect, the empirical parameters 4, B, and
X, respectively, specify the levels of linear resistance, nonlinear resistance, and linear reactance of
each sheet, but in the time-domain. The distribution C(z,y) is set to a constant value (C = 0.8)
between the face sheet and parallel backing septum to account for the presence of the honeycomb
core. Since this additional resistance-like term only appears in the z-momentum equation, it acts to
suppress u within the core and thus helps the face sheet/septum combination approximate a locally
reacting liner element. Note that A=B=C=X=0 gives back the original Euler equations, so
these correspond to open air.

As discussed above, the functions fr(z,y) and fx(z,y) control the spatial distribution of the
liner’s effect for the resistance and reactance, respectively. They are specified as Gaussian distri-
butions in a coordinate s normal to the sheet surfaces:

) = L gme/2, (12)

oV2r
Within these functions, o determines the distribution thickness, so we have og and o x, respectively,
for fr(z,y) and fx(z,y). The constant o is fixed as 2Az simply to distribute the discrete effect of
sheet resistance for numerical purposes. The constants A, B, X, and ox are matched to complex
impedance data via a numerical impedance tube simulation, as described below. The authors
conducting the duct experiment* provided the impedance data. The above model has a simple
nonlinear bebavior in analogy to Eq. (10), but there is no inherent limitation to the complexity

that could be mimicked with the time-domain model.

7
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Nonlinear behavior in reactance is not explicitly modeled in Eq. (11), though it is physically
present. The model consequently linearizes the reactance about each particular bias flow level.
Nonlinearity tends to reduce the sheet reactance, but the effect is not indefinite as acoustic am-
plitude increases. When the ro'bt-mea.n—square normal velocity at the sheet surface attains a high
level, the reactance assumes a\consta.nt value. The velocity at which this saturation occurs depends
on the particular sheet porosity, but is at most V = 0.0095 for the component sheets considered
here. A constant reactance must consequently be used for all sheets when |vyias| = 0.0095. Below
this level, each sheet is considered separately as to whether its reactance behaves nonlinearly or
is saturated. This means that X in Eq. (10) is a somewhat complicated function of V. To ap-
proximate the variable reactance, X is consequently computed to be a fixed number between the

linear X max and the saturated Xmin, Sized according to the expected normal velocity at each sheet

surface.

Numerical Solution Method

’ We discretize and numerically integrate the partial differential equation system Eq. (6), coupled
with the spatial boundary conditions, ina rect#ngxﬂar domain, with a uniform mesh in both the
z- and y-directions. The time-advancement scheme is Gottlieb & Turkel’s!® explicit (2,4) scheme,
which is second-order accurate in time and fourth-order in space. The variant of the method used
here is a MacCormack-like explicit predictor/corrector. For grids that are uniform in = and y, the

method may be written as:

Wi o= Wi
A{T(FR ;= FE) = (Flay — Fla )]

7GR 41 = G2y) = (Gljsa — Glyi)]

+A(D7;) + At(ST)), (13)
- 1(.- -
n+l __ -
Wi E{W{“j + W

-

=\ [T(Fij — Fr))- (Fryj— Jn)!

TGy - Gryo) = (Grymy — Gy

8
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+AYDY) + At(§;J)}. (19)

Here,
) = Bt _ At
y T eAz YT 6Ay

The spatial derivatives of pressure in S are computed using second-order central finite differences.
The above steps employ forward differencing in the predictor step and backward differencing in the
corrector step. This is switched on alternating time steps to a predictor with backward differencing
and corrector with forward differencing to obtain the full (2,4) accuracy. For stability, the Courant-

Friedrichs-Lewy (CFL) number is made to satisfy:

_ (v + @)maxAt 2
CFL: -— Az < 5,

and
(v + a)max Ot <

2
Ay 3’

CFL, =

where a is the local sound speed, a = \/7p/p.

The (2,4) stencil has five points in both z- and y-directions, so it extends over the domain
edges at a boundary and first interior point. The method uses the unmodified (2,4) scheme at the
first interior point. To account for the point beyond the edge, fluxes are extrapolated (third-order)
to a ghost point one increment outside the domain. Boundary points, including both rigid top
and bottom walls and the nonreflective boundaries at the “inflow” and “outflow”, are treated with
the method of Thompson.!112 This boundary treatment uses a characteristic decomposition of the
Euler equations to give an estimate of the flux derivative normal to the boundary at the boundary.
The method works well with the plane wave modes considered in the present problem, as elaborated
in the code validation presented below.

Artificial viscosity terms are added to the numerical scheme to enhance stability, as indicated

by the D terms. Sixth-order dissipation is added as a source term to the right-hand side of the

Euler equations:

= W W
D=¢ ((Aﬂ?)sg;s— + (Ay)® 548 ) (15)
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The magnitudes of the artificial viscosity terms are O[(Az)S] and O[(Ay)®], so the fourth-order
spatial accuracy of the method is unaffected. The parameter ¢, is empirically defined and did not
exceed ¢4 = 0.04. The central difference coefficients used for the sixth-derivatives are computed
using Lagrange polynomials. We found some explicit dissipation necessary to suppress spurious
oscillations developing a.round the porous sheets.

The mean bias flow is specified as a “frozen” field upon which the acoustic perturbations are
allowed to evolve. In this way, the mean field need not be computed; nor does it evolve. The

addition of a forcing term & to Eq. (6) accomplishes this:

oW OF 86 .
75t-+5£+5;—5+€—0, (16)
where _ _
._ OF oG =
E——E:-—Fy-'*-s. (17)

The overbar here denotes the base field, which consists of the bias flow and grazing flow (if present)
but not the acoustic perturbations. A uniform vertical velocity vy;aq is used throughout the domain
for the base field. Thus, the bias is directed normal to the liner, and there is no grazing flow. For
the relatively low bias flow levels of the present study, there is physically no significant coupling
between acoustic and mean flow fields, so this frozen flow technique is expected to be valid. It
should also be noted that a bulk grazing flow in the duct could be implemented using such a
frozen flow formulation. The technique has the limitation that the mean flow field does not feel the

presence of the liner structure, but it is a quick way to obtain a converged bias flow.

Numerical Impedance Tube Simulation

As mentioned above, the liner model’s parameters must be matched to the a priori known
impedance data for the component porous sheets under consideration. To this end, a numerical
model for an impedance tube is developed. In this model, one-dimensional Euler equations are
integrated on a domain with a rigid termination at the right end, and the left boundary is forced
with acoustic waves. A numerical porous sheet “sample” is placed some distance to the left of

the rigid termination by centering the Gaussian distributions Eq. (12) at that point. The effective

10
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impedance of the sample is deduced from the standing wave pattern set up by the incident 7wl
reflected waves.

The impedance tube computations employ parameters similar to those used in the full two-
dimensional simulations. For ihstance, Az = 0.125 and At = 0.025. The acoustic forcing at the

left boundary of the form:

ﬁ(t)=Pcos(wt+7r/2) t=p 9=0 p=p, (18)

gives purely plane waves with nondimensional wavelength 25, which is also the temporal period.
This corresponds to 1361 Hz, a value within the frequency range of interest for the two-dimensional
duct. The domain has 601 points so that the tube length is 75. The simulations are run 5500At¢,
or to nondimensional time 137.5. This allows waves propagating at unity sound speed to set up
several wavelengths of a standing wave without the reflected wave impacting the left boundary.

We follow the method of Kinsler, Frey, Coppens, & Sanders!? to extract the impedance from
the standing wave pattern. Accordingly, the impedance z is computed as

_ 1+ Ke

ey 19)

The constant K is given in terms of the standing wave ratio SWR, the ratio of maximum to

minimum pressure amplitude:

= SWRT 1’ where SWR = P (20)

K
The phase of the standing waves relative to the sample surface determines 6:
6= 2k($sample - Tnode) -7, (21)

where k is the wavenumber of the incident waves. (Refer to Fig. 3 for an example of these quantities
as measured from a standing wave pattern.) The impedance value thus measured equals that of
the sample plus the impedance of the closed tube behind the sample. Kinsler et al.'® show that
this backing tube impedance is — cot(kd), where d is the depth of the cavity from the sample to
the rigid termination. Consequently, we fix the depth at one-quarter incident wavelength such that

— cot(kd) = 0, and the measured impedance is simply that of the sample.

11
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Porosity A B | Xnax | Xmin ox
18% 0.0283 | 21.8 | -0.738 | -0.570 | 4.0 Az
6% 0.0905 | 233 | -0.908 | -0.669 | 8.8 Az

Table 1: Time-Domain Model Parameters for Liner’s Component Porous Sheets
'

Equation (10) represents th;e frequency-domain impedance, and components Rg, S, and X are
experimentally determine;:l for a given liner material such that they are known input for matching
to our time-domain model. The time-domain constants 4, B, X, and ox are adjusted until the
computed impedance matches that of the porous sheet, given in the form of Eq. (10). In matching,
there exists a one-to-one correspondence between A and Ry, B and S, and X and m = A'/k.
The parameter ox may also be adjusted to effect gross changes in m = X'/k. It should be noted
that X and ox, since they match to m for any wavenumber k, are usable time-domain constanis
regardless of the incident frequency. When computing total (linear plus nonlinear) resistance, V' is
computed in the simulation as the root-mean-square velocity over one wave period at the center
of the sheet distribution. Figure 3 shows a representative standing wave solution for the 6% open
sheet, with the center of the sheet indicated by the vertical line. Table 1 displays the constants
obtained through application of this method to the three sheet types. This method is general in
the sense that complex impedance data for any sample, porous sheet or other, can be matched to

the empirical constants of the model.

By matching the frequency-domain data to time-domain parameters, we have ensured that the
numerical “sample” possesses the correct time-domain behavior. Figure 4 provides an additional
qualitative validation. The plot shows the Fourier transform of a pressure time series recorded at a
point midway between the sample and the rigid termination in the impedance tube. This particular
case employs parameters for a 6% porous sample. It is apparent that the sound pressure transmitted
through the sample contains overtones of the fundamental almost entirely of odd order. This effect
is characteristic of material with nonlinear impedance and has been observed experimentally by
Ingard & Ising! for nonlinear transmission through a single orifice. The numerical liner terms are

scattering acoustic energy to odd harmonics and are thus mimicking the correct physical behavior.

12



2 3 3 3

P PPV IPESII I I P I IO IIIIOIIIIIIISIIISEIIIIIIIIY

Duct Code Validation

The results of two trial simulations provide important checks of the duct code solution method
and boundary conditions. The folution code has also been extensively tested for Kelvin-Helmholtz
linear instabilities down to mé.rginal resolutions, as discussed by Reichert®. Those simulations
showed only slight phase~ and amplitude errors at resolutions of 12 to 15 points per wavelength.
The present cases extend 1;he validation to the case of well-resolved (over one hundred points per
wavelength) acoustic waves. In the first case, a hard wall boundary is placed at the position of the
face sheet, and the lowest duct mode (i.e., plane wave) is forced with nondimensional amplitude
0.002 (140 dB) and frequency 27/17 (2000 Hz) at the left boundary. The numerical parameters are
the same as those used for the production duct simulations and are given in the following section.

In this inviscid simulation, the waves should propagate along the duct with no attenuation, so

sound pressure level (SPL), computed from the simulation data as

SPL = 10 log K% /0 T3 dt) /ﬁfef] : (22)

should remain a constant 140 dB. Here, T is a period of the wave and fr.ys is the nondimensional

equivalent of 2 x 10~% Pa. Further, the z-directed intensity Iz, defined by
I L (M5 23
T = TA up dt1 ( )

should be a nondimensional constant 2 x 10~ at all points within the domain. Finally, the power

transmitted along the duct per span, computed as
Ymax
P/span = / I dy, (24)
0

should remain constant at 3.05 x 10~% nondimensionally, since ymax = 15.25. It should be noted
that, for the calculations of the next section, a dB drop across the duct length is also computed.

For plane waves (which all later results nearly approximate), it can be shown that the dB drop

between two z-stations is:

SPL, — SPL, = 10 log fp, (25)

13
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where fp is the fraction of station 1 power retained at station 2. Plots of the above quantities
computed from the simulation are not displayed since their profiles are flat. Examination of the
numerical results, however, shows that the time-domain simulation yields the above quantities to
at least four significant figures'after reaching a harmonic state. This suggests that the solution
method and boundary conditions are working properly for this simplified problem.

The second trial case tests the method’s ability to allow waves to exit the open right boundary
with minimal reflection. In this case, all significant features of the production simulations are
considered, including the full duct with a liner composed of a face sheet, septum, and honeycomb.
Also, a bias flow vpias = —0.01 is applied (negative implies blowing out of the liner into the main
duct). The duct is forced at the left boundary with 1250 Hz waves of 140 dB. In the first run, the
domain length is 61, and in the second run, the domain length is doubled. The simulation time
allows the waves to establish a harmonic state for z < 61 but does not permit them to reach the
right boundary of the longer domain. This time is also long enough for reflections from the right
boundary to progress back into the shorter domain. Figure 5 plots transmitted power drop pes
span (from the left side of the domain to the particular z-station of interest) and demonstrates
that the reflections are negligible and do not degrade the solution in the interior. It is apparent
that some difference between the curves exists near the outflow, though this difference is less than
3%. In this study, we use the slope of these curves in their linear region (measured arbitrarily as
the slope drawn between points at z = 18 and z = 36) as one measure of duct attenuation. The
two slopes are —2.295 X 10-7 and —2.297 x 10~7, which differ by much less than 1%. It can be
concluded that, for the purposes of these simulations, the artificial open boundary conditions are

performing adequately.

Duct Simulation Results

The effect of varying levels of bias flow is examined for the propagation of the lowest duct
mode, Eq. (18), within the lined duct of Fig. 1. The domain is discretized using a 489 x 155
uniform mesh (Az = Ay = 0.125), and CFL numbers are approximately 0.16 (At = 0.02), which

is about one-fourth of the numerical method’s linear stability limit. The time-domain solution

14
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fields are marched 6000A¢ (about two duct length acoustic propagation times), at which time SPL
and I, are computed over one harmonic period. The nondimensional amplitude of the waves is
set to 0.002, which corresponds to 140 dB. The frequency of the waves is w = 27/27.2, which
dimensionally is 1250 Hz, whilé bias flow is varied. Nondimensional bias flow velocities are in the
range |Ubias| < 0.03, which di;nensionally gives |vpias| < 10 m/s. Note that this velocity is blown
out of the liner into the main duct, so it is actually negative in value in the simulation. Other cases
examine attenuation as acoustic frequency varies over a range from 630 Hz to 4000 Hz at a single
bias flow level (|vpias] = 0.005).

Figure 6 is a comparison of sound pressure levels for varying magnitudes of bias flow. The
plots show SPL versus y at two z-stations. The dotted vertical lines indicate the y-locations of
the two horizontal porous sheets. As expected, the SPL drops dramatically within the liner as
|vpias| increases, especially behind the 6% septum. It is apparent that as the bias flow increases, the
SPL drops most dramatically at the surface of the 6% septum sheet. This is not surprising since
increasing the bias flow up to |vpias| = 0.02 changes the resistance of this sheet from its linear value
of about 0.1pc to over 5pc, which nearly closes off the backing cavity. Even the face sheet attains
fairly high resistance (about 0.5pc) at the highest bias flow levels depicted in Fig. 6, and the SPL
shows a (somewhat smaller) drop at its location also.

Another interesting feature of the SPL plots is that they flatten with increasing bias flow. With
no bias flow, the SPL tends to show a broad peak near the lower wall (y = 0) and generally
decreases with increasing y so that it is fairly low near the face sheet (y = 15.25). The application
of bias flow generally pulls the maximum down at y = 0 and lifts SPL near the face sheet. The
net effect is a smaller difference between maximum and minimum SPL, or a general flattening of
the profile. Again, this is consistent with increasing resistance at the face sheet. As discussed in
the validation section above, a hard wall placed at the face sheet, which has infinite resistance,
produces completely flat profiles. Thus, it is no surprise to see flatter profiles when vpias gives the

face sheet a large resistance.

Recalling that the hard wall case provides no attenuation of transmitted power suggests that
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Experimental | Simulation | Experimental Simulation

—vpiqs | Insertion Loss | Attenuation fp fp

(dB) (dB) % %
0.0000 6.125 5.9 24.4 25.5
0.0025 8.375 9.1 14.5 12.4
0.0050 g¥75 12.8 10.6 5.2
0.0075 10.50 18.1 8.9 1.5
0.0100 | - 11.125 - 7.7 0.0

Table 2: Comparison of Insertion Loss and Corresponding Fractional Power at Outflow between
the Present Simulation and the Experiment.

very high bias flow levels, which increase resistance and make the face sheet act more and more
like a hard wall, will decrease the liner’s effectiveness. Such a result is seen in Fig. 7. Plotted
are transmitted power drops for four cases with increasing bias flow magnitudes. It is seen that
increasing vpia,s magnitude from 0.0 to -0.01 provides a fairly large decrease in the slope. Over the
length of this duct, this provides about 40% greater drop in transmitted power. However, increasing
pias magnitude from -0.01 to -0.03 provides no additional attenuation. The figure suggests that an
optimum bias flow level exists for acoustic power attenuation in this lined duct configuration.

Figure 8 quantifies the optimum bias flow level more clearly. Displayed are the slopes of the
transmitted power curves, in their linear region, versus bias flow magnitude. Lower (more negative)
slopes indicate greater power attenuation. It appears that a bias low vpias = —-0.01 (3.4 m/s) pro-
duces nearly optimum attenuation of transmitted acoustic power down the duct at this frequency.
Larger bias flows result in a slow decrease in attenuation.

As mentioned above, the geometry of this study matches the experiment of Yu et al.,* so that
the numerical and experimental results may be compared. The experiment measured dB insertion
loss of a broadband noise source across the duct length at several single frequencies and bias flow
levels. The maximum attainable bias flow magnitude in the experiment was |vbias| = 0.01. Table 2
compares attenuations measured at 1250 Hz in the experiment, and their corresponding fraction
fp of transmitted power remaining by outflow, with the same quantities computed in the present
study. Both the experiment and present simulation exhibit the same trend of dramatic attenuation,

followed by a decreasing return, with increasing |vbias)-
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Another comparison with the experiment is depicted in Fig. 9. Values of the simulation’s
attenuation over the duct length (computed according to Eq. (25)), for vbias = —~0.005, are shown
at several plane wave frequencies (600 Hz < f < 4000 Hz) in the top plot, while the bottom plot
is insertion loss as measured in the experiment. The same frequency response trends are evident in
both plots: peak attenuation i‘s present at about 1250 Hz with fairly dramé.tic fall off to either side.
Note that, on a linear scale, differences when attenuation is 10 dB or more are quite small. The
approximately 3 dB difference in peak attenuation (at 1250 Hz) corresponds to an experimentally

observed 95% and a numerically calculated 90% power attenuation. Again, the simulation agrees

favorably with experiment.

Concluding Comments

This study has developed a promising new method for predicting noise attenuation in acousti-
cally lined ducts. The method is founded upon time-domain governing equations which are modified
to account for the presence of acoustic lining materials interior to the domain. The modification is
simply a source term in the momentum equations which provides for acoustic reactance and both
linear and nonlinear acoustic resistance, but in the time-domain. The modified equations may be
readily time integrated using numerical methods. The main benefit of analyzing duct problems in
this way is that complicated liner behavior and structure are easily implemented. Also, multiple
frequency and multiple mode noise environments may be examined. In sum, the method developed
here provides promise as an analysis technique for actual liner structures within realistic noise
environments.

The time-domain analysis is empirical in the sense that constants in the modified governing
equations must be matched to complex impedance data for the component sheets of the liner
using a numerical impedance tube. The impedance tube simulations employ the same equation
modifications, and the model constants are adjusted until the standing wave pattern in the tube
matches that which would be produced by a sample with the desired complex impedance. A
one-to-one correspondence exists between the frequency-domain impedance values and the time-

domain model constants, which aids in the matching process. Spectral analysis of the pressure
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signal transmitted through the impedance tube sample gives the same scattering to odd harmonics

seen in experiment. The matched constants are then used in the full duct simulations to mimic the

behavior of that material sample.

Two-dimensional numerical'‘simulations involving a lined duct provide additional evidence that

the liner model is a viable-design tool. The computational geometry matches that of an experiment
conducted at Rohr, Inc. The trends observed in the simulations compare well with those of the

experiment. Specifically, attenuation as a function of bias magnitude at a single frequency, and

attenuation as a function of frequency at a single bias magnitude, behave the same in the experiment

and simulation. The quantitative agreement is acceptable in light of experimental uncertainty, the

numerical model’s empiricism, and the numerical restriction to two dimensions. It is found that, for

this liner and 140 dB waves of 1250 Hz, an optimal bias flow magnitude is about 0.01, or 3.4 m/s.

With the optimum bias velocity, the liner efficiency is significantly improved over the no bias liner,

lending support to the idea that bias flow may be used to tune and improve the performance of a
liner. Further, this application demonstrates that the new model may be used as a design tool for

determining optimal liner configurations and operating conditions.
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TIME-DOMAIN SIMULATION OF
ACOUSTIC PROPAGATION IN A LINED DUCT
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Abstract

An inviscid, spatial time-domain numerical simu-
lation is employed to compute acoustic wave prop-
agation in a duct treated with an acoustic liner.
The motivation is to assess the effects on sound at-
tenuation of bias flow passed through the liner for
application to noise suppression in jet engine na-
celles. Physically, the liner is composed of porous
sheets with backing air cavities. The mathemat-
ical model lumps the sheets’ presence into a con-
tinuous empirical source term which modifies the
right-hand side of the momentum equations. This
source term specifies the time-domain behavior of
the frequency-domain resistance and reactance of
the liner’s component sheets. The source term con-
stants are matched to frequency-domain impedance
data via a one-dimensional numerical impedance
tube simulation. Nonlinear behavior of the liner at
high sound pressure levels is included in the form
of the source term. Sound pressure levels and axi-
ally transmitted power are computed to assess the
effect of various magnitudes of bias flow on attenu-
ation. Simulation results are compared to available
experimental data on a geometrically similar lined
duct.

Problem Introduction and Description

Reduction of noise emitted from jet engines con-
tinues to be a key component of aircraft design. One
major facet is inlet noise. Mechanical and hydro-
dynamic noise from the engine components propa-
gates upstream and aqut of the inlet. Current gen-
eration jet engine designs treat nacelle inlets with
acoustic liners composed of porous sheets with back-
ing air cavities for acoustic attenuation. It is well
kmown that the impedance of porous sheets varies

=Graduate Research Assistant, Student Member, AIAA.
tProfessar, Associate Fellow, AIAA.
Copyright ©1997 by R.S. Reichert. Published by the Amer-
ican Institute of Aeronautics and Astronautics, Inc. with

permission.

at high sound pressure levels. Observations show
that incident sound pressure amplitude relates non-
linearly to particle velocity both for a single orifice
(Ingard!) and porous sheets (Melling?). One con-
cept for varying the impedance properties of liners is
to exploit this nonlinear behavior by blowing 2 low
level, steady bias flow through them. In this con-
cept, the bias flow, which might be generated nat-
urally by redirecting the oncoming stream through
the nacelle skin, could be adjusted to tune the liner
impedance for optimum attenuation over a range of
flight conditions. The present study considers high
amplitude acoustic propagation within a sirople duct
geometry in an effort to model the physics and even-
tually validate this idea.

The goal of this work is to develop a design tool
for time-domain numerical simulation of acoustics
in the presence of sound-absorbing liners with bias
flow. The physical and geometric attributes of the
liners are lumped into a model term with empiri-
cal constants. This model term modifies the gov-
erning equations such that the liner manifests itself
interior to the domain rather than through finite
impedance boundary conditions. The model con-
stants are matched to complex impedance data for
liner materials so that the simulation produces the
same impedance behavior as the actual material.
The governing equations are integrated forward in
time to capture the evolution of the acoustic field in
the presence of the liner structure. The primary mo-
tivation is to assess and optimize the effect of natural
bias flow through the liner.

The geometry considered- here approximates that
of a lined duct test section constructed at Rohr, Inc.,
as detailed in Yu, Kwan, & Stockham®. Depicted
in Fig. 1, the section is 19.25 cm in height and
61 cm in length. The numerical simulation consid-
ers a two-dimensional planar cut bounded by solid
rigid walls at top and bottom and by open bound-
aries, indicated by dotted lines in the figure, at left
and right. The top surface of the duct is acousti-

cally treated with a liner composed of a porous face
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sheet (18% open area) and backing septum (6% open
area) sandwiching a honeycomb core. Additionally,
the air cavity behind the septum may contain back-
ing sheets (8.7% open area). These sheets approx-
imate the presence of corrugation septa which are
distributed in the duct’s third dimension in the ac-
tual experiment; two configurations distributing the
septa in the simulation’s twe dimensions were tested,
as will be discussed. Plane waves (i.e., lowest duct
modes) are forced at the left boundary and allowed
to propagate along the duct to the right through a
quiescent air medium.

Development of Time-Domain Model Form

Consider the integral form of inviscid conservation
of momentum applied to a fixed control volume,

/;a—(g—?d'v=—/‘;(pﬁ-d§)i—/llpﬂ, )

which states that the rate of change of momentum
within the control volume is equal to the net flow of
momenturm across the volume’s surface plus the mo-
mentum change due to surface pressure forces. Sup-
pose now that we apply this equation to the Carte-
sian differential control volume (lim_ AV =dV =
dz dy dz) depicted in Fig. 2. Further, suppose that
some porous acoustic lining material is distributed
uniformly throughout the volume. The material’s
presence will lead to a pressure change across the
volume in each coordinate direction, augmenting the
pressure gradient as shown. The pressure force term
becomes
. r_ _Op Ap

51350 - ApdA— s av (dz)‘_dv, (2)
where we have employed tensor notation on the right
side. Following Zorumski & Parrott!*, we write this
pressure jump term as a time-domain resistive term
R.4 multiplying the local velocity u,

so that

av -0

im - [ pdi=—-2 dV -RawdV. ()
A 3::,-

Equation (3) assumes that the pressure jump will
instantaneously satisfy a steady flow resistance rela-
tion across the differential volume. Additionally, the
effective Auid density within the volume is reduced
by a constant time-domain factor X4 between 0 and
1 due to the material presence:

p — Xwap 0<Xuy<l (5)

For the differential control volu—s. === momentwn
filux term becomes:

. o a .
lim —L(pv-dA)Uf—Xr.dé;?‘.—’::i z;) dV. (6)

AV =0
Substituting Eqs. (4), (5), and (67 == Eq. (1) and
recovering vector notation yields = —odified differ-
ential momentum equation:

Y] B 1
-(—gt”l+v-(pua=-}—f;(\‘.:—&m. M

We must now substitute model relz==s for R4 and
X4 which properly mimic the time-3>main behavior
of acoustic lining materials.

Mathematical Moc=

The governing equations are tke t=o-dimensional
Euler equations, which express corse—~ation of mass,
momentum, and energy for the t==3scid motiou of
compressible fluids. They are hew= written for a
Cartesian domain with no body fccces present:

w QE + ?g: =5 )
at 8z ay = ( )
where - :
W= m pv B, (9)
and
P pv
F= e , G= v
i e |-
[E +plu E+plv
The state equation closes the system:
_p 1 2. .2
E—7_1+2p(u +v). (11)

The above set has, as the depencent variables, the
conserved quantities of mass p, z-directed momen-
tum pu, y-directed momentum pv, and total energy
E, each expressed on a per volume basis. The prim-
itive variables are density p, z-directed velocity u,
y-directed velocity v, and pressure p. Specification
of the open sides as nonreflective and the solid walls
as rigid slip boundaries completes the definition of
the mathematical problem.

We have nondimensionaiized the equation system
using the following reference scales:

I, =001m — length scale,
U, =34025m/s —+ velocity scale,
/U, =2939x107%s —+ time scale,
pr = 1.225 kg/m® — density scale,
p-U,2 = 1.418 x 10° Pa —+ pressure, energy
scale.
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Note that the density and velocity reference val-
ues correspond to standard atmosphere density and
sound speed. It is also worth noting that the equa-
tions will capture both linear and nonlinear phenom-
ena. .

The presence of the discrete porous sheets is felt
via the source term S from the right hand side of
Eq. (7). We form Req and Xeq to capture the general
experimental frequency-domain behavior observed
by Ingard!, Melling®, and Zorumski & Parrott®.
Specifically, Rohr, Inc. provided impedance data in
the form

z=(Ro +SV) +ik, (12)

where V is the root-mean-square velocity at the
sheet surface. The real part is the velocity depea-
dent resistance, and the imaginary part is the re-
actance. The term S allows for simple nonlinear
behavior in the resistance:

1
T1- X (fx(z,9)/[fx (2, ¥)}max)

0
x ([317/53: +ufr(z,y)(4 + Blul)]
k [8p/dy + vfn(g, v)(4 + Blvl)]

5§ =

0

C(z,y)
- " 0’ ) (13)

\ ©

The empirical parameters 4, B, and X respectively
specify the levels of linear resistance, nonlinear re-
sistance, and linear reactance of each sheet, but in
the time-domain. The distribution C(z,y) is set
to a constant value (C = 0.8) between the face
sheet and parallel backing septum to account for
the presence of the honeycomb core. Since this ad-
ditional resistance-like term only appears in the z-
momentum equation, it acts to suppress u within
the core and thus helps the face sheet/septum com-
bination approximate a locally reacting liner surface.
Note that A = B = C = X = 0 gives back the orig-
inal Euler equations, so these correspond to open
air. The functions fr(z,y) and fx(z,y) control the
spatial distribution of the liner’s effect for the resis-
tance and reactance, respectively. They are specified
as Gaussian distributions in a coordinate s normal
to the sheet surfaces:

f(s) = %-\/—]_2'__-;3’:3/241. (14)

]"""""l.”’f.'"_\'—""'""’"JJJ0"«"0CCJac-v— - @ - e e = e -

The constant o is fixed as 2Az simply to distribute
the discrete effect of sheet resistance for nmmei-
cal purposes. The constants 4, B, X, and ox are
matched to complex impedance data via a numeri-
cal impedance tube simulation, as described below.
The authors conducting the duct experiment® pro-
vided the impedance data.

Nonlinear behavior in reactance is not explicitly
modeled in Eq. (13). This nonlinearity tends to re-
duce the sheet reactance, but the effect is not in-
definite in the provided impedance data. When the
root-mean-square normal velocity at the sheet sur-
face attains a high enough level, the reactance again
assumes a constant value. The velocity at which this
saturation occurs depends on the particular sheet
porosity, but is at most 0.0095 for the component
sheets considered here. A constant reactance must
be used for all sheets when |tpias| > 0.0095. Below
this level, each sheet must be considered separately
as to whether its reactance behaves nonlinearly or is
saturated.

It was found in the course of the simulations that
if an explicit nonlinear reactance term is used in
Eq. (13), the model produces a smaller reactance re-
duction than it should. This resulted in large jumps
in the averaged data (i.e., in the slope of the trans-
mitted power per span curves seen in Fig. 7) when
the bias low magnitude dictated that the reactance
switch from nonlinear to saturated levels. Of course,
this only affected cases for which jvpias| < 0.0095,
since all of the sheets perform with saturated re-
actance for |vpias| > 0.0095. To approximate the
variable reactance, X was computed to be 2 fixed
number between the linear Xpmax and the saturated
X min, sized according to the expected normal veloc-
ity at each sheet surface. Effectively, this process is a
linearization of the reactance about each particular
bias fow level.

Numerical Solution Method

We wish to discretize and integrate the partial
differential equation system (8), coupled with the
spatial boundary conditions. The domain is rect-
angular, with uniform mesh in both the z- and y-
directions. The time-advancement scheme is Got-
tlieb & Turkel’s® explicit (2,4) scheme, which is
second-order accurate in time and fourth-order in
space. The variant of the method used here is a
MacCormack-like explicit predictor/corrector. For
grids that are uniform in z acd y, the method may
be written as:
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Wi = W’{_‘,-
=Ae[T(Fy = Fly) = (Flay = Fla )l
=X [1(Gljr — GTj) = (GLjsa = GLyn)]
+At(D)7; + AH(S)Y, (15)
o= H{new

2,7

=X[T(F - Fr - ( 1 = Frea )l
=N[1(Gr; = Gijmt) = (Gijmr = Gijna)]

+ALD):; + At(S); J}. (16)
Here,
N - 1
7 6Az] T 6Ay’

The above steps employ forward differencing in the
predictor step and backward differencing in the cor-
rector step. This is switched on alternating time
steps to a predictor with backward differencing and
corrector with forward differencing in order to obtain
the full (2,4) accuracy. For stability, the Courant-
Friedrichs-Lewy (CFL) number should satisfy:

_ (u+a)maxBt 2
CFL, = Az < 3

and
_ (v +a)maxAt 2

v Ay < 3

where a is the local sound speed, a = \/vp/p.

The (2,4) stencil has five points in both z- and
y-directions, so it extends over the domain edges at
a boundary and first interior point. The method
uses the unmodified (2,4) scheme at the first inte-
rior point. To account for the point beyond the edge,
fluxes are extrapolated (third-order) to a ghost point
one increment outside the domain. Boundary points
are treated with the method of Thompson-®. This
boundary treatment uses a characteristic decompo-
sition of the Euler equations to give an estimate of
the flux derivative normal to the boundary at the
boundary.

Artificial viscosity terms may be added to the
scheme to enhance stability, as indicated by the D
terms above. Sixth-order dissipation is added as a
source term to the right-hand side of the Euler equa-
tions:

- 6 -.' 1
D=e ((Az)“ T + (a0 a;;’)- a7

The sizes of the artificial viscosity terms are
O[(Az)8] and O[(Ay)®], so the fourth-order spatial

accuracy of the method is unaffected. The parame-
ter ¢4 is user-defined and did not exceed ¢4 = 0.04.
The central difference coefficients used for the sixth-
derivatives are computed using Lagrange polynomi-
als. We found some explicit dissipation necessary to
suppress spurious oscillations developing around the
porous sheets.

The mean bias flow is specified as a “frozen” field
upon which the acoustic perturbations are allowed
to evolve. In this way, the mean field need not be
computed; nor does it evolve. The addition of a

forcing term & to Eq. (8) accomplishes this:
oW O9F G s -
—+—-5S+&=0, 18
ataEta 08
where - =
8F 8G | F
f= —— —— + 5. . 19
€ 32 By + (19)

The overbar here denotes the mean field. A uniform
vertical velocity wpiss is used throughout the domain
for the mean field. Thus, the bias is directed nor-
mal to the liner, and there is no grazing flow. This
technique has the limitation that the mean field does
not feel the presence of the liner structure, but it is
a quick way to obtain a converged bias flow.

Numerical Impedance Tube Simulation

As mentioned above, the liner model’s empirical
parameters must be matched to the impedance data
for the porous sheets under consideration. To this
end, a numerical model of an impedance tube was
developed. One-dimensional Euler equations are in-
tegrated on a domain with a rigid termination at the
right end. The left boundary is forced with acoustic
waves. A numerical porous sheet “sample” is placed
some distance to the left of the rigid terination
by centering the Gaussian distributions (14) at that
point. The effective impedance of the sample is de-
duced from the standing wave pattern set up by the
incident and reflected waves.

Details of the impedance computation may be
found in introductory acoustics texts. Here, we fol-
low that of Kinsler, Frey, Coppens, & Sanders®. The
measured impedance z is computed as

1+ Ke¥
EEITKe®
The constant K is given in terms of the standing

wave ratio SWR, the ratio of maximum to minimum
pressure amplitude:
SWR -1 Prax @)

K= SWRIT where SWR = P

(20)
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The value for § is given by the phase of the standing
waves relative to the sample surface:

8= 2k(zgample - Inode) -, (22)

where k is the wavenumber of the incident waves.
The impedance value thus measured equals that of
the sample plus the impedance of the closed tube
behind the sample. Kinsler et al.’ show that this
backing tube impedance is — cot(kd), where d is the
depth of the cavity from the sample to the rigid ter-
mination. Consequently, we fix the depth at one-
quarter incident wavelength such that —cot(kd) =
0, so that the measured impedance is simply that of
the sample.

The time-domain constants A4, B, X, and ox
are adjusted until the computed impedance matches
tha.t of the porous sheet, which is of the form of

Eq. (12). The present model has a simple nonlinear
frequency-domain behavior, but there is no inherent
limitation to the complexity that could be mimicked
with a time-domain model. In matching, there ex-
ists a one-to-one correspondence between A and Ry,
B and S, and X and X. The parameter cx may
also be adjusted to effect gross changes in X. Fig-
ure 3 shows a representative standing wave solution
for the 6% open sheet, with the center of the sheet
indicated by the vertical line. The following table
shows the constants obtained through application of
this method to the three different sheet types.

Por. A B Xmax | Xmin ox

18.0% | 0.0235 { 20.5 | 0.705 | 0.335 | 4.0 Az
8.7% ! 0.0428 | 96.1 | 0.705 | 0.535 | 6.8 &z
6.0% 0.06 | 193.5| 0.78 | 0.605 | 8.8 Az

This method is general in the sense that complex
impedance data for any sample, porous sheet or
other, can be matched to the empirical constants
of the model.

Duct Code Validation

The results of two trial simulations provide impor-
tant checks of the duct code solution method and
boundary conditions. In the first case, a hard wall
boundary condition is placed at the position of the
face sheet, and the lowest duct mode is forced with
nondimensional amplitude 0.002 (140 dB) and fre-
quency 27/17 (2000 Hz) at the left boundary. In
this inviscid simulation, the waves should propagate
along the duct with no atteauation, so sound pres-
sure level (SPL), computed from the simulation data

as
1T, =2
SPL = 10 log —/ P~ dt| [Pres| s (23)
T Jo

should remain a constant 140 dB. Here, T is a period
of the wave and p..s is the nondimensional equiva-
lent 0of 2x 10~5 Pa. Further, the z-directed intensity
I, defined by

,—T/ a5 dt, (24)

should be a nondimensional constant 2 x 10~% at
all points within the domain. Finally, the power
transmitted along the duct per span, computed as

P/span = /o

should remain constant at 3.05 x 10~5 nondimcy-
sionally, since ymax = 15.25. Plots of the above
quantities as computed from the simulation are not
displayed since all profiles are flat. Examination of
the numerical results, however, show that the time-
domain simulation yields the above quantities to at
least four significant figures after reaching a har-
monic state.

The second trial case tests the method’s ability to
allow waves to exit the open right boundary with
minimal reflection. In this case, all significant fea-
tures of the simulations are included. That is, the
full domain is considered, including the presence of a
liner with face sheet, septum, and honeycomb. Also,
a bias flow 1., = —0.01 is applied. One run em-
ploys the domain length of 61 to be used for the
later simulations; the domain length is doubled for
the second run. The time of simulation is designed so
that the waves have a chance to establish a harmonic
state for z < 61 but do not have a chance to reach
the right boundary of the long domain. The time
is also long enough for reflections to appear in the
shorter domain. Figure 4 demonstrates that degra-
dation from reflections is slight. Plotted are drops
in transmitted power per span from the left side of
the domain to the particular z-station of interest. It
is apparent that some difference between the curves
exists near the outflow, though this difference is less
than 3%. In this study, we use the slope of these
curves in their linear region (measured arbitrarily
as the slope drawn between points at z = 22 and
z = 35) to quantify the duct attenuation. The two
slopes are —2.035 x 10~7 and 2.034 x 10~7, which
differ by less than 1%. It can be concluded that for
the purposes of these simulations, the artificial open
boundary conditions are performing adequately.

Ymax

I, dy, (29)

Duct Simulation Results

The effect of varying levels of bias flow is exam-
ined for the propagation of the lowest duct mode
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when the liner consists of the face sheet and parallel
septum sandwiching a honeycomb core. The domain
is discretized using a 489 x 155 uniform mesh (Az =
Ay = 0.125), and CFL numbers are approximately
0.16, which is about one-fourth of the linear stability
limit. The nondimensional amplitude of the waves
is set to 0.002, which corresponds to 140 dB. The
frequency of the waves is w = 27 /17, which dimen-
sionally is 2000 Hz. Nondimensional bias flow ve-
locities are in the range 0.001 < [vbias| < 0.03, which
dimensionally gives 0.34 m/s < [vpias] < 10 m/s.
Figure 5 is a comparison of sound pressure levels
for varying magnitudes of bias flow. The plots show
SPL cuts in y at two z-stations. The y-location of
the two horizontal porous sheets is indicated by the
dotted vertical lines. As expected, SPL drops dra-
matically within the liner as |vpias| increases. It is
apparent that as the bias flow increases, SPL drops
more dramatically at the surface of the 6% septum
sheet. This is sensible because increasing bias flow
up to [vuias| = 0.02 changes the resistance of this
sheet from its linear value of about 0.1pc to over 5pc,
which essentially closes off the backing cavity. Even
the face sheet attains fairly high resistance (about
0.5pc) at the highest bias flow levels depicted in Fig.
5, and SPL shows a (somewhat smaller) drop at its
location also.

Another interesting feature of the SPL plots is
that they flatten with increasing bias flow. With
no bias flow, SPL tends to show a broad peak near
the lower wall (y = 0) and generally decreases with
increasing y so that it is fairly low at the face sheet
(y = 15.25). The application of bias flow generally
ptﬂlsthemaadmumdownaty:Oa.ndliftsSPL
pear the face sheet. Again, this is consistent with
increasing resistance at the face sheet. As discussed
in the validation section above, a hard wall placed at
the face sheet, which is infinite resistance, produces
completely flat profiles. Thus, it is no surprise to see
fairly flat profiles when vyias gives the face sheet a
large resistance.

Recalling that the hard wall case provided no at-
tenuation of transmitted power suggests that very
high bias flow levels, which make the face sheet act
more and more like a hard wall, will decrease the
liner’s effectiveness. Such a result is seen in Fig. 6.
Plotted are transmitted power drops for four cases
with increasing bias flow magnitudes. It is seen that

increasing vnias from 0.0 to -0.01 provides a fairly
large deccease in the slope. Over the length of this
duct, this provides about 30% greater drop in trans-
mitted power. However, increasing vbias from -0.01
to -0.02 provides no additional attenuation. The fig-
ure suggests an optimum bias flow level for acoustic

power attenuation in this duct/liner configuration.

Figure 7 quantifies the- optimum bias flow level
more clearly. Displayed are the slopes of the trans-
mitted power curves in their linear region versus bias
flow magnitude. Lower slopes indicate greater power
attenuation. The first plot exhibits slopes for the
basic configuration of an 18% face sheet plus 6%
parallel backing septum with an empty backing cav-
ity. For the second plot, cases were run with 8.7%,
£45° corrugation sheets present in the backing cav-
ity, but running in the z-direction. Finally, casec for
the third plot were run with an 8.7% parallei sep-
tum present in the backing cavity midway betweann
the 6% septum and the rigid wall. The latter two
configurations are attempts to, in some measure, ac-
count for the presence of 8.7% sheet corrugations
distributed in the third dimension of the actual ex-
perimental duct lining®. All cases include the hon-
eycomb between the face sheet and septum. It is
seen in Fig. 7 that the presence of 8.7% sheets in
the backing cavity only marginally affects the mini-
mum slope. For all three configurations, it appears
that a bias flow vpias = —0.01 (3.4 m/s) produces
optimum attenuation of transmitted acoustic power
down the duct at this frequency.

As mentioned above, the geometry of this study
matches the experiment of Yu et al3 The exper-
iment measured dB insertion loss of a broadband
noise source across the duct length at several differ-
ent frequencies and bias flow levels. The following
table compares attenuations measured at 2000 Hz
in the experiment to the power slopes computed in
the present study:

Experiment Simulation
—Ubias | Insertion Loss | Power Slope
(dB) (x10-7)
0.0000 3.50 -1.35
0.0025 4.25 -1.60
0.0050 5.25 -1.70
0.0075 5.25 -1.80
0.0100 4.75 -1.85
0.0125 - -1.85
0.0250 - -1.75

Both the experiment and present simulations exhibit
the same trend of rapidly increasing 2ttenuatic:n,
followed by slowly decreasing attencation, with in-
creasing |vpias|. The optimum vpias in the experi-
ment has a somewhat lower magnitude, but overall,
the agreement is favorable.

Another comparison is depicted in Fig. 8. Values
of the simulation’s power slope for thias = -0.005
are shown at several different plane wave frequen-
cies in the upper plot, while the lower plot shows
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insertion loss as measured in the experiment. The
same frequency response trends are evident in both
plots: peak attenuation is present at about 1250 Hz
with fairly dramatic fall off to either side. Again,
the simulation agrees favorably with experiment.

Concluding Comments

This study has developed 2 new method for pre-
dicting noise attenuation in acoustically lined ducts.
Time-domain simulation with governing equations
modified to include the time-domain behavior of
liner resistance and reactance was applied to a duct
test section geometry. A liner configuration com-
posed of a face sheet and parallel septum surround-
ing a honeycomb core of depth 1.25 cm was set on
one side of the 15.25 cm duct. A cavity of depth
2.75 an backed the septum; distribution of addi-
tional septa within this backing cavity produced
minimal change in the results. The time-domain
liner model included nonlinear bebavior in the re-
sistance of the liner’s component sheets. The sim-
ulations have demonstrated the presence of an op-
timum bias flow level. For waves of 140 dB and
frequency 2000 Hz propagating axially along the
duct, |vbias| = 3.4 m/s produced the greatest at-
tenuation in transmitted acoustic power along the
duct. Trends with varying bias flow and varying
frequency agreed favorably with experimental mea-
surements performed at Rohr, Inc. -
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