NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Further Investigations of the Passive Optical Sample Assembly (POSA) - I Flight ExperimentThe Passive Optical Sample Assembly-I (POSA-I), part of the Mir Environmental Effects Payload (MEEP), was designed to study the combined effects of contamination, atomic oxygen, ultraviolet radiation, vacuum, then-nal cycling, and other constituents of the space environment on spacecraft materials. The MEEP program is a Phase I International Space Station Risk Mitigation Experiment. Candidate materials for the International Space Station (ISS) were exposed in a specially designed "suitcase" carrier, with identical specimens facing either Mir or space. The payload was attached by EVA to the exterior of the Mir docking module during the STS-76 mission (f'ig. 1). It was removed during the STS-86 mission after an 18-month exposure. During the mission, it received approximately 7 x 1019 atoMS/CM2 atomic oxygen, as calculated by polymer mass loss, and 413 ESH of solar ultraviolet radiation on the Mir-facing side. The side facing away from Mir received significant contaminant deposition, so atomic oxygen fluence has not been reliably determined. The side facing away from Mir received 571 ESH of solar UV. Contamination was observed on both the Mir-facing and space-facing sides of the POSA-I experiment , with a greater amount of deposition on the space facing side than the Mir side. The contamination has been determined to be outgassed silicone photofixed by ultraviolet radiation and converted to silicate by atomic oxygen interaction. Electron spectroscopy for chemical analysis (ESCA) with depth profiling indicated the presence of 26 - 31 nm silicate on the Mir-facing side and 500 - 1000 nm silicate on the space-facing side. The depth profiling also showed that the contaminant layer was uniform, with a small amount of carbon present on the surface and trace amounts of nitrogen, phosphorus, sulfur, and tin. The surface carbon layer is likely due to post-flight exposure in the laboratory and is similar to carbonaceous deposits on control samples. EDAX and FTIR analysis concurred with ESCA for the presence of silicon, oxygen, and carbon. Nearly 400 samples were exposed on POSA-I, which included materials such as thermal control coatings polymeric films, optical materials, and multi-layer insulation blankets. A previous paper discussed the effects of the space environment exposure and contaminant deposition on candidate materials for ISS, including Z93P inorganic thermal control coating, various anodizes, and multi-layer insulation blankets. This paper details the investigation of environmental effects on the remainder of POSA-I samples, particularly the innovative conductive thermal control coatings developed by AZ Technology of Huntsville, AL and HT Research Institute of Chicago, IL. The silicone/silicate contamination had a significant impact on the solar absorptance of white inorganic thermal control coatings on the space-facing side of POSA-I. The effect of contamination on electrical conductivity is discussed. Samples of conductive anodized aluminum developed by Boundary Technologies of Buffalo Grove, IL were also exposed on POSA-I. The effects of the space environment and contaminant deposition on the optical and electrical properties of the conductive anodized aluminum are discussed.
Document ID
20000072422
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Finckenor, Miria M.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Kamenetzky, Rachel R.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Vaughn, Jason A.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Mell, Richard
(AZ Technology Huntsville, AL United States)
Deshpande, M. S.
(IIT Research Inst. Chicago, IL United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2001
Subject Category
Optics
Meeting Information
Meeting: 39th Aerospace Sciences Meeting
Location: Reno, NV
Country: United States
Start Date: January 8, 2001
End Date: January 11, 2001
Sponsors: American Inst. of Aeronautics and Astronautics
Funding Number(s)
PROJECT: RTOP 478-88-50
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available