A K-Band Linear Phased Array Antenna Based On Ba$_{0.60}$Sr$_{0.40}$TiO$_3$ Thin Film Phase Shifters

R. Romanofsky
Glenn Research Center, Cleveland, Ohio

J. Bernhard
University of Illinois, Urbana, Illinois

G. Washington
Ohio State University, Columbus, Ohio

F. VanKeuls
Ohio Aerospace Institute, Brook Park, Ohio

F. Miranda
Glenn Research Center, Cleveland, Ohio

C. Cannedy
University of Maryland, College Park, Maryland

May 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
A K-Band Linear Phased Array Antenna Based On Ba$_{0.60}$Sr$_{0.40}$TiO$_3$ Thin Film Phase Shifters

R. Romanofsky
Glenn Research Center, Cleveland, Ohio

J. Bernhard
University of Illinois, Urbana, Illinois

G. Washington
Ohio State University, Columbus, Ohio

F. VanKeuls
Ohio Aerospace Institute, Brook Park, Ohio

F. Miranda
Glenn Research Center, Cleveland, Ohio

C. Cannedy
University of Maryland, College Park, Maryland

Prepared for the
International Microwave Symposium 2000
sponsored by the IEEE Microwave Theory and Techniques Society
Boston, Massachusetts, June 11-13, 2000

National Aeronautics and
Space Administration

Glenn Research Center

May 2000
A K-BAND LINEAR PHASED ARRAY ANTENNA BASED ON
$\text{Ba}_{0.60}\text{Sr}_{0.40}\text{TiO}_3$ THIN FILM PHASE SHIFTERS

R. Romanofsky
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

J. Bernhard
University of Illinois
Urbana, Illinois

G. Washington
Ohio State University
Columbus, Ohio

F. VanKeuls
Ohio Aerospace Institute
Brook Park, Ohio

F. Miranda
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

C. Cannedy
University of Maryland
College Park, Maryland

ABSTRACT
This paper summarizes the development of a 23.5 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

INTRODUCTION
A prototype scanning 16-element linear phased array using $\text{Ba}_{0.60}\text{Sr}_{0.40}\text{TiO}_3$ films on 0.3 mm thick MgO has been developed. The array is intended to be a steppingstone to collision avoidance radar suitable for automotive applications because of its potential to provide a much lower cost solution for certain Intelligent Vehicle Highway Systems. The phase shifters are based on a series of coupled microstriplines of length l and separation s patterned over pulsed laser deposited $\text{Ba}_{0.60}\text{Sr}_{0.40}\text{TiO}_3$ films nominally 400 nm thick. The maximum coupled voltage occurs when the coupled sections are a quarter wavelength long (i.e., $\beta l = 90^\circ$). Bias up to 400 V is applied to the sections via printed bias-tees consisting of a quarter-wave radial stub in series with a very high impedance quarter-wave microstrip. By concentrating the fields in the odd mode, the phase shift per unit length is maximized and by using the ferroelectric thin film form the effects of high loss tangent are minimized. Selecting the strip spacing s involves a compromise among: minimizing insertion loss, simplifying lithography, and minimizing the tuning voltage. Strip widths are chosen to approximate a 50 Ω characteristic impedance. These coupled microstrip devices rival the performance of their semiconductor counterparts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric 360° phase shifters at K-band is ≈ 5 dB [1-3].

PHASE SHIFTERS
The multilayer phase shifters have been analyzed using a computationally efficient variational method to calculate the even and odd mode capacitance [4,5]. If a quasi-TEM type of propagation is assumed the propagation constant an impedance can be completely determined from line capacitance. Since the cascaded coupled line circuit resembles a series of one-pole bandpass filters, as the dc bias increases, the dielectric constant of the BST film decreases, causing the passband to rise in frequency (and the $\tan \delta$ of the BST to decrease). The impedance matrix of the cascaded network can be derived by well-known coupled line theory using the superposition of even and odd mode excitation. Then an equivalent S-parameter model can be extracted and used to predict the pass-band characteristics of the phase shifter.

The bandwidth compression from tuning is evident in fig. 1 which is data from an 8-section
phase shifter on 0.3 mm MgO using a 400 nm
Ba_{0.60}Sr_{0.40}TiO_3 laser ablated film. The roll-off at
the upper end of the frequency range is attributed to
bias-tee effects. The bias tees have a 25 µm wide,
1.83 mm long high impedance line connected to a
radial stub with flare angle of 75° and radius 1.17 mm.

PHASE ARRAY DESIGN

The 23.5 GHz array consists of a monolithic 1:16
microstrip beam forming manifold constructed on
0.25 mm thick Duroid 6010, 16 ferroelectric phase
shifters patterned on ≈1×0.75 cm MgO substrates, and
a monolithic set of microstrip patch radiators patterned
on 0.25 mm thick Duroid 5880. Inter-element spac-
ing is 7.49 mm, which corresponds to about 0.57 free-
space wavelengths. The layout is shown in fig. 2.

The original manifold, which had each successive branch of the divider networks separated by only
1.3 mm, experienced severe coupling problems resulting in considerable loss and asymmetry between
ports. The distance was increased to 4 mm and resulted in a uniform insertion loss of about 13.0 ±0.25
dB. The patch array was originally fabricated on high
dielectric constant material (ε_r = 10.2). However, when
the resonant frequency of each patch was measured
using a HP 8510C automatic network analyzer a large
discrepancy was seen between each one. The varia-
tion was attributed to dielectric constant tolerances. Indeed substrate tolerances are known to cause seri-
sous errors in phased array performance [6]. To circum-
vent the problem a low dielectric constant homog-
enous material was selected. When the array was
redesigned on 0.25 mm thick Duroid 5880, the varia-
tion in resonant frequency was much smaller, about
5 percent, and the bandwidth was adequate. Fig-
ure 3 depicts the measured frequency response. The patch dimensions are: L = 4.27 mm, W = 6.40 mm,
and δ = 1.04 mm. The gap between the feed inset and
patch was 0.38 mm. No particular attention was given to reducing sidelobe levels or reducing spurious
radiation from the manifold or feed. The measured
far-field radiation pattern at boresight is shown in
fig. 4. The E-plane corresponds to the elevation
direction and the H-plane corresponds to the azimuth
direction. The array can scan past 45° before the
appearance of a grating lobe.

An electronic module was designed and built to control the array. It consists of 16 independently addressable dc-to-dc converter channels. A model
AOB 16/16 analog to digital converter interfaces the controller with a PC. Since the A/D could only source
5 mA per channel, an operational amplifier buffer
(OPA547) was inserted between the A/D outputs and Pico Electronics model 12AV500 encapsulated
dc-dc converters. A 1 W, 1 MΩ resistor is strapped
across the transformers output to prevent a no-load condition. Since the dc input resistance of the phase
shifters is >>1 MΩ, the applied voltage is essentially the programmed voltage. A 0.1 µF capacitor rated at
1 KV provides some filtering. Finally, an LED status
indicator on each channel senses whether a thermal
overload condition is present. The controller board is
shown in fig. 5. It consumes about 25 mA per chan-
nel under normal conditions.

CONCLUSIONS

A linear K-band phased array has been demon-
strated using novel coupled microstrip thin film
ferroelectric phase shifters. The phase shifters capi-
talize on odd mode propagation to maximize phase
tuning and minimize insertion loss. Despite a fairly
common misconception that ferroelectric materials
have too high a loss tangent for practical microwave
applications, these devices can outperform their semi-
conductor counterparts by several dB. The phased
array realized with these phase shifter holds prom-
ise to significantly reduce manufacturing costs of
phase arrays because the phase shifter are litho-
graphed using a simple two-step process. And the
finest feature size is the strip spacing, about 10 µm,
compared to perhaps a 0.5 µm gate for a MESFET
phase shifter at the same frequency. To the best of
our knowledge, this is the first demonstration of a
K-band phased array based on ferroelectric films.

REFERENCES

1. F.W. VanKeuls et al., “Room Temperature Thin
Film BaSrTiO Ku-Band Coupled Microstrip
Phase Shifters: Effects of Film Thickness, Dop-
ing, Annealing, and Substrate Choice,” IEEE MTT

Figure 1.—Measured Insertion Loss (including SMA launchers) of an 8-element \(\approx 50 \, \Omega \) PLD coupled microstripline phase shifter at 290 K as a function of bias voltage. Substrate is 0.3 mm MgO with 400 nm Ba\(_{0.60}\)Sr\(_{0.40}\)TiO\(_3\) film. \(l = 350 \, \mu\text{m}, s = 7.5 \, \mu\text{m} \) and \(w = 30 \, \mu\text{m} \). Bandwidth compression from the filtering effect is evident. Marker 1, 2, 3, and 4 are at -5.75, -5.38, -6.00, and -6.49 dB, respectively.

Figure 2.—Layout of the 16 element 23.675 GHz array. The array is 11.9 cm long.
Figure 3.—Measured resonant frequency of patch radiators on 0.25 mm Duroid 5880 (εr = 2.2), 1 oz. Cu clad material.

Figure 4.—Measured far-field E-Plane (elevation) and H-Plane (azimuth) pattern of the 16-element ferroelectric phased array at 23.675 GHz, 0 and 120 degree incremental phase shift.

Figure 5.—Measured far-field H-Plane pattern corresponding to a 120 deg incremental phase shift.

Figure 6.—High voltage controller board for the 16-element phased array. The board measures 19 cm × 14.5 cm. The board accepts a 0–10 V signal from a 16 channel A/D converter and outputs a linear 0–400 V control signal.
A K-Band Linear Phased Array Antenna Based On Ba0.60Sr0.40TiO3 Thin Film Phase Shifters

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
Washington, DC 20546–0001

Prepared for the International Microwave Symposium 2000 sponsored by the IEEE Microwave Theory and Techniques Society, Boston, Massachusetts, June 11–13, 2000. R. Romanofsky and F. Miranda, NASA Glenn Research Center; J. Bernhard, University of Illinois, Urbana Campus, Urbana, Illinois 61801; G. Washington, Ohio State University, Main Campus, 190 N. Oval Mall, Columbus, Ohio 43219–1321; F. VanKeuls, Ohio Aerospace Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142; C. Cannedy, University of Maryland, College Park, Maryland 20742–0001. Responsible person, R. Romanofsky, organization code 5640, (216) 433–3507.

Unclassified - Unlimited
Subject Categories: 17 and 32
Distribution: Nonstandard

This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.