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ABSTRACT

Miniature rovers with articulated mobility mecha-

nisms are being developed for planetary surface explo-

ration on Mars and small solar system bodies. These

vehicles are designed to be capable of autonomous re.

covery from overturning during surface operations.

This paper describes a computational means of devel-

oping motion behaviors that achieve the autonomous

recovery function. It proposes a control software de-

sign approach aimed at reducing the effort involved
in developing self-righting behaviors. The approach

is based on the integration of evolutionary computing

with a dynamics simulation environment for evolving

and evaluating motion behaviors. The automated be-

havior design approach is outlined and its underlying

genetic programming infrastructure is described.

I INTRODUCTION "

Advances in micro-technology and mobile robotics

have enabled the development of extremely compact

and lightweight rovers for space applications. A par-
ticularly promising application is the use of miniature

rovers, with a mass of tens or hundreds of grams,

for planetary surface exploration. Such miniature

robotic vehicles equipped with on-board science in-
struments have been proposed as possible payloads

on landers used for missions to Mars, small bodies, or

the moons of gas giant planets [1]. They have come
to be known as nanorovers due to their small size rel-

ative to microrovers such as Sojourner -- the Mars

Pathfinder rover deployed on Mars in July of 1997.

Nanorovers could be used on flight missions, as in-

dividual units or cooperative teams, to survey areas

around a lander, or even to conduct long-range explo-

ration involving measurement of surface mineralogic

and morphotogic properties. Research efforts are un-
derway to develop nanorovers that include mobility,

computation, power, and communications in a pack-

age of several hundred grams in mass [1]. Thus far,
a functional nanorover prototype h_ been developed

that is capable of autonomous mobility, science data

gathering, and transmission of telemetry to an oper-
ator control station [2]. A flight version of the rover

is currently under development as a technology, ex-

periment on an asteroid sample return mission called

MUSES-C. The MUSES-C flight mission is being im-

plemented by Japan's Institute of Space and Astro-

nautical Science (ISAS) and NASA [3][4]. In addi-

tion to the flight development effort, the nanorover

concept and design are being refined through ongo-

ing technology research efforts. The aim is to develop

miniature, but scientifically capable, rovers that could

easily fit within the projected mass/volume reserves

of future missions to Mars and small planetary bodies

(asteroids and comets).

The current nanorover prototype features a novel

wheeled mobility mechanism that allows it to exe-

cute motions beyond conventional rolling and turning.

Its articulated mechanism of wheels on posable-struts

can be thought of as a hybrid wheeled-legged mobil-
ity system. With this design, the rover is capable

of operating with its chassis upside down, recovering

from accidental overturning, and even hopping in very

small gravity fields. In this paper, we focus on the im-

portant mobility control feature of autonomous self-

righting and present an approach to automatic discov-

ery/learning of associated motion control behaviors.

We use the term self-righting to refer to the act of ma-

neuvering the rover's articulated mobility mechanism

to effect recovery from an initial overturned state to

its nominal upright driving configuration. Due to the

wide range of possible motions permitted by its mobil:

ity mechanism, considerable time and effort could be

spent designing general self-righting motion sequences
for the nanorover. The problem is complicated further

when resource limitations (e.g. available power, time.

etc) or certain flight constraints must be considered

in the solution. A control software design approach is

proposed that is aimed at reducing the effort involved

in developing self-righting behaviors that are sensi-
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FIG, 1: Articulated nanorover prototype.

tive to on-board resource limitations. The approach

is based on the integration of evolutionary computing

with a dynamics simulation environment for evolv-

ing and evaluating suitable motion behaviors. The
automated behavior design approach is outlined and

the software infrastructure necessary for implement-

ing the strategy is described.

2 NANOROVER MOBILITY

The current nanorover prototype is illustrated in

Fig. 1. The rover's mobility mechanism is comprised
of four wheels on articulated struts. Each wheel and

strut can be actuated independently. The largest di-

mension (length) of the rover is 20 cm which makes

it 30% the size of Sojourner. Each aluminum wheel
contains a drive motor within, and is cleated with a

helical tread on the outer surface to enhance traction

and skid-steering performance. In addition to basic

functionality for forward/reverse driving and turning,

the high-mobility articulated mechanism provides the

rover with the capability to self-right, as well as op-

erate with its body/chassis upside down. This im-

plies the ability to recover from overturning, and al-
lows body pose control for preferential pointing of
on-board science instruments. Aside from the rover's

apparent miniature size, it is the capability to self-

right which distinguishes it from many other plane-

tary rover designs. The articulated chassis enables
robust mobility necessary for surface navigation and

exploration in the natural terrains of terrestrial plan-

ets. Moreover, its capability to recover from acciden-

tal overturning enhances its survivability as well as

the likelihood of mission success.

The rover has an on-board computer that can

be programmed to execute autonomous sequences of

strut, body, and wheel motions, which cause the vehi-

cle to self-right (as well as perform other useful behav-

iors). Its suite of attitude sensors and motor actuators
permits simultaneous coordinated control of strut ar-

ticulation and body pose. As indicated in Fig. l, the
four struts can rotate in two directions about a corn-

FIG. 2: Posable-strut and chassis configurations.

mon pivot axis (y-axis in the figure), however, struts

on either side cannot rotate past one another. In ad-
dition to strut rotations, the body can be actuated

to pitch about the same axis. These rotations consti-
tute the articulation degrees of freedom 0_ (n = 1-5);

the wheel motions provide four rolling degrees of free-

dom. Strut angles are measured by potentiometers;

wheel rotational displacements are measured by en-

coders. The flight rover design includes sensors at

each wheel for detecting proximity to, and contact

with, the'ground. It also includes a sun sensor for

detecting body orientation relative to the sun. A va-

riety of pose configurations that are possible with this

mechanism is shown in Fig. 2.

Due to the flexibility of the mobility mechanism

and chassis, a number of feasible motion sequences

can be executed that result in successful self-righting

of the rover from an initially overturned state. One

possible sequence is illustrated in Fig. 3, in which the
motion progresses from (a)-(f). From the initial over-

turned state in (a), the rover actuates its struts to-
wards the terrain until its wheels make contact, (b).

The same strut motion continues until the configu-

ration in (d) is achieved. At this point, the body
is actuated to its nominal upright configuration, (e)-

(f). A single fixed sequence such as this is inadequate

as a general self-righting solution. While effective on

relatively flat terrain, it may fail if attempted from

other possible initial configurations. A more general
solution calls for an algorithm or set of control rules "

that assesses the initial overturned configuration via

sensory perception, and produces expedient actuator
controls. For completeness, the behavior should be

able to prescribe control responses for the range of

possible sensor stimuli. This can be achieved eN-
cientLy with behavior control rules that accept inputs

that are partitioned into intervals, or even fuzzy sets



FIG.3: Exampleself-rightingsequence.

2.1 PRACTICAL ISSUES

Some of the motion sequences that can be exe-

cuted with the posable-strut mechanism are more fa-

vorable than others with regard to the total number

of motions necessary (and therefore, power required),

and the required execution time. Nanorovers used

for flight missions rely on solar energy as their pri-

mary electrical power source. The flight nanorover

is designed to have most sides of its chassis popu-
lated by solar panels, with the primary solar panel

located on the nominal top side. This design ensures

that sufficient power will always be available for ac-
tuation of motors needed to self-right. The maxi-

mum size of the primary solar panel for these rovers

is limited by the small footprint of the vehicles. As

such, nanorovers must operate within the constraint

of relatively low power budgets. Sufficient available

on-board power for mobility actuators, science instru-

ments, and communications is of primary concern for

nanorovers. Designs for self-righting and other mo-
tion behaviors must be sensitive to on-board power

constraints. Some of the most intuitive solutions

(such as that in Fig. 3) may not sufficiently account
for realistic on-board resource limitations. Therefore,

it behooves the rover control engineer to explore the

space of feasible solutions for behaviors that would

minimize power consumption and comply with other

operational constraints or flight rules. Execution time

required for self-righting is also of concern since the

frequency of unintentional overturning may be signifi-

cant for nanorovers operating in certain environments

and terrain-types. The cumulative time spent recov-

ering from frequent overturning could easily detract
from time allotted for science data gathering and nav-

igation goals. An additionalconcern for nanorovers

isthe negative impact that dusty environments can

have on solarpanel efficiency.Due to theirlow pro-

filerelative to the terrain, dust could accumulate over

time on the rovers' solar panels. The problem is only

compounded each time the rover overturns. This is-

sue is currently being addressed by a dust mitigation

approach planned for the flight rover, which is based

the use of an electronic dust rejection apparatus.
As an alternative to the tedious effort of examin-

ing all of the possible motion sequences, an automatic

computational method of self-righting behavior de-

sign is proposed in the following section. The goal
and expected result of the approach is the discovery

of one or more viable self-righting behaviors that can

be used as is, or as a starting point for further refine-

ment. The advantage is a savings in time and effort

that would otherwise be spent searching the space of

possible motion sequences. The approach is based

on an application of evolutionary algorithms, which

have proven useful for problems involving search and

optimization.

3 SELF-RIGHTING EVOLUTION

In this section, we outline an approach to artificial

evolution of self-righting behaviors. More specifically,

we propose genetic programming for off-line learning

of self-righting behaviors for nanorovers. A genetic

programming (GP) system [6] computationally sim-

ulates the Darwinian evolution process by applying

fitness-based selection and genetic operators to a pop-

ulation of candidate solutions, which are represented

as computer programs or subroutines. The main dis-

tinction between genetic programming and genetic al-

gorithms is that the former adapts hierarchical sym-

bolic data structures (e.g. computer programs), while

the latter adapts linear numerical data structures (e.g.

bit strings or arrays of integers or reals). For our

purposes, the computational structures undergoing

adaptation are sets of condition-action rules of dy-

namically varying size and structure. That is, the

population consists of behavioral rule sets, each rep-
resented as a tree data structure, of different num-

bers of rules. Tree nodes, or genes, may consist of

components of a generic if-then rule construct and

common logic connectives (e.g. AND, OR, and NOT), as

well as input/output variables and parameters associ-

ated with the problem. Each set of rules constitutes a

motion behavior that maps articulation, orientation,
and wheel-contact sensor values into strut and body

motions.

The objective of the GP system is to create a pop-

ulation of candidate self-righting behaviors, evaluate
behaviors via dynamics simulation, and improve the

population through artificial evolution until one or

more highly fit solutions is discovered. All behavioral

rule sets in the initial population are randomly cre-

ated from syntactically valid combinations of genes.

Descendant populations are created by genetic oper-

ators -- primarily reproduction and crossover. For

the reproduction operation, several behaviors selected

based on superior fitness are copied from the current



populationinto the next,i.e. the newgeneration.
Thecrossoveroperationstartswith twoparentalrule
setsandproducestwooffspringthatare added to the

new generation. This operation selects a random por-
tion of each parental tree structure and swaps them

(while maintaining valid syntax) to produce the two

offspring. GP cycles through the current population

evaluating the fitness of each behavior based on its

performance in computer simulations of the control

system. After a numerical fitness is determined for
each behavior, the genetic operators are applied to
the fittest behaviors to create a new population. This

cycle repeats on a generation by generation basis un-

til satisfaction of termination criteria (e.g. discovery

of a highly fit behavior, lack of improvement, max-

imum generation reached, etc). At termination, the

GP result is the best-fit self-righting behavior that

appeared in any generation. The dynamic variabil-

ity of the symbolic representation allows for rule sets

of various sizes. This enhances population diversity,

which is important for the success of an evolutionary

computing system.

The overall process is summarized as illustrated in

Fig. 4. Candidate self-righting behaviors in the popu-
lation evolve in response to selective pressure induced

by their relative fitnesses for implementing the desired

motion behavior. This population-based approach

is particularly suitable for global search and opti-

mization in large and/or multi-modal search spaces.

The key distinction between such evolutionary search
methods and a conventional gradient descent based

approach is that, in the former, multiple points in

the search space are sampled in parallel. The ap-

proach has been verified through numerous exam-
ples reported in the literature. In the definitive GP

text [6], Koza has applied genetic programming to

evolve computer programs that solve a number of in-

teresting control problems. The same techniques have

been successfully applied to search and optimization

of robot manipulator trajectories [7], mobile robot

control and navigation behaviors [8], and collective

behaviors for multi-robot systems [9]. Each imple-

mentation differs in various problem-dependent ways.

However, for robotic system applications, a common
characteristic is the formulation of a fitness measure

that drives the evolution and is coupled to a motion

simulation. The viability of evolved behaviors is a

function of the thoroughness of the evaluation pro-

cess. Performance is based solely on evaluation of

behavioral responses predicted by the simulator, and

is computed by a user-prescribed fitness function. As
such, the success of the approach depends in large

part on the fitness function employed and the fidelity
of the simulation environment. Each of these integral

FIG. 4: Behavior evolution architecture.

aspects is discussed further below.

3.1 BEHAVIOR EVALUATION

In order to apply evolutionary algorithms for be-

havior evolution, a measure of behavior fitness must

be formulated to drive the process. It is important

that the fitness function map observable parameters

of the problem into a spectrum of values that differen-

tiate the performance of behaviors in the population.

If the spectrum of fitness values is not sufficiently rich,

the fitness function may not provide enough informa-

tion to guide GP toward regions of the search space

where improved solutions might be found. For prob-

lems involving simulation of controlled behavior, a va-

riety of performance attributes can be considered for
inclusion in the fitness measure. Examples include a

maximum number of time steps, explicit error toler-

ances, terminating physical events such as task suc-

cess or failure, and penalties/rewards thereof. In gen-

eral, selected performance attributes can be weighted

to emphasize their relative importance in the search
for candidate solutions. The fitness function is anal-

ogous to the performance measure of optimal control
theory, or more generally, the objective function of

optimization theory.

One approach to evaluating evolving candidate

self-righting behaviors is to test them against a num-
ber of fitness cases, tabulate a performance score for

each case, and average the scores to determine an
overall fitness value. The initial postures for each fit-

ness case should be chosen to represent an overturned

configuration that can occur in the target environ:
ment. The number of fitness cases should be chosen

such that they represent the search space sufficiently

to allow the evolved strategy to generalize (i.e. handle

unforeseen initial conditions). Fig. aats one example

of a fitness case for the self-righting problem. A few

additional examples are illustrated in Fig. 5. For each

fitness case the goal is the same -- recovery from an
initial overturned state to achieve the nominal upright



FIG.5: Examplefitnesscases.

drivingconfiguration.
Weproposeaself-rightingfitnessscorebasedpri-

marilyon theestimatedpowerconsumedbymotors
(p), the timeelapsedduringexecution(t), andthe
percentageof progressmade(_ <_100).Eachofthese
performanceattributesismeasuredattheendofeach
fitnesscase.It is possible,however,to formulatethe
fitnessevaluationsuchthat performanceismeasured
duringfitnesscaseexecution.This wasdonein [9]
whereareinforcementlearningfunctionwascoupled
with fitnessevaluationto installa progressindica-

tion during fitness trials. Power consumption can be

estimated from knowledge of the motor performance

characteristics and usage during execution. Elapsed
time is determined based on simulation ticks starting

from the beginning of the self-righting maneuver to
the end of the trial. The amount of progress made

is indicated by the percentage of angular displace-

ment achieved by the chassis from the initial posture

towards the desired nominal driving configuration.

With these so defined, an example fitness score for

a trial run through fitness case k can be formulated

as

S_,- _' (i)
i + (p_ + t_)"

The overall fitness of a candidate self-righting behav-

ior would be computed by averaging the scores over
the total number of fitness cases defined. This exam-

ple fitness formulation rewards behaviors that consis-

tently achieve (or come close to) the desired upright

configuration in a timely manner, while minimizing

power consumption.

3.2 DYNAMICS SIMULATION

A simulation environment is a key component of

the approach described above. This is particularly
true for evolution of rover behavior(s). One of the

challenges of evolutionary robotics is the successful
evolution of robust controllers in simulation. It was

pointed out in [10] that the use of simulation en-

vironments of questionable fidelity tend to result in
evolved behaviors that, are not easily transferable to

real robots. However, for developing rover systems

designed to operate in unknown space environments,
evolution in simulation is often the most practical op-

tion. Behaviors evolved in simulations must, however,

be validated and verified to some extent on real rovers.

The use of rover and environment simulators of rea-

sonably high fidelity can mitigate such concerns. Pre-

existing simulators are particularly useful in stream-

lining rover control and navigation software develop-

ment efforts when prototype/flight hardware is un-
available or inaccessible.

A high-fidelity dynamics simulation system is avail-
able at JPL for use in this work. It is based on the

JPL-developed DAFtTs/DSHELL [11] simulation tools.

DARTs/DsI-IELL is a multi-mission spacecraft simula-

tor with a reM-time computational engine for flexible

multi-body dynamics. It includes libraries of hard-

ware models for various sensors, actuators, and mo-

tors. Its simulation infrastructure allows for interfaces

to a 3D animation viewer and rover research/flight

software. The interface between rover software and

the simulator enables software to issue control up-

dates to the simulator and receive state/sensor data

from the simulator. The computational engine com-

putes dynamics of multi-body systems based on iner-

tial properties of the bodies in the system and forces

applied to those bodies. In this dynamics simulation

system, the nanorover is modeled as a multi-body sys-
tem of wheels, struts, and a chassis. Different fric-

tion models can be created to simulate characteristics

of wheel-terrain interactions, and the gravitational
acceleration can be varied as well. Currently, the

DARTS/DSHELL spacecraft simulation tools are be-

ing leveraged to develop a related software simulation
toolkit that is more germane to rovers [12]. These sys-

tems provides suitable environments for rover/terrain

modeling and simulation that are useful for flight soft-

ware design and development. When integrated with

a genetic programming system, as described above,

high-fidelity simulators provide a fitness evaluation
medium for artificial evolution of rover behaviors.

4 ISSUES FOR SMALL BODIES

The approach as described thus far is nominally

focused on the basic discovery of self-righting behav-

iors that might be feasible on Earth and Mars. The

importance of a self-righting capability is magnified
in the case of surface exploration on small bodies like

asteroids. In this case, the gravitational fields are

substantially weaker than those of Earth or Mars, and

the likelihood of unintentional overturning is substan-

tially higher. Before the proposed approach can be

applied to evolve effective behaviors for small-body

exploration, additional considerations must be fac-
tored into the dynamics simulation. .Most notable

among these are appropriate gravitational effects and
terrain characteristics.

When accurate data about small bodies of interest



are unknown, assumptions about gravityand terrain

characteristicsmust be made. In a recentpreliminary

study [13],the mobility performance of a nanorover

operating within a small-body gravityfieldwas exam-

ined usinga commercial dynamics simulationsoftware

package. In that study,assumptions were made about
the environment of the near-Earth asteroidNereus

(4660),the primary target of the MUSES-C flight

mission, which isless than one kilometer in diam-

eter. The surface gravity of Nereus isexpected to

be 8-80/Jg [4]. In [13], 20_g was assumed. The aim
of this small-body mobility study was to predict the

rover's ability to maintain adequate tractive forces

with the ground surface to achieve forward progress.
Two wheel-terrain interaction models were consid-

ered. The first was based solely on Coulomb friction

(with a friction coefficient of 0.5); the second was a
combination of Coulomb friction and adhesive forces

(thought to arise due to electrostatic attractions be-
tween the wheels and a dusty surface). To computa-

tionally evolve self-righting behaviors for such envi-
ronments, the simulator used for behavior evaluation

must be capable of representing different gravity fields

and terrain types. The dynamics simulator mentioned

above offers this flexibility.
Until additional facts are learned about Nereus,

data presented in [4] and assumptions made in [13]

will be used as a baseline for our computational

behavior evolution experiments. For the upcoming

flight mission, relevant new findings will be factored

into the design of control and navigation behaviors for

mobility on the target asteroid. The various desirable
attributes of viable evolved behaviors will be identi-

fied for possible realization on the flight rover. This

activity will be supported by high-fidelity computer
simulations as well as hardware-based low-gravity

simulations that focus on evaluating behaviors in the
context of relevant mission scenarios and constraints.

5 SUMMARY AND CONCLUSIONS

Nanorovers with articulated mobility mechanisms

are capable of a variety of maneuvers besides conven-

tional rolling and turning. This paper has focused

on the problem of autonomous self-righting and has

expressed some of the practical aspects of the prob-
lem. An automated software design approach has

been proposed for developing rover control behaviors

for self-righting. Genetic programming is advocated

as a means for offtine learning using a high-fidelity

dynamics simulation of the rover and environment.

The proposed approach can be used to synthesize self-

righting behaviors and optimize them based on per-
formance feedback from the simulator, which can be

interfaced with prototype rover control software. The

integrated system would be beneficial for streamlin-

ing rover software design and development efforts. In

addition to self-righting behaviors, the approach can

be applied to develop other functionalities for which

solutions are not already well-defined. The interested
reader can find source code for implementing GP in

the LISP programming language in [6]. Public do-

main implementations that are written in C or C++
are also available on the World Wide Web.

The technology described in this paper is part of an

ongoing effort to evaluate the utility of very low mass,

scientifically capable rovers for Mars and small body

exploration. Technological advances towards robust

and survivable nanorovers will permit mobility-based

science surveys on planetary surfaces with a small

fraction of the science payload expected for currently

planned, and future, rover missions.
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