Lack Of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility

AeroMat 2000 Conference and Exposition
Friction Stir Joining: Session 4

June 29, 2000

David G. Kinchen, Dr. Glynn P. Adams
Program and Technology Development
Lockheed Martin Space Systems, Michoud Operations
New Orleans, LA
Acknowledgements and Planned Applications

- **NASA funded Special Development Studies 1998 and 1999**
 - MSFC Materials and Processes ED33
 - MSFC Welding facility in Bldg. 4705
 - MSFC NDE support

- **LMMSS**
 - M&P Test Laboratories
 - NDE Development Support

- **Outside Contractors**
 - JENTEK Sensors, Inc.
 - Sonic Systems International & Automated Inspection Systems
 - RD/Tech
 - Krautkramer

D. G. Kinchen (504)-257-1454
E-Mail: david.kinchen@maf.nasa.gov
Overview of Development Activities

- **Vertical FSWelder at MSFC Bldg. 4705**
 - 0.32" & 0.65" Al 2195T8M4 Plate
 - RPM, IPM and plunge force varied during weld development experimental designs
 - Confirmation and full scale panels welded
 - Demonstration hardware completed

- **Square Butt Joint 0.32" & 0.65" Thick**
 - Al2195 and Bi Metal, Al2219 to Al2195-Joints
 - Tapered
 - Two-Sided
 - Joint Gap
 - Repair Methods

- **Mechanical Properties Tests**
 - Tensile, yield and elongation at room, cryogenic and elevated temperatures
 - SCT and SST at room, cryogenic and elevated temperatures
FSWeld Mechanical Properties Specimens & Tests

- Room Temperature Tensile Specimen

- Cryogenic & Elevated Temperature Tensile Specimen

- Test Temperatures
 - -423°F
 - -320°F
 - 70°F
 - +200°F
 - +300°F
FSWeld Mechanical Properties Test Results

0.320” & 0.650” RT & Cryogenic Tests
- DOE, verification and full-length
- Reduction in strength vs thickness
- Elongation consistent and reproducible

0.320” & 0.650” Cryogenic Enhancement in Strength
- 1.5X Ftu and Fty
- Elongation consistent with RT
- Elevated temp, Reduction
- 0.75X Ftu and Fty @ +300F
FSWeld Lack Of Penetration

- **LOP - Lack Of Penetration**
 - Root Side of Weldment
 - Surface Breaking Defect
 - Results from incomplete penetration of the DXZ
 - Frequently referred to as "kissing bond"
 - Requires micro examination to detect
 - Range of LOP studied from 0.02 to 0.075"

AeroMat 2000LOP MechProp.ppt
Rev Date: 04/12/2000

D. G. Kinchen (504)-257-1454
E-Mail:david.kinchen@maf.nasa.gov
LOP in FSWeld: Mechanical Properties Results

- **LOP - RT and Cryo Tensile Results**
 - Consistent, repeatable results
 - Predictable as a function of LOP depth
 - UTS results compared closely to gross fracture stress at ultimate failure after simulated service tests
FSWeld Surface Crack Tension Tests

- Tests conducted at RT, -320F and -423F
- Flaws oriented parallel to the weld direction and perpendicular to the load direction
- Initiated by EDM and increased to size under cyclic axial tension
- CL Crown and CL Root locations demonstrated lowest toughness
- Li and Ti Root locations generated wide scatter in toughness data

<table>
<thead>
<tr>
<th>a/2c Ratio</th>
<th>a (in)</th>
<th>2c (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.125</td>
<td>0.250</td>
</tr>
<tr>
<td>0.20</td>
<td>0.150</td>
<td>0.750</td>
</tr>
</tbody>
</table>
FSWeld SCT Gross Fracture Stress Results

- CL flaw data plotted
- Limited data
- Threshold of 0.180” suggested (a/2c = 0.5 and a/2c = 0.2)
- SST data included

SCT at -320F with LI Root Flaw

SCT at -320F with CL Crown Flaw
FSWeld Simulated Service Tests

Fracture Specimen
(Use NC Tape F-4)

Simulated Service Test Conditions
- Pre-cracked flaws and natural LOP
- Multiple flaw locations
- RT, -423°F & +300°F
- Multiple RT proof cycles, hold at specified stress, repeated for multiple mission simulation

Note
Sawcut dimensions to be 4.0" x 12.0"
FSWeld Simulated Service Tests Results

- **LOP - SST Results**
 - Consistent, repeatable results
 - Predictable as a function of LOP depth
 - Superior to fusion weld results
FSWeld Simulated Service Tests Results

0.25 X 0.80" Flaw

0.06" LOP

Friction Stir Weld SCT & SST Data
0.320" 2195P/2195P

Gross Fracture Stress (psi)

Crack Length 2c (inches)

D. G. Kinchen (504)-257-1454
E-Mail: david.kinchen@maf.nasa.gov
Page: 12
FSWeld NDE Feasibility for LOP Inspection

- Conventional Eddy Current
 - Zetec

- High Sensitivity Eddy Current
 - MWM sensor
 - Jentek Sensors

- Conventional Ultrasonics
 - Contact & Immersion
 - 0, 45 and 60° Transducers
 - Shear wave
 - Creeping wave
 - Dual Element
 - Sonic Systems/Automated Inspection Systems
 - Krautkramer

- Phased Array UT
 - 64 element array
 - Shear wave
 - R/D Tech
FSWeld NDE Feasibility Results

- **MWM Eddy Current**
 - Jentek Sensors, Inc.
 - 0.040” detected
 - Possibility of greater detectability

Figure 3: Normalized MWM Conductivity Scans for Friction Stir Weld Specimens, with MWM Oriented Perpendicular to Weld.
FSWeld NDE Feasibility Results

- **Phased Array UT**
 - R/D Tech Inc.
 - 0.060" LOP results shown
 - Possibility of greater detectability
FSWeld NDE Feasibility Results

- **Phased Array UT**
 - LMSS Michoud Operations
 - 0.030” and 0.060” LOP detected post proof
Results

- **Conventional Ultrasonics**

- **Sonic Systems/Automated Inspection Systems**
 - Creeping wave and Dual Element FAST probes detected 0.040" LOP intermittently
 - Easily detected deep LOP (0.090"

- **Krautkramer**
 - Contact & Immersion 0, 45 and 60° Transducers, and Shear wave
 - Readily detected 0.060" deep LOP

- **Conventional Eddy current**

- **Zetec**
 - Readily detected 0.090" LOP, but not 0.040".
 - Recommended development of other NDE methods
Results

- Mechanical property tests of FSW in 0.320" Al 2195 demonstrated an average RT UTS of 59 ksi, with a cryogenic enhancement factor of 1.5 and elongation of ~10%. All of these values are above those currently attainable with fusion weld processes. 0.650" Al 2195/Al 2219 FSWelds average RT UTS is 47 ksi with similar cryo enhancement and elongation.

- Lack Of Penetration is NOT an inherent condition in FSWelds of Al 2XXX alloys. Adequate process controls preclude LOP.

- SCT and SST tests of induced cracks resulted in gross fracture stress values above the values associated with current fusion weld processes.

- Tensile and fracture test results of LOP indications demonstrate predictable results well above comparable fusion welds at RT, cryogenic and elevated temperatures.

- Multiple NDE techniques exist or have shown feasibility to detect LOP in FSWelds.