0

Portable Parallel Programming for the Dynamic Load Balancing of
Unstructured Grid Applications :

Rupak Biswas
MRJ Technology Solutions
NASA Ames Research Center
Moffett Field, CA 94035, USA
rbiswas@nas.nasa.gov

Abstract

The ability to dynamically adapt an unstruciured grid (or
mesh) is a powerful tool for solving computational prob-
lems with evolving physical features; however, an efficient
parallel implementation is rather difficult, particularly from
the viewpoint of portability on various multiprocessor plat-
Jorms. We uddress this problem by developing PLUM,
an awomatic and architeciure-independent framework for
adaptive numerical computations in a message-passing en-
vironmeni. Portability is demonstrated by comparing per-
formance on an SP2, an Origin2000, and a T3E, without
any code modifications. We also present a general-purpose
load balancer that utilizes symmetric broadcast networks
(SBN) as the underlying communication pattern, with a
goal to providing a global view of system loads across pro-
cessors. Experiments onan SP2 and an Origin2000 demon-
strate the portability of our approach which achieves superb
load balance at the cost of minimal extra overhead.

1. Introduction

The success of parallel computing in solving real-life,
compuwation-intensive probiems relics on thei efticient
mapping and exccution on commercially available multi-
processor architectures. When the algorithms and data
structures comesponding to these problems are dvnamic in
nature (i.¢., their computational workloads grow or shrink at
runtime) or are intrinsically unstructured, mapping them on
1o distributed -memory paralic! machines with dynamic load
balancing offers considerable challenges. Dynamic load
balancing dims to halance processor workloads at runtime
while miinimizing inter-processor comniunication. With the
proliferation ol paraliel computing, dynamic load balancing
has become extremely important in several applications like
scientitic computing, task scheduling. sparse matrix compu-

Sajal K. Das, Daniel Harvey
Dept of Computer Sciences
University of North Texas
Denton, TX 76203, USA
{das,harvey }@cs.unt.edu

Leonid Oliker
RIACS
NASA Ames Research Center
Moffett Field, CA 94035, USA
oliker@riacs.edu

tations, paralle! discrete event simulation, and data mining.

The ability to dynamically adapt an unstructured mesh is
a powertul tool for efficiently solving computational prob-
lems with evolving physical features. Standard fixed-mesh
numerical methods can be made more cost-effective by lo-
cally refining and coarsening the mesh to capture these phe-
nomena of interest. Unfortunately, an efficicnt paralleliza-
tion of adaptive methods is rather ditficult, primarily due
to the foad imbalance created by the dynamically-changing
nonuniform grids. Nonetheless, it is believed that unstruc-
tured adaptive-grid techniques will constitute a significant
fraction of future high-performance supercomputing.

As an example, if a full-scale problem in computational
fluid dynamics were to be solved efficiently in parallel, dy-
namic mesh adaptation would cause load imbalance among
processors. This, in turn, would require large amounts of
data movement at runtime. It is therefore imperative to have
an efficient dynamic load balancing mechanism as part of
the solution procedure. However, since the computational
mesh will be frequently adapted tor unsteady flows, the run-
time load also has to be balanced at each step. In other
words, the dynamic load balancing procedure itself must
not pose a major overhead. This motivates our work.

We have developed i novel method, called PLUM [7],
that dynamically balances processor workloads with a
global view when performing adaptive numerical calcula-
tions in a parallel message-passing environment. Exan-
ining the performance of PLUM for an actual workload,
which sirwlates an acoustic wind-tunnel experiment of a
helicopter rotor blade. on threc different paraltel machines
demonstrates that it can be successfutly ported without any
code modifications.

We propose another new approach to dynamic load bal-
ancing for unstructured god applications based on detin-
ing a robust communication patiem (logical or physical)
among processors, called svametric broudeast nemworks
(SBN) [3]. It is adaptive and decentralized in nature. and

can be ported to any topological architecture through etfi-
cient embedding techniques. Portability results for an adap-
tive unsteady grid workload, generated by propagating a
simulated shock wave through a tube, show that our ap-
proach reduces the redistribution cost at the expense of a
minimal extra communication overhead. In many mesh
adaptation applications in which the data redistribution cost
dominates the processing and communication cost, this is
an acceptable trade-off.

2. Architecture-Independent Load Balancer

PLUM is an automatic and portable load balancing en-
vironment, specifically created to handle adaptive unstruc-
tured grid applications. It differs from most other load bal-
ancers in that it dynamically balances processor workloads
with a global view [1, 7]. In this paper, we examine its
architecture-independent feature by comparing results for a
test case running on an SP2, Origin2000, and T3E.

PLUM consists of a partitioner and a remapper that load
balance and redistribute the computational mesh when nec-
essary. After an initial partitioning and mapping of the un-
structured mesh, a solver executes several iterations of the
application. A mesh adaptation procedurc is invoked when
the mesh is desired to be refined or coarsened. PLUM then
gains control to determine if the workload among the pro-
cessors has become unbalanced due to the mesh adaptation,
and to take appropriate action. If load balancing is required,
the adapted mesh is repartitioned and reassigned among the
processors so that the cost of data movement is minimized.
It the estimated remapping cost is lower than the expected
computational gain to be achieved, the grid is remapped
among the processors before solver execution is resumed.

Extensive details about PLUM are givenin [7]. For com-
pleteness, we cnumerate some of its salient features.

o Reusing the Initial dual graph: PLUM repeatcdly uti-
lizes the dual of the initial mesh for the purposes of load
balancing. This keeps the comnplexity of the partitioning
and reassignment phases constant during the course of an
adaptive computation. New computational grids obtained
by adaptation are translated by changing the weights of
the vertices and edges ot the dual graph. -

"s Parallel mesh repartitioning: PLUM can use any
general-purpose partitioner that balances the computa-
tional loads and minimizes the runtime interprocessor
communication. Several excellent paralle!l partitioners
arc now available [4, 5, 10]; however, the results pre-
sented inthis paper use PMeTiS (6]

o Processor remapping and data movement: To map new
partitions to processors while minimizing the cost ol re-
distribution, PLUM tirst constructs a similarity matrix.
This nurix indicates how the veriex weights ol the new
subdonuiins are distrtbuted over the processors. Three

general metrics: TotalV. MaxV, and MaxSR, are used
to model the remapping cost on most multiprocessor sys-
temns [8]. Both optimal and heuristic algorithms for mini-
mizing these metrics are available within PLUM.

o Cost model metrics: PLUM performs data remapping in
a bulk synchronous fashion to amortize message start-up
costs and obtain good cache performance. The procedure
is similar to the superstep model of BSP [9]. The ex-
pected redistribution cost for a given architecture can be
expressed as a linear tunction of MaxSR. The machine-
dependent parameters are determined empirically.

2.1. Helicopter Rotor Test Case

The computational mesh used to evaluate the PLUM
load balancer is the one used to simulate an acoustics wind-
tunnel experiment of a UH-1H helicopter rotor blade [7].
A cut-out view of the initial tetrahedral mesh is shown in
Fig. 1. Three refinement strategies, called Real-1, Real.2,
and Real_3, are studied. each subdividing varying fractions
of the domain based on an error indicator calculated from
the flow solution. This increased the number of’ mesh el-
ements from 60,968 to 82,489, 201,780, and 321,841, re-

spectively.

Figure 1. Cut-out view of the initial mesh for
the helicopter rotor blade experiment.

2.2. Experimental Results

" The three lett plots in Fig. 2 illustrate parallel speedup
for the three edge-marking strategies on an SP2. Ou-
gin2000, and T3E. Two sets of results are presented for each
machine: one when data remapping is pertormied after mesh
retinement, and the other when remapping is done before re-
tinerment. The speedup numbers are most identical onadt
three machines. The Real.3 case shows the best speedup
values beciuse it is the most computation intensive. Renwp-
ping data before retinerment as the largest relative eltect ltor

Real_1, because it has the smallest refinement region and it
retums the biggest benefit by predictively load balancing the
refined mesh. The best results are tor Real_3 with remap-
ping before refinement, showing an efficiency greater than
87 % on 32 processors.

60 3
P2

3 |.... Remap aftter refincment
"g. 43| — Remap before refineme
'g 0

S

v

E4

Refinement spoedup

77 0 & 8 12 16 20 24 28 32

Remq')ping time (secs)

Refineawnt speedup

Number of processors Number of processors

Figure 2. Refinement speedup (left) and
remapping time (right) within PLUM on an
SP2, Origin2000, and T3E, when data is re-
distributed after or before mesh refinement.

The three right plots in Fig. 2 show the corresponding
remapping times. In almost every case, a significant re-
duction in remapping time is observed when the adapted
mesh is load balanced by performing data movement prior
to refinement. This is because the mesh grows in size only
after the data has been redistributed. In general, the remap-
ping times also decrease as the number of processors is in-
creased. This is because even though the total volume of
data movement increases with the number of processors,
there are actually more processors to share the work. ==

Perhaps the most remarkable teature of these results is
the peculiar behavior of the T3E when P 2> 64. When us-
Mg up to 32 nrocessors, the remapping pertormance ot the
T3E is vens similar to that of the other two machines. How-
ever. tor I* = 61 and 128, the remapping overhead begins

to increase nd violates our cost model. The runtime dit-

lerence when data is remapped before and arter retincment
is dramatically diminished; in fact, all the remapping times
begin to converge to a single value! This indicates that the
remapping time is also attected by the nterprocessor com-
munication patterm. One solution would be to take advan-

> 16 3T @ 63 % 9% tils G (6 32 @ &4 80 % ti2 128

tage of the T3E's ability to etticiently pertorm one-sided
communication.

3. Topology-Independent Load Balancer

In this section, we describe a dynamic load balancer
based on a symmetric broadcast network (SBN), which
takes into account the global view of system loads among
the processors. The SBN is a robust, topology-independent
communication pattern (togical or physical) among P pro-
cessors in a multicomputer system (3]. An SBN of dimen-
sion d > 0, denoted as SBN(d), is a (d + 1)-stage intercon-
nection network with P = 2¢ processors in each stage. It is
constructed recursively as follows. A single node forms the
basis network SBN(0). Ford > 0, an SBN(d) is obtained
from a pair of SBN(d — 1)s by adding a communication
stage in the front with the following additional interproces-
sor connections: (i) node i in stage 0, is made adjacent to
node j = (i + P/2) mod P of stage 1 and (ii) node j in
stage 1 is made adjacent to the node in stage 2 which was
the stage O successor of node i in SBN(d — 1).

The proposed SBN-based load balancer takes into ac-
count a global view of the system and makes it cftective
for adaptive grid applications. Prior work (2] has demon-
strated the viability of this SBN approach. [t processes two
types of messages: (i) load balance messages when a load
imbalance is detected, and (ii) job distribution messages (o
reallocate jobs. We give a brief description of the various
parameters and policies involved in our implementation.

» Weighted queue length: This is to take inte account all
the system variables like computation, communication,
and redistribution costs, that attect the processing of a
local queue. Note that no redistribution cost is incurred
if the data set is available on the local processor. Simi-
larly, the communication cost is zero if the data sets of all
adjacent vertices are stored locally.

o Prioritized vertex selection: When selecting vertices to
be processed, the SBN load balancer takes advantage of
the underlying structure of the adaptive grid and defers lo-
cal execution of boundary vertices as long as possible be-
cause they may be migrated for more etficient execution.
Thus, vertices with no communication and redistribution
costs are executed first.

o Differential edge cut: This is the total change in the
communication and redistribution costs it a vertex were
moved from one processor to another. The vertex with
the smallest ditferential edge cut is chosen for migration.
This policy strives to maintain or improve the cut size
during the exceution of the load balancing algorithm.

e Data redistribution policy: Data redistribution is per-
formed in & fagy manuer, i.c., the non-tocul data set tora
vertex is not moved to a processor until it is about to he
cxectted. Furthermore, the data sets of all adjacent ver-

tices are also migrated at that ime. This policy greatly
reduces the redistribution and communication costs by
avoiding multiple migrations of data sets.

3.1. Unsteady Simulation Test Case

To evaluate the SBN framework, a computational grid
is used to simulate an unsteady environment where the
adapted region is strongly time-dependent. This experi-
ment is performed by propagating a simulated shock wave
through the initial grid shown at the top of Fig. 3. The test
case is generated by refining all elements within a cylin-
drical volume moving left to right across the domain with
constant velocity, while coarsening previously-refined ele-
ments in its wake. Performance is measured at nine succes-
sive adaptation levels during which the mesh increases from
50,000 to 1,833,730 elements.

Figure 3. Initial and adapted meshes (atter lev-
els 1 and 5) for the simulated unsteady exper-
iment.

3.2. Experimental Results

Table | presents pertormance results on an SP2, aver-
aged over the nine levels of adaptation. In addition.4o
achieving excellent load balance, the redistribution cost
(expressed as MaxSR, the maximum number of vertices
moved in and out of any processor) is significantly reduced.
However, the edge cut percentages are somewhat higher,
indicating that the SBN strategy reduces the redistribution
cost at the expense of a shomly higher communication cost.

Table 2 gives the number of bytes that were trans-
ferred between processors during the lvad balancing and
the job distribution phases. The number of bytes trans-
terred is also expressed as A pereentage ol the available
bandwidth. (A wide-node SP2 has a message bandwidth
ol 36 megabyley/second and a message laency ol 40 micro

Edge Cut Load

P || Before | After | MaxSR | Imbalance
2 2.88% 5.51% | 80,037 1.00
4 7.27% | 10.76% | 76,665 1.00
8 il 12.71% | 16.35% | 53,745 1.00
16 || 19.40% | 23.87% | 46,825 1.01
32 | 24.42% | 30.41% | 28,031 1.02

Table 1. Grid adaptation results on an SP2
using the SBN-based load balancer.

seconds.) The results demonstrate that the cost of vertex mi-
gration is significantly greater than the cost of actually bal-
ancing the system load. An extrapolation of the results us-
ing exponential curve-fitting indicates that normal speedup
will not scale for P > 128.

Balancing Messages Migration Messages
P | Volume | Bandwidth |[* Volume Bandwidth
2 | 0.342MB 0.00% 3.919MB 3.67%
4| 0.150MB 0.00% 7.939MB 7.44%
8 | 0.463MB 0.01% .| 25.397MB 23.79%
16 | 0.581 MB 0.02% 30.454 MB 28.53%
32 | 1.550MB 0.12% 38.244 MB 35.83%

Table 2. Communication overhead of the SBN
load balancer.

Table 3 shows the percentage of time spent in the SBN
load balancer compared to the execution time required to
process the mesh adaptation application. The three columns
correspond to three types of load balancing activities: (i) the
time needed to handle balance related messages, (i) the
time needed to migrate messages from one processor to an-
other, and (iii) the time needed to select the next vertex to
be processed. The results show that processing related to
the selection of vertices is the most expensive phase of the
SBN load balancer. However, the total time required to load
balance is still relatively small compared to the time spent
processing the mesh.

We were able to directly port the SBN methodology from
an SP2 to an Origin2000 without any code modifications.
This demonstrates the architecture independence of our load
balancer. The load imbalance factors were almost identical
on the two machines. The cdge cut values were consistently
targer on the Origin2000, but the MaxSR values were larger
only when using less than 16 processors.

Some of the difterenees in pertormuance results on these

Balancing | Migration Vertex
P | Actvity Activity | Selection
2 | 0.0053% | 0.0014% | 0.4530%
4| 0.0087% | 0.0069% | 2.0381%
8| 0.1745% | 0.0569% | 2.8386%
16 | 0.2669% | 0.0629% | 0.8845%
32| 0.1154% | 0.0774% | 2.1043%

Table 3. Overhead of the SBN load balancer.

two machines are due to additional refinements that were
implemented prior to running the experiments on the Ori-
gin2000. First, the algorithm for distributing jobs was mod-
ified to guarantee that the processor initiating load balanc-
ing always had sufficient workload. This reduces the to-
tal number of balancing related messages but increases the
number of vertices migrated, especially for small numbers
of processors. Second, data sets corresponding to groups of
vertices were moved at a time. This bulk migration strategy
reduces the volume of migration messages by more than
R0% in our experiments.

4. PLUM vs. SBN

Let us highlight some of the differences between the two
dynamic load balancers described in this paper.

e Processing is temporarily halted under PLUM while the
load is being balanced. The SBN approach, on the other
hand, allows processing to continue asynchronously. This
feature allows for the possibility of utilizing latency-
tolerant techniques to hide the communication overhead
of redistribution.

¢ Under PLUM, suspension of processing and subsequent
repartitioning does not guarantee an improvement in the
quality of load balance. In contrast, the SBN approach
always results in improved load balance.

s PLUM redistributes all necessary data to the appropriate
processors immediately before processing. SBN, how-
ever, migrates data to a processor only when it is ready fo
process it, thus reducing the redistribution and communi-
cation overhead.

e PLUM, unlike SBN, performs remapping predictively.
This results in a significant reduction of data movement
during redistriibution and improves the overall ctficiency
of the refinement procedure.

e Load balancing under PLUM occurs before the solver
phase ot the computation, whereas SBN balances the load
during the solverexecution. We theretore cannot direetly
compare PLUM and SBN-based load baluncing, since
their relitive performancee is solver dependent.

S. Summary

We have demonstrated the portability of our novel ap-
proaches to solve the load balancing problem for adaptive
unstructured grids on three state-of-the-art commercial
parallel machines. The experiments were conducted
using actual workloads of both steady and unsteady grids
obtained from real-life applications. We are currently
examining the portability of our software on other plat-
forms (such as shared-memory environments or networks
of workstations) as well as employing various paraliel
programming models.

Acknowledgements

This work is supported by NASA under Contract Num-
bers NAS 2-14303 with MRJ Technology Solutions and
NAS 2-96027 with Universities Space Research Associ-
ation, and by Texas Advanced Research Program Grant
Number TARP-97-003594-013.

References

{1} R. Biswas and L. Oliker. Experiments with repartitioning
and load balancing adaptive meshes. Technical Report NAS-
97-021, NASA Ames Reseaich Center, 1997.

[2] S. Das, D. Harvey, and R. Biswas. Parallel processing of
adaptive meshes with load balancing. In 27rh Inil. Conf. on
Parallel Processing, pages 502-509, 1998.

{3} S. Das and S. Prasad. Implementing task ready queues in
a multiprocessing environment. In Inil. Conf on Parallel
Computing, pages 132-140, 1990.

{4] J. Raherty.R. Loy, C. Ozturan, M. Shephard, B. Szymanski.
J. Teresco, and L. Ziantz. Parallel structures and dynamic
load balancing for adaptive finite element computation. Ap-
plied Numerical Mashematics, 26:241-263, 1998.

[5] G.Karypisand V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. Technical Report
95-035, University of Minnesota, 1995.

[6] G. Karypis and V. Kumar. Parallel multilevel k-way parti-

tioning scheme for irregular graphs. Technical Report 96-

036, University of Minnesota, 1996.

L. Oliker and R. Biswas. PLUM: Parallel load balancing

for adaptive unstiuctured meshes. Journal of Parallel and

Distributed Computing, 52:150-177, 1998.

[8] L. Oliker, R. Biswas, and H. Gabow. Performance anal-
ysis and portability of the PLUM load balancing system.
In Euro-Par'98 Parallel Processing, Springer-Verlag LNCS
1470:307-317. 1998.

(9] L. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33:103-11 1. 1990.

{10] C. Walshaw. M. Cross, and M. Everctt. Parallel dynamic

graph pattitioning tor adaptive unstructured meshes. Journal
of Purallel und Distributed Computing. 47:102-108, 1997

[7

—

