U.S.A.
Pasadena, CA 91109
California Institute of Technology
Jet Propulsion Laboratory

Technology Group
Time and Frequency Sciences and

J. Kohel, L. Maleki
Dave Siedel, R. J. Thompson, W. M. Kipstein,

Laser Cooling and Atomic Physics (LCAP) Program
Clock Technology Development in the
With some science return.

- capability for relativity experiments, less of spatial isotropy. Test time transfer and clock technology.
- Flight of laser-cooled microgravity atomic clock along with high stability ion clock/ master and GPS.
- Space Shuttle

- For at least 30 days. Use of clock for relativity experiments and cold collision studies.
- Laser-cooled Rubidium clock for ultra-high accuracy (exceeding a part in 10^16), to operate continuously.
- RACE (Rubidium Atomic Clock Experiment): Yale.
- PARCS (Primary Atomic Reference Clock in Space): NIST/CU.

International Space Station

Overview of LCAP Flight Projects
SUMO
(requires cavity oscillator such as
Kennedy-Thormidike Experiment
•
(oscillator
requires comparison to another
Local Position Invariance
•
(ground
requires stable frequency transmitter to
Gravitational Frequency Shift
•

Physics with Clocks in microgravity
ISS Science Platforms
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Constraint</th>
<th>Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>45cm</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>90cm</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>162 inches</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>>500 L</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>>2KW</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>>130kg</td>
<td></td>
</tr>
</tbody>
</table>

Cesium Clock Package

NOTE: All dimensions are approximate and subject to change.

ISS EXPRESS RACK

PARCS
Vibration Test bed at JPL

New Focus Vortex Laser on

100x Earth dose

Radiation:

Humidity: 20 to 70%
Pressure: 76 torr to 204 torr (1240 Torr/min Max Depressurization Rate)
Temperature: -5 to 50 C
Instrument should operate after exposure to:

Environment:

Duration: Design: 2 minutes; FF or PA test: 1 minute

-6dB/pt case
-6dB/pt case
-6dB/pt case
-6dB/pt case
-6dB/pt case

0.03 Hz to 2000 Hz
0.06 Hz to 150 Hz
20 Hz to 150 Hz

Freq. Range Design/Projection (PA) Flight Acceptance (PA)
Instrument should operate after exposure to:

Vibration Testing:

Shuttle Requirements:

Space Qualification of Components
Laser Configuration
Frequency Transmitter
Clock Rate Comparison: GPS Carrier Phase
Give Position Information to 100 m
Existing GPS antenna will see between 3-6 satellites

Visibility of satellites (desire ~ 12 in view)
Multipath Worse SOME (need ~70 dBm)
No High Quality R/Optical Link between Interior/Exterior
Need external antenna

Issues:

> 1 mm/s velocity information
> > 10 cm position information
> 100 ps resolution

Gps Carrier Phase Technique expected to give:

Gps Carrier Phase Frequency Transfer
ISS Model Views

Another "Normal" View

"Normal" View