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Abstract

Tl:e ability to dynamically adapt an unstru¢ tared grid (or

mesh) is a powerJid tool for solving computational prob-

lems with evolving physical features; however, an efficient

parallel implementation is rather difficult, particularly from
tire vie_l_oi_lt of portability on various multiprocessor plat-

/o.'rr_'. _e ad_Ir,'ss this problem by develol)i't;' PLUM,
an automatic anti architecture-indepeadent framework ]'or

adaptive numerical computations in a message-passing en-
vironment. Portability is demonstrated by comparing per-

formance on an SP2, an Origin2000, and a T3E, without

any code modifications. We also present a general.purpose
load balancer that utilizes symmetric broadcast networks

(SBN) as the underlying communication pattern, with a

goal to providing a global view of system loads across pro-
cessors. Experiments on an SP2 and an Origin2000 demon-

strate the portability of our approach which achieves superb

load balance at the cost of minimal extra overhead.

1. Introduction

The success of parallel computing in solving real-life,

computation-intensive problems relies on their efficient

mapping "rod execution on commercially available mu_ti-

processor architectures. When the algorithms and data
structures cnrrcspondh_g to these problems are dynamic in

nature (i.e., thci r computational workloads grow or shrink at

_mtime) or are inlrinsiczdly unstructured, ntapping them ott

to distributed-memory parallel machines with dyn_tmic load

bal:ulcing offers considerable cl_dlenges. Dynamic load

bal_ulcing :tints to balance processor workloads at nmtime
while n_inimizm,Y inter-processor coml'liutliCZll o11.With thc

prolit'cralion of parallel computhlg, dynamic load baltu!cing
has hcct_mc c_tretucly importtutt in several applic:ttions like

scicnlilic c()n_pttlitlg, lask scheduling.sparse rnalrix COltlptl-

tations, parallel discrete event simulation, and data mining.

The ability to dynamically adapt an unstructured mesh is

a powerful tool for efficiently solving computational prob-
lems wiaa evolving physical features. Standard fixed-mesh

numerical methods can be made more cost-effective by lo-

cally refining and coarsening the mesh to capture these phe-
nomena of interest. Utffortunately, _m efficient paralleliza-

tion of adaptive methods is rather difficult, primarily due
to the load imbalance created by the dynamically-changing

nonuniform grids. Nonetheless, it is believed that unstruc-

tured adaptive-_'id techniques'will constitute a significant

fraction of future high-perfot'mance supercomputing.

As an example, if a full-scale problem in computational

fluid dynamics were to be solved efficiently in parallel, dy-

namic mesh adaptation would cause load imbalance among

processors. This, in turn, would require large amounts of
data movement at runtime. It is therefore imperative to have

,an efficient dynamic load balancittg mechanism as part of

the solution procedure. However, since the computational

mesh will be frequently adapted for tmsteady flows, the run-
time load also Ires to be balanced at each step. In other

words, the dynamic load balancing procedure itself must

not pose a major overhead. This motivates our work.

We have developed a novel method, called PLUM [7],

that dyttamic?.lly balances processor workloads with a

global view when performing adaptive numerical calcula-

tions in a parallel message-passing envirotur.ent. Ex_m_-

itling the pert'ormazace of PLUM for azl actual workload,
wllich simulates _ua acoustic wind-tutmel experiment of a

helicopter rotor blade, on three different paraltel machines
demonstrates that it C;Ut be successfutly ported without any

code n_odifications.

We propose atwther new approach to dynamic load bat-

tracing for unstta.lctttred grid applic_ltions based on delin-
in_ a robust cotnmtmication pattcnt (logical or physical)

at_ong processors, called xynlmetric broadcast networks

(SBN_ 131. It is adaptive and decentralized in natttrt', and



canbeportedto,anytopologicalarcNtecturethrough effi-

cient embedding techniques. Portability results for an adap-
tive unsteady grid workload, generated by propagating a

simulated shock wave through a tube, show that our ap-

proach reduces the redistribution cost at the expense of a
minimal extra communication overhead. In many mesh

adaptation applications in which the data redistribution cost
dominates the processing and communication cost, this is

an acceptable trade-elL

2. Architecture-Independent Load Balancer

PLUM is an automatic and portable load balancing en-

virorLment, specifically created to handle adaptive unstruc-

tured grid applications. It differs from most other load bal-
ancers in that it dynamically tmlances processor workloads

with a global view [1, 7]. In this paper, we examine its

architecture-independent feature by comparing results for a

test case running on an SP2, Origin2000, and T3E.

PLUM consists of a partitioner and a remapper that load
balance mad redistribute the computational mesh when nec-

essary. After an initial partitioning and mapping of the un-
structured mesh, a solver executes several iterations of the

application. A mesh adaptation procedure is invoked when
the mesh is desired to be refined or coarsened. PLUM then

g_tins control to determine if the workload among the pro-
cessors has become unbalanced due to the mesh adaptation,

and to take appropriate action. If load balancing is required,

the adapted mesh is repartitioned and reassigned among the

processors so that the cost of data movement is minimized.
It" the estimated remapping cost is lower than the expected

computational gain to be achieved, the grid is remapped

among the processors before solver execution is resumed.

Extensive details about PLUM are given in [7]. For com-

pleteness, we enumerate some of its salient features.

• Reusing the initial dual graph: PLUM repeatedly uti-
lizes the dual of the initial mesh for the purposes of load

balancing. This keeps the complexity of the partitioning

and reassignment phases constant during the course of an

adaptive computation. New computationM grids obtained

by adaptation are translated by changing the weights of

tile vertices ,and edges of the dual graph. -":

• Parallel mesh repartitioning: PLUM can use any

general-purpose partitioner that balances the computa-
tiered loads ,and minimizes the rant[me interprocessor

communication. Several excellent parallel partitioners

;Ire now av:tilablc [4, 5, 10]; however, the results pre-

sented in this paper use PMcTiS [61.

• l)roce_r remapplng and data movement: To map new

partitions to processors while minintizing the cost o1."re-
distribution, PLUM tirst consmtcts a similar#v matrix.

This n|alrix indicates how the yet'rex weights of the new

sttl'*d,_rH;titls art' distributed over the processors. T[I_C

general metrics: TotalV, MaxV. and MaxSR, are used

to model the remappitlg cost on most multiprocessor sys-

tems [81. Both optimal and heuristic algorithms ['or mini-

re[zing these metrics _weavailable within PLUM.

Cost model metrics: PLUM performs data remapping in

a bulk synchronous fashion to amortize message start-up

costs and obtain good cache performance. The procedure

is similar to the superstep model of BSP [91. The ex-

pected redistribution cost for a given architecture can be
expressed as a linear function of MaxSR. The macl'tine-

dependent parameters are determined empirically.

2.1. Helicopter Rotor Test Case

The computational mesh used to evaluate the PLLrM
load balancer is the one used to simulate an acoustics wind-

tunnel experiment of a UH-IH helicopter rotor blade [7].
A cut-out view of the initial tetrahedral mesh is shown in

Fig. I. Three refinement strategies, called Real_l, Roal..2,
,and Real_3, axe studied, each subdividing varying tractions
of the domain based on an error indicator calculated from

the flow solution, This increased the number of mesh el-

ements from 60,968 to 82,489, 201,780, and 321,84l, re-

spectively.

Figure 1. Cut-out view of the initial mesh for

the helicopter rotor blade experiment.

2.2. Experimental Results

The three left plots in Fig. 2 illustrate parallel speedup

for the three edge-marking strategies on an SP2, Ori-

gin2000, _md T3 E. Two ._ts of results _ue presented for each
tnachinc: one when data rcmapping is pcrt'om_ed after mesh

rethlcmctlt, and the other wheel rcmappi ng is done _fore re-

tincrncnt. The speedup nund'crs arc ;dines[ identical on all

three machines. The Real_3 case shows the txst sDccdu p

valttcs l-x:cattsc il is the tileS[ co[llpUlZlliOrl inlctlsivc. Rctllap-

ping tlat:t Ixtl'_rt" rclincmcnt has the largest relative cl'IL'tl for



• Ii

Real_l. because it has the smallest refinement region and it
returns the biggest benefit by predictively load balancing the
refined mesh. The best results are for Real_3 with remap-

ping before refinement, showing an efficiency greater than

87°,o on 32 processors.
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Figure 2. Refinement Speedup (left) and
remapping time (right) within PLUM on an
SP2, Origin2000, and T3E, when data is re-
distributed after or before mesh refinement.

Tile three right plots in Fig. 2 show the corresponding

remapping times. In almost every case, a signific_mtre-
dttction in remapping time is observed when the adapted
mesh is load balanced by performing data movement prior
to refl,_emen,'. This is because the mesh grows in size only
after the data has been redistributed. In general, the remap-

ping times also decrease as the number of processors is in-
creased. This is because even though the total volume of

data movement increases with the number of processors,
there _Lreactttally more processors to slmre the work. -."

Perhaps the most remarkable featt,re of these resuits'ts

the peculiar _havior of the T3E when P > 64. When us-
mg ttp to 32 processors, the remapping performance of the
T3E is vet3, similzu"to that of the other two machines. How-
ever. for 1' = 6.1 and 128, the remapping overhead begins
tt) increase '.tndvioh|tes ottr cost model. Tile nmtime dif-
ference when data is remappcd _forc and _ffter refinement

is dr:_m,dically diminished; in fact. all the rcmapping times
Ix:gin to converge to a single value! This indicates that t!!¢

rcmapping time is ;list) aft'coted by the interprocessor com-
nltlrHcatioil pdltCm. OIIc solution would Ix: to take _ldvitrl-

rage of the T3E's ability to efficiently perform one-sided
communication.

3. Topology-Independent Load Balancer

In this section, we describe a dynamic load balancer

b,-tsed on a s.wnmetric broadcast network (SBN), which
takes into account the global view of system loads among

the processors. The SBN is a robust, topology-independent
communication pattern (logical or physical) among P pro-
cessors in a multicomputer system [3]. An SBN of dimen-
sion d > 0, denoted as SBN(d), is a (d + 1)-stage intercon-
nection network with P = 2a processors in each stage. It is
constructed recu,Ts,ively as follows. A single node forms the
basis network SBN(0). For d > 0, an SBN(d) is obtained

from a pair of SBN(d - 1)s by adding a communication
stage in the front with the following additional inter'proces-
sor cormections: (i) node i in stage 0, is made adjacent to

node j = (i + P/2) rood P of stage I and (ii) node j in
stage 1 is made adjacent to the node in stage 2 wLfich was
the stage 0 successor of node i in SBN(d - 1).

The proposed SBN-based load balancer takes into ac-
count a global view of the system and makes it effective
for adaptive grid applications. Prior work [21 has demon-
strated the viability of this SBN approach. It processes two

types of messages: (i) load balance messages when a load
imbalance is detected, and (ii) job distribution messages to

reallocate Jobs. We give a brief description of the various
parameters and policies involved in our implementation.
_, Weighted queue length: TPJs is to take into account .-,11

the system variables like computation, communication,
,'rod redistribution costs, that aftcot the processing of a

local queue. Note that no redistribution cost is incurred
if the data set is available on the local processor. Simi-

larly, the communication cost is zero if the data sets of all
adjacent vertices are stored locally.

• Prioritized vertex selection: When selecting vertices to

be processed, the SBN load balartcer takes advantage of
the underlying stntcture of the adaptive grid and deters lo-
cal execution of botmdary vertices as long as possible be-

cattse they may be migrated t'or more efficient execution.
Thus, vertices with no communication and redistribution

costs arc executed first.

• Differential edge cut: This is the totzd change in the
commutucation ,'uld redistribution costs if a vertex were

moved from one processor to another. The vertex with
the smallest differential edge cut is cho._n for migration.

This policy strives to maintain or improve the cut size
during the execution of the load balancing algorithm.

• Data redistribution policy: Data rcdistribt,tion is pcr-

lonncd ill _.t ItlT.V [nallller, i.e., the t_on-h_cal data set for a
vertex is tlt_[ moved to a process(_r until it is ;t[_3uttO
cxcctttcd. Furtl_cm_orc. the data scls of all adjaccnl ver-



tices are also migrated at that time. This policy greatly

reduces the redistribution and commutfication costs by

avoiding multiple migrations of data sets.

3.1. Unsteady Simulation Test Case

To evaluate the SBN framework, a computational grid

is used to simulate an unsteady environment where the

adapted region is strongly time-dependent. This experi-

rnent is performed by propagating a simulated shock wave

through the initial grid shown at the top of Rg. 3. The test

case is generated by refitting all elements within a cylin-

drical volume moving left to right across the domain with

constant velocity, while coarsening previously-refined ele-
rnents in its wake. Performance is measured at nine succes-

sive adaptation levels during which the mesh increases from

50,000 to 1,833,730 elements.

I p
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t6

32

Edge Cut
Before After

2.88% 5.51%

7.27% 10.76%

12.71% 16.35%

19.40% 23.87%

24.42% 30.41%

MaxSR

80,037

76,665

53,745

46,825

28,031

Imbalance

1.130

1.130

1.00

1.0I

1.02

Table 1. Grid adaptation results on an SP2

using the SBN-based load balancer.

seconds.) The results demonstrate that the cost of vertex mi-

gration is significantly greater than the cost of actually bal-

ancing the system load. An extrapolation of the results us-

ing exponential curve-fitting indicates that normal speedup
will not scale for P > 128.

Balancing Messages

P [ Volume
2 0.342 MB

4 0.150 MB

8 0.463 MB

16 0.581MB

32 1.550 MB

Bandwidth

0.00%

0.00%

0.01% •

0.02%

0.12%

VoLume

3.919I_B

7.939 MB

25.397 MB

30,454 MB

38.244 MB

Migration Messages
Bmldwidth

3.67%

7.44%

23.79%

28.53%

35.83%

Figure 3. Initial and adapted meshes (after lev-

els I and 5) for the simulated unsteady exper-
iment.

3.2. Experimental Results

Table 1 presents performance results on an SP2, aver-

aged over the nine levels of adaptation. In additionAo

achieving excellent load balance, the redistribution cost
(expressed as MaxSR, the maximum number of vertices

moved in and out of any processor) is significantly reduced.

However, the edge cut percentages are somewhat higher,

indicating {iiat the SBN strategy reduces the redistribution

cost at the expense ofa slightly higher communication cost.

Table 2 gives the number of bytes that were trans-
ferred between processors dttrmg the load balancing _md

the job distributiotl phases. The numlxr of bytes trans-

ferred is also expressed as a percentage t)l" the available

bandwidth. (A widc-ttodc SP2 has a message bmldwidth
of 36/llC_r:lbvlcX/sCCot|d _llld z| nlc_;s,t_c latchkey (_t"40 micro

Table 2. Communication overhead of the SBN

load balancer.

Table 3 shows the percentage of time spent in the SBN

load balancer compared to the execution time required to

process the mesh adaptation application. The three columns

correspond to three types of load balancing activities: (i) the
time needed to handle balance related messages, (ii) the

time needed to migrate messages from one processor to an-

other, and (iii) the time needed to select the next vertex to

be processed. The results show dmt processing related to
the selection of vertices is the most expensive phase of the
SBN load balancer. However, the total time required to load

balance is still relatively small compared to the time spent

processing the mesh.
We were able to directly port the SBN methodology from

zm SP2 to an Origin2000 without any code modifications.
This demonstrates the architecture independence of out load

bahmccr. The load imb_d_mcc tactors were almost identical

on the two machines. The edge cut values wcrc consistently

larger on the Origin2t)_L but the MaxSIq values were larger

only when rising less than 16 processors.

Some of the difrcrcllcCs ill [_crt_wnlallfc results <'m tllcsc



I] Balancing Migration VertexActivity Activity SelectionP

2 0.0053%

4 0.0087%

8 O. 1745%

16 0.2669%

32 0.1154%

0.0014%

0.0069%

0.0569%

0.0629%

0.0774%

0.4530%

2.0381%

2.8386%

0.8845%

2.1043%

Table 3. Overhead of the SBN load balancer.

two machines are due to additional refinements that were

implemented prior to running the experiments on the Ori-

gin2000. First, the algorithm for distributing jobs was mod-

ified to guarantee that the processor initiating load balanc-

ing always had sufficient workload. This reduces the to-

tal number of balancing related messages but increases the

number of vertices mio_'ated, especially for small numbers

of processors. Second, data sets corresponding to groups of

vertices were moved at a time. This bulk migration strategy

reduces the volume of migration messages by more than

,'30% in our experiments.

4. PLUM vs. SBN

Let us highlight some of the differences between the two
dynamic load balancers described in this paper.

• Processing is temporarily halted under PLUM while the

load is being balanced. The SBN approach, on the other

hazed, allows processing to continue asynchronously. This

feature allows for the possibility of utilizing latency-

tolerant techifiques to hide the communication overhead
of redistribution.

• Under PLUM, .suspension of processing and subsequent

repartitioning does not guarantee an improvement in the

quality of load balance. In contrast, the SBN approach

always results in improved load balance.

• PLUM redistributes all necessary data to the appropriate

processors immediately before processing. SBN, how-

ever, migrates data to a processor only when it is ready fo

process it, thus reducing the redistribution and communi-
cation overhead.

• PLUM. unlike SBN, performs remapping predictively.

This results in a significant reduction of data movement

during redistribution mid improves the overall cfliciency

of the refinement procedure.

• Lc_ad balancing trader PLUM occurs be/bre the sotver

phase of the computatiotl, wherezLS SBN b_dances the toad

+htring the .solvcr execution. We thcrc fore c_tnnot di rectt y

compare PLUM +rod SBN-ba_d load balancillg, since

their relative I'_rt\wrnatlcc is solver dc[',cndcnt.

5. Summary

We have demonstrated the portability of our novel ap-

proaches to solve the load balancing problem for adaptive
unstructured grids on three state-of-the-art commercial

parallel machines. The experiments were conducted

using actual workloads of both steady and unsteady grids

obtained from real-life applications. We are currently

examining the portability of our software on other plat-

forms (such as shared-memory environments or networks

of workstations) as well as employing various parallel

programming models.
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