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Current emphasis in the aircraft industry toward reducing manufacturing
cost has created a renewed interest in integrally stiffened structures. Crack turning
has been identified as an approach to improve the damage tolerance and fail-safety
of this class of structures. A desired behavior is for skin cracks to turn before
reaching a stiffener, instead of growing straight through. A crack in a pressurized
fuselage encounters high T-stress as it nears the stiffener--a condition favorable to
crack turning. Also, the tear resistance of aluminum alloys typically varies with
crack orientation, a form of anisotropy that can influence the crack path.

The present work addresses these issues with a study of crack turning in
two-dimensions, including the effects of both T-stress and fracture anisotropy.
Both effects are shown to have relation to the process zone size, an interaction that
1s central to this study.

Following an introduction to the problem, the T-stress effect is studied for
a slightly curved semi-infinite crack with a cohesive process zone, yielding a
closed form expression for the future crack path in an infinite medium. For a
given initial crack tip curvature and tensile T-stress, the crack path instability is
found to increase with process zone size.

Fracture orthotropy is treated using a simple function to interpolate

between the two principal fracture resistance values in two-dimensions. An



extension to three-dimensions interpolates between the six principal values of
fracture resistance. Also discussed is the transition between mode I and mode II
fracture in metals. For isotropic materials, there is evidence that the crack seeks
out a direction of either local symmetry (pure mode I) or local asymmetry (pure
mode II) growth. For orthotropic materials the favored states are not pure modal,
and have mode mixity that is a function of crack orientation.

Drawing upon these principles, two crack turning prediction approaches
are extended to include fracture resistance orthotropy--a second-order linear elastic
method with a characteristic length parameter to incorporate T-stress/process-zone
effects, and an elastic-plastic method that uses the Crack Tip Opening
Displacement (CTOD) to determine the failure response. Together with a novel
method for obtaining enhanced accuracy T-stress calculations, these methods are
incorporated into an adaptive-mesh, finite-element fracture simulation code.

A total of 43 fracture tests using symmetrically and asymmetrically loaded
double cantilever beam specimens were run to develop crack turning parameters

and compare predicted and observed crack paths.
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CHAPTER 1.0
BACKGROUND

1.1 Manufacturing Trends

About a third of the direct operating cost of a commercial aircraft is associated
with the manufacturing cost, which is probably the most critical competitive parameter
with regard to market share [1]. In the past, the airframe design process in the U.S. has
been focused on riveted aluminum skin and stringer construction, a structural concept
dating from the 1940’s. Design and manufacturing processes based on this concept
have become highly mature, and therefore difficult to reduce significantly in cost
without substantial deviations from conventional practice. Nevertheless, metallic
structure is also well proven, and the industry will likely retain extensive metallic
production capability for the foreseeable future.

The continual need for low acquisition cost and the emergence of high speed
machining and other technologies has brought about a renewed interest in large,
integral, metallic structures for aircraft applications. An example of an integral
fuselage concept developed under the NASA Integral Airframe Structures (IAS)
Program [1] is shown in Figure 1.1, consisting of only two detail parts—skin and
frames. The conventional baseline structure is shown in Figure 1.2, and requires the
separate fabrication and assembly of skin, stringers, frames, stringer clips, and tear
straps. Integrating multiple parts into larger pieces of structure offers inherent savings
and flexibility, which is made increasingly more attractive as the labor required to
machine the parts is reduced by faster machines. Nevertheless, application of low-cost
integral structures has been inhibited in many applications by a perceived lack of

damage tolerance.
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1.2 Damage Tolerance and Integral Structures

Properly designed integral structures with attention to fillet radii and other life-
limiting features, can potentially achieve very long fatigue lives. Nevertheless,
damage tolerance has long been a concern for integral structures [2], which have been
particularly shunned in critical areas like the fuselage. This concern was largely based
on NASA fatigue crack growth tests [3,4] which showed that a skin crack slows more
when crossing a mechanically fastened stiffener than an integral stiffener. Multi-bay
panels were seen to crack through considerably faster in integral construction,
compared to multi-piece designs. The NASA data would infer that catastrophic failure
of integral structure would likely develop more quickly than in built up structure--that

is, if the cracks grow straight through the stiffeners as they did in the NASA tests.

1.3 Crack Turning as a Mechanism to Enhance Damage Tolerance and Fail Safety

On the contrary, crack turning has long been recognized as a potentially
important crack arrest mechanism for pressurized aircraft fuselage structure, and for
longitudinal cracks can result in the turning and flapping behavior shown in Figure 1.3
as reported by Maclin [5]. This behavior contains the damage, vents the pressure in a
controlled manner, and results in obvious damage which can be subsequently repaired.
Flapping was observed to occur reliably enough during tests of thin skinned, relatively
narrow-body fuselages that it was utilized as a fail-safe criterion on the 707, 727, and
737 fuselages for regions excluding the joint areas. Similar phenomena have been
observed in unstiffened cylinders by Swift [6, 7], who also reported turning and
cracking in an experimental fuselage with adhesively bonded stiffeners [2], Kosai et al
[8], who studied crack turning in stiffened cylinders, and Pettit [9], who observed
crack turning and arrest in integrally stiffened fuselage structure with transverse

cracks.



Figure 1.3 Crack Turning and Flapping in a Boeing 707 Test Panel [5]

These behaviors were observed in tests, but have been troublesome to model
adequately. Turning and flapping was observed in narrow-body aircraft (skin
thicknesses down to 0.04 inches or so), but not wide-body aircraft like the 747 aircraft.
Also, it was found that aging aircraft develop multi-site damage, which can potentially
alter the crack turning and flapping performance [10]. The need for an accurate crack
trajectory modeling capability was evident.

In the last decade, a sequence of authors have studied the fuselage flapping
phenomenon, including Kosai et al [11], Miller et al [12], Potyondy et al [13], Knops
[14], and Chen [15]. Beginning with Potyondy, an adaptive mesh finite element code
was used similar to that proposed by Wawrzynek and Ingraffea [16] but extended to
three-dimensional shell problems, which allows the trajectory of the crack to develop
naturally in accordance with a user-selected crack turning theory. Potyondy used the
first order maximum tangential stress theory of Erdogan and Sih [17] to predict the
crack trajectory of an adhesively bonded narrow-body fuselage panel tested at Boeing.

He was able to approximate the actual behavior fairly well in the gently curving region



until the crack grew near to the tear strap, but was unable to predict the sharp turning
radius observed as the crack grew parallel to the tear strap, resulting in flapping.

The work of Kosai, Knops and others gave substantial evidence that to more
accurately model crack turning behavior in pressurized cylinders, a second-order
theory was needed such as that described by Finnie and Saith [18]. (Here, second-
order refers to the inclusion of the second term, or T-stress, in the asymptotic stress
field in the vicinity of the crack tip, which is neglected in the Erdogan and Sih theory.)
Knops was the first to implement this theory in an adaptive mesh finite element code',
and showed that for simulations of various specimens with tensile T-stress, the
second-order theory predicted that the crack would turn more sharply than the first
order theory, improving correlation with test results. Yet despite the improved theory,
his results for the Boeing narrow body panel test compared very closely with those of
Potyondy. Like Potyondy, he was unable to simulate the small turning radius of the
crack in the vicinity of the tear strap, and the resulting flapping phenomenon.

Pettit [9] observed a similar rapid turning phenomenon when testing integrally
stiffened fuselage test panels with a symmetric, two-bay, circumferential crack. The
panels were loaded with pressure and axial tension. Crack turning was attributed to
the T-stress, which was shown to be significant as the crack passed through a narrow
region (on the order of a ten skin thicknesses) immediately adjacent to the edge of an
arresting stiffener. The analyses also indicated that the presence of the T-stress was
largely driven by geometrically nonlinear behavior (pressure pillowing) which would
not occur if the panels were unpressurized. In the pressurized panel, which turned (but

did not flap) at both crack tips, a 23 percent increase in residual strength was observed.

' Adaptive mesh, in this context, refers to a code that remeshes the area around the crack tip as it grows,
allowing the crack to follow a natural path.



Nevertheless, some spurious turning results were also observed that indicated a need
to take into account fracture toughness anisotropy.

Pettit et al [1] later combined the 2nd order turning criterion of Finnie and
Saith with the orthotropic theory of Buczek and Herakovich [19] to formulate a
second-order crack turning criterion with fracture toughness orthotropy that will be
described in more detail in Chapter 5. This theory was implemented by Chen [15] into
a 3D shell adaptive mesh environment similar to that of Potyondy, and subsequently
used to model the same Boeing test panel studied by previous authors. His results,
comparing first and second-order isotropic theories, and second order theory for both
isotropic and orthotropic cases are presented in Figure 1.4. Note that in the second-
order isotropic run, he was for the first time able to negotiate the fairly tight turn
observed in the test data as the crack approaches the tear strap. In the second-order
orthotropic case, he matched the first part of the trajectory considerably better, but was
still unable to simulate crack turning at the tear strap, because the crack was growing
in the preferred direction of the 2024-T3 fuselage skin, and the effect of the T-stress
was insufficient to turn the crack. Despite this shortcoming, the ability to simulate
crack deflection by a tear strap for the isotropic case was a significant first.

While there were various differences in the finite element implementation, it
appears that the main difference in Chen’s isotropic analysis which enabled him to
show turning and flapping where Knops did not was the characteristic length, .,
chosen for use in the analysis. Chen used a value of 0.09 inches which was found
during finite element simulations to correlate fairly well with crack paths observed in
double cantilever beam specimens reported by Pettit [9], whereas Knops used a value

of 0.05 inches®.

2 Actually, Knops is not explicit with regard to the value of r. utilized for 2024-T3. However, he did
quote a value for PMMA plastic plate of 1.3 mm (0.05 inches) based on the results of Ramulu and
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Kobayashi [20] . Kosai, Kobayashi and Ramulu [8] later gave the same value for 2024 aluminum, and
it is appears that Knops used this value for both materials.



Attempts in the literature to evaluate r. often give contradictory results, as will
be discussed at length in Chapter 5. While presumably associated with some process
zone dimension, the phenomenological basis by which the process zone affects the
crack path has not been well understood. Nevertheless, comparison of fatigue and
static tearing crack paths in aluminum under a high T-stress environment have shown
a pronounced difference in crack path [9] (the statically torn specimens turning more
sharply), confirming at least the notion that increased process zone size should

promote crack turning.

1.4 Program Focus and Scope

The present study will focus on the crack turning problem in the context of a
crack growing in a large integral metallic panel, with specific focus on factors that
decrease the radius of turning. The basic phenomenology of crack turning will be
explored, with the primary hypothesis that process zone effects result in the
acceleration of crack turning in the presence of T-stress. It is hoped that the present
study will result in greater understanding of that role, as well as provide improved
methods for more accurate simulation of crack turning. In a broader sense, the
following factors are believed to be potentially important with respect to crack turning

behavior.

—

. Mode mixity (load asymmetry)

2. T-stress

3. The size and nature of the inelastic fracture process zone at the crack tip
4. Fracture toughness anisotropy

5. Transition between competing fracture modes



An important theme that will be underlying this work is the observation that
tensile T-stress often arises as a crack nears an integral stiffener, particularly in a
stiffened skin arrangement loaded under lateral pressure, such as an aircraft fuselage.
As will be described in Chapter 2, tensile T-stresses cause the crack to become
directionally unstable[21], potentially resulting in the desired turning behavior. The
more T-stress, the sharper the crack is likely to turn. From a damage tolerance and
residual strength perspective, it is desirable for the crack to turn until it is oriented
parallel, or nearly parallel to the stiffener. However, the region of the crack path over
which the T-stresses arise is often quite small [9], perhaps on the order of ten skin
thicknesses or less. Thus it may be necessary for the crack to turn at a fairly small
radius if it is to miss the stiffener, or impinge upon it at a sufficiently grazing angle to
effectively blunt the damage. It has been observed that the process zone size can have
a significant effect on the crack path [9], with larger process zones in a high T-stress
environment turning the crack far more sharply than commonly used linear elastic
theories predict. In view of the need for the crack to turn with a small radius, proper
understanding of this effect is considered to be critical.

Engineering materials often exhibit fracture resistance anisotropy, which has
been shown to strongly affect the crack path [22]. An attempt will be made to extend
the most promising theories to include fracture resistance orthotropy, a special (and
very common) case where the toughness function exhibits symmetry in an
orthonormal basis. This will be discussed in two and three dimensions in Chapter 4.

While cracks most often propagate in-plane in a nearly pure crack opening
mode (mode I), it is possible for a.crack in a ductile material to grow in a crack sliding
mode (mode II) when the crack is heavily shear loaded. While transition between the

two modes is rarely observed in practice, it has been observed in laboratory



10

experiments, may provide an alternative method to achieve crack turning, and is given
limited attention in Chapters 4 and 5.

Drawing upon the foregoing, a practical, second-order linear elastic theory for
the prediction of crack trajectory, including T-stress and fracture toughness
orthotropy, will be developed in Chapter 5, including methods developed concurrently
by the author under the NASA IAS program. Also included is a modification of an
elastic-plastic crack trajectory method to include fracture resistance orthotropy.

Chapter 6 describes the implementation of elastic and elastic-plastic crack
turning theories into the FRANC2D/L fracture simulation code. A method is also
presented to enhance the accuracy of the T-stress calculation utilized by the elastic
theories. Simulations are compared to test data in Chapter 7, including selected data
from the NASA IAS program.

Chapter 8 will provide a concluding discussion, and recommendations for

future work.



CHAPTER 2.0

ISOTROPIC CRACK TURNING THEORY IN TWO-DIMENSIONS

2.1 Linear Elastic Crack Kinking Due to Mixed-Mode Loading Without T-Stress
The mixed-mode expressions for the two-dimensional elastic stress field

around a crack tip (Figure 2.1) are given to the first two terms [23] as

o, = —217rr cosg_K,(l+sin2g)+%K,,sin9—2K,,tang:|+§(1+cos29) 2.1)
1 e[ 6 3 : T
Cp= o cos—z—_K, coszg—EK,, sm9:|+3(1—c0526) 2.2)
W Ty [K sin@ + K ;(3cos — 1)]—Zs1n29 (2.3)
r 2 [ 2
YA }0}6 Gr
Og
-
X

Figure 2.1 Crack Tip Coordinate and Stress Notation

where K; and Kj; are the stress intensity factors associated with mode I and mode II
loading as illustrated in Figure 2.2. The T-stress is the constant component of the

stress field, and oriented parallel to the crack tip as shown in Figure 2.1.

11
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Figure 2.2 Illustration of Crack Tip Loading Modes
(Shown with Positive Sense)

Most of the studies related to crack turning found in the literature focus on
determining the kink angle that occurs when a crack is loaded with in-plane
asymmetry. The leading stress terms are singular in r, thus dominating crack tip
stresses in the elastic solution. Thus, with the tacit assumption that the mechanism by
which the crack is directed occurs at or very close to the physical crack tip, the second
and higher order terms are often neglected, even though they may be significant at
some distance from the crack tip. In these first-order turning theories, the asymmetry
is characterized exclusively in terms of the mode mixity, K;7K;. For the time being,
we will postpone our discussion of second-order kinking theories, which assume a
process zone size large enough that T affects the kink angle.

The classical first-order maximum tangential stress (0 max) theory, proposed
by Erdogan and Sih [17] for isotropic materials, asserts that the crack will grow
toward the location of the maximum tangential tensile stress. By differentiating the
first term in Equation (2.2) with respect to theta and setting it to zero (equivalent to
setting 0,9 =0) they obtained (shown somewhat rearranged)

K” _ _SinAoc

K; (3cosAf,-1) 2.4)
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or [24]
AB. = 2tan-! 1-1+8(K,; /K, )
‘ 4(I{II/K'I) (25)

where A6, is the kink angle. This expression predicts straight crack growth unless
K0, as in asymmetric loading or in the case of a crack with a perturbed trajectory.
Equation (2.5) is plotted in Figure 2.3, along with two other well-known first
order linear elastic theories, the maximum energy release rate (G(6)max) theory
proposed by Hussain et al. [25], and the minimum strain energy density theory
(S(6)min) proposed by Sih [26]. For convenience, the data is plotted using the mode

mixity parameter

n I

Me = 3tan“[ﬁ] (2.6)

-80 S(8)min (plane stress, v = 0.3)
-70 G(8) max
A8 -60 } Ogg max

0 0.2 0.4 0.6 0.8 1

(Mode II) M (Mode I)

Figure 2.3 Comparison of First-Order Linear Elastic Crack Kinking Theories
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By assuming other quantities, such as maximum principle stress, maximum hoop
strain and/or void growth, numerous first-order kinking criteria have been proposed
[e.g. 27, 28, 29].

For the most part, all these theories predict quite similar kink angles,
particularly as K;<<K). Nevertheless, the data of many authors have been correlated
with the various theories [28, 29] in an attempt to determine the most accurate.
Noteworthy among the empirical studies in this respect is the very meticulous work of
Maccagno and Knott [30, 31], who, unlike most authors, chose a specimen geometry
with near zero T-stress in order to minimize higher-order effects. They also designed
their specimens of sufficient thickness to ensure a plain strain state of stress near the
crack tip. Their work included testing of plexiglass at room temperature, and various
grades of steel at low temperature (~196°C, resulting in transgranular cleavage
fracture), and showed that even for moderate amounts of ductility, the initial kink
angle was well predicted by the maximum tangential stress theory of Erdogan and Sih.
This was true even when the ductility was sufficiently high that they had to resort to
an elastic-plastic failure criterion to correlate the fracture initiation loads. However,
they cautioned that while this was true of the transgranular cleavage failure mode, it
might not be true of other failure mechanisms (more on this momentarily).

Pook [32], and Liu [33] provided crack kinking data for aluminum alloys that
also correlates well with the maximum tangential stress theory, at least in the

predominately mode I regime.

2.2 Elastic-Plastic Crack Kinking
Huchinson [34] studied the stress field at the tip of a crack in a strain hardening

material which follows the Ramberg Osgood constitutive law



15

£.2, a(ij @.7)

e() O-O o-()
where o and € are the stress and strain, and o, and &, are the corresponding yield
values. A theoretical description of the asymptotic stress field was developed of the

form

K
%y = sy Jis(6) (2.8)

An equivalent theoretical development was concurrently published by Rice and
Rosengren [35], thus (2.8) is has become known as the HRR stress field. The HRR
theory assumes proportional loading, and thus is not valid for a propagating crack, but
provides insight into the crack behavior at initiation.

Shih [36] extended the HRR theory to include mixed mode loading under
plane strain conditions, and applied it to develop a maximum circumferential stress
theory for elastic-plastic crack initiation. Note that the HRR fields assumes that T and
higher-order terms are zero in the far-field elastic stress field, and represents only the
leading term in the elastic-plastic stress field. Thus, though it includes a process zone,
the elastic-plastic theory of Shih is still a first order theory. The results of his work are
reproduced in Figure 2.4, and revert to the theory of Erdogan and Sih for n=1. For
higher values of n, the kink angle predicted is still not dramatically different from the
linear elastic theory, thus the observation that the linear elastic theory may adequately

predict the kink angle even in the presence of significant plasticity is not surprising.



16

Figure 2.4 Elastic-Plastic Crack Kinking Theory, After [36]

As mentioned earlier, there remains the issue of the failure mode. Aware that
the tearing failure mode of HY 130 steel at room temperature would involve void
growth and decohesion along planes of maximum shear, as opposed to the
transgranular cleavage failure mode observed in earlier work, Maccagno and Knott
proceeded to run otherwise identical room temperature tests [31]. While large-scale
plasticity was found to exist in the specimens, the failure mode clearly followed planes
of maximum shear, rather than maximum tension. For mode I loading, this resulted in
a zigzag pattern directed macroscopically along the original crack plane. However,
increased proportions of mode II loading resulted eventually resulted in straight crack
growth along the plane of maximum shear. Subsequent tests by other investigators
[37, 38, 39, 40] have shown that various aluminum alloys also fail macroscopically
along the direction of local symmetry when loaded predominately in mode I, and the

direction of local asymmetry when loaded mostly in mode II, with transition between
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the modes occurring at some intermediate mode-mixity. This modal transition
behavior will be discussed in greater detail in Chapter 4. Nevertheless, mode 11
dominant crack propagation is rarely if ever observed in aircraft structures (and
probably most structures), thus attention will be given primarily to mode I dominant

crack propagation.

2.3 Linear Elastic Crack Path Instability in a Positive T-stress Environment

Notwithstanding the foregoing discussion of crack kinking theories, the crack
turning problems encountered in many real structural applications are not really crack
kinking problems. In an average macroscopic sense, cracks typically initiate normal
to the maximum tensile stress, and propagate in a rather smoothly curving fashion as
the crack negotiates its way among the structural features of the part. Since the first-
order isotropic theories predict crack kinking for non-zero Ky, it would appear that the
only way for a crack to propagate smoothly is for the crack to follow a path along
which K;=0. Since all the first-order isotropic theories agree exactly for this
condition, the crack path is apparently independent of any first-order theory.

While it is true that at a sufficiently small scale the crack path is not smooth
due to material inhomogeneities, microscopic failure phenomena, or fluctuations about
a mean loading orientation, these anomalies are may be considered random in nature,
and may be viewed as perturbations® to the crack path. Nevertheless, short of
characterizing these perturbations and including them explicitly in a probabilistic
analysis, it would appear that the best deterministic estimate of the crack path in an

average sense would be the path for which K;~=0.

* It is duly noted that in the late stages of catastrophic failure of an assemblage, failure of secondary
members, crack branching, multiple crack coalescence, and other major load or path disruptions may
occur, and are beyond the scope of the present discussion.
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The above conclusion seems quite intuitive, and was suggested at least as early
as Cotterell and Rice [21], who further proved that for crack propagating in pure
mode I, the strain energy release rate is locally maximized for a straight crack

extension. They started with an approximate kinked crack solution for infinitesimal
kinks,

K; = Gk + Cioky

2.9
Ky =Gk + Cyky
where &; and k& are the stress intensities of the lead (unkinked) crack, K; and Kj; are

the resulting stress intensities at the kink tip, and

Cy; = %[3cos(A8/2) + cos(3A6/2)]
Ci2 = —3[sin(A8/2) +5in(3A6/2)]
Cy1 = 4[sin(A6/2) +5in(3A6/2)]

Cpp = %[cos(A8/2) +3cos(3A6/2)]

(2.10)

which was shown accurate to the second order in A@. For small angles

K, =Ck = k,[l - %(Aeﬂ)} +0(A0%)

2.11
AQ 2.11)

Ky =Cyk, = __2"

k; + O(A8?)
The strain energy release rate is (plane stress)

G= é(K,2 +K,°)

(2.12)

2
_ l(l _ée_]K,Z +0(A8%)
E\ 2

which is clearly maximized for A6=0.
Cotterell and Rice then considered the future path of an (initially straight)
crack propagating in pure mode I as shown in Figure 2.5, subject to a small

perturbation in ky as the crack reaches the origin of the local coordinate system
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indicated. They retained the T-stress term in their calculations to observe its influence

on the crack path.

y A

x)

——
x
Figure 2.5 Schematic of a Growing Crack

Based on a formulation of their own derivation which integrates the tractions due to
the lead crack stress field over the developing crack path to obtain the stress intensity

factors at the crack tip, they obtained for Kj; ,

!
1., 2 Al
K,,:k,,+5/l(l)k,—\/; T-[)Jl_flxdx (2.13)

accurate to the first order in A’. Cotterell and Rice gave evidence that this solution

was accurate to within about five percent up until the slope of the extending crack

crack exceeds 15 degrees. Setting Kj;=0 at the developing crack tip,

B '[ l’(D},x
8,=A"() «/E.[) N (2.14)
where
0, 2k
(7] kl
T (2.15)
B=2V2—
k,

Note that the expression for the small perturbation angle, 8,, has been defined

in such a way as to be in agreement with the Equation (2.5) as Xj; becomes small
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compared to K; (see also (2.11)). Solving (2.14) for A(x) using the method of Laplace

Transforms, Cotterell and Rice obtained*

0 X
Ax) = ﬁ—g[exp(ﬂzx)e;fc(—ﬁ«/?) -1- 2/3\/;] (2.16)

which is plotted in normalized format in Figure 2.6.
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Figure 2.6 Normalized Plot of the Perturbed Crack Path of Cotterell and Rice
The primary conclusion drawn is that if T>0, the crack path diverges, if T<0,
the crack path turns back toward a relatively straight trajectory after the initial
perturbation. These behaviors are in qualitative agreement with test data [41]. The
predicted rate of divergence is proportional to the perturbation and the square of the T-

stress. A similar analysis was performed by Sumi [42], who included one additional

* Equation (2.13) differs slightly from the published result due to a typographical error.
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higher order term in the stress field expansion, and was able to obtain additional
information about whether the crack was approaching a region of greater stability or
instability.

Based on the foregoing, we observe that given a set of initial conditions k;, kj;
(small compared to ki), T, and higher order terms should one desire to include them,
there is only one path for which K;~=0. Yet, crack paths observed in nominally self-
similar specimens with tensile (positive) T-stress indicate a process zone size effect.
To illustrate this, crack path data [9] from 2024-T3 double cantilever beam (DCB)
specimens is re-plotted in Figure 2.7, shown slightly translated so that the initial notch
tips are superimposed. The value of 8 was about 0.37 for both specimens.

Neglecting the roughness of the crack paths observed in measurements taken
from both faces, both paths initially grow straight ahead, and then turn in a relatively
smooth fashion. However, the stable tearing crack path, which would be associated
with the larger process zone condition due to the higher loading, turns much more
sharply than the fatigue cracked specimen. Both specimens were of the same (T-L)
grain orientation, and presumably had similar (though unknown) perturbations. The
paths of only two specimens are shown, but qualitatively similar behavior was noted
in comparable specimens from this and other aluminum materials [1].

The Cotterell and Rice solution is for an infinite plate, and would therefore not
be valid for a large enough crack extensions within the DCB specimen to render useful
any quantitative comparison of the predicted and observed paths. Nevertheless,
postulating that the tiny process zone associated with fatigue crack growth might
result in something approximating a K;=0 path (neglecting fracture orthotropy for the
time being), we must now ask on what phenomenological basis the more sharply

turning crack could be anticipated due to a larger process zone.
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compared to K; (see also (2.11)). Solving (2.14) for A(x) using the method of Laplace

Transforms, Cotterell and Rice obtained*

Alx) = %[exp(ﬁ%)erfc(—ﬁﬁ) -1~ 2@/%} (2.16)

which is plotted in normalized format in Figure 2.6.
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Figure 2.6 Normalized Plot of the Perturbed Crack Path of Cotterell and Rice

The primary conclusion drawn is that if T>0, the crack path diverges, if T<0,
the crack path turns back toward a relatively straight trajectory after the initial
perturbation. These behaviors are in qualitative agreement with test data [41]. The
predicted rate of divergence is proportional to the perturbation and the square of the T-

stress. A similar analysis was performed by Sumi [42], who included one additional

* Equation (2.13) differs slightly from the published result due to a typographical error.
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higher order term in the stress field expansion, and was able to obtain additional
information about whether the crack was approaching a region of greater stability or
instability.

Based on the foregoing, we observe that given a set of initial conditions &y, k;;
(small compared to k;), T, and higher order terms should one desire to include them,
there is only one path for which K;=0. Yet, crack paths observed in nominally self-
similar specimens with tensile (positive) T-stress indicate a process zone size effect.
To illustrate this, crack path data [9] from 2024-T3 double cantilever beam (DCB)
specimens is re-plotted in Figure 2.7, shown slightly translated so that the initial notch
tips are superimposed. The value of 8 was about 0.37 for both specimens.

Neglecting the roughness of the crack paths observed in measurements taken
from both faces, both paths initially grow straight ahead, and then turn in a relatively
smooth fashion. However, the stable tearing crack path, which would be associated
with the larger process zone condition due to the higher loading, turns much more
sharply than the fatigue cracked specimen. Both specimens were of the same (T-L)
grain orientation, and presumably had similar (though unknown) perturbations. The
paths of only two specimens are shown, but qualitatively similar behavior was noted
in comparable specimens from this and other aluminum materials [1].

The Cotterell and Rice solution is for an infinite plate, and would therefore not
be valid for a large enough crack extensions within the DCB specimen to render useful
any quantitative comparison of the predicted and observed paths. Nevertheless,
postulating that the tiny process zone associated with fatigue crack growth might
result in something approximating a K;=0 path (neglecting fracture orthotropy for the
time being), we must now ask on what phenomenological basis the more sharply

turning crack could be anticipated due to a larger process zone.
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Figure 2.7 Crack Paths Observed in Reference [9], f=.37

2.4 Summary

First-order linear elastic and elastic-plastic crack kinking theories have been
presented. First-order refers in this sense to the absence of the T-stress or higher order
crack tip field parameters in the crack kinking expression. This infers that the theory
either assumes a process zone of negligible size, or allows a finite process zone, but
excludes or neglects the presence of higher order terms in the in the analysis. All first
order theories predict kinking for non-zero K, thus inferring that the crack path will

be smooth only if X;=0.
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Crack path instability theory has been presented in the case where the linear
elastic crack kinking theory is construed to admit the presence of T-stress, but (tacitly)
with vanishing process zone size so that the kinking theory is first order (K;=0). A
divergent crack path is predicted in the presence of positive (tensile) T-stress, which is
in qualitative agreement with observation. This behavior will be referred to hereafter
as the “first-order crack path instability” associated with the T-stress.

Lastly, test data is presented showing that when the process zone is large and
the crack grows in a strong T-stress environment, the crack may turn smoothly along a
much sharper radius. This now motivates a discussion of mechanisms by which such

accelerated turning may occur.



CHAPTER 3.0

CRACK PATH INSTABILITY IN A MATERIAL WITH A COHESIVE
PROCESS ZONE

While the fact that cracks tend to exhibit directional instability in tensile T-
stress environments has been well established, there is some disagreement as to the role
of the process zone. The theory of Finnie and Saith® [18] requires the use of a process-
zone related characteristic length, r, to explain the directional instability. On the other
hand, Cotterell and Rice [21] explained the T-stress-related path instability for linear
elastic cracks devoid of any process zone assumptions. Notably, the former theory
predicts that given sufficient T-stress, the crack can turn sharply from a symmetric
starting configuration—whereas the latter theory predicts a smoothly turning crack
resulting from a small perturbation in a self-similar crack path. Initially symmetric
fracture tests tend to show smooth crack paths, but indicate that turning is accelerated
if the process zone size is increased, as noted in differences between fatigue crack
growth and stable tearing crack paths in otherwise identical specimens [9]. There is
also evidence that the accelerated turning behavior plays a significant role in observed
fuselage flapping tests [9, 14, 15, 43].

In order to study the effects of process zone size on the crack path, it was
desired to extend the more rigorous approach taken by Cotterell and Rice to include the
effects of a process zone. The following development will be discussed in the context
of plasticity, with focus on metallic materials. Nevertheless, the general principles
described could likely be applied to materials that fracture by way of micro-cracking or

other inelastic effects.

* This theory will be discussed in greater detail in Chapter 5
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3.1 Strain Localization Concept

A simple tensile test of a strain hardening material yields the familiar

engineering and true stress-strain plots shown schematically in Figure 3.1. In
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Plastic Engineering
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g Growth/Strain
(¢}] . Softening
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Failure Point
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Strain

Figure 3.1 Schematic of Typical Tensile Test of Strain Hardening Material

accordance with a well-known plastic instability theory attributed to Considere, the

maximum load, F, occurs when the specimen rate of area reduction equals the rate of
strain hardening [44]

dF =cdA+ Ado =0

Rearranging,

do __dA_

o A
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do
—=0 3.1
i 3.1

It is equally well established in this context that the point of maximum load
also defines the onset of localized deformation or necking in the specimen. This can be
clearly illustrated by likening the specimen to a series of nonlinear springs of unit
length, as illustrated in Figure 3.2. Each spring may be considered to have a local
spring constant % . As the series is stretched, all the springs elongate in proportion
to their compliance,g—i . Obviously, as the stiffness of any one of the springs becomes
zero, then its compliance becomes infinite, all the other springs unload, and only that
spring elongates. All along the specimen a stiffness of zero is approached as the
maximum load is approached, but due to some imperfection one segment reaches that
point first, and strain localization (necking) begins there. Once strain localization has

begun, the failure location is set. If the specimen is pulled continuously to failure, the

failure will occur through the location where the onset of strain localization first

occurred.
A 1
1
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Y
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Figure 3.2 Illustration of Instability Principle Using Nonlinear Springs
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Strain localization ahead of a crack tip may occur by a necking or dimpling
phenomenon, as illustrated in Figure 3.3, and/or by other mechanisms such as void
growth, which also results in strain softening. An attempt to quantify the distance
ahead of the crack tip, r., over which strain localization occurs by necking is presented
in Appendix 1.0, though it is approximate even within the rather severe limitations of
the HRR elastic-plastic theory. Nevertheless, the principle that where failure is, strain
localization once was, must be true for all but the most brittle material states. Thus
the future path of the crack is set for the distance ahead of the crack within which
strain localization has occurred®, and the stress field in the vicinity of the point of
onset of strain localization decides the future path of the crack. Due to the nature of
the phenomena that result in strain localization, it is expected to occur at a length scale

considerably smaller than the plastic zone size.

B A
I I Plastic Zone
A-A
\l" rC
“’\ Onset of Strain
&

Localization
Figure 3.3 Schematic of Physical Process Zones in the Vicinity of a Propagating Crack

Future Crack Path Along
Line of Minimu;n Thickness

Necking Bounda

¢ Note that this assertion may not be true if the loading on the crack tip is suddenly changed, causing
strain localization and failure to reinitiate along an alternate path.
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3.2 Proposed Cohesive Crack Model

We can simulate this mechanism by modeling the strain localization point as
the crack tip in a linear elastic material, trailed by a region of cohesive tractions acting
to close the crack in a manner similar to the Dugdale-Barenblatt model. The primary
difference is that, unlike the Dugdale-Barenblatt model [45, 46], the resultant of the
tractions in the strain localization (cohesive) zone accounts only for a fraction, 7, of
the total stress intensity factor (because the strain localization zone length, r., is likely
smaller than the plastic zone size, r,, given by the Dugdale model).

_KIP
Kl

n= <1 (3.2)

Here K, * is the component of mode I stress intensity factor resulting at the cohesive
crack tip from the tractions in the cohesive zone, and is negative because it acts to
close the crack. Any plasticity in the physical problem outside of the cohesive strain
localization zone is neglected. The stress intensity, K, represents the total stress
intensity that would act at the crack tip if the cohesive zone were not present, and for
a propagating crack equals the effective fracture toughness of the material. We will
further impose as an initial condition that the process zone is fully developed. That is,
the proposed model assumes that the crack has torn statically for a sufficient distance
prior to the beginning of the analysis that the process zone has reached a steady-state
condition, and K, K/, and the strain localization zone size remain constant as the crack
propagates.

In order to determine the future crack path from some initial position of the
crack, we apply the assertion that a naturally curving crack follows a path that results
in local symmetry of the stress and displacement fields at the crack tip. Thus, the

mode II stress intensities due to external loads and cohesive stresses must cancel.

K,+K,”=0 (3.3)
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Cotterell and Rice developed a framework to solve this problem (in the absence
of K;) for a slightly curved extension of a perturbed crack. They used an expression
for K; that was accurate to the first order with respect to deviations from a straight
crack path, and provided evidence that this expression was accurate to within five
percent for angular deviations up to 15 degrees. In order to account for the strain-
localization zone effect a comparable first-order approximation must first be derived
for K;P. Other investigators [47,48] have proposed mixed-mode Dugdale models,
allowing the cohesive zone to lie along a linear extension of the crack, but none are
suitable for the curved crack problem at hand.

Cotterell and Rice, Erdogan and Sih, and others have shown that small angle
changes in crack path are of the same order as K;/K;. With the restriction to a slightly
curving crack, the absolute magnitudes of K;; and K must likewise be small compared
to K, thus only first order terms in Kj;, K;P and the corresponding tractions will
likewise be retained in the analysis. As will be shown, K,/ is not a constant, but varies
with the curvature of the cohesive zone. Further, the effect of the variance of the mode
II tractions within an otherwise “steady state” cohesive zone will be shown to have an
influence on the mode I tractions of less than first order. Thus K;” remains constant to
the first order for a constant cohesive zone length as previously inferred.

An expression for K; can be obtained in terms of the tractions within the
cohesive zone. These tractions are a function of the crack flank displacements, which
displacements include contributions both from the far field loading and from the local
tractions. A constitutive model for the cohesive material is then required, which
provides the additional relationship between the tractions and the displacements
necessary to obtain a solution for a given crack configuration. In the next four
subsections, these individual building blocks are assembled, setting the stage for the

solution of the future crack path in the remainder.
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3.2.1 A First Order Solution for the Slightly Curved Crack with Opposing Crack
Flank Tractions

A solution for this problem has already been provided by Cotterell and Rice,
but will be derived by an alternative means here in order to set the stage for further
development. We will begin by developing a solution for the opposing point load case
illustrated in Figure 3.4. Equal and opposite point loads act at point B =(-b, A(b)) on

the upper and lower surfaces of the crack, which lies with its tip tangent to the x-axis.

a. Actual Curved Crack

Infinitesimal
P’ kink

b. First-Order Representation of Crack Corresponding to Point Load Location

Figure 3.4 Slightly Curved Crack Loaded with Opposing Point Loads
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The crack is assumed to deviate only slightly from a straight path (A(r)<<r along the
crack path), and we seek a solution of first order accuracy in A. For such a solution,
the crack path need only (indeed can only) be represented to the first order--that is, as
a straight line. The characteristic line for the problem is that which passes through the
load point and the crack tip. Presumably, all slightly curved crack paths passing
through and loaded in the same manner at B, and terminating at the origin tangent to the
x-axis, must have the same stress intensity solution to the first order in A (to say
otherwise would require information of higher order in the solution).

A special case that meets this description is a straight crack passing through B,
and terminating at the origin with an infinitesimal kink in the positive x direction as
shown in Figure 3.4b. The stress intensity at the kink tip can be easily determined
from two known solution. Erdogan gave the solution for the stress intensity of a

straight, semi-infinite crack in an infinite medium with opposing point loads [49]
k P,
e 2 (3.4)
ki m P
where P/ and P, are the components of the point load parallel and normal to the
straight crack, as shown in Figure 3.4b. Lower case £ is used to denote stress
intensities of the main crack, as opposed to the stress intensity at the kink tip, which

will be referred to in upper case. Rewriting this expression in terms of P, and P, to the

first order in ¢(b)

k) _ [Z [R+9®P,
{ku}‘\/; {Px ~w<b>Py} )
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The stress intensity at the tip of the infinitesimal kink at angle ¢ to the main

crack is given in terms of the far field stress intensity of the main crack by [21]

{Kl}z{cll Clekl} (3.6)
Ky Gy Gl kg

where

Ciy = }[3cos(/2) +cos(3p/2)]

Cp, = —3[sin(p/2)+sin(30/2)]

Cyy = L[sin(p/2) +sin(3p/2)|

Cy, =+[cos(9/2)+3cos(39/2)]

Cotterel and Rice showed (3.6) to be accurate to better than first order in ¢. Since only
first order accuracy is required here, we expand C;; about ¢ = 0, so that (3.6) simplifies

to
K, _ k; @ =3k,
{K,,}_{k,,}+2{ k; } G

Combining (3.5) and (3.7) and retaining only first order terms we obtain for the kinked

crack representation of the crack tip

K, _ 12 P, 1 P,
Lt F5 {23z 53

For the cohesive crack problem at hand, tractions 7, and 7, act over a distance r.
trailing the crack tip. Letting ¢ =b/r. and recognizing that dP=T;db=(T/rdt, we can
find the stress intensity factors at the crack tip due to the cohesive tractions by

integration of (3.8) over the cohesive zone.

{Ku”} \FFI H } { }"’(’)}I (3.9
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Using a more rigorous stress function approach, Cotterell and Rice developed
an equation for the stress intensity factors at the end of a slightly curved finite crack in

an infinite plate

L r”2 1 (7, e()LY r '

where L is the total crack length. By letting » become vanishingly small compared to L

in (10), and integrating over a cohesive process zone from =0 to r, with =7/ it can

be verified that (3.10) reduces to (3.9), thus confirming the foregoing development.

3.2.2 Determination of Crack Tip Opening Displacement Due to Far-Field Loading
Encouraged by the preceding result, we shall now use a similar approach to
obtain the crack opening displacements of a slightly curved crack associated with the
far field stress intensity factors K, K;;. The analogous first-order representation of the
crack pertaining to the displacements at a point on the crack flanks is illustrated in
Figure 3.5. The stress intensities at the tip of the infinitesimal kink are taken to
represent the stress intensities at the tip of the curved crack to the first order, and for
the present are assumed to be given. Equation (3.7) can then be solved for the stress
intensities corresponding to the main crack in terms of the kinked crack stress

intensities.
k K 3K

ot~ 5 %) a1
ky K, 2 |-k,

For the straight (main) crack, the displacements are expressed in circular

coordinates by (neglecting terms of order r*’2 and above)
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a. Actual Curved Crack

Infinitesimal
u.,”’ kink

b. First-Order Representation of Crack Corresponding to Point Load Location

Figure 3.5 Deflections of Slightly Curved Crack Associated with Stress Intensity Due to
Far-Field Loading

u, - L /L{k,[(ZK—l)cosg—cosﬁ}+k,,,:(ZK+3)sing+siniq:l}+wcose
4G \2rm 2 2 2 2 8G

u, - L /L k,[(ZK+l)sing—sin£:|+k,,[(ZK—3)cosg+cos£]}—msin9
Y 4G\ 2n 2 2 2 2 8G

(3.12)
where G is the shear modulus, v is Poisson’s ratio, and
3-4y lane strain
= (p ) (3.13)
(B-v)/(1+v) (plane stress)

Evaluating these displacements at 6=t7, the crack opening displacement,

Auj = uj(m)— u;(-m) atr is given by
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AL _ (i +1) \/Z ki (3.14)
A G \2rlk, '

Note that the T-stress terms are symmetric, and have been carried here only to
illustrate that they make no contribution to the crack opening for the first order
representation of the crack. The displacements Au, and Au, in the original coordinate

system can be expressed in terms of their primed counterparts to the first order by
u,(r u,(ry—@(ru,
(0] [0 = 0 61)
u(r)| (D +p(ru]

Combining Equations (3.11), (3.14) and (3.15) and disregarding higher order

terms, we obtain
Aut(ry| (K‘+l)\/7 K, 1Ky
{Aux"(r)} G V2|, [T E{K, (3.16)

The superscript & is introduced to denote crack opening components due to the
stress intensity induced by far-field loading. With the further restriction that the stress

intensity approaches pure mode I or pure mode II, we can write the normalized

expressions

M) _ Ky, o)

for K<<k, 3.17
Auyk(r) Kl 2 11< ! ( )

Auy(r) _ K, L o)

= for K,<<K 3.18
Aux" " K, ’ or K/<<Ky ( )

Equation (3.17) should be applicable to the case of a naturally curving mode I
crack. To check the accuracy of these expressions, we run finite element analyses of
non-rectilinear cracks and to plot the normalized crack opening displacements as a

function of ¢. A 20 x 20 inch plate was modeled in FRANC2D/L [50] with a 2.0 inch
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center crack. As illustrated in Figure 3.6, a kink projecting 0.01 inches along the crack
axis was modeled at one end of the crack. The relative scales of the panel, crack and
kink were selected so that that finite width and finite crack length effects on the kinked

crack stress intensity would remain well below one percent.

O'fr

—
-
|
“
= Ratio of 7/o applied for each case
J Kink angle, o0 —> 15° 45°
20x20 inch model K;=0 -.13398 |-.57041
2.0 inch center crack plus kink K=0 2.5231 |.80077

Figure 3.6 FRANC2D/L Finite Element Model of Crack with Finite Kink

Two kink configurations were modeled, a 15 degree kink to represent a
minimum standard for which the first order solution should hold, and a 45 degree kink.
To isolate the first order term in ¢, only pure modal cases were run. The loading
scenarios consisted of a biaxial tension stress of unity, coupled with a shear stress
determined based on the results of Isida and Nishino [51] to result in pure mode I or
pure mode II stress intensity at the kink tip (including the small finite crack length

effect). The crack tip opening displacements were measured at the kink corer (¢ = 0),
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and at six additional points along the main crack in the immediate vicinity of the kink,
corresponding to different values of ¢. The results, plotted in Figure 3.7, show
excellent correlation with the first order theory for the 15 degree kink, but degrade as

the deviation from straightness increases.

—— 1* Order Theory, Pure Modes

| i
020 °| 5 K,=0,15°Kink | |
| o K,=0,15°Kink |
ol m Ku=0,45° Kink o
1511 o K,=0,45° Kink .
L ]
_ 0.10
Au/Au,, for K;=0 a
Au,/Au, for K;=0 . °
0.05 r hd
o
0.00 §
.
005 * - : : ~ |
0 5 10 15 20 25 30

@ (degrees)

Figure 3.7 Correlation of FEM Results with First Order Crack Tip Opening Expression
Corresponding to Far-Field Loading

3.2.3 Determination of Crack Tip Opening Displacement Due to Cohesive Tractions

Having solved for the crack tip opening displacements due to the far field loads,
we now need an expression for the displacement components due to the cohesive
tractions imposed near the crack tip. An approximate expression will suffice if it can
be shown that the effect of these tractions on the overall solution is small. Such an

expression may be deduced from the straight crack solution. For a straight crack
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loaded with opposing point loads (a special case of Figure 3.4a), Irwin [52] gives the

Westergaard stress functions

“ =—£ Py tan™ 2
Zy m | P, Z

where z =x+iy and b is the distance trailing the crack tip at which the point loads are

applied. This yields the displacements

u, (c+DImZ;|  [ReZ;
, (mode I)
u, 4G (x-1ReZ, ImZ,
u —(x—1)ReZ ~-ImZ
vl L[~ DReZy +y A (mode II)
u,| 4G | (x+1)ImZ, Re Z;,

Setting y=07, and defining r=-x, we evaluate the deflections along the crack flanks

{uf(r)} (K+1){ } [L+r/b| (- 1){ } (r—b) (3.19)
x Y

wt(r) 4Gn Br—ris|

where the first term is equivalent to that given by Tada [53]. In the second term, H(x)
is the Heaviside step function (omitting the point of load application). The term is
antisymmetric, and thus drops out when calculating the relative displacements between

adjacent points on the upper and lower crack faces, leaving
Au ()| (x+1) [F loal L Jrib
Au, (r) 2Gr | P, g

— 3.20
1-+/rib ( )
For the slightly curved crack, it is not unreasonable to assume that the

corresponding antisymmetric terms can likewise be disregarded, and postulate that an

approximate solution to the first order in ¢ would take the form.
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Auy(r)] _(k+1) B, +9(r)C, +§0(b)cyb
Au(r)f ~ 2Gm | P, +@(r)C,, +p(b)C,,

1+«/r/ } (.21)

where coefficients C;; remain to be determined. An initial approach to obtain
coefficients is to observe that as 0, the deflections due to the singular stress field
must dominate at the crack tip, thus Equation (3.16) must be satisfied in the limit,

requiring that for r<<b
P+ C,, +o(b)C, K K
\/z y (p(r) yr (p( ) yb - 1 +(p(r)l i (322)
b Px + (P(r)cxr + (p(b)cxb KII 2 Kl

The stress intensity factors in this case are those incurred by the point forces, as given

by Equation (3.8), which, neglecting higher order terms, yields the tentative relation
Au,(r)] _ k+D|{[R] 1 F 1+ 1/r/
Y = Y ——[ob) - log 3.23
{Aux(r)} 267 || 219020k p (3.23)

Equation (3.23) was checked using the same finite element model as before, but with

four different kink configurations as illustrated in Figure 3.8. The predicted deflections
from Equation (3.23) and the finite element analysis for Case #4 are presented in
Figure 3.9. Note that the finite element results exhibit the expected symmetry between
pure modal load states, and also that the deflections corresponding to the primary
loading mode are accurately represented. For displacements transverse to the load axis,
however, Equation (3.23) approaches the correct solution very near the crack tip, but
does very poorly everywhere else. Similar results were observed for the other cases.
By allowing the solution to differ on either side of the point load, a modified

expression was obtained.

Auy(r)| _x+D|[B] _ ) P 1+J7/_
{Aum)}‘ 2Gn HP} [0:256(6) +0.50jp(b) ""’)ﬂ{py

i=vrre

(3.24)
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\/Px’ u, /g
Case #1la, a=15°
Case #1b, 0=10° /l}'

a
Case #2, 0=10° ¥
- 1.00 l 0.005 ‘ 0.005
Case #3, a=7.5°
(two kinks)
- 1.00 A&OOS 0.0()i{

Figure 3.8 Crack Tip/Point Load Configurations Jor Finite Element Analysis
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3.00

§ ——Equations (23),(24)
o Case #4 FEM

2G 7w Au; 250
(x+l)

Open symbols denote Px=0 N

200 | Closed symbols denote Py=0 \
for P, =0 '
1.50
1.00
0.50
0.00 f !
0 1 2 /b 3 4 5
a. Displacement Parallel to Load
0.10 -
1 e
| ro ,
0.05 - / ‘ ———-Equation (23)
2G & Au Y. !
( x+1) | - Equation (24)
000N * Case #4 FEM |
for P, =0 . ° ase o
NS ‘Open symbols denote Px=0 |
-0.05 ' {Closed symbols denote Py=0 |
0.10 ‘; ¢ 8:\ ‘—v—""‘b
e e o+
-0.15 i 1 i
0 1 2 /b 3 4 5

b. Displacement Transverse to Load

Figure 3.9 Case #3 Finite Element Crack Tip Opening Results Due to Point Load

Compared with First-Order Approximations
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A least squares fit could slightly improve the fit on the average over the entire
region where data was taken, but worsened the fit as r>>b and b>>r. Equation (3.24)
is also plotted in Figure 3.9b, showing much improved correlation. Yet, while the
coefficients look suspiciously familiar, the solution is considerably more approximate
than the equations derived previously for stress intensity due to local loading, and
deflections due to far-field loading. Nevertheless, based on (3.24), we can write for

pure modal loading,

% +0.25¢(b) = 0.5|p(b) — (r)| where P;=0 (3.25)

The transverse deflection data from pure mode loading of all configurations is
correlated in this manner in Figure 3.10, showing good agreement overall. As will be
shown, the present solution will be sufficient for the present purpose’.

As mentioned previously for the naturally curving crack, Kj;, and K, must be
of the order of ¢ X;. Consequently, the mode II deflections and tractions along the
cohesive zone must be small compared to the corresponding mode I values, allowing us
to neglect P, terms. Further recognizing that dP; = 7;db and integrating (3.24) over
the cohesive process zone, we obtain an approximate expression for the overall

displacements due to the cohesive tractions.
L++/r/b
1-+r/b

1+/(r/r)/t gt
1= (r/r)/t

db

B0 _(k+1) [ 5 lo
aul(r)] 26 do | T~ T[0.250(5) +0.5p(b) - o] 8

= k+1) r 1 Ty log
2Gr “Jo| T - T;[0.25¢(t) + 0.5|p(1) - p(r / 1, )|
(3.26)

7 A more precise solution could possibly be obtained by further development of the Muskhelishvili
stress functions discussed by Cotterell and Rice.
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Equation (24) ‘
o Case #1 1

a Case #2 1
o Case #3

, o Case #4
|Open symbols denote Px=0
|Closed symbols denote Py=0 -

0.1 o

-10 0 10

@ (b)- @ (r) (degrees)

Figure 3.10 Finite Element Crack Tip Opening Results from all Cases Correlated with
Modified First Order Approximation

The total relative displacement at any point along the crack face is thus given by

superposition of Equations (3.16) and (3.26)

ot __ k
Au/" = Auf + Au” (3.27)

with the stress intensities in (3.16) construed as those that would exist if the cohesive
zone were absent. The total displacement distribution is then imposed (implicitly) on

the cohesive zone as a boundary condition to determine the tractions.
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3.2.4 Relationship Between Crack Tip Opening Deflections and Cohesive Tractions
For the present investigation, we will model the cohesive zone as a strip of

perfectly plastic material that is narrow with respect to the radius of crack curvature.

If the imposed displacements are expressed in terms of the local coordinate system,

(s,n) shown in Figure 3.4a, we observe that

de

T

de

nn

},sn 3 £ A u tot

2Zsm s
£

€ Au tot

nn n

<<1 — << (3.28)

nn

where € ; are plastic strains in the cohesive zone, with ¥, the engineering shear strain.
The first inequality follows from the prior observation that for a slightly curving crack
propagating in mode I, the shear displacements must be small compared to normal
displacements (which must also be true of the respective differentials). The second
inequality follows from the assumption of strain localization—that is, the normal
cohesive strains are large as the crack opens, and strain in the cohesive region parallel
to the crack is resisted by the comparatively rigid crack flanks.

We define the yield surface, F, according to the Von Mises yield criterion

1 2
F=(5 ijsij—To )

where 7, is the shear flow stress, and s are the components of the deviatoric stress

tensor,

|
S = Glj - 5 o-kkaij

For plane stress, this yields

%sijs,-j = %(o,m2 ~0,,0,+0,2)+ %(crm2 +0,7) (3.29)
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Employing the Prandtl-Reuss flow rule

de, = (dA)s, = (an) 2L

80,.j

where dA is a scalar multiplier, we obtain the incremental strain components in two

dimensions
denn = _d3_l (2Gnn - o-sx)
de, = %(20” ~0,,) (3.30)

Normalizing these equations with respect to €,

dess _ zass — Oy
denn 2Gnn — Oy
(3.31)
de, 3o,
denn 26nn — O
we can then solve for the corresponding normalized stress ratios
de, 1
de, 2 1 3de de,, )
Oy = nlnd =—4+"35 40 ( ”) (332)
Cmn 14+-%s 2 4de, de,,
2 de,,
Osn - _1_ dgsn 2 Oss — l dgsn +0 dexs dgsn (3.33)
onn 3 dsnn Gnn 2 dEnn dsnn dgnn

Retaining only first order terms and applying (3.32) and (3.33) to the von

Mises yield criterion (F=0), we note that

O, =27, (3.34)
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Assuming proportional loading, the ratios of the strain increments may be

approximated by ratios of the total strains, and we obtain from Equations (3.28) and

(3.33),

L _0n _lde, lég, 1Ay (3.35)
O, 2de, 2, 4Au, '

or

L _ Au (3.36)

T, A,

where ¢ has a nominal value of 1/4 for the plane stress case. One should bear in mind
that this represents an ideal condition, not only with regard to the extent of strain
localization, but also with regard to the foregoing assumption of a perfectly plastic
cohesive zone in plane stress (and the assumption of proportional loading).
Conceivably, this factor could vary for different types of cohesive zones and shall
therefore be carried as a constant. For example, a derivation given in Appendix 2.0
shows that for a slant crack deforming along a shear slip plane (a common failure mode
for thin sheet materials), ¢ = 1/2.

To add further realism to the cohesive model, we note that the normal traction
may not be constant as might be suggested by (3.34), but in fact decrease due to
necking, void growth or other phenomena from a maximum value, T, at the cohesive

crack tip, down to zero as the cohesive zone separates at r=r,.. This can be written

T =——Tf(r/r) 3.37)

where the cohesive softening function f{?) presumably varies between f{0)=1 and

Jf(1)=0, and is assumed to represent a steady-state characteristic of the material. The
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negative sign indicates that 7, acts to close the crack for positive 7... A suggested form

for f{t) capable of representing a broad range of softening behaviors is

fy=1-1" (3.38)

which is plotted in Figure 3.11 for various values of m.

1
(e o]
0.8
5
0.6 2
flr/r) )
0.4 03
0.2 m=0.2
0.2 0.4 0.e 0.8 1

r/r

c

Figure 3.11 Suggested Softening Function, f(r/r.)

Expressing the normal and shear tractions and displacements in terms of their x
and y components to the first order in A’, where prime here denotes differentiation
with respect to r,

T,=T,+TX U, =u, +u A’

(3.39)
I.=T -TA u =u, —ul’

we can rewrite Equation (3.36), neglecting 2™ and higher order terms in A’.

tot
L _ Ay (3.40)
T,

tot
Auy
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Also T,<<T,, thus T, A" may be considered of second order and can be neglected,

allowing us to write

L=-Tf(r/r)

Au’ (3.41)
T.=-T f(rir)c Ap

Y

3.2.4 Estimating the Cohesive Components of Stress Intensity
The cohesive contribution to the mode one stress intensity, K/, can be now be

obtained to the first order by combining equations (3.9), (3.38), and (3.41).

2r. (' (D) Zr( 4m )
KP=-T -—CJ —dt=-T |—< 342
! Nrx o Vi N \1+2m (342)

The crack path plays no first-order role, and the steady-state value of K/ may be

considered constant for the slightly curved crack as previously claimed. For the
special case where 7, is constant throughout the cohesive zone (m approaching

infinity), we further observe that

H=F (3.43)
£

where r, is the Dugdale-Barenblatt plastic zone size

2
r,= %(%) (3.44)

(4

On the other hand, K,/ is dependent entirely on the crack path, thus requiring a
further assumption to obtain an estimate for it. For the gently curving crack, the radius

of curvature, R, at the crack tip must be large compared to ., and may be considered to
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be approximately constant within the process zone. Recognizing that ¢(#)=A(2)/r, This

1s equivalent to assuming

o(r/rc)= A~ (3.45)
I,

or
2

Alrir)= Al

o(t)=-%< (3.46)

Equations (3.9), (3.17), (3.26), (3.27), (3.40), and (3.41) can be solved
iteratively to converge on the actual traction and displacement distributions until a
sufficiently accurate solution is obtained. As a first iteration, we assume only the
displacements associated with K}, and set K;¥=K,/¥=0 (numeric superscripts
denoting iteration number). Combining (3.40) and (3.17), we obtain the first

approximation for the tractions

M Q)]

O _ Au,
(8Y}

T, A,

@
=c* 3.47
€5 (3.47)

Employing these tractions in Equations (3.41) and (3.9), and afterwards

employing (3.38) and (3.46), we obtain a first estimate for X/
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vy o g |26 (TP 1 ) F@)
K, T\/: J - F 90 |
2r, f'(c 1 @
=-T |—¢ - - 24
\/; _[ (2<p(t) 2<p(r)) D e
_U=9 . (2, ['en)(1-1)
T2 T\[;j &

_(I_C)QT ﬁ( 4m )
4 R Nrm\9+6m

In view of Equations (3.42) and (3.2) this can also be written

K,"V= _(-9 iKlp( > 2’")

4 R 9+6m (3.49)
(1-¢)r, 14+2m '
= —nKI
4 R 9+6m

Because the total mode II stress intensity at the crack tip must be zero for the
naturally curving crack, we now assume a revised remote loading configuration that
results in just enough K, to offset K;/, maintaining local symmetry at the cohesive

crack tip
K, D =-K,"0
Including the mode I and mode II tractions associated with K7 and K, ) we now

invoke Equations (3.40), (3.16), (3.26) and (3.27), to obtain a second estimate of the

tractions.
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The function g(z) was numerically evaluated using Mathematica®, and is

(3.50)

plotted in Figure 3.12 for m=2, c=1/4, and various values of 7.

Mathematica® is a trademark of Wolfram Research, Inc.
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Figure 3.12 Function g(r/r,) Plotted for m=2, c=1/2

From the second estimate of the tractions, we obtain a second estimate of K,/.

p2) _ _ /2’c o 1 f(®
KII T; T J.n ]; g(t) 2(P(t) \/; dt
__p 2 (e _1 N\ f@®
=% 'zz_.[, (’2"“”“” 2“’(’)) Wil (3-31)

o 120 (Y _m
_ZETC\/;—J;[I cg®]1—1t™Wr dt

from which we obtain a first estimate of the error in K,/

1

(D) _ I -
" ¢

Equation (3.52) was numerically evaluated and is plotted as a function of 77 for various

values of m and c in Figure 3.13. Clearly, K,/" is a sufficiently accurate
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Figure 3.13 First Estimate of Error in K,f when Evaluated Using Equation (3.36)
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approximation only for small values of 1. For higher values of 7, it is possible to use

x to correct K,/

(3.53)

However, assuming a second iteration would yield additional error on the order
of (x'1)?, the first estimate of X 1s likely to provide an increasingly poor estimate
beyond a value of about 0.2. Nevertheless, from the foregoing it is apparent that y is
independent of the curvature. Thus, if by further iteration, sufficiently accurate values

of x were to be obtained for higher values of 1, K, could be obtained from (3.53).

3.3 Solution for Future Path of a Naturally Curving Crack

We now consider a gently curving cohesive crack propagating naturally in an
isotropic medium. Defining coordinate axes tangent and normal to the cohesive crack
tip at an initial position, we now wish to determine the future path of the crack, A(x),
as shown in Figure 3.14. In the absence of a cohesive crack tip, Cotterell and Rice

expressed the mode II stress intensity at the crack tip to the first order in A as

Ky =ky+o l(l)k -\f J‘jz(—ll (3.54)

where the lower case & ’s are the stress intensities that would act at the initial crack tip

in the absence of a cohesive zone, T is the T-stress of the initial crack tip, and / is the
length of crack extension beyond the initial crack tip. In keeping with the assertion of

a naturally curving cohesive crack, we impose Equation (3.3) to obtain
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0=k, +— A'(l)k, \f j jf_’l p (3.55)

Initial Radius,
R(0)

)/A-(:)

Figure 3.14 Schematic of Curvilinear Crack Problem

1

>
X

Cotterell and Rice give the equation for K in terms of k; for the slightly curved
semi-infinite crack. To the first order, the equation is identical to the solution for a
straight crack, thus k=K. Further recognizing that 1”(I) = 1/ R to the first order in

A’(1), and substituting this result and Equation (3.49) into (3.55), we obtain

0, = Xt)-- j [(1 A0 }L‘ + pA”(l) (3.56)

where

6,=—2%u__P_
°" "k RO

T
ﬁ=2\/§;l'

ARy
21+7) ¢
K/’ __K"

K TR

(3.57)
p =
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and

1
/ __[)f(t)ﬁdt_ 1+2m
< J]L(’—)dx " 9+6m
o\t

The latter expression for I, assumes f{?) is of the form given by Equation (3.38). It
should be observed that the perturbation, 6,, is of a different nature in the present
work in that the total mode II stress intensity at the cohesive crack tip is never non-
zero, and the crack never kinks as in the solution of Cotterell and Rice. The initial
slope of the extending crack is thus zero, and 6, relates to the initial curvature at the
crack tip, rather than an initial kink.

Taking the Laplace transform of Equation (3.56) we obtain (imposing zero

initial slope)

—0i=sz(s)—£sz(s)+pszz(s) (3.58)
s Vs

or

sA(s) = 0 (3.59)

Js(-B+ «/0§+ps\/§)

Recognizing the parenthetical expression in the denominator as a cubic polynomial in

s , with roots

d*-3
3p—d? 3p+d® .
= = -+ 3 360
ay =.[s, 5pd NE] 5pd i (3.60)




where d=

1
27p%B++/108p° +729p° B> |

2

we can rewrite (3.59) as

0

[

= a s - =)

s/T(s) =

This can be expanded as partial fractions

— L 1 3 Di

where
_ 1
P (@ -a)a —a)
_ 1
P (@ —a)ay—a)
1
3=

a3(a; - a, )(a3 - az)

Taking the inverse Laplace transform of Equation (3.62) we obtain

M) _
6

4]

0

_a]% — zp,[ + expla, x)erfe{—a ﬁ)}

Ax) 2 S p,
ex " aaa, \/% ’ ;a_j[exl)(a" xerfe(-a;x) - 1]
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(3.61)

(3.62)

(3.63)

(3.64)

When equation (3.64) is evaluated, imaginary parts vanish and only real parts

remain. The future crack path predicted by Equation (3.64) is plotted in dimensionless

format in Figure 3.15.
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Figure 3.15 Normalized Plots of Curvilinear Crack Path for Positive and
Negative T-Stress
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3.4 Discussion

The results shown in Figure 3.15 illustrate that crack path perturbation
sensitivity in a positive T-stress environment is influenced by process zone
phenomena. The process zone size parameter, p, has units of length, and presumably
scales with the plastic zone size. Despite potential errors arising from assumptions
made in the analyses of the parameters included within p in Equation (3.57), the form
of the equation (3.56) should be correct. Thus, the larger the process zone, the faster
the crack is expected to diverge from a straight path in a tensile T-stress environment.
It is also predicted that a compressive T-stress environment tends to stabilize the
crack path as suggested by previous investigators, but the present analysis indicates
that for the same perturbation magnitude, 6,, specimens with larger process zone size
exhibit greater path disruption.

Qualitatively, this result matches experimental findings given in [9] for Double
Cantilever Beam (DCB) specimens made of 2024-T3 aluminum sheet. The present
analysis is for a semi-infinite crack in an infinite medium, and is not sufficiently valid
for the finite size specimen to warrant direct quantitative comparison. Nevertheless,
crack paths observed during stable tearing in static tests turned much more sharply
then crack paths developed by fatigue cracking, as shown in F igure 2.7. This confirms
the predicted result inasmuch as the loads required to achieve stable tearing were much
higher than those imposed during the fatigue cracking process, and thus the process
zone would have been much larger, corresponding to faster turning. For both tests, the
normalized T-stress corresponded to f=0.37 mm™>. The present theory is only
valid for the first 10-15 degrees of turning, though the predicted trends would be
expected to perpetuate.

As mentioned previously, the perturbation, 6, is of a different nature than that

of Cotterel and Rice, representing an initial curvature, rather than an initial kink angle.
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Thus, the present solution cannot be directly compared to their prior solution. In fact,
if there is no cohesive zone, p=0, and the present solution reverts to an unperturbed

crack.

3.5 Summary

A boundary layer solution has been developed for a slightly curved cohesive
crack propagating in an elastic medium with a cohesive constitutive relationship
generalized from a plane stress von Mises plasticity theory to simulate a strain
localization zone. An approximate expression for crack face deflections due to the
cohesive tractions was developed for the slightly curved crack with zero mode II stress
intensity at the crack tip, and it was shown that the stress intensity resultant of the
tractions is insensitive to the cohesion induced deflections as long as the strain
localization region is small compared to the plastic zone size. Correction factors were
provided to estimate the effect of cohesive tractions, extending the solution to
somewhat larger cohesive zone sizes.

By enforcing zero mode II stress intensity at the cohesive crack tip, and
neglecting the curvature gradient within the cohesive zone, an approximate solution for
the future crack path was obtained. The crack path solution predicts that increasing
the size of the strain localization zone will amplify crack path instability in a positive

T-stress environment, a result that agrees qualitatively with test data.



CHAPTER 4.0

FRACTURE RESISTANCE ORTHOTROPY AND MODAL TRANSITION

4.1 Fracture Orthotropy in Two Dimensions

In general, materials may exhibit elastic anisotropy as well as anisotropy in
fracture resistance. Nevertheless, many materials, such as wrought metal products, are
virtually isotropic elastically, but have a preferred direction of (mode I) crack
propagation resulting from the manner in which the material is processed. Often, as
for rolled sheet or plate, the processing is of symmetric character, and the two-
dimensional relation describing the crack growth resistance as a function of orientation
has two axes of symmetry. This special case is referred to hereafter as two-
dimensional fracture orthotropy. For convenience, the orientation describing the crack
angle in material coordinates is measured from the longitudinal grain direction, which
corresponds to the rolling direction for rolled products. The crack growth resistance is
maximum for growth across the rolling direction (8=90°, or L-T) and minimum for
growth parallel to the rolling direction (0°, or T-L) [54, 1]. Materials produced by
other processes, such as extrusion, and to a lesser extent forgings, would be expected to
exhibit comparable symmetries, at least locally.

We can approximate the orthotropic crack growth resistance as a function of 6

of the form [15]
2 .2
K, (6)" cos 9n+ sin“ @ _ 4.1)
K,(0°"  K,(90°)"

where n is a constant exponent. For the present study, K, is taken to represent the
stress intensity at which the crack propagates. It is proposed [1], that K,isa

material-dependent function of the orientation of the crack tip consistent with the
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regime of crack growth. Thus, for fatigue crack growth, K, represents the stress
intensity at which the crack propagates at a given rate; for stable tearing, K, represents
the fracture toughness.

In the context of a maximum stress theory, Buczek and Herakovich [19]
suggested a fracture orthotropy relation equivalent to setting n=(-1). They deduced
the form of the equation by requiring that the toughness function be independent of 8
for isotropic materials, and that it possess the desired orthogonal symmetry,
collocating to K,(0) and K,(90) values. Kfouri [55] used the more familiar form of an
ellipse (n=2). Either case produces a nearly identical oblong shape in polar coordinates
for fairly small orthotropy ratios, as illustrated in Figure 4.1. However, for severe

values of orthotropy, positive exponents result in an unjustifiably spiked

K,(909

r=K,(6)

Kx(09)

Figure 4.1 Assumed Elliptical Function Describing Crack Growth Resistance as a
Function of Orientation for Materials with Fracture Orthotropy

relationship, as illustrated in Figure 4.2, plotted in a normalized format given below. In

the absence of data to show otherwise, the use of n=(-1) is favored, or
K,(8)= K ,(0°)cos® 6 + K ,(90°)sin’ 0 (4.2)

For the two-dimensional problem we define the normalized crack growth resistance as
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K, ()

K(6)=
(6) X.(0%)

(4.3)
P

which varies between unity and X,,, where K, is the fracture orthotropy ratio defined

by

— K _(90°

Km= 00 (4.4)
K,(0°)

We can rewrite (4.1) in normalized form as

— 2 = _n . 2 ~1/n

K(0) = (cos @+ K, "sin 0) 4.5)

or, for n=(-1)

K(6)=cos’8+K, sin’6 (4.6)

Unless otherwise specified, K and K,, will be assumed to apply to mode I dominated
crack growth, and could thus be designated X; and K;,,. For convenience, the modal
subscripts will be omitted unless clarity requires them.

me 0 -
10 }

o
T

Exponenti

| -
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0 90 180
0 (degrees)

Figure 4.2 The Orthotropic Toughness Function, K(0),Evaluated for Km =0.1
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4.2 Extension to Three Dimensions

In a three-dimensional body a crack may be non-planar, and oriented arbitrarily.
At any point along the crack front in an orthotropic material, however, we can
characterize the local orientation in terms of the tangent plane and the crack front
normal vector within that plane, defined relative to the principal axes of the material.

For an orthotropic material such as a rolled or extruded plate, there are three
orthogonal planes of symmetry. Within each of these planes there are thus two
orthogonal axes of symmetry. This results in six principal fracture toughness values.
The material is assumed to be homogeneous, thus the toughness for a given orientation
relative to these principal planes is invariant with regard to translation.

Following the convention established for metals [56], the principle values of
fracture toughness are written in a two-letter code (i-j) where the first letter refers to
the principle axis normal to the crack plane, and the second subscript identifies the
principle axis corresponding to the direction of propagation. These designations have
already been mentioned. The standard principal axes for rectangular products (plate,
extrusion and forging) correspond to the longitudinal grain orientation (L), the long
transverse grain orientation (T), and the short transverse grain orientation (S). Thus, a
crack growing normal to the width in the rolling direction of a plate corresponds to the
T-L orientation. The (mode I) fracture resistance in this direction we shall designate as
K71. For convenience and generality, we will use numeric subscripts (1,2,3) in place of
the metallurgical (L,T,S). The six principal fracture resistances are thus K, K»;, Kss,
K3y, K3, and K.

What is needed is a function to interpolate the fracture resistance for arbitrary

orientations in terms of these principal values. As illustrated in Figure 4.3, a crack (or
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a point on an arbitrary crack front) may propagate in an arbitrary direction defined by

unit vector
a=aji+a,j+ak 4.7
where 1, j, and k are unit vectors corresponding to the principal material axes x;,, x,, and

x3. Vector a lies within a plane tangent to the developing crack surface at the crack

front, which plane is uniquely described by its unit normal vector

n=ni+nj+nk (4.8)

Crack Front

Plane Tangent t0
Developing Crack at
Crack Front

Figure 4.3 Geometry of Crack Orientation at a Point on an Arbitrary Crack Front

The crack orientation is uniquely defined by the direction cosines g; and »,.

Following the work of Buczek and Herakovich, the interpolation function must

1. Be independent of a; and n, for an isotropic material
2. Return the principal fracture resistances for cracks in the corresponding

principal orientations.
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We seek the lowest order function that can achieve this. Presumably such a function
must revert to the two-dimensional form of Equation 4.2 (for this development, we
shall assume n = -1).

The angles (using right hand rule) describing the trace of a on the principle
planes are given by
tan(6,) = & tan(6,) = 2L tan(6,) = 2 (4.9)

] as @

where the angle subscript refers to the axis normal to the principal plane. The fracture
resistance of a crack, were it to lie in a principal plane normal to axis x; and propagate

in the direction of the corresponding trace defined in (4.9), can be interpolated in two

dimensions in a manner analogous to Equation (4.2)
K (8,) = K,;cos’ 6, + K,;sin” 6, (4.10)

Further observing the trigonometric identity

2 ab ¢’
cos”| tan  — |=———
c b +c

4.11)
. 2[ B b) b?

sin| tan” — |= ——

c) b+c
and the property of direction cosines
a’+a,t +al =1 (4.12)
we can combine (4.10) and (4.11) to write

1
K(a)= = a2 (Kl2a22 + K13‘132)
K,(a)= - (Kpsas® + Kyya)?) (4.13)

|
Ki(a)= a2 (K31a12 + K32a22)

3
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In essence, these may be considered as the fracture resistance components of a

in the principal planes, as illustrated in Figure 4.4. Presumably, they must be summed

X3

Figure 4.4 Principal Orthotropic Components of Crack Growth Resistance for Crack
Growth Parallel to Unit Vector a

in some weighted combination based on crack-plane normal n to obtain the effective
fracture resistance, K,(a,n). Since the weight factors must sum to unity to satisfy the

isotropic case, it seems reasonable to write

K,(a,n)= Kin’ + Kyn,? + Kyny?

2 2 2
__n 2 2 2 2
=— (K,2a2 + K|3a, )+ 2(1(23a3 + K4, )+ 5

(K31a12 + K32a22)
(4.14)

An inspection of (4.14) shows that it satisfies the criteria previously outlined.
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4.3 Modal Transition and Fracture Mode Asymmetry

The first-order isotropic crack turning theories described earlier all predict that
the crack will seek out a direction of local symmetry in the stress and strain fields
(pure mode I). For the most part cracks are observed to grow in a mode I dominated
fashion from a macroscopic point of view. Fracture experiments have shown that this
is particularly true of materials failing in a so-called brittle material state, even when
the crack is initially loaded in nearly pure mode II. The maximum hoop stress theory

(Equation 2.4) predicts that as K;vanishes,

6| = cos™'(1/3) = 70.5° (4.15)

where the sign of the 6, is opposite the sign of K;;. Vaughn [57], validated this result
for plexiglass (PMMA) within 1° for each of 30 samples tested in pure mode II.
Mixed mode testing of materials in more ductile states, however, can result in
straight mode II propagation when the mode mixity includes a sufficiently large mode
IT component. This was demonstrated in HY 130 structural steel at room temperature
by Maccagno and Knott [58], who observed that even in mode I loaded static tests, the
failure mode clearly followed planes of maximum shear, rather than maximum tension,
resulting in zig-zag crack extension macroscopically parallel to the starter crack. With
additional mode II loading, crack propagation became less zig-zag, eventually extending
in planar fashion along the plane of maximum shear. The failure mode in the regime
tested involved void growth and decohesion along planes of maximum shear. Prior
work by the same authors [31] noted that mode II propagation was not observed under
transgranular cleavage fracture conditions when identical tests were run at low

temperature.
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In aluminum alloys, crack propagation in mode I under static loading involves
void growth and coalescence. Several investigators have observed mode II propagation
in aluminum alloys when statically loaded with a large proportion of mode II loading.
Among the more recent studies, Hallback and Nilsson [37] observed a transition from
mode I to mode II propagation in 7075-T6 at a mode mixity M°= .56, where M°® is as
given in Equation (2.6). Their results from 9.5 mm thick Arcan [59] and compact
tension/shear specimens showed that crack kinking at initiation followed the maximum
tangential stress criterion in the mode I critical regime, and a maximum shear stress
criterion in the mode II critical regime. They studied the transition phenomena using a
plane strain, small-scale yielding, large-deformation theory to predict shear
localization, and obtained results qualitatively similar to the observed behavior.

Amstutz et al [38,60] presented the results of mixed mode fracture experiments
using 2.3 mm thick 2024-T3 aluminum, showing modal transition to occur at
M°= 0.24.

For an initially smooth notch tip loaded under mixed mode static loading, Dalle
Donne & Doker [39] described two competing failure modes—a self sharpening
phenomenon in the region of maximum shear stress, and a blunting zone in the region
of maximum tensile stress. They studied modal transition behavior for the initiation of
sharp cracks in 6mm thick StE 550 steel and 5 mm thick 2024-T3 aluminum alloy
sheet using biaxial cruciform specimens. While their results did not allow precise
determination of the transition mode-mixity parameter, it was about 0.7 to 0.8 for the
steel, and somewhere between 0.2 and 0.5 for the aluminum.

In most structural applications cracks initiate and grow macroscopically in such
a way that mode I loading dominates. Nevertheless, the preceding information has
been provided as a guide to when mode II propagation might become a factor. Also,

Dalle Donne and Doker suggested that higher order crack tip stress field parameters
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associated with part geometry might affect the transition mode mixity. This concept
was studied further by Hallback [61], who also‘gave a thorough review of related work
in modal transition. It should also be mentioned that the transition may not always
represent a sharp discontinuity in behavior, but that there may be an intermediate
regime where mode I and mode II failure mechanisms may coexist, as discussed by
Ghosal and Narasimhan [62 ].

While the processes that result in modal transition appear to be inelastic
phenomena associated with the process zone, it is possible to view the problem in the
context of linear elasticity. Kfouri and Brown [63] explained transition-like behavior
as a result of the critical fracture toughness being a (smooth) function of mode mixity.
In a later paper Kfouri [55] extended the theory to also include fracture toughness
orthotropy, and coined the term “fracture mode assymetry” to describe the condition
when the critical fracture toughness differs between fracture modes.

Chao and Liu [64] also recognized the potential for fracture mode asymmetry
to exist, but rather than defining a smooth-function interaction between modes, they
asserted, based on the experimental results of Amstutz and others, that the crack
would propagate in the most critical of modes I or II. They defined competing failure
modes based on a critical tangential stress or shear stress at a characteristic length from
the crack tip (we shall call this ».). The transition from mode I to mode II fracture

would thus be predicted to occur according to the criterion

GOG(AO’ rc)l
o

C,g (AG, rc)
B

< (4.16)

crit lmax

crit Imax

The value of A6 corresponding to the dominant mode based on (4.16) would be the
predicted kink angle. This is shown schematically in Figure 4.4, where the competing

failure criteria may be determined from either linear elastic or elastic-plastic (HRR)
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stress field solutions. When the crack is critical with respect to the maximum
tangential stress, then the crack kinks in the direction in which the maximum tangential
stress occurs, as given by Equation (2.5) or Figure 2.4, depending on whether elastic or
elastic-plastic theory is used. Otherwise, the crack propagates in direction of
maximum shear stress. Based on the Von Mises yield criterion, Chao and Liu further
argue that the ratio between the critical stresses for metals would be 7 ., /0, =0.577,

which infers for the linear elastic case that transition occurs at M= (.54.

o max Criterion

Ky .

~ Transition
‘\‘ KiwK;

- g Max
S Criterion

Kire

Figure 4.5 Modal Transition Theory, After Chao and Liu [64]

4.4 Summary
Orthotropic interpolation functions have been presented to estimate the
fracture toughness for cracks of arbitrary orientation in terms of known principal

fracture toughness values. The two-dimensional interpolation approach defined was
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extended to three dimensions to support future work in three-dimensional crack
turning simulation.

Various literature references have been cited showing that under ambient
conditions steel and aluminum alloys fail macroscopically along the direction of local
symmetry when loaded primarily in mode I, and the direction of local asymmetry
when loaded primarily in mode II, with transition between the modes occurring at
some intermediate mode-mixity. The transition mode-mixity may be treated either as a
material property, or as a result of differences in critical fracture toughness between

the different modes.



CHAPTER 5.0

CRACK TURNING THEORIES WITH PROCESS ZONE
EFFECTS AND FRACTURE RESISTANCE ORTHOTROPY

It is the purpose of this chapter to develop practical approaches to simulate
crack turning in two dimensions, including process zone effects and fracture
orthotropy. The discussion of Chapter 3 provides valuable insights into at least one
mechanism by which crack path instability in a positive T-stress environment may be
accelerated by the action of a process zone. Nevertheless, the approach has severe
geometric limitations, and appears to underestimate the rate at which the crack path
diverges.

It was decided to explore two options with regard to crack path simulation, a
second-order linear elastic approach which includes a single empirical process zone
parameter [18], and a fully elastic-plastic approach which directs the crack based on
the crack tip opening displacement [40, 65]. In order to be useful in practical
problems, both methods are extended to account for fracture toughness orthotropy,
based on the two-dimensional approach of Chapter 4. To a lesser degree, fracture
mode asymmetry is also treated where possible.

Both linear-elastic and elastic-plastic methods are later implemented into the
FRANC2D or FRANC2D/L adaptive mesh, finite element fracture simulation
environment, building on the work of previous researchers. Therefore, it is
appropriate to begin with a brief discussion of the piecewise linear manner in which

cracks are represented in such simulations.
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5.1 Representation of a Curvilinear Crack by a Series of Segments

Following a discussion of crack kinking theories in Chapter 2, the statement
was made that “the crack turning problems encountered in many structural
applications are not really crack kinking problems”. From the first-order theoretical
perspective, this meant that a “real” smoothly curving crack followed K0 regardless
of the kinking theory used, suggesting that the kinking theories are virtually irrelevant.
With the exception of the initial kink angle when a crack initiates from a mixed-mode
load state, and provided that process zone effects and toughness anisotropy effects are
absent, this is largely true.

Nevertheless, when simulating the crack path, it is typically convenient to
represent the curved crack as union of a series of linear segments, thus involving a
series of kinks. In the FRANC2D environment, the need to kink reflects a limitation
of the quadratic element type used, as well as to the fact that the small amount of
mode I stress intensity detected at each step is used to determine the incremental path
of the crack by virtue of some kinking theory. The program remeshes in the region of
the crack tip for each step. Ideally, the path so determined should converge to the
“true” crack path as the step size and element size is reduced.

For the isotropic case, following the K= 0 criterion, a method was proposed
by Stone and Babuska [66] to model the crack path as a C' continuous (kink free)
series of polynomial segments, and implemented their approach in a p-element finite
element program using quadratic segments. Two of the three coefficients associated
with the quadratic polynomial of each segment were defined to make the path C!
continuous. The remaining coefficient was iterated to drive K, at the tip of the crack

extension to zero within some tolerance.
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Stone and Babuska provided theoretical and numerical evidence to substantiate
that this method indeed converges to an arbitrarily accurate approximation (limited by
the accuracy of the stress intensity solution) of the true crack path so long as the
junctions between segments are at least C' continuous. Kinks, of course, are only C°
continuous, and the theory could not prove convergence in this case. Nevertheless,
Stone and Babuska performed a highly accurate analysis of a curvilinear crack spanning
an arc of about 27 degrees, and compared the path with paths developed by various
sequences of quadratic segments, and also by sequences of linear segments using the
kinking criterion of Equation (2.4). As the step size was reduced, the kink angles also
reduced, thus approaching a smooth crack path. While the curvilinear method was
seen to converge more rapidly (with fewer segments) than the kinked crack
approximation, it seems apparent from their results that if the kink angles are below 10
degrees for the propagating crack, the path is probably of sufficient accuracy for most
engineering purposes. With adaptive mesh codes, such convergence is easily obtained,
as observed by Wawrzynek and Ingraffea [16], and Knops [14], among others.

This is not surprising in view of the results presented in Chapter 3, where it is
found that in many respects, a slightly curved crack (limited to a threshold of 15
degrees arc by Cotterell and Rice) can be represented to the first order in arc angle by a
straight line with an infinitesimal kink at the tip, aligned with the tip of the true curved
crack. Thus, one might expect that a slightly curved segment would be sufficiently
well represented by a straight segment with an infinitesimal kink oriented tangent to
the direction of the next segment (determined according to the criterion K;=0). Note
that for small K;/K;, Equation (2.5) predicts turning angles resulting in K;=0 to the

first order in A, as can be verified be Equations (2.11).
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The above discussion is based on first order, isotropic crack kinking theory, but
at least provides support to the notion that for other crack kinking theories, an
assemblage of straight segments should converge to a correct theoretical crack path if,
as the segment length is reduced, the discrete turning angles become small in regions of
curvilinear growth. Of course, this restriction does not apply at the first kink of a
crack loaded with mixed mode loading, where the physical fracture response is well

represented by a kink.

5.2 Second-Order Linear Elastic Maximum Stress Kinking Theory
5.2.1 Isotropic Maximum Tangential Stress Theory (Mode I Dominated)
The mixed mode expressions for the elastic stress field around a crack tip were

introduced in Chapter 2, and are repeated here for convenience, including the first two

terms.
1 AQ[ .2A0) 3 . AB| T
o, = cos—| K;| 1+sin“— |+ =K;;sinA@ — 2K, tan— [+ —(1 + cos 2A0
r I 2 | 1( > oy i 2] 2( )
(GR))
Og =—421_;cos%6_K1 cosz%g—%K” sinAG:l+§(1 —C0s2A8) (5.2)
1 AG T
0,9 =——=c0s—|K;sinAfB+ K;;(3cos A — 1)|— —sin2A8 53
r 2\/—2500 2[ 18! ll( )] 251 (5.3)

The classical first-order maximum tangential stress theory given by Equation
(2.5) maximizes only the first (singular) term of the tangential stress. This expression
predicts straight crack growth unless K770, as in asymmetric loading or in the case of a

perturbed crack.
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Williams and Ewing [67] proposed that the crack would propagate in the
direction corresponding to the location of maximum tangential stress evaluated at a
material dependent finite distance, r,, ahead of the crack tip, and included the second
term in the crack tip stress field expansion. Note the similarity in function of Williams
and Ewing’s r, to the parameter of the same name in Chapter 3. Finnie and Saith [18]
corrected the formulation of Williams and Ewing for the angled crack problem, and
Kosali, Kobayasin' and Ramulu [8] later derived a more general formulation of the same
second-order theory by forcing the A@ derivative of (5.2) to zero at r=r, to obtain the

implicit expression

—2sin A8
Ku _ 2| cos 46, _ §—];1/27rrc cosAf,
K; (3cosAf, -1) 2 3K,

(5.4)
Note that according to this expression, the crack may turn with sufficient T-
stress even if K;=0. In this case, Equation (5.4) yields A8, > 0 only if Finnie and
Saith’s inequality is satisfied®.
r.>r = 1—?;—”(%)2 (5.5)
where, for >0, r, represents the distance forward of the crack tip at which the angle
of maximum tangential stress becomes non-zero. In Figure 5.1, equation (5.4) is
plotted in normalized format using the dimensionless parameter (defined to result in a

bifurcation value of unity)

* It is observed that K/ in Equation (5.5) could be replaced with (K, + K;') in order to more
conveniently represent the behavior in the vicinity of pure mode II. Nevertheless, the present
formulation has been chosen to be consistent with previous authors, recognizing also that the theory
is not likely valid as X,~>0.
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3K, 71y, (5.6)
Equation (5.4) can be rewritten in terms of T
. KII
sinAf, + —(3cosAf, 1)
= K
T= ! (5.7

2sin A6, cos A6,
2

From Figure 5.1, straight crack growth is predicted only for the case where K;;=0, and
o> re. As r, approaches r., the predicted path becomes very sensitive to small

amounts of Kj;.

80

60 |

S
o
T

20 + -0.4 Isotropic
-0, Case

T 0 OIO
-20 ¢ o ' A Ku/K| =0

1.0

Instantaneous Tuming Angle
o
=)

_80 1 1 1 1 1 1 1
4 3 2

0 1 2
8T T |r
——[27r =— |-t
e (il
Figure 5.1 Normalized Crack Turning Plot for Isotropic Material Based on the
Formulation of Kosai et al [8]




79

As should be the case, with 7=0 or r =0, the maximum tangential stress theory
of Equation (5.7) reduces to the first order theory of Equation (2.4). As has been
mentioned, Equation (2.4) can be derived either by maximizing o, or by setting 0,9 =0.

In the case of finite T-stress, one might likewise consider enforcing 0,9 =0 to obtain

sin AB, +ﬁ(3cosAec ~1)
— _4 Kl

2sin AZGC cosAB, (5.8)

which indicates that the two criteria predict identical kink angles if one recognizes that

the applicable characteristic lengths are related by

16
=— 59
rc(ore“‘)o) 9 G ( )
where the unsubscripted r. is the characteristic length pertaining to the maximum
tangential stress theory defined previously. Thus, the definition of the characteristic
length may vary with the criterion used. Before formulating the extension to fracture

orthotropy, a discussion with regard to the physical basis and determination of the

characteristic length is in order.

5.2.2 The Characteristic Length, ., of the Second-Order Maximum
Tangential Stress Theory

Irwin [68], Dugdale [45] and others gave approximate expressions for the size

of plastic zone in front of a crack tip in elastic-plastic materials. Reasoning that r. is
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related to some failure process, it seems probable that the characteristic length
associated with the maximum tangential stress crack turning theory should be no larger
than the inelastic zones identified.

Rice and Johnson [69] discussed the role of various characteristic lengths
associated with microscopic failure mechanisms in elastic plastic materials, including
the crack blunting radius and void spacing, in the context of plain strain fracture
problems.

As mentioned previously, the characteristic length associated with crack
turning was proposed by Williams and Ewing. As an estimate of the characteristic
length for PMMA (plexiglass), they referenced a previous work by Constable,
Williams, and Culver [70] which identified equivalent flaw sizes based on fatigue
thresholds in polyvinyl chloride of the order of 0.0025 inches. Constable et al
conjectured that the equivalent flaw effect might be associated with crazing.

Using photoelastic methods to observe path instability of a nominally
symmetric specimen, Ramulu and Kobayashi [71] experimentally determined r, for
PMMA? to be 0.05 inches. This was a considerably larger value than those obtained
by prior authors, but Theocaris and Andrianopolis [72] independently obtained similar
results. While the independent corroboration of r. data from these authors would seem
encouraging, the characteristic length estimate was more than an order of magnitude
larger than the plane stress Irwin plastic zone size for this material. Further, based on
the fracture toughness and critical T-stress for crack path instability in PMMA given

by Selvarathinam and Goree [73], Equation (5.5) would yield a value of r,= 0.1 inches.

’ Actually, the material used by Ramulu and Kobayashi is designated as “Homelite 100” which the
author understands is a commercial form of PMMA. Also, their experiments were dynamic in nature,
though they claimed that static values of r. would be comparable.
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While the cohesive, strain softening nature of fracture in this material could enlarge the
process zone somewhat, these values of r, would seem too large based on the scale of
any known failure mechanism in that material.

Because imperfections or perturbations giving rise to small amounts of Kjjcan
be found in any real specimen, the onset of path instability in nominally symmetric
specimens would be expected to occur at an r, value in excess of r.. Note from Figure
5.1 that the predicted sensitivity even to very small amounts of K, is substantial as
one nears the bifurcation. The more sensitive the manner in which the onset of path
instability is detected, the larger the overestimate of r, that might be expected.

Also using photoelastic methods to observe the onset of path instability in
symmetric specimens, Streit and Finnie [74] determined r, for 7075-T651 aluminum
plate to be 0.010 inches. They described r, as the distance at which void growth or
crack initiation will occur, referencing Rice and Johnson and others. Using values of
strength and toughness they provided, their value of 7, is about 0.7 times the size of
the plane strain Irwin plastic zone radius (plane strain assumed based on their
specimen configuration).

Kosai, Kobayashi, and Ramulu [8] later estimated , for 2024-T3 and 7075-T6
sheet to be 0.06 inches based on the lengths of micro-crack branches observed along
dynamic fracture surfaces of test specimens. This is considerably larger than the value
given by Streit and Finnie for 7075-T651 plate, but the method of determination of re
is completely different than previous methods, and the thickness of the material used
would justify a plane stress assumption. In this case, the characteristic length estimate
is about a third of the plane stress Irwin plastic zone size for 7075-T6, and more than

an order of magnitude less than the plastic zone size of 2024-T3.
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Pettit et al [9], found that severe path instability occurred consistently in 2024-
T3'° double cantilever beam specimens at values of 7, at least as high as 0.11 inches
(the specimen with the shortest crack, and lowest T-stress tested). To obtain an
estimate of r, the turning radius was plotted as a function of r,, and extrapolated to
zero turning radius (a sharp kink), at critical value of r, = 0.05 inches. This was
subsequently used as a conservative estimate of r., though it tended to underestimate
crack turning in crack turning simulations. Chen [15] used an r, value of 0.09 to obtain
improved correlation with Pettit’s results. A larger r. would have further improved
correlation, but there was concern that r. was growing too large compared to the K-T
dominant zone of the specimen. Also, spurious oscillation was observed in the
predicted crack path, and increased with higher values of r,.

The disagreement in the literature with regard to values of r, for the various
materials tested, and the apparent disparity between some of the values derived from
test data and the assumed physical significance of r, begs reconsideration of the
significance of this parameter. The possibility of the onset of plastic instability was
considered as a motivating phenomenon as described in Appendix 1.0 (see also
Chapter 3). While this concept has merit, it also gives 7, values that are somewhat
small with regard to correlating fracture simulations with test data.

Nevertheless, from the equivalence of Equation 5.9, we realize that the
characteristic length may not correspond to the actual size of any particular physical
damage phenomenon, but that its use in the maximum tangential stress theory is simply

a surrogate for something more complex than the theory describes. However, if the

' More precisely, the material was of NASA vintage stock made to the earlier 24ST designation.
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theory is even a decent surrogate, it would be expected that the ». would be at least

proportional in size to some phenomenological length scale. In a later Chapter, r, will

be treated as a state variable, determined to best correlate simulations and test data.

5.2.3 2nd Order Maximum Tangential Stress Theory for Materials with Fracture

Orthotropy (Mode I Dominated)

Whereas the isotropic crack turning theory maximizes tangential stress, Buczek

and Herakovich [19] suggested that the crack path in anisotropic materials would

follow the maximum of the ratio of the tangential stress to the crack growth resistance

obtained by

d(A8) -

d ( 04(A0) )_0
K(6+A8)

Separating variables, we obtain

1 _dog__ 1 dK_,,
04(A8) d8  K(6+A0) d0

¥ can be obtained in terms of K,, using Equation (4.5)

Y@+A6,)= (2)

n

Psin2(0+ A8,) where  B=Km
1+ fcos2(6+ A8,) K,"+1

(5.10)

(5.11)

(5.12)
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To simplify notation, the argument of ‘¥ will not be shown explicitly unless it differs
from that given above or is required for clarity. Based on the discussion of Chapter 4,
a value of n=-1 will be used. Defining ‘V; with reference to the mode I orthotropy
ratio K, , evaluating the left hand side of (5.11) with use of Equation (5.2), and

solving for T,

sinA6, + E’i(3cosAGC -1)- 2‘1—',[5lsin A8, - l(1 +cos A6, )
T= K, 15 K 3 (5.13)
sin( 2C )(2 cos A6, — ¥, sin A6, )

Note that for K,,,=1, ¥, =0, and (5.13) reverts to the isotropic form of Equation (5.7).
Equation (5.13) is plotted in Figure 5.2 for K, =1.6 with various crack
orientations, illustrating how the orthotropy influences the location and nature of the
bifurcation. As would be expected, a crack propagating in the direction of least crack
growth resistance requires a higher Kj; or T-stress to alter its course. Conversely, a
self-similar crack propagating along the direction of maximum crack growth resistance
may turn in a compressive T-stress environment given sufficient fracture orthotropy.
One must take care when evaluating (5.13) to obtain maxima, and not minima.
The minima occur to the right of the bifurcation line. In order to derive an expression

for the value of T where the bifurcation occurs, we examine the limiting case of (5.13)

lim A6, — 0, T=_2
A8,

—+-=-Y¥,(0+ A8 5.14
K[ 3 l( c)) ( )
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Note that the theory only predicts straight growth where T is below the bifurcation

value and

K, K, 2 2

2a 1 B =¥ () ==y 5.15
- (K, =-we--3v, (5.15)

where W), is defined as Equation (5.12) evaluated at A8 . =0. If K;/K; exceeds this
value, then Af; <0. The bifurcation value of T is obtained when we assume that
(5.15) is satisfied and continue with the limit, from which we obtain

T =1+ 2, 2 4 2P(B +c0s26) (5.16)
3 n(l1+ fcos26)

where fis as given in (5.12).
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5.2.4 2nd Order Maximum Shear Stress Theory with Fracture Orthotropy
(Mode II Dominated)

The above theory is mode I dominant, inasmuch as o is analogous to mode I
stress intensity. As discussed in Chapter 4, it has been observed that under certain
conditions the crack propagates in the direction of maximum o,4. Following a similar
development to the maximum tangential stress theory, the second-order orthotropic
maximum shear stress theory can be obtained by maximizing via

d ( _0,6(A0) ):O (5.17)
d(A8)\ K (8 + AB)

to obtain

ZCosA—BC ﬁ+4‘I‘,, (1—3cosA95)—&sinAGC —-2(9sin 346, +sin A6‘)+6&cos 346,
2 K K 2 2 2

T o= I n K,
n=

3(2c0s2A8, - ¥, 5in2A86,)

(5.18)

where W}, is evaluated in terms of the mode 11 fracture resistance orthotropy ratio, and

T

]
W | oo

L
Ky (5.19)
Selected plots of (5.18) are shown in Figures 5.3 and 5.4. In this case, there is no
bifurcation, but one must be careful to obtain the global maximum or minimum of the
greatest absolute value of the ratio in brackets in Equation (5.17). For the maximum

stress theory, transition from mode I to mode II dominated fracture may be postulated

to occur when

ax[ Gi(Ae) ] < maxI Gﬁ(Ae) l (5.20)
K, (0)K,(6+AB) |K4(0)K,;(6+A6)|
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5.3 Second-Order Linear Elastic Virtual Kink Theory

Consider a lead crack under plane stress conditions with a plastic zone as
shown in Figure 5.5a. Compared to an elastic crack, the plastic zone results in
additional deformation that can be approximated by a virtual elastic crack kink as
shown in Figure 5.5b. For self-similar crack growth, Wells [75], used the Irwin plastic
zone correction as an approximation of the effective elastic kink length to obtain an

estimate of the CTOD. While the appropriate choice of length may remain in

Plastic Zone

a) Physical crack tip and plastic zone

b) Physical crack with virtual kink

Figure 5.5 Crack Tip Plastic Zone Deformation Simulated by an Effective
Virtual Kink
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question, it is not unreasonable to assert that for a given material and loading, there is a
unique kink length, b, and orientation, A@,, which will best simulate the deformation
field as one moves away from the crack tip into the elastic region. One might even
postulate that a crack kink so defined would provide a reasonable approximation of the
future crack trajectory. For a crack propagating under steady-state conditions, b,
would be expected to assume a constant, material-dependent value analogous to r,.

The direct implementation of such a criterion is problematic. Nevertheless, as
linear elasticity is approached (as for so-called brittle materials, and also approximately
for slow fatigue crack growth), the length of the virtual kink necessarily vanishes. In
this limiting case, Cotterel and Rice [21] concluded, based on a maximum energy release
rate argument, that the crack propagates in pure mode I, which is equivalent to the
criterion K;=0. For a finite (virtual) kink in the presence of non-zero T-stress, setting
K ;=0 does not generally result in maximizing strain energy release rate, nor does it
maximize K;. Nevertheless, depending on the materials and loading conditions, cracks
are observed experimentally to develop trajectories corresponding either to pure mode
Tor pure mode II cracking (see Chapter 4). Based on this evidence, an isotropic theory
is proposed based on the concept that the virtual kink representing the process zone of
an extending crack will develop in the direction of either pure mode I or pure mode II
crack opening.

Isida and Nishino [51] (see also Kfouri [55]) give a solution for a crack in an
infinite plate with a kink at one end subject to general in-plane loading. The stress
intensity factors at the kink tip, (uppercase) X; and K}, are expressed in terms of lead

crack (lowercase) stress intensities and T as
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K, = F%; + Pk, - F’T\ra
Ky = F}(ll)kl + Fl(l3)ku - FI(IZ)T ma

(5.21)

where a is the crack length, and F,?” are functions of the kink angle, A, and the
normalized kink length, b/a, given in polynomial form by [51]. The crack length

parameter can be eliminated by normalizing in the form

FI(Z) 3

>

k _
—1=F(1)+F(3)—l—*_T
k" Kk Jblagy2 (522
(2) :
ﬁ=1’}(1”+f’}(13)ﬁ* Fi7 3 T

1 ky \/b_/aﬁ

kn

where \/b/a divides cleanly out of functions F,,(z), and T, is defined with b=b_in a
manner similar to Equation (5.6).
L= E%W (5.23)
For mode I dominated growth, values of the crack propagation angle, 6, , can be
obtained by varying A6 to enforce K;; = 0 for various combinations of kiy/k;and T, as
presented in Figure 5.6. Also shown for comparison is the second-order maximum
tangential stress theory of Equation (5.7) with its characteristic length, r.. The two
theories are fairly equivalent (though not identical) if one recognizes that the
characteristic lengths differ at the bifurcation by a constant factor,

b.=22lr, (5.24)

c
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Figure 5.6 Comparison of Mode I Virtual Kink Theory with Maximum Tangential
Stress Theory
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The corresponding mode II fracture behavior was not evaluated, but could
easily be developed in the same manner. Nevertheless, from a linear elastic
perspective, there is no apparent advantage to this theory over the the maximum stress
theory, which is easier to implement, and has already been extended to include

toughness orthotropy and modal transition.

5.4 Elastic-Plastic Crack Tip Opening/Virtual Kink Theory

Because the accelerated turning phenomenon sought is believed to be associated
with the interaction of the process zone with the T-stress, it seems natural to directly
consider crack turning in an elastic-plastic fracture model. Early work in this field
showed that plasticity can affect the crack trajectory [36], and supported a notion that
crack propagation and trajectory could be correlated with CTOD values [76,38].
Based on results from a small scale yielding (SSY) boundary layer crack tip model and
laboratory experiments using 2024-T3 Arcan specimens, Sutton ef a/ [40] recently
developed curves which can be used to infer the crack growth direction from the ratio
of the mode I and mode II CTOD components. These are plotted in Figure 5.7 in

terms of the crack tip opening displacements using the notation of Sutton

o= arctan[&] (5.25)
D,

where D ; and D j are the mode I and mode II components of crack opening

displacement measured or simulated near (0.04 inches from) the tip of the crack. Also

shown for comparison is the isotropic linear elastic maximum stress theory based on

the observation that for the linear elastic case D;/D~=K,/K,.
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Figure 5.7 Comparison of Various CTOD related Crack-Turning Curves, Including
the data of Sutton [40]

Sutton reported 2-D simulations'' using an elastic/small-deformation plasticity
model of a edge crack in a 30.4 inch radius circular plate of 2024-T3 aluminum. The
crack tip was centered on the model, and traction boundary conditions were applied
representing various amounts of K, Kj; and T. For a given mode mixity, the CTOD
components D; and D;; were determined at a distance d=0.04 inches behind the crack

tip as loading was increased until the total CTOD,

"' Several of the details given here were not included in the referenced paper, but were provided via
private correspondence with Dr. Sutton.
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D=.D}+D} (5.26)

reached the critical value for propagation, D.. The crack was then extended 0.0076
inches as a physical kink in several trial directions to find the kink angle, Afc, that

resulted in the maximum total CTOD a small distance back from the kink tip, or

max 8(A6)|, (5.27)

where
§=Al67+o2 (5.28)

and & and 9y are the CTOD components near the kink tip. Angle predictions obtained
from these analyses (with 7=0) are included as datapoints in Figure 5.7. Significantly,
the analyses also showed that the kink orientation that produced the critical CTOD
also produced nearly pure mode I or mode II displacement near the kink tip, with a
transition between the two modes occuring at about =70 degrees. A corresponding
similar trend was‘observed in the CTOD displacements and modal transition behavior
observed in the Arcan test specimens.

Based on this observation of pure modal growth, which is consistent with the
results of other investigators described (see Chapter 4), it is possible to infer some
generality into Sutton’s results by way of the virtual kink concept introduced earlier.
For the kinked-crack representation of the elastic-plastic crack tip, the crack tip
opening displacements may be approximated as indicated in Figures 5.8a and 5.8b,
depending on whether the virtual kink is assumed to develop in pure mode I or pure

mode II. Assuming the CTOD is obtained from an elastic-plastic simulation at some
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small distance, d, behind the physical crack tip (the physical crack tip being

represented by the base of the kink), the following relations may be obtained.

Dy _ _ —sinAf, for a pure mode I kink (5.29)
D,  cosAB, +d/b,

=~ —tan Af,, (approximation for d/b.=>0) (5.30)
% = cot AB,, for a pure mode II kink (5.31)

i

Clearly these equations are only crude approximations, but are most accurate
and meaningful for small d/b,. As d/b, becorpes large, D,/ D ; must approach the
elastic K;/K; of the physical crack tip, and the effect of plasticity and the T-stress on
the turning angle is lost. In the limit as d/b,0, the Equations simply state that for
isotropic mode I dominant growth, the crack grows perpendicular to the CTOD, and
for mode II dominant growth, the crack grows parallel to the CTOD.

With the plane stress plastic zone for 2024 on the order of inches, it is
expected that d/b, for Sutton’s model is sufficiently small to allow the tangent
approximation of Equation (5.30). Equations (5.30) and (5.31) are compared with test
data and CTOD-based crack turning angle data in Figure 5.7, showing fair correlation
for both mode I and mode II cases.

The point of this discussion lies in the fact that the development of Equations
(5.30) and (5.31) make no assumption with regard to the T-stress, or even K or K.

The underlying assumption is that the opening of the virtual kink will be either pure
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mode I or pure mode II. Inasmuch as Figure 5.6a is also based on pure mode I opening
of the virtual kink tip, it is apparent that several different combinations of X » Ky, and
T acting about the physical crack tip can result in the same kink angle. This implies
that D ;/ D ; measured near an elastic-plastic crack tip will be fairly uniquely related to
A6, , but may not be uniquely related to K;/K; if plasticity is significant, and the T-
stress is substantially non-zero'2. Sutton also attempted to show this by including T-
stress in some of his analyses. Little change was observed in the results, but
magnitude of the T-stress used was not disclosed.

Despite the above development, it is not suggested that Equations (5.30) and
(5.31) be used as an elastic-plastic crack turning theory. The data from the boundary
layer SSY analyses presented in Figure 5.7 are based on a more sound and likely
accurate approach, and correlate better with test data. Also, for the purpose of
analyzing a smoothly curving crack, the kink angles used in the simulation should be
very small as convergence is obtained, thus of greatest importance is the accuracy of
the slope of the curve at the origin in Figure 5.7. In this region, the virtual kink
approximation appears to perform poorly, and the SSY analyses and test data seem to
approach the linear elastic solution.

Sutton curve fit the 2024 Arcan test data as shown in Figure 5.7 and given by"?

AB) =-36.5tan”'(2.2¢x) for @ <@, (mode I dominated) (5.32)

2 Also worth mentioning is the likelihood that even as the crack tip nears a stiffener or other geometric
feature, the virtual kink might still open in pure mode I or mode II. While the plastic zone shape
would be distorted by the presence of such irregularities (which would likely affect the crack turning
angle), the assumptions associated with the derivation of equations (5.30) and (5.31) are still valid with
sufficiently small 4, and the crack trajectory should remain a substantially unique function of D;/ D, .

“ For Equations (5.32) through (5.35), ais in degrees, but the inverse circular functions are evaluated
in radians, with constants defined to give a result in degrees.
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A8, = 57.3% cos( o) for « 2, (mode Il dominated) (5.33)
o

o, =70° (5.34)

Arguing that, like the linear elastic solution, the A6~ relationship for the elastic
plastic case should not be a strong function of material properties, particularly as
>0, Sutton and his colleagues used these curves to predict both initiation and stable
tearing crack paths in various aluminum alloys, with encouraging results. However, as
part of their study, they also analyzed some of the L-T 7050-T7451 double cantilever
beam specimens tested under the NASA IAS program and described in Chapter 7.
Due to the significant toughness orthotropy of the 7050-T7451 plate material, cracks
turned significantly faster than predicted using Equation 5.32. An extension of the

approach to include fracture orthotropy is now presented.

5.5 Extension of Elastic-Plastic Theory to Materials with Fracture Orthotropy

The maximum stress theory for materials with fracture orthotropy discussed
earlier predicts that cracks not growing along a material axis of symmetry will grow
straight only if loaded at a specific mode mixity, which is a function of the orthotropy
ratio and the orientation of the crack (Equation 5.15). At least qualitatively, this
description is supported by experience and intuition. In essence, Equation (5.15) is
the equivalent to the “criterion of local symmetry” for a crack in a body with fracture
toughness orthotropy (an identical criterion can be developed for the linear elastic

virtual kink theory described in Section 5.3).
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Often, the toughness orthotropy does not appear to be associated with in-
plane anisotropy of the yield strength. In 7050-T7451 plate machined to sheet, for
example, a plane stress fracture toughness orthotropy ratio of 1.3 has been observed,
but the 0 and 90 degree tensile properties are virtually identical [1]. 2024-T3 differs
somewhat in the 0 and 90 degree tensile properties, but has less toughness orthotropy
than 7050-T7451. Thus it would appear that those processes that result in toughness
orthotropy might largely take place after strain localization, where the continuum
theories break down.

From a modeling standpoint, this suggests the use of isotropic plasticity for
modeling of the near tip stress and deformation field even in materials with fracture
orthotropy. For the isotropic case, Sutton determined the elastic-plastic kink angle
corresponding to the maximum kink CTOD as described by (5.27). For the
orthotropic case, where the critical CTOD, D,, is a function of orientation, one might

determine the orthotropic turning angle according to

ax[ 5(A6) H (5.36)
D .(6+A40)|,

Presumably, such an approach could predict transition in much the same way
as Equation (5.27). While the CTOD orthotropy function in the denominator could be
represented in the manner similar to Equation (4.5), the kink tip CTOD function in the
numerator is unknown. One could evaluate (5.36) numerically in a manner similar to
that used by Sutton. However, for small kink angles, such as would be needed for

simulation of a continuously curving crack, an alternative approximation is suggested
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based on the equivalent condition of local symmetry for fracture orthotropy. Only
mode I growth is considered, though a similar approach is possible for mode II.

For a smoothly growing mode I crack in a linear-elastic material with fracture
toughness orthotropy, the instantaneous kink angle A8, must be infinitesimal, and
Equation (5.15) must be satisfied at every point along the path. Under these
circumstances, the mode mixity is generally non-zero (assuming the crack tip does not
happen to be tangent to an axis of material symmetry). Thus, if one were to predict
the turning angle assuming isotropy, an additional finite kink angle would be predicted
as given by Equation (2.5) for the mode mixity corresponding to (5.15). We thus
define an orthotropic correction angle of the same magnitude, but opposite sign, given

by

S reaer——

-1
Ael()rth =2tan

g‘l’, (6+a6, + A, 11
(5.37)
where A@, is given by Equation (5.35), and
Aelrm = Aelc + A910rrh (538)

Equation (5.37) is implicit and self-convergent. For a sequence of finite kinks
simulating a continuously curving crack, A6, or Would be finite, but small for a
convergent solution. For straight crack propagation the two components of turning in
(5.38) cancel.

The orthotropic correction of (5.37) is defined in an exclusively linear elastic

context, requiring evaluation of ‘¥; via Equation (5. 12), which employs the fracture
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toughness orthotropy ratio. Nevertheless, based on the work of Wells [75], the

CTOD may be approximated for plane stress by

2
crop ~ £
E

Oy (5.29)

Thus we obtain the ratio

= K, _ [D.(90%)
™ K,(0°) | D0

(5.40)

from which ‘¥; can be evaluated in an elastic-plastic context. Based on Equations (4.3)

and (5.29), we can in similar fashion write

K(6) = K”(eo) ~ {DC((’O) (5.41)
K,(0%) yD.(0%)

from which it follows by Equation (4.6) that

D,(8) = D.(0°)cos? 6 + K, sin? 6] (5.42)

5.6 Summary

The concept of modeling a smoothly curving crack using a C° continuous series
of linear segments has been discussed in light of the recent results of Stone and
Babuska. Their results are strictly valid only for first order, linear-elastic crack turning

(K;=0), but suggest that (1) for a convergent solution, the kink angles should approach
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zero as the step size is reduced, and (2) the problem is probably sufficiently converged
for engineering purposes when the kink angles fall below about 10 degrees.

Various second order crack kinking theories are then studied, including linear
elastic maximum tangential and shear stress criteria for mode I and mode II dominated
fracture, respectively, and a linear elastic theory assuming pure modal growth both in
stress (0,,=0), and CTOD. These linear elastic theories predict either identical or
very similar behavior, if one realizes that the corresponding process zone size
parameters (r,, b.) differ in size for the various theories. The mode I second-order
theory predicts a bifurcation behavior that results in crack kinking under self-similar
loading if sufficient T-stress is present. The linear elastic maximum stress theories are
extended to account for fracture toughness orthotropy, and to provide a linear elastic
prediction for the point of modal transition based on the concept of fracture mode
asymmetry.

An elastic-plastic crack turning approach based on the work of Sutton is
discussed. Also, an angular correction to account for fracture orthotropy during a
smoothly (albeit sharply) curving mode I growth pattern is suggested based on the

linear elastic orthotropic theory.



CHAPTER 6.0
SOFTWARE IMPLEMENTATION

In this Chapter, the software implementation of second-order linear-elastic
maximum tangential stress theory and the elastic-plastic CTOD crack turning theories
will be described. The present effort builds on the framework of the FRANC2D
fracture simulation environment, adding various features. In addition to the angle
predicting algorithms themselves, a large portion of this Chapter describes the
development of a domain integral T-stress calculation method with @ posteriori error

correction.

6.1 The FRANC2D Fracture Simulation Environment

FRANC2D (Fracture ANalysis Code in 2D), developed originally by Paul
Wawrzyneck [77, 16] at Cornell University, provides an interactive, adaptive-mesh
finite element modeling environment for two-dimensional problems. Cracks are
modeled explicitly, and are allowed to develop along arbitrary curvatures (developed

out of straight segments). The FRANC2D environment includes:

1. A preprocessor (CASCA) for building the initial (uncracked) geometric model,

and meshing it with (isoparametric) quadratic triangular and quadrilateral

elements.

2. Interactive databases for material properties and boundary conditions.

3. Adaptive meshing capability modify the mesh to include new or growing

cracks.

105
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4. Options for calculating stress intensity factors by different methods.

5. Options for crack kink angle prediction.

6. Postprocessing functions for viewing results, stress intensity history, etc.

During fracture simulation, a finite element model containing a crack is first run
to determine the stress intensity factors. The kink angle is then calculated, and the
model is remeshed locally to grow the crack an increment in the predicted direction.
The cycle is then repeated to simulate further growth. For the purpose of the present
study, stress intensity factors were calculated using the J-integral method.

FRANC?2D integrates around an eight-segment crack-tip rosette of triangular, quarter-
point elements, resulting in stress intensity factors with accuracy typically well within

one percent (for the highest stress intensity factor) with reasonably good mesh quality.

6.2 Second-Order Linear Elastic Crack Turning Algorithm

An algorithm was written to determine the crack kinking angle according to the
maximum tangential stress theory using Equations (5.12) and (5.13). Equations (5.15)
and (5.16) were used to ensure that the function was evaluated in the region of
maximum (not minimum) tangential stress.

Implementation of the algorithm required some additional programming to

support . as an additional material property, and to calculate the T-stress.
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6.3 Calculation of the T-Stress
6.3.1 Literature Review

T-stress calculations have been performed by various authors. In one of the
earliest studies, Larsson and Carlsson [78] evaluated the T-stress using finite elements.
Later, Leevers and Radon [41] directly imposed the infinite series solution given by
Williams [23] in a variational approach to obtain estimates of K;and T simultaneously.
They gave estimates of the T-stress in the form of the dimensionless parameter

_TVa
KI

B

(6.1)

Based on the convergence observed, Leevers and Radon estimated the error in
the B values they provided for various specimen geometries to be less than three
percent. Sham [79] used second-order weight functions and a work conjugate integral
to calculate T-stresses in various specimen configurations. Fett [80,81] introduced a
Green’s function approach to calculate T-stresses, and analyzed numerous
configurations. A more approximate displacement correlation method was outlined by
Al-Ani and Hancock [82] which is nevertheless easy to implement in plate and shell
codes, and has been utilized in various forms by other authors [9, 14, 15].

Cardew et al [83] and Kfouri [84] computed the T-stress using a modified J-
integral based on unpublished work of Eshelby, and also gave results for selected
specimens based on finite element analyses. Another type of path independent
integral based on the Betti-Rayleigh reciprocal theorem has also been proposed by
Sladek er a/ [85] and also by Yuan and Yang [86], and was shown to be
mathematically equivalent to the J-integral method by Chen et al [87, 15]. By
implementing the contour integral solution into a high polynomial order (p-version)

finite element program, Chen obtained T-stresses that were claimed to be numerically
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exact to at least five significant figures. The numerical accuracy was verified by way
of an exact benchmark solution (a crack tip and surrounding region with the exact
boundary conditions applied corresponding to arbitrary combinations of K;, K, and 7)

and a theoretical error relationship

. K
1

where e is the error in the computed T-stress, #; is a characteristic dimension of the
integration zone, and & is a coefficient related to the discretization error in the
vicinity of the integration zone.

Note that (6.2) predicts that the error in the computed T-stress is degraded as
the size of the integration domain is reduced—a trend common to both integral
methods described. Also, the integration must be performed about a straight segment
at the crack tip. This means that when modeling a curvilinear crack, the integration
radius cannot exceed the increment dimension, and as the step size is reduced, as
required for path convergence, the accuracy of the T-stress solution will be
simultaneously degraded.

Nevertheless, using the highly accurate solutions for simple geometries
provided by Chen as benchmarks, together with the error estimation parameter, it was
found that much of the error in the contour integral results is of a systematic nature,
and can be corrected a posteriori for a given rosette geometry. Following a brief
review of the contour integral solution based on the Betti-Rayleigh reciprocal theorem
[15], an error correction scheme will be discussed, and correction parameters will be

determined for the element type and rosette geometry of FRANC2D.
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6.3.2 Contour Integral Methods
The Betti-Rayleigh reciprocal theorem can be written for a two-dimensional

body bounded by a closed curve S without body forces as
§(T;u,. —Tu;)dS =0 (6.3)
s

where T; represents a set of surface tractions with resulting surface displacements u; ,
and 7;* and u;* are an independent set of surface tractions and corresponding surface
displacements, referred to as auxiliary fields. By evaluating the integral at a crack tip
around the closed four-segment path shown in Figure 6.1, and recognizing that

segments C, and C. are traction free, path independence can be shown with regard to

the other two segments.

[@u-nuac= [@u-1u)ac, (6.4)

C Ce

Figure 6.1 A Closed Contour Around a Crack Tip

By substituting 7= o;n; for each field, where n; are components of the outward normal

vector along the corresponding path segment, we obtain
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J(G; u,— O'iju:)nij = J‘(G:]-u,- - O',-ju:)nj dC, (6.5)
c Ce

Defining € as a characteristic dimension of path C,, the right hand side can be
evaluated analytically as £20 using the two-dimensional crack tip stress and

displacement field solution given by Williams [23]

& A
;= ZAA’Zfi,‘A(O)

A=—00

— L+I A
w; = ZBAr2 g;(0)

A=—0co

(6.6)

where 4 is the eigenvalue, and 4 »and B, are the corresponding coefficients for each

eigenvalue. By choosing auxiliary fields corresponding to

(6.7)

in Equation (6.5), coefficients of order % alone are obtained. T'is of order A=0,

corresponding to auxiliary stresses and displacements in local Cartesian coordinates
(see Figure 6.1) of

. cos26 + cos46
c =

xx 2m,2

. —cos4
- =00526 (z:os 0 6.8)
4 2nr

* sin46
g =

)



111

S = KcosO +cos36

* 8mrG
6.9
S = Ksin@ —sin 30 (6.9)
y 8nrG

where G is the shear modulus, x=(3-v)/(4+v) for plane stress, and k=(3-4v) for plane

strain problems. The T-stress is then obtained for £ >0 as

T= x+1j(0 u,— o), dC, (6.10)

€

By virtue of the path independence of (6.5), an equivalent integral can be
performed numerically using stresses and strains from the finite element analysis

(superscript FE)

FE *
T_m_[(o” FF—oluyn, dC (6.11)

or the equivalent domain integral [15]

T—?+—1 j(au F-0lfu)g, dA (6.12)

where 4 is a domain surrounding the crack tip bounded by curves I'y and I';, and
function g is equal to unity on I'y and zero on T'y. For the FRANC2D implementation,
the domain 4 is the area comprising the outer ring of the crack tip rosette as illustrated
in Figure 6.2. The integration zone radius, 7;, also shown in Figure 6.2, is twice the

internal radius of the domain for the FRANC2D implementation.



112

Figure 6.2 Rosette Configuration (Midside Nodes not Shown) and Integration Domain
Used in FRANC2D Implementation

6.3.3 Error Correction Scheme

Equation (6.2) was derived by recognizing that the stress contribution of the
singular terms in the stress field will converge far slower than the contribution of the
non-singular terms, leaving an error in the coefficients of all terms proportional to the
coefficients of the singular terms'®. The square root term in the denominator was
included due to dimensional considerations, consistent with the form of Equations
(5.1) through (5.3). Based on a similar convergence rate argument, terms of higher
order than T are expected to contribute little error to the computed value of T.

Unlike the error estimation expression given in [87,1 5], we have taken the
liberty to write Equation (6.2) with no absolute value signs enforcing that the error
measure always be positive. This represents an assertion which we now
acknowledge—namely, that the sign and magnitude of é; is (at least on an average

basis) a characteristic of the rosette configuration. Thus, if the value of ér were

" In spite of this argument, K;; was found to have no pollution effect on the T-stress in numerical
experiments.
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known for a given rosette configuration, the systematic error in a T-stress value
calculated using that rosette could be estimated (and thus corrected) via Equation (6.2).
The influence of scaling the rosette dimension is captured by way of the length
parameter r;.

The veracity of this assertion can be supported by rewriting (6.2) in the form

of the relative error

er . K,

€ =—=¢
T, T
rel T T /"1

(6.13)

The assertion that the relative error in T-stress scales with the dimensionless
parameter K, / T\/71 is supported by the observation that geometrically similar finite
element models which differ only in scale (which implies that the integration path is
likewise scaled), should give numerically identical error fractions in the computed T-
stress (or any other local stress measurement). In essence, the rosette may be
considered as a finite element model with imposed boundary conditions representing
K;and 7. Recognizing the similarity of all X; and T fields relative to a characteristic
length (KyT)?, one may therefore conclude that the combination of such a field with a
rosette model of fixed geometry and scale relative to the field characteristic length will
be similar (and thus have comparable relative error) to all other rosette/field
combinations with the same relative scaling ratio.

Because ér represents the discretization error in the vicinity of the integration
zone, it should thus be relatively constant so long as the mesh geometry, or rosette,
within the integration zone is geometrically similar for all problems. The mesh
geometry outside of the integration zone is of secondary influence, and may change

from problem to problem, thus its effect will be treated as a probabilistic source of
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error. Nevertheless, provided that the external mesh is reasonably proportioned, the
error introduced should be relatively small.

Based on some highly accurate T-stress solutions, we now proceed to
numerically verify the foregoing assertions, and determine the value of the error

parameter, er, for the rosette configuration of Figure 6.2.

6.3.4 High Accuracy Reference Solutions

Chen [87, 15] implemented the Betti Reciprocal type integral into a highly accurate p-
finite element code, and analyzed various model configurations. First, a square model
of a crack tip was constructed as shown in Figure 6.3, with a numerically exact external

traction distribution imposed representing arbitrary combinations of K, X, and T.

[— 11 —>

Mesh has 6 layers of
refinement (only 2
visible). Each layer 15
percent size of next
outer layer

Crack

Figure 6.3 Rosette Configuration Used in p-element Implementation (87,15 ]

With this model, Chen showed that by increasing the polynomial order of the solution,
the relative T-stress error could be reduced to about 107 with the rosette geometry

used and an element shape function order, p =11. Extremely accurate stress intensities
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were also obtained. The T-stress error data is re-plotted in Figure 6.4 in terms of ér,
showing that for the rosette of Figure 6.3, é7 is characteristically negative for all p
values evaluated, and is a logarithmic function of p. It was also verified by varying
load (K;) and r; that € is constant for a given level of p.

Having established the extremely tight accuracy of the rosette geometry at high
values of p, Chen then embedded the same rosette geometry within the meshes of
various test specimen geometries to obtain solutions estimated to be within five
significant figures of accuracy. The specimen geometries are summarized in Figure 6.5

3

and the results tabulated'* in Table 6.1.

1E+00 ; | ] T
1E-01 |— _p(~1-58p-0.430)
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1E-07 o 114.755 |
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1E-09 R ! | ‘
| | | T
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0 b 4 6 8 10 12

Order of Finite Element Shape Functions, p

Figure 6.4 Accuracy Assessment of T-stress Computations Using p-version FEM [87]

" Chen also included a fairly comprehensive comparison to the results of previous authors not included
here.
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Table 6.1 High Accuracy Solutions for Selected Test Specimens, After [87,15]

Specimen Description K,;/o\ma T/o B=T+ma/K,
DCB (h/w=0.2, a/w=0.5) 3.9225 11.5745 2.9508
SENT (b/w=12, a/w=0.3) 1.6598 -0.61033 -0.36771
SENT (h/w=12, a/w=0.5) 2.8246 -0.42168 -0.14929
SENB (h/w=12, a/w=0.3) 1.1241 -0.079177 -0.070436
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Figure 6.5 Summary of Reference Test Specimen Geometries, after [87,15]
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6.3.5 Calibration of the FRANC2D Rosette Geometry

Using the data of Table 6.1 as a sort of calibration standard, the error
parameter, é, was determined for the FRANC2D rosette configuration of Figure 6.2.
To do this, FRANC2D models were created of the various specimen types'> shown in
Figure 6.5 using the FRANC2D rosette configuration, and the T-stresses were
calculated using the methods of Section 6.3.2. A range of integration radii were
included for each specimen configuration to provide more data points (each also
representing a unique outer mesh). The error, ey, in the as-calculated T-stress for each

case was then determined by

er =Tpg - T;ef (6.14)

where T, is the reference T-stress value from Table 6.1 corresponding to the specimen
geometry and loading. As plotted in Figure 6.6, it is seen that the error for the
FRANC?2D rosettes is characteristically negative (the T-stress is underestimated by
the FEM).

For each data point, a value of the error parameter was calculated by

e = (Tye - T,ef)/% (6.15)
1

As would be expected, the é values calculated in this way do not agree precisely, but
vary according to some distribution function, and can be characterized in terms of mean
and standard deviation values:

ér = ér, t éTStD =-0.00825 £.00255 (6.15)
(Mean) (Std. Deviation)

' The FRANC2D DCB specimen model neglected the loading holes with no loss of accuracy (point
loads were used instead).
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A corrected estimate, T,,, , of the T-stress can then be calculated by solving Equation

(6.2) for T, and employing the mean value of ér

. K
T = 7;(” = TFE -eTM Tr{ (616)
1

The standard deviation of the remaining (random) error in 7,,, can be estimated as

K
Std. Deviation = &, —L- (6.16)
Sw‘JE
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Figure 6.6 As-Calculated Error in T-stress Using FRANC2D

A plot of remaining error in the corrected data, e, is shown with lines denoting
50 and 90 percent confidence levels is given in Figure 6.7. The average error (50

percent confidence level) of the corrected solution was about one fifth of the original
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error--a significant improvement in accuracy obtained with negligible additional

computation.

1E+00

1E-01 4

ABS (€1cor) (Units of Stress)

1E-02 4~
s DCB, h/w=0.2, a/w=0.5'
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e SENB, h/w=12, a/w=0.3
———-90% confidence
| 50% confidence ‘
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1 10 100
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Figure 6.7 Corrected Error in T-stress Calculated by FRANC2D with Upper Bounds
Representing Estimated Error

6.3.6 Other Details of Potential Significance with regard to T-stress Calculation
A few other observations arising in the course of the T-stress computation

development effort include the following:

1. The presence of K, was not found to incur any numerical pollution into T.
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2. Tt was found necessary to start with an initially closed crack to get good T-stress
results. As a programming expedience, FRANC2D historically has modeled
the crack with a slight initial opening. The T-stress calculation was more
sensitive to this than the calculation of K, thus in the present implementation,

the code had to be modified to start with an initially closed crack.

3. The singular elements at the center of the rosette shown in Figure 6.2 were
intentionally omitted from the integration domain, requiring the use of a two-
layer rosette configuration. If included, the singular elements resulted in
additional scatter in the T-stress calculations, making error correction less
effective. The reason for this is not known, but may have something to do with
the Gauss integration algorithm as applied to singular elements. An alternate
path not chosen, would be to integrate throughout a single stage rosette without
singular elements, and to correct both 7 and the stress intensities obtained from
the J-integral by correction methods similar to those presented above. In this
regard, it was found that the systematic component of relative error in K, was a

constant for a given rosette configuration, and is independent of scale.

4. Since the error in the T-stress depends on K,, and not 7, the relative error in T
will of course be large if T is small compared to K,. This is acceptable for the
present crack turning application, because the influence of T is only significant

as it becomes large compared to KX,.
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6.4 FRANC2D/L Elastic-Plastic Crack Turning Implementation

FRANC2D/L is a modified version of FRANC2D maintained at Kansas State
University. Its original purpose was to add the ability to model 2D assemblies such as
joints and laminates, but has recently been modified by James [65]to include enhanced
elastic-plastic crack simulation functionality. In addition to the capabilities described
previously for FRANC2D, the elastic-plastic version of FRANC2DL includes the

following capabilities relevant to the present work:

1. An isotropic hardening elastic-plastic finite element implementation

(infinitesimal strain, small displacement).

2. An implementation of an inverse isoparametric mapping algorithm for mapping
elastic-plastic state variables from a starting mesh to an arbitrarily remeshed
geometry. This allows crack extension and local remeshing without losing the
history-dependent plastic state information for the yielded material in the

vicinity of the crack.

3. Implementation of a critical CTOD crack propagation criterion (Equation

(5.26))

4. An implementation of the CTOD crack kinking criterion of Sutton ef al [40]

(Equations (5.32-5.34)) for elastic-plastic mixed-mode crack path modeling.

Item #2 is a particularly significant advancement, because it allows an elastic-
plastic crack to propagate along a curvilinear path that is not known a priori, without

losing the plastic history. The plastic history is vital to model a propagating crack,
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and is responsible for such macroscopic phenomena as R-curve behavior. A complete
description of the elastic-plastic finite-element implementation is given in [65]. The
elastic-plastic version of FRANC2D/L was used with minor modification, except that
the crack kinking implementation was modified to predict the crack turning angle

according to Equation (5.35) with the orthotropic correction of Equation (5.38).

6.5 Summary

A description of the software implementation has been given for the linear
elastic and elastic-plastic crack turning theories given in Chapter 5. For the second
order linear elastic maximum tangential stress theory, the FRANC2D fracture code was
used, and an implementation of a T-stress calculation algorithm is described that
utilizes a domain integral approach based on the Betti reciprocal theorem. An a
posteriori error correction scheme is also described that reduces the error of the T-
stress calculation by a factor of five. An estimate of the remaining T-stress error is
also provided based on available high-accuracy solutions.

The orthotropic correction to the elastic-plastic CTOD crack turning criterion

was implemented into FRANC2D/L.



CHAPTER 7.0
TEST PROGRAM

A key phenomenon associated with crack turning to enhance the damage
tolerance of aircraft structures is the ability to turn the crack at a fairly small radius (on
the order of an inch or less) in a region of high T-stress that often occurs as the crack
nears a stiffener [9]. While recent advances have brought us closer to being able to
model these phenomena with some success at the structural component level [14,15],
certain refinements of the present study are not yet available in shell codes'®, and
require further evaluation at the coupon level. The FRANC2D and FRANC2D/L
implementations described in the preceding chapter provide a means to study crack
turning phenomena in a high T-stress environment with high fidelity models of simple
test specimens.

In order to utilize the second-order orthotropic theory, the characteristic length,
r¢, and the fracture orthotropy ratio, K,,, must be known for the material being
analyzed. Part of the purpose of this investigation is to develop an understanding of
these properties and develop test methods to determine them empirically. Also, crack
paths predicted by appropriate linear elastic and elastic-plastic methods will be
compared with observed paths.

In the following, the test program will first be detailed, including a description
of the specimens used, the test setup, the test procedure, and a documentation of the

response of the various specimens. Selected results will then be discussed in more

¢ Specifically, the contour integral method of T-stress calculation is still problematic for curved shells,
and the displacement correlation technique presently used has no component of correctable systematic
error, thus the T-stress calculations are far less accurate than can be currently achieved for two-
dimensional problems. For the elastic-plastic CTOD method, the state variable re-mapping method has
not been implemented for shells.
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detail, including an effort to extract key material parameters, and to compare observed

fracture paths with FRANC2D and FRANC2D/L simulations.

7.1 Test Specimens

The Double Cantilever Beam (DCB) and Skew Double Cantilever Beam
(SDCB) specimen concepts, shown in Figure 7.1, were used to achieve symmetric and
mixed-mode fracture in a high T-stress environment. Specimen dimensions of A=2.4
inches, and w=12 inches were chosen'’, identical to the DCB configuration of a
previous crack turning investigation [9]. The standard DCB and SDCB specimen
configurations are shown in Figures 7.2 and 7.3, respectively (some deviations from
these standards will be noted hereafter). The geometry was sized to allow about an
inch of stable tearing without excessive plasticity for high strength aluminum alloys,
and results in high T-stress, similar in magnitude to that which may occur in a
pressurized fuselage as a crack approaches a stiffener [9]. Note that LEFM analyses
given hereafter are continued as the crack approaches the edges of the specimen, but
should be viewed with the understanding that plasticity becomes widespread as the
shortest intact ligament decreases.

A total of 43 crack turning tests in four aluminum alloys were run overall,
divided into four specimen sets based on material and test type. Of these, 23 DCB
tests were performed at Boeing under the NASA IAS program [1], and eight DCB and
12 SDCB specimens were tested at Cornell under NASA grant. A detailed matrix of all
crack turning specimens tested is given in Table 7.1. The source material lots for all

specimens except specimen set No. 2 pertain to the IAS program, and material test

"7 As an exception, the SDCB specimens made from the IAS 7050-T74511 large extrusion material
were modified from DCB specimens, leaving w=10.9 inches instead of 12 inches for these specimens.
The slightly shorter length was not expected to make a significant difference in the specimen
performance as long as the crack never grew closer than 4.8 inches from the end. This condition was
satisfied for all specimens except those that grew straight.
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results [88] for these lots are given in Table 7.2. Median stress strain curves for finite

element analyses are given in Appendix 4.0.
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Figure 7.3 Skew Double Cantilever Beam (SDCB) Specimen, h=2.4, w=12
(Specimen Set No. 4)

The test specimen geometries show some evolution, the first two specimen
sets being entirely of the DCB type. While the DCB configuration is the most
sensitive to T-stress/process zone interactions associated with the second-order
theory, a random perturbation also exists in every specimen due to imperfections and
small-scale material inhomogeneity. The SDCB specimen provides a finite asymmetry
designed to be sufficiently larger than specimen imperfections to allow a more

reproducible, and hopefully more informative, behavior.
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Table 7.1 Crack Turning Specimen Test Matrix

Specimen Set No. 1
t=0.090 inches, h=2.4, w=12
DCB Specimens from 1.5 inch 7050-T7451 Plate (Pechiney Lot #75394/011), tested at Boeing [1]

Specimen ID Nominal Starter Notch Length, Precrack,R=.05, 5 Hz.

a (in) Max Load (Ib) Fatigue Precrack, (in)
rc-LT-15-2 2.0 320/variable Fatigue Crack to Failure
rc-LT-15-3 6.5 71 0.04
rc-LT-154 2.0 165 0.04
rc-L.T-15-5 3.0 129 0.04
1c-LT-15-6 7.0 65 0.04
rc-LT-15-7 4.5 98 0.04
rc-LT-15-8 5.0 94 0.04
rc-LT-15-9 5.5 84 0.04
rc-LT-15-10 6.0 78 0.04
rc-TL-15-1 6.5 78 0.04
rc-TL-15-2 2.0 320/variable Fatigue Crack to Failure
rc-TL-154 2.0 165 0.04
rc-TL-15-5 3.0 129 0.04
rc-TL-15-6 4.0 106 0.04
rc-TL-15-7 4.5 98 0.04
rc-TL-15-8 5.0 94 0.04
rc-TL-15-9 5.5 84 0.04
rc-TL-15-10 6.0 78 0.04

Specimen Set No. 2
t=0.090 inches, h=2.4, w=12
DCB Specimens from 2324-T39, 7475-T7351, and 7050-T76511 (misc. material lots), tested at Boeing [1]

Specimen ID Nominal Starter Notch Length, | Fatigue Precrack, R=.05, 5 Hz., 0.04 in

a (in) Max Load (Ib) Comments
rc-TL-2324-1 5.0 113 cut from .95 inch plate
rc-TL-2324-2 5.0 113 cut from .95 inch plate
rc-TL-7475-1 5.0 113 cut from 1.75 inch plate
rc-TL-7475-2 5.0 113 cut from 1.75 inch plate
rc-TL-7050-1 5.0 113 cut from scrap extrusion




Table 7.1 Crack Turning Specimen Test Matrix (Continued)

Specimen Set No. 3
t=0.090 inches, h=2.4; w=12 for DCB, 10.9 for SDCB specimens
Specimens from IAS 7050-T76511 large extrusion [1], tested at Cornell
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Type | Specimen ID Nominal Starter | Fatigue Precracking w Kw/K;
Notch Length, a (in) | R=.05, 3-5 Hz. After
Max Load (Ib)  Precrack (in) Precrack
DCB | rc-LT-EXT1-2 3.0 200 0.04 fatigue 0 0
DCB_| rc-LT-EXT]1-3 5.0 106 0.04 fatigue 0 0
DCB | rc-LT-EXT1-4 5.0 108 0.04 fatigue 0 0
SDCB ] rc-LT-EXT1-6 4.4 370 0.04 fatigue + 0.5 static | 44.78°| 0.21
SDCB | rc-LT-EXT1-7 4.9 270 0.04 fatigue 44.78°1 0.21
DCB | rc-TL-EXT1-2 3.0 200 0.04 fatigue 0 0
DCB | rc-TL-EXT1-3 5.0 106 0.04 fatigue 0 0
DCB | rc-TL-EXT1-4 5.0 168 0.04 fatigue 0 0
SDCB | rc-TL-EXT1-5 4.4 360 0.04 fatigue + 0.5 static | 44.78°| 0.21
SDCB | rc-TL-EXT1-7 4.9 300 0.04 fatigue 44.78°] 0.21
Specimen Set No. 4
t=0.063 inches, h=2.4, w=12
Specimens from IAS 7475-T7351 plate [1], tested at Cornell
Type | Specimen ID Nominal Starter | Precracking Load, R=.05, 3-5 Hz. w Kuw/Ki
Notch Length, a (in) | Max Load (Ib) Precrack (in) After
Precrack
SDCB | S7475LT-1 4.46 200 0.04 fatigue + 0.5 static | 43.83° 0.20
SDCB | S7475LT-2 4.46 106 0.04 fatigue + 0.5 static | 43.83° 0.20
SDCB | S7475LT-3 4.96 108 0.04 fatigue 43.83° 0.20
SDCB| S7475LT-4 4.96 370 0.04 fatigue 43.83°] 0.20
DCB S7475LT-5 4.96 270 0.04 fatigue 0 0
SDCB | S7475TL-1 4.46 200 0.04 fatigue + 0.5 static | 43.83°| 0.20
SDCB | S7475TL-2 4.46 106 0.04 fatigue + 0.5 static | 43.83°| 0.20
SDCB | S7475TL-3 4.96 168 0.04 fatigue 43.83°1 0.20
SDCB | S7475TL-4 4.96 360 0.04 fatigue 43.83° 0.20
DCB S7475TL-5 4.96 300 0.04 fatigue 0 0
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Table 7.2 Average Material Properties for IAS Material Lots

Maximum
Ultimate R-curve
Tensile | Yield Fracture
Alloy Orientation | Strength | Strength| Modulus | Toughness
(ksi) (ksi) (ksi) (ksiVin)
7050-T7451 L 77.5 68.3 10.6
1.5 inch Plate T 76.2 66.3 10.7
S 73.0 62.0 10.4
L-T . 108
T-L 83
7050-T74511 L 77.9 68.4 10.7
Extrusion T 75.2 64.7 10.7
(skin, under
stiffener)
7475-T7351 L 76.5 66.6 104
1.5 inch Plate T 75.4 65.4 10.6
S 75.7 63.1 114
L-T 145
T-L 141

Note: A modulus of 10.4 MSI was used for all analyses of plate alloys based on
MIL-HDBK-5 data.

Specimen set No.l was fabricated at Boeing Seattle from IAS lots of 1.5 inch
7050-T7451 plate, machined to nominal thickness of 0.090 inches, #=2.4, w=12. The
plate specimen blanks were cut through the midplane before machining to obtain two
specimens per blank, and specimens were excised adjacent to the original exterior faces
of the plate. This set includes specimens in both L-T and T-L orientations of the
DCB configuration shown in Figure 7.2. Testing took place at the Boeing Long Beach
facility [1].

Specimen set No. 2 was fabricated at Boeing Long Beach. Specimens 0.090
inch thick, with 2=2.4, w=12, were taken from remnants of various materials, including

7050-T76511 extrusion, 7475-T7351 plate, and 2324-T39 plate. The specimen
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configuration was of DCB type, and equivalent to that of Figure 7.2, but with modified
grip geometry [1]. Tests were run in the T-L orientation only, in order to get a first
assessment as to whether the orthotropy of these alloys was sufficiently mild to allow
crack turning from the preferred fracture orientation (like a longitudinal fuselage crack
approaching an integral frame pad). Testing took place at the Boeing Long Beach
facility [1].

Specimen set No. 3 was fabricated at Boeing Seattle from 30 inch wide 7050-
T74511 extrusions from the IAS program. The panels were extruded by Alcoa in the
shape shown in Figure 7.4, and subsequently straightened in a rolling process.
Specimens excised from these panels were not tested under the IAS program, but were
provided to Cornell for testing. Those tested as DCB specimens retained the original
h=2.4, w=12 dimensions (Figure 7.2). Four of the specimens were modified to be
SDCB specimens by drilling additional holes, resulting in an effectively shorter

specimen of w=10.9. Testing took place at the Cornell Winter Lab.

s AN K I TR A Y .t 8 WE oW

Figure 7.4 As-Extruded Shape of 7050-T74511 Material
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Specimen set No. 4 was fabricated at Cornell from remnants of a 0.063 inch
thick R-curve panel machined from 1.5 inch thick 7475-T7351 plate (IAS lot). This
was the same lot of material used to fabricate a crown fuselage panel for a barrel test
under the IAS program. The specimens were made long enough to accommodate the
staggered load holes of the SDCB configuration and still retain the standard dimensions

h=2.4, w=12 (Figure 7.3). Testing took place at the Cornell Winter Lab.

7.2 K, Ky, and T for Initial (Straight) Cracks in DCB/SDCB Specimens

For most analyses, the stress intensity factors and T-stress are determined
numerically from FRANC2D. However, the following equations are useful for
specimen design and analyses when the crack is straight.

The SDCB specimen loads the specimen with both mode I and mode 11
components

P, = Pcos(w)

P, = Psin(w) 7-1)

The DCB represents the special case where @=0. The stress intensity factor for the

mode I component can be calculated based on results from Gross and Srawley [89].

k=4 f£(£+.687) (7.2)
t Vi \h

This equation was found to agree within one percent down to a/h=0.5 with a
full range expression given by Foote and Buchwald [90]. For real specimens, the grip
may have an effect at this extreme, but the specimens tested were of si gnificantly larger
a/h and the effect of grip configuration was neglected. The mode I stress intensity

factor is derived using a beam theory approach in Appendix 3.0, and is given by
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K _2Pll

= Th (7.3)

This equation was verified with FRANC2D to within less than 0.5 percent error down
to a/h=0.5. To avoid the influence of the opposite end of the current specimen,
Equations (7.2) and (7.3) should not be (and were not) used for crack lengths within 24

of the far end of the specimen. Combining Equations (7.1) through (7.3) we obtain

EIL _ tan (7.4)

K «/5(% + .687)

Equation (7.4) was used to calculate the K;/K; ratios for the precracked SDCB
specimens in Table 7.1.
The T-stress can be evaluated in terms of r, (defined as in (5.5)) for the current

specimen aspect ratio (h/w=0.2) using an equation given in [9]

a a

r h 2T
;"=.0114 14+.7214{ = |+.2879| = (7.3)

for crack lengths ranging within 1 < a/4 < 3. Thus the present specimen is capable of
achieving combinations of K; and T corresponding to r, values ranging from 0.110
27, 2.044 (note that this is more approximate for the reworked 7050-T74511 SDCB

specimens, which have A~/w=0.22).

7.3 Test Procedure
Testing required use of a servohydraulic test machine, an anti-buckling guide,

and a data recording system. Red dye penetrant was used on pre-torn SDCB to mark
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the extent of the crack after pre-tearing. The setup at the Cornell Winter Laboratory is

shown in Figure 7.5. The test procedure for DCB/SDCB specimens is as follows.

1. Wipe specimen clean as required. Solvent permissible, but avoid removing

specimen ID.

2. Measure specimen thickness, w, 24, and initial notch length, a. (specimens may

be lightly scribed as required to facilitate measurements).

3. Mount specimen in test machine. Fill space between clevises and specimen
faying surface with shims to restrict out-of-plane movement of the specimen.
Make sure shim thickness is distributed symmetrically about the specimen, and

that the top and bottom clevises are shimmed to match.

4. Fatigue precrack using hole pair D at load indicated in table, R=0.05, 3-5 Hz, for
at least 0.04 inches growth. A higher starting precrack load is permissible
subject to the precracking guidelines of ASTM E647-93. Total growth should
be at least 0.04 but not exceed 0.10 inches. Measure and record final crack

length on both sides of specimen.

5. If static precracking is specified in the test matrix, load slowly to statically tear
specimen approximately 0.5 inches to final precrack length. Record the critical
load at the end of tearing, load vs. head deflection during tearing, and final crack
length measured on each side. Afterwards, apply red dye penetrant to crack

tip and let dry overnight before proceeding.
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6. Remount specimen using hole pair P (for DCB specimens, this is the same hole
pair used for precracking). Mount antibuckling guide over specimen and gently
finger tighten screws to achieve sliding fit. Support antibuckling guide so that
its weight is not carried through the loading pins, leaving sufficient clearance at

the specimen lower edge to permit specimen deflection during testing.

7. Mount clip gage or extensometer at mouth of crack. Gage shall be calibrated to a

range of 0.5 inches or the maximum range available.

8. Load specimen at 0.05 in/min or less (during final stages of failure after crack
turning, higher rates may be used), recording load, clip gage, and stroke data at
1.0 samples/sec. Continue until specimen failure or until deflection is limited
by interference with the anti-buckling guide. NOTE: Continue testing even if

deflection exceeds clip gage range.

7.4 Results

A detailed summary of specimen data, including specimen measurements,
precrack measurements, and maximum loads, is given in Tables 7.3-7.6. Load/Crack
Opening Displacement (COD) plots for DCB/SDCB fracture specimens were
prepared for the range of validity for the clip gage or extensometer used. As illustrated
in Figure 7.6, the distance, S, between the effective point of load application and the
point at which the CTOD was measured, was not the same for all specimens. This
dimension is noted on each COD plot or corresponding caption, given in Figures 7.7-
7.13. Specimen photographs are presented in Figures 7.14-7.19, and crack paths for all
specimens are given in Figures 7.20-7.26. Selected data is also tabulated in

Appendix 4.



Table 7.3. Summary of 7050-T7451 Static Crack Turning Tests (Set No.1)

o
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Figure 7.6 Schematic of COD Measurement Position, S
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\ Extensometer

Crack Front ap g; Max
Specimen Type After | Thickness w 2h |(notch)|(precrack)| r, (a)| Load
1D Initiation (in) (in) (in) (in) (in) (in) | (Ib)
rc-LT-15-3 slant 0.0923 |11.997|4.800 ) 6.472 6.532 |0.047| 879
rc-LT-15-4 slant 0.0922 {11.997|4.797 | 2.006 2.048 [0.1372757
rc-LT-15-5 slant 0.0924 |11.996/4.799 | 2.989 3.031 0.084|1863
rc-LT-15-6 V-shear 0.0917 [11.996|4.799 | 6.961 7.002 |0.045| 896
rc-LT-15-7 slant 0.0922 |[11.996/4.799 | 4.500 4.546 |0.058[1467
rc-LT-15-8| V-shear 0.0926 |11.998[4.800 | 5.007 5.054 |0.054(1200
re-LT-15-9 slant 0.0917 |11.950[/4.799 | 5.536 5.584 |0.051}1178
rc-LT-15-10 slant 0.0910 ]11.998]4.801 | 5.999 6.042 ]10.049|1122
rc-TL-15-1| V-shear 0.0925 |11.997|4.800 | 6.492 6.536 |0.046| 960
rc-TL-15-4 slant 0.0931 [12.000/4.800 | 2.006 2.050 (0.137*'11858
rc-TL-15-5 slant 0.0919 |11.994|4.798 | 3.000 3.047 |0.083|1427
rc-TL-15-6 slant 0.0935 |12.000{4.800 | 3.998 4.050 |0.064|1298
rc-TL-15-7| V-shear 0.0922 [11.996/4.799 | 4.502 4.557 |0.058]1254
rc-TL-15-8 slant 0.0910 |11.997|4.805| 4.997 5.047 |0.054|1066
rc-TL-15-9 slant 0.0924 |11.985/4.799 | 5.512 5.557 |0.051{1003
rc-TL-15-10 slant 0.0920 ]11.997]4.799 | 6.002 6.047 10.049| 943
* 1o values calculated slightly out of bounds of validity of Equation (7.3)
Table 7.4. Summary of Static Crack Turning Tests of DCB Specimens of
2324-T39, 7475-T7351, and 7050-T76511 Alloys (Set No.2)
Crack Front an a Max
Specimen Type After | Thickness w 2h |(notch)|(precrack)| r, (aj)| Load
1D Initiation (in) (in) (in) (in) (in) (in) | (Ib)
rc-TL-2324-1 slant 0.0858 |12.001|4.800}| 4.988 5.053 0.054|1044
rc-TL-2324-2 slant 0.0915 |11.999]|4.792 | 4.995 5.049 0.054]11169
rc-TL-7475-1 slant* 0.0906 |12.003]4.792 | 4.992 5.049 0.054|1359
rc-TL-7475-2| Vshear 0.0898 |11.999/4.793 | 4.999 5.048 |0.054]|1331
rc-TL-7050-1 slant 0.0985 [11.997|4.804 | 4.993 5.054 10.054(1306

* The crack passed through a small region of V shear (about 0.08 inches) adjacent
to the precrack, but completed most of the turn as a slant crack.
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Table 7.5 Summary of DCB/SDCB Tests of 7050-T74511 Extrusion (Set No.3)

Crack Front an g Max Max
Specimen Type After |Thickness| 2h |(notch) {precrack*)|w (in)| ro (ai){ Precrack]| Load
ID Initiation (in) (in) (in) (in) (in) (in) |Load (Ib){ (Ib)
rc-LT-EXT1-2 slant 0.0880 | 4.800| 3.00 3.05 0 0.083 200 2011
re-LT-EXT1-3] V-shear 0.0911 | 4.804| 4.99 5.03 0 0.054 106 1489
re-LT-EXT1-4 slant 0.0915 1 4.808| 5.01 5.05 0 0.054 109 1434
rc-LT-EXT1-6 slant 0.0813 | 4.801| 4.40 |4.54, 491 |45.45 |0.049]| 3633 |1518
rc-LT-EXT1-7] V-shear 0.0923 14.803| 4.91 4.98 45.09 |0.055 270 1585
rc-TL-EXT1-2 slant 0.0925 [4.799| 3.00 3.11 0 0.082 200 2035
rc-TL-EXT1-3 slant 0.0954 | 4.802]| 5.01 5.06 0 0.054 106 1243
rc-TL-EXT1-4] V-shear 0.0913 | 4.808} 4.50 5.00 0 0.055 168 1405
rc-TL-EXT1-5 slant 0.0909 | 4.804] 4.41 4.45,5.01 145.03[0.048| 3017 |1701
rc-TL-EXT1-7 slant 0.0810 ] 4.804| 4.91 5.09 45.21 10.054 300 1418
* Where applicable, both fatigue and static precrack lengths are given respectively.
o is calculated based on the final precrack length, including both fatigue and static propagation.
Table 7.6 Summary of DCB/SDCB Tests of 7475-T7351 Plate (Set No. 4)
Crack Front an a Max Max
Specimen Type After |Thickness 2h (notch)|(precrack*)|w (in)] 1o (ai) | Precrack| Load
1D Initiation (in) (in) (in) (in) (in) (in) [Load (Ib}] (Ib)
87475LT-1 slant 0.0648 14.808] 4.46 | 4.56,4.98 }43.68|0.055| 2194 |1113
S7475LT-2 slant 0.0654 }14.800]| 4.45 4.53,4.96 |43.8810.055| 2172 1222
S7475LT-3 V-shear 0.0628 ]4.803| 4.98 5.05 43.7310.054 270 1144
S7475LT-4 slant 0.0631 |4.800} 4.95 5.01 43.78 {0.049 270 1022
S7475LT-5 slant 0.0631 14.799] 4.95 5.02 0 0.054 91 874
S7475TL-1 slant 0.0643 | 4.802| 4.46 4.55,5.01 | 43.89 |0.055 1999 1084
S7475TL-2 slant 0.0650 |4.802] 4.46 4.50,5.05 |43.80|0.054| 2076 1049
S7475TL-3 slant 0.0655 |[4.800]| 4.95 5.00 43.88 |0.055 270 949
S7475TL-4 |slight V-shr] 0.0636 | 4.799| 4.96 5.00 43.97 10.048 270 967
87475TL-5 slant 0.0624 |4.808] 4.96 5.00 0 0.055 91 819

*

Where applicabie, both fatigue and static precrack lengths are given respectively.
r, is calculated based on the final precrack length, including both fatigue and static propagation.
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Figure 7.11 T-L Load/COD Curves, 7050-T74511 Extrusion DCB/SDCB Specimens
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Figure 7.14 7050-T7451 Static Crack Turning Specimens (Set No. 1),
L-T Orientation
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Figure 7.15 7050-T7451 Static Crack Turning Specimens (Set No.1), T-L Orientation
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Figure 7.16 7050-T7451 Fatigue Crack Turning Specimens, Shown with Static
Specimens with Same Starting Crack Length (2 inches)

Figure 7.17 2324-T39, 7475-T7351, and 7050-T765]1] Alloy Static Crack Turning
Specimens (Set No.2), T-L Orientation
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Figure 7.18 7050-T74511 Static Crack T urning Specimens (Set No. 3), L-T and T-L
Orientation

Figure 7.19 7475-T7351 Static Crack T urning Specimens (Set No. 4), L-T and T-L
Orientation
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Figure 7.23 Crack Paths, 7050-T74511 Extrusion Crack Turning Specimens, L-T
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Figure 7.26 Crack Paths, 7475-T7351 Crack Turning Specimens, T-L Orientation

7.5 Discussion

The results of the various specimen sets will now be discussed in greater detail.
From the first specimen set, which was made up of symmetric (DCB) specimens, a
great deal was learned about the effect of perturbations and orthotropy on the crack
path. This configuration was found to be less than optimal for the determination of r,,
but for the orthotropic material tested, was useful for developing the T-L R-curve
necessary for determination of K,,. The orthotropic elastic-plastic method showed
good correlation with both the crack path and the load-deflection curve.

The second specimen set, also of symmetric (DCB) configuration, was not
analyzed because lot material data was not available, but was intended to provide early
results on the likelihood of turning a crack from the favored (T-L) crack orientation in
various materials, and is included for completeness.

The third and fourth specimen sets included both DCB and SDCB specimen
configurations. The materials were chosen from the extremes observed in set No. 2; set
No. 3 was of the highly orthotropic extruded 7050-T74511, and set No. 4 was of the
more isotropic 7475-T7451 plate. Emphasis will be on the analysis of the SDCB

specimens in the 7475-T7451 material, since that material was found among the most
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promising for integral structures during the IAS program, and thus a more complete

material data set is available for that material.

7.5.1 7050-T7451 Plate DCB Specimens (Set No. 1)
7.5.1.1 Statically Loaded Specimens

When tested in the stable tearing regime, the 7050-T7451 plate specimens
behaved very differently in the L-T and T-L orientations. The L-T specimens
transitioned from the flat notch to a slant crack, and then turned quite sharply to a
nearly right angle within less than an inch of the initial notch tip. Most of the T-L
specimens transitioned from flat to slant, but then took several inches to turn, if they
turned at all. Also a few of the specimens failed in a “V-shear” mode (see Figure 7.27

for a description of the different failure modes). The V-shear mode is a somewhat

t >
l
v
\ /1
Y Lo U & J —}
Flat Crack Slant Crack V-Shear
(Upward Turning)

Figure 7.27 Crack Failure Types for Thin Sheet Specimens
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randomly occurring asymmetric mode that nearly always results in turning at a fairly
sharp angle or radius, and is beyond the scope of the theories developed under the
present program'®.

With the exception of the V-shear failures, since the specimens were otherwise
geometrically comparable except for the grain orientation, the difference in crack path
could only be attributed to the orthotropy of the fracture properties of the 7050-
T7451 plate material. Recalling the discussion of Chapter 4, the applicable fracture
resistance parameter for determining the orthotropy ratio must correspond to the
failure regime, which is stable tearing. Based on NASA 24 inch wide R-curve tests
[91] for the 1.5 inch plate material machined down to 0.06 inches thickness, the L-T
and T-L fracture toughnesses at a crack extension of about 0.4 inches are 99 and 76
ksiVin, giving a K, value for stable tearing of about 1.3. This was the highest
toughness value obtained for the T-L testing, but the NASA L-T data continued out to
a maximum value of 108 ksiVin. Because several of the T-L crack turning specimens
exhibited a significant amount of straight growth, it was possible to reduce R-curve
data from load/deflection data, as presented in Figure 7.28. Details regarding the data

reduction method for the DCB specimen are given in [1].

'* Note however, that if turning is desirable, the possibility of V-shear failure is not all bad, and in fact
it has been suggested that this mode be studied and exploited. V-shear appears to be a mestable state
associated with the initiation of stable tearing from a fatigue precrack, and when present, reverts to a
slant crack after a short segment of growth. It has been observed to reoccur briefly in structures when a
slant crack transitions to the opposite orientation.
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Figure 7.28 R-Curve Data Extracted from T-L 7050-T745] Crack Ti urning
Specimens in the Straight Crack Growth Region

Since the R-curves were taken from load-deflection data, all the points were not
equally critical, as the specimen tore in small finite crack extensions, thus producing
somewhat rough curves as shown. The most quasi-static points were probably the
peaks, which if connected would be a better representation of the true X gcurve. In
any case, it appears that the curves agree well with the NASA data at 0.4 inches
growth, and reach a maximum, relatively constant value after 1.5 inches of growth of
about 83 ksiVin. Taking the ratio with the top of the R-curve L-T value (108 ksiVin),
we again calculate X, =1.3. Apparently the ratio is fairly constant within this range.

Determination of the characteristic length, r.., for stable tearing has been
accomplished in a previous investigation [9] by plotting the average minimum turning

radius as a function of 7, (calculated per Equation (5.5)). The turning radius is
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determined by laying a circle template over the specimen, finding the radius which best
matches the radius of curvature at the turning point (average of the radii on each side).
A value for r. can be estimated for isotropic materials by extrapolation to the r, value
at which crack turning occurs with zero radius.

The test matrix for Specimen set No. 1 was originally set up to evaluate roin
the manner described above (thus including several starting notch dimensions,
corresponding to multiple r, values). However, as fracture orthotropy has become
better understood, it has become apparent that the test data cannot be meaningfully
reduced in this manner for highly orthotropic materials. This is because the expected
critical (bifurcation) value of r, is different in each direction, and falls out of the range
of r, values tested with the current specimen geometry. Also, turning from the
symmetric test configuration was observed to occur over a fairly smooth (albeit often
tight) curve, rather than the sharp kink predicted by the second-order linear-elastic
theory. Nevertheless, literature values (of unknown accuracy) for 2000 and 7000
series aluminum alloys [8, 9] are on the order of 0.05-0.06 inches, and Appendix A.1
gives values in the 0.05-0.08 range depending on the orientation. It was thus desired
to perform a sensitivity study for . values in this vicinity to see if the crack paths
could be correlated with the second-order orthotropic theory using the FRANC2D
implementation described in Chapter 5.

FRANC2D calculates K}, Ky, and T at for a given crack confi guration,
calculates the new crack direction based on Equation (5.13), extends the crack a
specified increment, remeshes the region around the crack tip, and reruns the analysis
to calculate the new crack trajectory. An example of a mesh used for analysis of a

DCB specimen of L-T orientation is shown Figure 7.29.
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Figure 7.29 FRANC2D Mesh for Analysis of a DCB Specimen

7.5.1.1.1 Perturbation Effects

Unfortunately, the symmetric nature of the specimens is a drawback from a
crack-path correlation standpoint for T-L specimens. An analysis of a DCB specimen
of a hypothetical material with substantial fracture orthotropy (X, =1.67) and various
angular perturbations applied at the first step is presented in Figure 7.30. In cases
where the crack turns gradually, such as T-L specimens with high orthotropy, the
perturbation sensitivity is most significant. Note that the sharply turning L-T curves
plot together (independent of perturbation).

Modeling a perfectly symmetric specimen will typically result in a (slightly)
non-zero Ky, related to discretization error of the mesh, thus only a theoretical line is

given for this the unperturbed T-L case in Figure 7.30. In real specimens, perturbation
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could potentially result from manufacturing imperfections in the specimen geometry,
the effects of gravity on the specimen, and the natural meandering nature of the crack
tip due material inhomogeneity. Gravitational effects were largely ruled out as a major
contributor, since the specimens did not all turn the same direction (up or down) in the
test machine. Geometric irregularities in the specimens, while potentially significant,
were small enough that they were difficult to quantify in a meaningful way, though it
was evident that the precracks were sometimes observably out of alignment with the
starting notches (and this varied through the thickness). Nevertheless, visual
inspection of the specimens suggested that even in fairly nominally straight regions of
stable tearing, the natural meandering of the crack appeared to provide a potentially
significant source of perturbation.

In an attempt to quantify the inherent perturbation distribution of a meandering
(stably tearing) crack in 7050-T7451 plate, a high resolution scan of a 2.5 inch length
of substantially straight crack growth in specimen rc-TL-15-4 was sampled for angular

slope (point to point) at various increment lengths. The data and a curve fit to a
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logarithmic distribution is given in Figure 7.31, and shows that there is about an eighty
percent likelihood of an angular perturbation exceeding an angle of one degree over a

typical 0.010 inch length of crack propagation.
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Figure 7.31 Perturbation Distribution for 7050-T7451 Plate, Obtained from
Nominally Straight Stable Tearing Region of Specimen

7.5.1.1.2 Correlation with Second-Order Turning Theory,
Including Toughness Orthotropy

With substantial random perturbation due to material inhomogeneity, and the
potential for geometric imperfections, one would expect a noticeable amount of scatter
in the crack paths for nominally self-similar specimens such as the DCB. However, we
observe that after a finite amount of crack growth, including an amount of perturbation
induced turning, the specimen geometry is no longer symmetric. At this point its
future path should be more predictable, since the nominal asymmetry is then larger
compared to random perturbations'®.

Specimens rc-TL-15-5 and rc-TL-15-8 were analyzed in this manner with

" By the same logic, real physical problems would not be expected to be highly perturbation sensitive
unless they are nearly symmetric.
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Figure 7.32 Correlation of Observed and Predicted Crack Paths for Selected 7050-
T7451 Specimens (L-T Orientation, K, =1.3, Step Size = 0.1 in)

correlation of various analyses shown in Figures 7.32a and 7.32b. The models
included the actual crack path up until the vertical (asymmetric) growth component
was about 0.1 inches, and the crack path was predicted analytically from that point,
using an orthotropy ratio K,=1.3, and a crack increment step size of 0.1 inches.
From Figures 7.32a and 7.32b, we observe that with the level of orthotropy

present, the choice of 7, has a modest effect on the predicted (T-L) crack. An r. value
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of approximately 0.10 inches gives the best results in an average sense, overestimating
the turning in one case and underestimating in the other. The remaining disparity in the
crack paths appears to result from perturbations observed along the crack path
presumably due to material inhomogeneity. Also, for 7475-T7451 the steady state
Irwin plastic zone is about 0.5 in (T-L) t0 0.7 in (L-T), and the LEFM approximation
becomes increasingly poor as uncracked ligament decreases.

In the L-T orientation, all specimens turn fairly sharply to nearly 90 degrees, as
shown in Figure 7.20. The FRANC2D analysis in Figure 7.30 illustrates that this
result is predicted for an orthotropy ratio of 1.3 almost independent of the
perturbation magnitude. The results are re-plotted in Figure 7.33 with comparison to
the crack path of specimen rc-LT-15-5. Clearly, the correlation is favorable, and is in
this case enhanced by an r, value of at least 0.05 inches, but insensitive to higher

values. A value of r,=0.1 gives the best correlation with both T-L and L-T results.
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Figure 7.33 Correlation of Observed and Predicted Crack Paths for Selected 7050-
T7451 Specimens Using the Second Order Elastic T, heory with Toughness Orthotropy
(L-T Orientation, K, =1.3, Step Size = 0.1 in)
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7.5.1.1.3 Correlation with Elastic-Plastic CTOD Method, Including Toughness
Orthotropy

The elastic plastic method first requires determination of the critical crack tip
opening displacement, D,. For the 1sotropic case, this is accomplished [40] by running
simulations of a fracture test assuming various value of D,, and choosing the value that
results in the best match of the observed load-deflection curve. With fracture
orthotropy, the same approach applies, with recognition that D, is a function of
orientation. The approach that was taken was to determine D(0°) from a straight-
growing specimen of T-L orientation. FRANC2D/L then uses Equation (5.42) to
estimate the critical CTOD for other orientations2’.

Specimen rc-TL-15-9 grew quite straight, and was chosen for determination of
D.. Figure 7.34 shows good correlation of the observed response to that predicted by
a simulation using D(0°)=0.0026 inches, thus this value was chosen for use in
subsequent analyses. There is also evidence of an initial, slightly higher critical CTOD
at the initiation of stable tearing, as has been observed by other authors [38], though
this was neglected for the present study.

Simulating a length of the actual crack path, as was done for the linear elastic
method, was not practical for the elastic-plastic method, because the path is history
dependent, and must be grown, not simply modeled geometrically, to obtain the
proper plastic history. The actual fatigue precrack angles for these specimens were
small, leaving the actual crack path subject to random perturbations as discussed
earlier. Thus specimens rc-TL-15-5 and rc-LT-15-5 were modeled from the nominal

initial precrack configuration (2=3.0 inches), but with a small angle kink in the last 0.1

* Note that the value of K. m used herein is based on fracture toughness data, allowing a consistent

orthotropy ratio for both linear elastic and elastic-plastic studies. In practice, it may be advantageous to
determine both D.(0°) and D.(90°) directly from fracture specimens, then obtain X m from Equation
(5.40).
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inch of the precrack to provide an initial perturbation. Perturbation angles of 1.0 and
4.0 degrees were modeled for each specimen, and compared with actual measured paths
in Figures 7.35 and 7.36. Inasmuch as the average random perturbation angle for a 0.1
inch increment is about three degrees based on Figure 7.31, correlation between
predicted and observed trajectories is quite satisfactory. For the L-T specimen,
predicted curves are smooth, and resemble the observed path better than the linear-

elastic prediction.
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Figure 7.34 Correlation of Observed and Predicted Load vs.COD Jfor Specimen
1c-TL-15-9 (T-L Orientation , Straight Crack Growth, Elastic-Plastic Method)
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7.5.1.2 Fatigue Loaded Specimens

Inasmuch as 7. is expected to scale with the plastic zone size, it is expected to
be negligible for slow fatigue crack growth. The fracture orthotropy ratio can be
obtained from a comparison of L-T and T-L fatigue crack growth rate data, shown in
Figure 7.37, taken from the straight growth regions of specimens rc-LT-15-2 and rc-
TL-15-2. Extrapolating the data into approximately parallel lines in this regime of
growth, it is apparent that to obtain the same crack growth rate in either orientation,
one would have to load the L-T crack about 10 percent more than the T-L crack, thus
the orthotropy ratio is about 1.1.

With r.=0, and a nominally symmetric, gradually turning crack, a hi gh degree of
perturbation sensitivity is expected. The FRANC2D analysis thus utilized the actual
crack path up to 0.1 inches of asymmetric growth in the same manner as was done in
Figure 7.32. The resulting correlation shown in Figure 7.38 is very favorable for the
L-T case. Correlation was somewhat worse for the T-L case, possibly because the
stress intensity for growth was getting high enough that the T-stress had an effect

which was not modeled since we assumed r.=0 for fatigue crack growth.
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Figure 7.37 Comparison of T-L and L-T Fatigue Crack Growth Data Taken from
DCB Specimens, Stress Ratio=0.05
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7.5.2 2324-T39, 7475-T7351, and 7050-T76511 DCB Specimens (Set No. 2)

The primary purpose of these tests was to obtain information about the
orthotropy of these alloys, and the likelihood of turning a crack from the T-L
orientation. This information was needed to support a material selection decision for a
large panel test under the IAS program requiring a sufficiently isotropic material to
enable crack turning of a longitudinal fuselage crack (T-L). Only T-L specimens were
tested with the underlying assumption that K, >1. Based on results reported in [9]
for 2024-T3 DCB tests, one would expect that fairly isotropic T-L specimens would
turn sharply due to the high T-stress environment. From the curves plotted in Figure
7.22, 2324-T9 plate clearly falls into this category, while 7050-T76511 does not. It
was also concluded that 7475-T7351 was sufficiently isotropic to turn a T-L crack,
though it was observed that both 7475-T7351 specimens exhibited a small amount of
V-shear behavior, which could have influenced the results.

Without performing further testing at the time, the project went on to build and
test a large fuselage barrel test panel out of 7475-T7351 plate for testing with a two-

bay crack. While the panel performed well in residual strength, the crack did not turn
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appreciably [92]. As will be discussed with regard to specimen set No. 4, an (L-T)
DCB specimen cut later from the same lot of material as the test panel did not turn
either (though also with a small amount of V-shear). Based on a rudimentary estimate
of the T-stress made for the fuselage panel during the IAS program, the panel had less
T-stress than the specimen, thus would not have been expected to turn the crack.

Further crack path analysis was not performed on these specimens.

7.5.3 7050-T74511 Extrusion DCB and SDCB Specimens (Set No. 3)

Large extrusions with integrated skin and stiffeners have been identified as a
potentially cost-effective approach for both wing and fuselage applications. However,
because of the directional nature of the processing, extrusions were expected to
manifest substantial toughness orthotropy, making cracks difficult to turn from the
preferred T-L orientation. For fuselage applications, it is preferable to turn both
longitudinal and transverse cracks, should they impinge upon either frame or longeron.
For wing applications, it may be sufficient to turn cracks from the L-T to the T-L
orientation as they impinge upon a longitudinal stiffener.

As shown in Figures 7.23 and 7.24, cracks in the L-T DCB specimens turned
immediately about a small radius to a near 90 degree angle, and cracks in the T-L DCB
specimens grew straight, as would be expected for a material with significant toughness
orthotropy?!. Due to the high toughness orthotropy, among other things, this material
was deselected from the IAS fuselage program before any R-curves were run, thus the
degree of orthotropy could not be determined in the usual manner. (While T-L R-
curves could be developed from the straight growing DCB specimens, there was

excessive turning for R-curve development in the L-T specimens).

' V-shear specimens have been excluded from the crack path plots for this set, as well as the
discussion. To get an idea of the V-shear crack paths, see specimen photographs. V-shear failure was
always accompanied by severe turning, regardless of initial crack orientation.
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As an alternative, it was noted that specimen rc-TL-EXT1-7, an SDCB
specimen, turned sharply at 64.5 degrees from the initial crack length, a,=6.18 inches,
and grew nearly in a straight line crack extension for about 2.2 inches. Because the path
is straight, we should theoretically be able to assume that the K,/K, ratio represents
the critical value given in Equation (5.15) with 6=64.5 degrees. For a given orthotropy
ratio and orientation, the critical X;/X; ratio should be relatively constant. A
FRANC2D analysis of this problem reveals that the K;/K; ratio varies along the
straight path described as shown in Figure 7.39. The variation is so dramatic that
(even changing sign), that it is difficult to imagine that the material properties are
constant along the crack, unless there were an unanticipated axis of minimum
toughness lying along the crack path. If that were the case, then a nearly identical

crack path would have been expected in specimen rc-TL-EXT1-5, which did not oceur.
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Figure 7.39 K,/K; Values Predicted by FRANC2D Along a Straight Crack Extension
Following a 64.5° Kink, Specimen rc-TL-EXTI-7
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Various explanations might exist for the observed anomalies. It is well known
that the grain structure varies considerably within extruded shapes, potentially
resulting in heterogeneous fracture properties. Also, the specimens were not very flat,
indicating potentially significant residual stresses, and potentially giving rise to
undesireable and potentially nonuniform frictional loading from the anti-buckling guide.
To further complicate matters, 30 percent of the specimens failed in V-shear mode.

As a result of these anomalies, and in the absence of R-curve data, it was not
possible to reduce meaningful values for K, and . for the 7050-T74511 extrusion

material from the specimens provided.

7.5.4 7475-T7351 Plate DCB and SDCB Specimens (Set No. 4)

7475-T7351 plate has an excellent combination of strength, fracture toughness,
and stress-corrosion resistance, and was the material of choice for the IAS fuselage test
program. It was desired to determine the values of K,, and r. for this material.

Forty inch wide R-curve tests were run at NASA Langley Research Center [93]
on the same lot of material used for the IAS widebody barrel test, and are plotted in
Figure 7.40. For a given value of effective crack extension, Aaq, the L-T fracture

resistance is about 10 percent higher than the T-L value, thus K,=1.1.
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7.5.4.1 Correlation with 2nd-Order Linear-Elastic Theory,
Including Toughness Orthotropy

For the SDCB specimen geometry of Figure 7.3, Equations (7.4) and (7.5) give
K;7/K=0.20, and r,=0.0546 inches for the precracked starter notch configuration.
Based on these conditions, the initial kink angle predicted by the second-order, linear-
elastic, maximum circumferential stress theory is given in Figure 7.41 as a function of
initial crack orientation for various values of .. Plotted for comparison are the actual
kink angles observed in each of the 7475-T7351 SDCB specimens, measured from
high-resolution optical scans of the specimens. The initial crack orientation plotted
along the ordinate is defined relative to the longitudinal (rolling) axis of the plate
material, and reflects the measured angle at the crack tip after precracking. Data is

shown for both T-L (0°) and L-T (90°) specimens, excluding specimen
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Figure 7.41 Determination of r, from Crack Kinking Data, K;yK=0.2

S7475-LT-3, which failed in V-shear. The kink angle is measured relative to the
precrack angle, and each data point represents an average of angles measured on each
side of the specimen.

From Figure 7.41 we observe that the measured angles for static precracked
specimens are higher then for specimens precracked with fatigue loading only. This
may reflect an increase in process zone size corresponding to the increased crack
growth resistance, Kj, of the statically precracked specimens. However, the difference
is small in terms of r,, particularly considering the rather large K gradient evident in
the first 0.5 inches of stable tearing in Figure 7.40. Also, accurate measurement of the
kink angle is more difficult for the fatigue precracked specimens because the crack
transitions to a slant crack while it kinks, as shown in Figure 7.42. For this reason,
kink angles measured from the statically precracked specimens are considered to be

more reliable and representative, and correspond to r. values of approximately 0.08
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inches in the T-L orientation and 0.04 inches in the L-T orientation, or an average value

of 0.06 inches. Clearly, first-order theory (r.=0) is incapable of predicting the correct

turning angles.

b. §7475-TL-3 (Fatigue Precrack Only)

Figure 7.42 Measurement of Initial Crack Kink Angle in Specimens with and without
Static Precracking

Based on the values of K|, and r, determined above, DCB specimens
S7475LT-5 and S7475TL-5 were analyzed the second-order linear elastic maximum
tangential stress theory with toughness orthotropy. The fatigue precracks developed

at the notch tips were at 29° and -9° to the notch orientation, respectively, and
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initiated slightly off-center (see first three points of each crack path given in Appendix
4.0). These details were included in FRANC2D models of the specimens, providing a
small initial asymmetry.

Predicted and observed crack paths are given in Figures 7.43 and 7.44,
respectively. Correlation is quite satisfactory in the L-T orientation, though the
observed crack path seems to show more severe turning as the crack orientation
“snaps” into the preferred, longitudinal grain orientation. Similar behavior was found
in other 7475-T7451 specimens, indicating that the fracture resistance function, K (0)
may have a more pronounced minimum than the simple function given by Equation
(4.6). This would also explain why the T-L specimen turned less than predicted by
the model. Nevertheless, based on the previous discussion with regard to Figure 7.30,

one would also expect that a slightly curving crack such as in the T-L case, the path is
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Figure 7.43 Correlation of Observed and Predicted Crack Paths for Specimen
S7475LT-5 (L-T Orientation)



171

2.0
| | =——-S7475TL-5 (DCB)

= 15 ‘ ‘ ;
& | |
= ‘—_FRANCZD, 2nd-Order LEFM,
5 10| Km=1.1, rc=0.06 in | Crack paths |
= | sh for both
S " | —FRANC2DL, Elastic-Plastic e or
§ 0.5 :% | CTOD, K,Ezl,-l,,, specimen ‘
5
>

4.0 5.0 6.0 7.0 8.0 9.0
Horizontal Crack Growth, @ (in)

Figure 7.44 Correlation of Observed and Predicted Crack Paths Jfor Specimen
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sensitive to the random perturbations due such as those described in Figure 7.31. Itis
likely that if several additional specimens were tested, some would show gradual

turning as predicted?.

7.5.4.2 Correlation with the Elastic-Plastic CTOD Method, Including Toughness
Orthotropy

Specimen S7475TL-5 is of T-L (0°) orientation, grew essentially straight, and
was used as a basis to determine D(0°). The results of FRANC2D/L simulations
based on various values of D.(0°) are compared with observed load/COD data for this
specimen in Figure 7.45. The simulations assumed the crack grew straight, neglecting
the small deviations from straightness observed in the actual specimen. For the most

part, the observed response fell between the simulated curves for D.(0°)=0.0028 and

% Note from Figures 7.15 and 7.21 that most of the T-L 7050-T7451 specimens turned, even though
that material was found to have higher toughness orthotropy than 7475-T7451.



D(0°)=0.0030 inches, thus a critical value of 0.0029 inches was assumed for
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subsequent analysis. There was also evidence of an initial, higher critical CTOD at the

initiation of stable tearing, as has been observed by other authors [38], though this was

neglected for the present study.

S7475LTS5 were analyzed using the elastic-plastic implementation in FRANC2D/L.

Assuming D(0°)=0.0029 inches, K, =1.1, DCB specimens S7475TLS5 and

For these analyses, the initial measured angles associated with the fatigue precrack

were included in the starting notch configurations as was done for the second-order

LEFM analyses performed in the preceding section, giving a small initial deviation

from symmetry. Predicted crack paths are included in F igures 7.43 and 7.44, and

load/COD plots are compared with observed response in Figures 7.46 and 7.47,

respectively.
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The predicted crack path for specimen S7475LT5 (90°) compares well to the
measured response, and is very similar to the predicted behavior of the second-order
linear elastic theory. The predicted load/COD curve is somewhat conservative for this
specimen. This may be in part due to the use of the transverse tensile properties for
the analysis, even though the primary loading is in the longitudinal direction (which has
slightly higher strength per Table 7.2). Also of potential significance in this regard are
the effects of deviations in the crack path, and errors associated with the approximate
nature of Equation (5.40).

For specimen S7475TLS5 (0°), the predicted response indicated crack turning
somewhat more severe than the second-order linear elastic analysis, compared to the
relatively straight growth observed in the specimen. As suggested earlier, there is
evidence from the L-T crack path that for this lot of material, the toughness function
has a more pronounced minimum at 8=0° than assumed, which would explain the
disparity between analysis and observation in the L-T orientation. The predicted
load/COD curve matches well with the observed behavior in the region where the

predicted path is relatively straight, as would be expected.

7.6 Summary

A test program has been described including test results from 31 DCB and 12
SDCB specimens, fabricated from four aluminum materials--7050-T7451 plate, 7050-
T74511 extrusion, 2324-T39 plate, and 7475-T7351 plate—and divided into four
specimen sets. These sets will be described in chronological order, with a review of the
highlights of their purpose and what was learned.

The first specimen set, comprised of DCB specimens cut from 7050-T7451
plate, was intended to provide data for determination of the characteristic length, r,,

using an extrapolation method used under a previous test program for 2024-T3 (a
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material with more isotropic toughness). As it turned out, the intended method to
obtain r, was not applicable, and statically loaded specimen showed a very significant
effect of fracture toughness orthotropy. Toughness data from the same lot of material
indicated that X, =1.3 for this alloy in the stable tearing regime.

Analyses using the second-order linear-elastic maximum tangential stress
theory with X_=1.3 showed that in the regime of T-stress found in the DCB
specimens, crack trajectory was dominated by the toughness orthotropy, and
sensitivity of the crack path to . was minor. For T-L cracks, the path was found to
curve gently, and was found to be heavily influenced by random perturbations, and the
perturbation distribution was quantified. For L-T cracks, some effect of r. was noted
up to r.=0.05 inches, beyond which the predicted crack path became insensitive to the
characteristic length. Use of 7,=0.05 did improve crack path prediction, and is
recommended for this alloy in the stable tearing regime.

Elastic-plastic fracture simulation of T-L and L-T specimens from Specimen
set #1 showed comparable predictions to the second-order linear elastic method,
though the smooth shape of the tightly turning crack in the L-T specimen was better
predicted by the elastic-plastic method, and is free of the zig-zag oscillation observed
in the linear elastic prediction.

Specimen set No. 1 also had two specimens for which the crack was
propagated in fatigue. There was a distinct difference in the nature of the crack path
compared to the stable tearing specimens, showing evidence that the effective fracture
resistance orthotropy was different for fatigue loading than for stable tearing. Based
on da/dN data from straight crack growth regions of the specimens, a fracture
resistance orthotropy ratio of X, =1.1 was determined for the 7050-T7451 plate at a
crack growth rate of about 10~ inches/cycle. Use of this orthotropy value and r.20

resulted in satisfactory correlation of the analysis and test data, supporting the
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hypothesis that process zone size interacts with T-stress (via r,) and fracture
orthotropy to influence the crack path. With regard to fracture orthotropy, this
confirmed the notion expressed in Chapter 4 that the fracture resistance orthotropy
ratio must be based on the material response in the appropriate fracture regime.
Presumably, the fracture resistance orthotropy varies with da/dN to the degree that the
T-L and L-T da/dN vs AK curves differ, and approaches constant value in the stable
tearing regime.

Specimen set No. 2 was tested to provide early information during the IAS
program on the ability to turn cracks in various alloys from the preferred (T-L)
orientation, and is included for completeness. Specimen set No. 3 indicated that 7050-
T74511 extrusion was rather prone to spurious and unpredictable behavior, and is a
warning that it may be inherently difficult to reliably predict crack paths in materials
made by processes that result in nonuniform grain structure and/or residual stresses.

Specimens set No. 4 included both DCB and SDCB specimens machined from
7475-T7351 plate material—the material of choice for the IAS integral fuselage
program. Using a novel data reduction approach, r, for this material was estimated to
be 0.06 inches based on SDCB specimen kink data. A fracture toughness orthotropy
ratio, Em=1.l, was determined for this material based on IAS wide panel R-curve data.
Using this information, simulations run with both elastic and elastic-plastic turning

methods showed good correlation with observed test results.



CHAPTER 8.0

SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS FOR FUTURE WORK

8.1 Overview

This chapter presents a summary of the contributions of the present work,
conclusions drawn, and recommendations for future work as appropriate. The overall
purpose of the work is to develop improved crack path prediction methods necessary
to aid in the design of damage tolerant aircraft structure where skin and stiffening
elements are integrated as one-piece. A discussion of the background to the problem is
given in the first chapter, describing how crack turning can provide a measure of fail
safety for integral structures, and identifying process zone interaction with T-stress
and fracture toughness anisotropy as potentially significant factors requiring further
study. Chapters 2-5 discuss various details with regard to crack turning theory,
starting with first-order (T-stress free) isotropic theories, and adding the effects of T-
stress and orthotropy along the way. Chapter 6 describes the software
implementation of selected elastic and elastic-plastic methods, including accurate T-
stress calculation methods, and Chapter 7 presents test results and crack path
correlation with numerical analyses. The contributions of each chapter beginning with

Chapter 2 will now be summarized in more detail.

8.2 Chapter 2: Isotropic Crack Turning Theory in Two Dimensions

This chapter is largely introductory in nature, providing a description of
various isotropic crack turning theories found in the literature, including both linear
elastic and elastic-plastic theories. The linear-elastic theories described are later

described as “first-order”, because they include only the mode I and mode II
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components (K, K;) of the leading term in the crack tip stress field expansion, but
neglect the T-stress and higher-order terms. The elastié-plastic theory of Shih also
neglects the far-field T-stress, and may thus also be described as first-order in this
sense. These theories give the kink angle as a function of K;/K, and predict very
similar results, particularly as X, becomes small compared to K;. In the limit as K,
vanishes, the predicted kink angle is zero, as for a smoothly curving crack. Based on
the resulting assertion that a naturally curving crack follows the path that satisfies
K;=0, all the first-order theories thus predict the same crack path—a path which tends
to diverge in a positive T-stress environment, as shown by Cotterell and Rice.
Following this discussion, test data are shown that indicate that process zone
size effects the rate of crack path divergence in a positive T-stress environment—a
phenomenon not possible to predict based on the first order theories—and the

question is asked: Why?

8.3 Chapter 3: Crack Path Instability in a Material with a Cohesive Process Zone
This chapter attempts to address the question posed in the preceding chapter
by an original study of the crack path instability of a slightly curvilinear crack in an
isotropic material with a cohesive process zone at the crack tip, propagating in a
positive T-stress environment. The cohesive zone is intended to represent a strain
localization region of smaller size than the total plastic zone would be in the usual
Dugdale sense (that is, the stress intensity factor at the tip of the cohesive crack is
non-zero). Further, it is assumed that the crack propagates under steady state
conditions (the cohesive zone is of constant length), and the tip of the cohesive crack
follows the path corresponding to zero mode II stress intensity, as suggested by
Cotterell and Rice. The solution neglects second and higher order terms involving the

deviation of the crack from a straight path.
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Because the crack is (initially) slightly curved, there is a finite mode II stress
intensity, K,/,associated with the cohesive tractions at the crack tip. Therefore, for
the total mode II stress intensity at the crack tip to vanish, there must be a non-zero
far-field component, K;;, equal and opposite in sign to K;/. In order to enable
development of an estimate for K/, expressions are developed for the crack flank
displacements in the vicinity of the slightly curved crack, due to both far-field loading
and local cohesive tractions. The normal traction is taken as a steady state function of
the flow stress and distance from the crack tip, and includes strain softening. The
tractions and displacements in the cohesive zone interact by way of a simple
constitutive relationship based on the strain localization concept. The constitutive
relationship is considered for both plane-stress Von Mises strain localization in a
cohesive crack surface normal to the plate, and a Tresca shear strain localization
surface at 45 degrees to the plane of the plate. A closed form expression involving
shear and normal tractions is integrated along the cohesive zone to obtain an estimate
of K,/ in terms of the assumed steady-state normal traction function, flow stress, and
crack tip curvature.

A solution is then developed using Laplace transform techniques for the future
path of an initially curved semi-infinite crack with a cohesive process zone propagating
in an infinite elastic medium. The solution indicates that in a positive T-stress
environment, an increase in process zone size results in an increase in crack path

instability, agreeing at least qualitatively with experimental findings.

8.4 Chapter 4: Fracture Resistance Orthotropy and Modal Transition
This chapter serves initially as an introduction to the work of various authors
with regard to fracture resistance anisotropy (fracture resistance that is a function of

direction), fracture mode asymmetry (fracture resistance that varies with fracture
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mode), and modal transition (transition between mode I and mode II failure, depending
on mode-mixity). In addition, a few important original contributions are presented, as
will now be described.

Among the original contributions is the recognition that the crack growth
resistance, K,(6), used to characterize the orthotropic fracture behavior, must be
determined in a regime consistent with the failure process. That is, the fracture
resistance may (and typically does) vary more as a function of orientation in the stable
tearing regime, than during slow fatigue crack growth. Thus, the orthotropy ratio, K, ,
1s not a material constant, but a state variable, though it may be approximated as a
constant within a given fracture regime. This was supported by test data in Chapter 7
for thin sheet coupons propagated under static or fatigue loading. While the
mechanism behind the change in orthotropy ratio in the different fracture regimes is not
well understood (granted that stable tearing and fatigue fracture have inherent
phenomenalogical differences), it is hoped that current multi-scale studies of fracture
processes may shed light on this issue.

Two additional contributions relate to the interpolation function that estimates
the fracture resistance at an arbitrary crack orientation angle based on the principal
values of the fracture resistance. F irst, some motivation was given to the choice of the
exponent in the interpolation function of Equation (4.1), in view of the fact that in
prior work the exponent is arbitrarily selected, and the different authors are in
disagreement. Second, and most significant, is the extension of the fracture orthotropy
interpolation function to three dimensions, interpolating between the six principal
fracture resistance values corresponding to this case. While this contribution was not
carried on in the subsequent stages of the present work, it provides an 1mportant
building block for follow-on work in three-dimensional crack turning studies with

fracture resistance orthotropy.
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8.5 Chapter 5: Crack Turning Theories with Process Zone Effects and Fracture
Resistance Orthotropy

This chapter builds upon the work of prior authors to develop two enhanced
approaches for crack turning simulation, a linear elastic approach and an elastic-plastic
approach. These methods are the proposed workhorse methods for implementation in
the following chapter.

The linear-elastic approach includes both the “second order” (process zone
related) effect of the T-stress, and the effect of fracture resistance orthotropy. Both of
these influences had been studied independently in prior work, but their unification
and full development in the present work, is both original and significant. The
inclusion of the T-stress into the orthotropic theory predicts more rapid turning in a
positive T-stress environment as the process zone related characteristic length, r., is
increased. provide a linear elastic prediction for the point of modal transition based on
the concept of fracture mode asymmetry.

Several original variants of the second order linear elastic crack kinking theories
are also discussed, including fracture orthotropic maximum tangential and shear stress
criteria for mode I and mode II dominated propagation, and a modal transition
condition based on fracture mode asymmetry. Other variants include second-order
isotropic theories assuming pure modal growth both in stress (0,,=0 for mode 1), and
CTOD. 1t is shown that the various second-order mode I theories predict either
identical or very similar behavior, if one realizes that the corresponding process zone
size parameters differ in scale for the various theories.

The elastic-plastic crack turning approach described builds heavily on the work
of Sutton [40] with regard to using the mode I and mode II components of the CTOD
(Drand Dyy) to determine the crack path. The present contribution extends the method
to include fracture resistance orthotropy by way of an angular correction based on

linear elastic orthotropic theory. The enhancement is only valid for (nearly) smoothly
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curving cracks, and would not be expected to correctly account for orthotropy for large
angle sharp kinking behavior.

Also, early in the chapter, the concept of modeling a smoothly curving crack
using a C° continuous series of linear segments was discussed in light of the theoretical
convergence study Stone and Babuska. Their results are strictly valid only for first
order, linear-elastic crack turning (K;=0), but infer that (1) for a convergent solution,
the kink angles should approach zero as the step size is reduced, and (2) the problem is
probably sufficiently converged for engineering purposes when the kink angles fall
below about 10 degrees. As is evident in the results of Chapter 7, the second-order
linear elastic theory does not tend to converge in this manner, but results in a sharply
zig-zagging path that does not become smooth as the step size is refined. Yet, the path
does converge in an average sense to a reasonable approximation of the actual behavior.
On the other hand, the elastic-plastic method converges to a smooth path, and is in this

respect more realistic.

8.6 Chapter 6: Software Implementation

The software implementation of second-order linear-elastic maximum tangential
stress theory and the elastic-plastic CTOD crack turning theories are described in this
chapter. The present effort builds on the framework of the F RANC2D fracture
simulation environment, adding various features necessary to utilize the enhanced crack
turning criteria. Two variants of the code were produced, a version of FRANC2D for
the second-order elastic-plastic method, and a version of FRANC2D/L for the elastic-
plastic method. FRANC2D/L was chosen for the elastic-plastic method to build on a
prior implementation of the isotropic CTOD method by a colleague.

A large portion of the chapter describes a domain integral T-stress calculation

method with a posteriori error correction. The domain integral approach, based on the
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Betti-Rayleigh reciprocal theorem, is included for completeness, but is entirely
attributable to colleagues and prior authors. However, the error estimation and
correction methods are original to the present work, and significantly improve the

accuracy of the T-stress calculations in FRANC2D.

8.7 Chapter 7: Test Program

This Chapter describes test results from 31 DCB and 12 SDCB specimens,
fabricated from four aluminum materials--7050-T7451 plate, 7050-T74511 extrusion,
2324-T39 plate, and 7475-T7351 plate. While some of these results have been
included in prior publications related to the corresponding contracts funding the work,
they are combined here with the most recent results, and compared with analyses
based on the foregoing methods as applicable. Further detail of the test data is given in
the appendices in tabulated form to allow future authors to study the results in light of
new developments and theories.

For a detailed review of the results of each specimen set, the reader is referred
to the chapter summary at the end of Chapter 7. A summary of overall findings is as
follows:

® Symmetric cracks in a high T-stress exhibit considerable crack path

instability (as expected from both present and prior theories).

® Both fracture resistance orthotropy and (“second order™) process zone size
effects influence the crack path instability. Increased process zone size
(higher loading) tends to produce more rapid crack turning in fairly
isotropic materials. However, the orthotropy ratio itself is a function of
process zone size (failure regime), and may change sufficiently between

different failure regimes to offset or overpower the “second order” process
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zone size effects associated with including the process zone size directly in

the crack turning theory.

In order for the elastic and elastic-plastic theories to correctly account for
the fracture resistance orthotropy, an orthotropy ratio must be determined
appropriate to the regime of failure (do not use the fracture toughness ratio
to predict the fracture resistance ratio in the slow fatigue regime). For the
7050-T7451 plate material tested in 0.090 inch thick specimens, the
orthotropy ratio was far greater for stable tearing (1.3) , than for fatigue

crack propagation (1.1).

The use of asymmetric specimens such as the SDCB is recommended for
determination of the characteristic length, r,, for the linear elastic theory as

explained in the text.

For slow fatigue crack propagation (less than about 10 for the 7050-
T7451 aluminum plate alloy tested), the process zone size was sufficiently
small to assume r.=0 for the level of T-stress in the specimens tested
(about 7,=0.04 inches). This is probably a reasonable approach for fatigue
cracking in most structural applications. The elastic-plastic method is not

intended, nor is it necessary for crack path analysis of fatigue cracking.

Due to random “bumps” in the crack path apparently due to local material
inhomogeneity, the crack path is constantly under the influence of random
perturbations. This caused an apparent scatter in T-L DCB specimens,
which have only slight crack path instability because the crack starts out in
the favored crack orientation. This scatter, however was anticipated based

on analyses of specimens with slight initial angular perturbations. It is
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suggested that a perturbation analyses of a similar sort could help the
designer anticipate structural situations where the crack path is highly
sensitive to random perturbations. In general, where rather sharp crack
turning is predicted by the analysis, it appears that random effects are less

likely.

® V-shear failures (as opposed to the usual slant crack) were observed in
several specimens, typically resulting in sharper turning than would be
anticipated by analysis. For the most part, however, it appears that the
occurrence of V-shear is largely an artifact of the test method—starting a
stable tear from a fatigue precrack with minimal plastic zone. It was never
observed in a statically precracked specimen, and would thus appear to be
less probable in real structural situations where a fatigue crack grows at
gradually increasing AK until it becomes unstable. The propensity for V-

shear also appears to be material (and/or possibly thickness) dependant.

e Crack turning analyses in prototype 7050-T74511 large extrusion appeared
to exhibit somewhat spurious behavior, and suggesting caution when
attempting to predict crack trajectories in materials processed in a manner

that might result in grain heterogeneity or residual stresses.

8.8 Recommendations for Future Work

Among a myriad of possibilities, there are at least two obvious tracks for future
work—application of either the linear elastic or elastic-plastic methods into shell
codes. Due to the work of a colleague [ 15], the second order elastic theory with

fracture resistance orthotropy has already been implemented into the shell capability
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of FRANC3D. However, the T-stress calculation method is presently limited to a
rather crude displacement correlation technique for curved shells. The development of
path integrals for shell applications could enhance the accuracy of the solution.

With regard to the elastic-plastic method, the re-mapping technique for plastic
state variables has yet to be implemented for shells. Also, it has been shown [94, 95]
that the residual strength prediction using the elastic-plastic CTOD method is
improved by the use of a band of plane strain or—better yet—solid elements
immediately adjacent to the crack. State variable mapping for such conditions has yet
to be worked out. Mesh size along the crack path is presently limited by the method
itself to 0.020 inches. If one is analyzing a 40 inch crack in an airplane, the problem
size becomes extremely large. In order for this to become practical for real applications
where significant stable tearing occurs before the crack reaches the region of interest, it
would be extremely beneficial if one could directly specify a fully meshed crack tip
with a reasonable estimate of the steady-state plastic history built-in a prioriina
region just preceding the region of interest. The crack could then be grown a short
distance to fine tune the plastic history, and the analysis would be obtained in a more

painless way than developing the elastic-plastic history from scratch.



APPENDIX 1.0

THEORETICAL APPROXIMATION OF THE STRAIN LOCALIZATION ZONE
SIZE PRECEDING A CRACK TIP.

In Chapter 3, a strain localization concept was introduced to motivate the use
of a cohesive zone ahead of the crack tip in a crack turning model. In the following, an
attempt is made to develop a theoretical expression to approximate the size of the

strain localization zone.

Al.1 Strain Localization Concept

A simple tensile test of a strain hardening material yields the familiar
engineering and true stress-strain plots shown schematically in Figure 3.1. In
accordance with a well-known plastic instability theory attributed to Considere, the

maximum load, F, occurs when the specimen rate of area reduction equals the rate of

strain hardening
dF=0dA +Ado =0 (ALD)
Rearranging,
do__da_
(o) A
do
== (A1.2)

It is equally well established that the point of maximum load (zero stiffness)
also defines the onset of localized deformation or necking in the specimen compliance
becomes infinite, as is implied in Equation (A1.1). All along the specimen a stiffness
of zero is approached as large strains reduce the cross sectional area in an initially

uniform manner. At first this offset by strain hardening , but as the maximum load is
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approached, the stiffness vanishes. Due to some imperfection one segment reaches
that point first, and necking begins there.

Once localized deformation has begun, the location of the future failure of the
specimen has been determined. As fracture develops, the processes which occur after
the onset of localized deformation may differ from material to material, but the location
of fracture is set in a macroscopic sense at the onset of plastic instability.

Assuming strain hardening of the exponential form,
o =ke™ (Al.3)
and substituting this into Equation (A1.2), one obtains the true plastic strain at the
engineering ultimate stress

Ey=m (Al1.4)

Noting that S =0 e™® (where e is the base of the natural log) we obtain from (A1.3)

and (A1.4) the engineering ultimate stress of the material in terms of k and m

Sy =km"e™ (AL.5)

Defining o, as the 0.2 percent offset yield strength, we have k=0, (.002)™ and

o, =(.002e)'" (AL6)
S m

ult

Swift [96] developed similar relationships for plastic instability and necking in
sheet material under tensile plane stress conditions. Necking is also observed in front
of the crack tip, and is believed to play a significant role in crack path formation in

sheet metal.
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A crack growing in a thin sheet is illustrated in Figure 3.3, with the necking
region shown in the vicinity of the crack tip well within the bounds of the plastic zone,
since necking must occur after some plastic deformation as in the tensile test. It is
further asserted based on observation that the crack will eventually develop along the
necking line, and that the future crack path is therefore known out to the onset of
necking (barring some abrupt change in the load environment). In order to support this
notion, it is observed that the sectional load (load/in) distribution ahead of a
propagating crack and normal to the future crack path must have a maximum a finite

distance away from the crack tip as shown schematically in Figure A1.1.

. v, , /— Instability point

Sectional
Load
Normal to
Crack

Path, N,

Distance Ahead of Crack Tip, r

Figure Al.1 Schematic of Sectional Load Distribution ahead of Crack Tip

McMeeking [97], using nonlinear finite element computations, has shown this

to be true for the self-similar plane strain stationary crack due to crack blunting. The



190

sectional load distribution of Figure Al.1 is also supported by the argument that all
real materials must exhibit strain softening behavior across any real failure interface
down to zero load. Strain softening is a result of the advanced stages of deformation
localization, including void growth and coalescence for metallic materials. The interface
has finite residual strength until the last two atoms of a given interface separate, (and
even as they separate, they do so with a smooth load/displacement relationship).
Given that the atomic bonds, even in a tensile test, must break in some sequence, and
cannot separate at exactly the same moment, it follows that in the limit of absolute
displacement control the failure of any mterface could be defined as a quasi-static
progression of damage as the load drops smoothly (at some scale) to zero. The failure
interface of a slow stable tearing interface approaches this limit of absolute
displacement control [98]

It is now suggested that in a manner equivalent to the Considere criterion
mentioned previously, the onset of localized deformation coincides with the instability

point defined by

dN, =0 (A1.7)

n

where N, is the sectional load normal to the future crack path. It can be argued that for
elastic-plastic strain hardening materials, this point marks the local onset of plastic
instability, whether in plane strain or plane stress. Likewise, one would expect that
the path of localized deformation marks the future crack path just like necking in the
tensile specimen predetermines the eventual failure location. The instability point
marks the end of the known future crack path, and might well represent the point
where the material is “deciding” where it the crack will go next. Presumably as the
crack grows, the instability point would migrate to the location where N, is maximized.

Thus, the distance from the physical crack tip to the instability point, r,, could be
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considered as a physical representation of the characteristic length associated with

crack turning.

A1.2 Theoretical Development

For the purposes of this study, the strain localization zone shall be assumed to
be straight, and of approximately constant length for a given material and thickness. In
order to obtain an estimate of the length, the simple case of a self-similar crack will
suffice. For the plane strain case, McMeeking and Parks [99] have shown using a large
deformation analysis that the maximum stress occurs for materials with moderate

strain hardening at a distance approximately given by
r= L (A1.8)
O-O

where for small scale yielding and mode I loading, the strain energy release rate J, is

related to the stress intensity factor by

K2
J=—L Al9
3 (Al1.9)
Thus for plane strain we may write
2
ro= Ki (A1.10)
o,E

It should be cautioned, however, that while this expression is a reasonable estimate for
T=0, it has been shown [82] that for plane strain, the distance to the maximum stress
point varies with the T-stress, particularly if it is negative. Also, void growth was not
considered, and could result in a longer distance to the peak stress point if it takes
place prematurely.

For the plane stress case, thickness strain (necking) is possible. We can thus

rewrite (A1.7) as
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dN, = dN, = tdo, + Gydt = 0 (AL.11)
ﬂ=_ﬂ=_dgz (A1.12)

Assuming incompressibility,

~de, = deg(1+ p) (AL.13)
€

here p=——L

w p 2

Using the Von Mises yield condition, the differential equivalent strain can be expressed

as

dE=d£9%(l+p+p2) (Al.14)

Combining (A1.12), (A1.13), and (Al. 14) and noting that for a constant p, the
dé _do
equivalent stress conforms to the equality &z = 0_: we obtain

o o~3(l1
ac _ L‘“P) (AL.15)
g 21+p+p?)
Employing an exponential strain hardening relationship for the equivalent stress and

strain similar to (A1.7), we obtain the critical strain and stress at the instability point.

2m(1+p+p2)
Ecrit = Al.l6
Ecrit \/§(l+p) ( )
m
2m(1+ +p2
Ocrit =k ( P ) (Al1.17)

V3(1+p)
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Assuming the necking region in plane stress is somewhat larger than the crack
blunting effected zone in plane strain (which will be observed hereafter), we can obtain
an estimate of p based on the Hutchinson Rice Rosengren (HRR) asymptotic field for
plane stress cracks in strain hardening materials [34, 35]. This inherently involves the
assumption of proportional flow, which for a propagating crack is less than desirable.
Directly ahead of a straight propagating crack, the flow should be fairly proportional,
but the deviation from proportionality will have an unknown effect on the results
forward of the crack. Also of concern is the fact that the HRR field is derived based on
the assumption of small strain theory. The very existence of plastic instability is by
definition a large strain effect. Nevertheless, McMeeking and Parks did observe in
their analysis that the plane strain HRR field was valid up to the point of maximum
stress. Note also that true stress and strain and engineering stress and strain are fairly
close up until plastic instability for most structural materials.

Proceeding with the above cautions in mind, the effective stress given by the

HRR solution, written here in terms of the far field stress intensity factor, is

_ K} o+l
o =0, 3 Oc(n,0) (A1.18)
aoglr
For 8= 0, Hutchinson normalized the &, term to unity for the plane stress
case. The Ramberg-Osgood material parameters a and » are related to the exponential

strain hardening parameters from Equation (A1.7) by

1/n
k= ao(l-"">(§) (A1.19)
(04

m=1/n (A1.20)
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Hutchinson gives numerical results for 7, and p which are functions of the
exponent n. For the propagating crack, we may assume that X; is equal to the
propagating value, which for stable tearing may be denoted K,. We may thus
approximately equate (24) and (25) atr = ¥c , and to obtain after some rearrangement

(n+1)

" V3 oon(l+p) ) [ K2
“ L2 EQ+p+p?) ao’l,

(A1.21)

Equation (A1.21) can be combined with equations (A1.5), (A1.19), and
(A1.20) to obtain an expression in terms of the engineering ultimate strength

z(ﬁ (1+p) J(lﬂ/n) . I:K-CZ]

Al1.22
2 (1+p+p?) L' | S E ( )

ult

For n <7, p makes little contribution, and Iy is nearly linear at least up to the
maximum value of n = 13 given by Hutchinson, and probably well beyond. Thus, in

this range we can further approximate with no significant loss of accuracy

(1+1/n) )
= V3 n___ || K (A1.23)
2 (3.38-.039m)¢"" || 5. E

ult

If a suitable value for n is not available, one can obtain an approximation using

the ratio of yield and ultimate strength from the implicit equation

;—” = (.OOZne)“"

ult

(A1.24)

which was obtained by combining equations (A1.6) and (A1.20).
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Al.3 Calculated Values

Calculated r, values for 2024-T3 and 7050-T7451 aluminum alloys are
given in Tables A1.1 and A1.2 respectively, based on Equations (A1.23) and
(A1.24). For the 2024-T3 sheet, the mechanical properties are B basis values from
MIL-HDBK-5G [100] corresponding to the load orientation, and the fracture
toughness is the maximum R-curve value obtained based on 48 inch wide R-curve
panels reported by Gruber et al [101]. The 7050-T7451 data is from the IAS lot
of 1.5 inch plate, with the fracture toughness based on R-curves in 0.090 inch thick
specimens cut from the plate [93]. Despite many obvious shortcomings in the

preceding development, the calculated values appear to be fairly reasonable.

Table Al.1 Calculation of r, for 2024-T3

0.063 inch, 2024-T3 clad sheet re
Sﬁlecrlft S, St n K. E. KZ2/S,E Plang Stress
| (ksi) | (ksi) (ksivin) | (ksi) (in'?) (in)
T-L | 42 62 |804] 180 10500 [ 0.050 0.098

Table A1.2 Calculation of r, for7050-T7451

7050-T7451 Plate machined to sheet re
(IAS Lot release and R-curve data)

Crack | S, St n K. E K./S.,E | Plane Stress
Orient.| (ksi) | (ksi) (ksivin) | (ksi) | (in'?) (in)
L-T | 680 774 18 108 10300 | 0.0146 0.080

T-L | 683 76.9 | 19.1 83 10300 | 0.0087 0.051




APPENDIX 2.0

MIXED-MODE TRACTION RELATIONSHIP FOR COHESIVE SLANT CRACK

A cross section of the cohesive zone for a slant crack in a thin sheet loaded
globally in mixed mode II/1 is illustrated in Figure A2.1 where the s and n axes are
defined as in Figure 3.4a. The cohesive interface may be modeled as the g-s slip plane,
deforming in shear according to the Tresca yield criterion with a shear flow stress 7.
Local crack flank relative deflections are of mixed-mode II/III character, and are related

to the global mode I1/1 relative deflections by

Aus __ A, (A2.1)
Au,  Au,sina

5

The principal shear strain acts at a (small) angle

¢ = tan™! Au;  Augsina
Au Ay

q n

(A2.2)

measured from the g axis within the g-s plane. Assuming proportional loading, the

principal shear stress, 7,, also acts at this angle, thus the shear stress components must

satisfy
T, =7,sin{
T,=1,c08{

(A2.3)
Hence for small {
Tog (A2.4)
T‘l

whence we obtain from Figure A2.1 and Equations (A2.2) and (A2.4),
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s A25
T, T Au ( )

Recognizing that T,<<T,, we observe that the maximum shear stress occurs at

a=n/4. Thus the value of ¢ defined by equation (3.36) for this case is

c= sin{%) = % (A2.6)

(s-axis runs normal to
plane of drawing)

'

Figure A2.1 Schematic of Tractions on Cross-Section of Slant Crack Cohesive Zone



APPENDIX 3.0

DERIVATION OF STRESS INTENSITY SOLUTION FOR MODE II LOADED
DCB SPECIMEN

Consider a linear elastic DCB specimen loaded in pure mode II as shown in

Figure A3.1

f—a —»
. ¥

L

Figure A.3.1 Mode II Loaded DCB Specimen

We define the energy release rate as given by Irwin [102, 103],

G=% (A3.1)

where dA is an increment of new crack area (half of the new free surface area of both
upper and lower surfaces) created by an incremental crack extension,

dA = tda (A3.2)

IT is the potential energy supplied by the internal strain energy and external forces,

respectively

M=U-F (A3.3)
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When applying a constant load, P, a crack opening displacement, A, occurs between

the points of load application, thus
F=PA

A

U=I PdA=%PA
0

Thus

n:-U:——%F (A34)

We now idealize the upper half of the specimen as a beam, and decompose the

loading into two components, statically equivalent to the actual loading, as shown in

Figure A3.2.
Case: 1 2
fo—a — M=Ph/2
] N P N N
P R - X+ ¥ 3

Figure A.3.2 Statically Equivalent Load Components

Applying superposition of load cases 1 and 2, and multiplying by two to include
energy contributions from both upper and lower surfaces, we can combine (A.3.1) and

(A.3.4) to obtain

_—dH_i’2=E(ﬂ+_‘le] (A3.5)

G="5"_
dA dA t\ da da

From beam theory, we can write

dU, 1Peda P’
da da 2Eht
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dU, Mde _M* _ (Pn/2)*  3P?
da da 2EI 2E@h/12) 2Eh

Substituting these expressions back into (A3.5), we obtain

4p?
G= A3.6
Eht? (A3.6)

from which the stress intensity factor is obtained as

K, =~GE = tz—’; (A3.7)



APPENDIX 4.0 TABULATED DCB/SDCB TEST DATA

Table A4.1 Tabulated Tensile Stress-Strain Curves
Jor Use in Elastic-Plastic Analyses

7050-T7451 7475-T7451
Plate Plate

Strain | Stress| Strain | Stress
(in/in) (Ksi) | (in/in) (Ksi)
0.00000| 0.00 | 0.00000| 0.00
0.00648| 66.70 | 0.00635 | 65.40
0.01007| 67.92 | 0.01007 | 66.32
0.01997| 70.87 | 0.02011| 69.35
0.03018| 72.45 | 0.03021| 71.03
0.04016| 74.09 | 0.04013| 72.80
0.05058| 75.30 | 0.05052| 74.10
0.06003| 75.96 | 0.06001 | 74.85
0.07765] 76.40 | 0.06982| 75.28
0.20000| 76.40 [ 0.08009 | 75.40
0.20000| 75.40

Notes: Curves were developed from median IAS tensile specimens. First segment of
each curve is defined by the MIL-HDBK-5 modulus up to the yield strength of the
specimen, after which the points follow the test data up to the maximum stress. An
additional segment indicates constant stress after the maximum stress 1s reached,
because FRANC2DL cannot handle strain softening. Engineering stresses and strains
specified.
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Table A4.2 Summary of 7050-T745] Fatigue Crack Turning Tests (Set#1 )

Crack Thickness w 2h
Specimen rc-LT-15-2 fromt Typel (in) | (in) | (in)
flat 0.0917 |11.996]| 4.799
Load AN xave | yave [LCurvilineag Aa/AN urvilinean AK Theta
(Ib) (in) (in) Aa avg (infcycle)| a (in) (ksivin) (deg)
(notch) 0 2.004| 0.000| 2.004 2.004
320 | 5000/2.031| 0.000| 0.027 5.40E-06 2.031 6.99 0.00
320 | 4000(2.059] 0.000| 0.027 6.87E-06 2.059 7.04 0.00
368 | 6000|2.126]| 0.003| 0.068 1.13E-05 2.126 8.20 2.12
368 | 6000(2.197]| 0.000| 0.071 1.18E-05 2.197 8.36 |-2.02
368 | 8000|2.284]|-0.001| 0.087 1.09E-05 2.284 8.53 |-0.66
368 |15000({2.475] 0.007 | 0.191 1.27E-05 2.475 8.83 2.25
331 4000)2.512| 0.006 [ 0.037 |(9.25E-06 2.512 -0.77
350 (10000|2.626| 0.022| 0.116 1.16E-05 2.627 Crack 7.71
350 |10000|2.755] 0.052 | 0.133 1.33E-05 2.760 Curves | 13.30
350 | 5000)2.830| 0.073| 0.077 1.55E-05 2.837 15.39
350 | 5000)2.903| 0.095| 0.076 1.53E-05 2.914 17.13
350 | 5000)2.981{0.132] 0.086 1.72E-05 3.000 25.08
350 | 5000|3.063|0.175| 0.093 1.87E-05 3.093 27.80
350 | 5000|3.163| 0.230| 0.114 2.28E-05 3.207 28.59
350 | 5000(3.259] 0.290] 0.113 2.27E-05 3.320 32.22
350 | 5000(3.367] 0.377| 0.138 2.76E-05 3.458 38.82
350 | 3000]3.432| 0.438| 0.090 2.99E-05 3.548 43.20
350 | 3000(3.499]0.514| 0.101 3.35E-05 3.649 48.63
350 | 3000|3.582] 0.616| 0.132 4.40E-05 3.781 51.00
350 | 2000|3.633| 0.729( 0.124 6.18E-05 3.904 65.61
331 1000(3.659( 0.772 | 0.050 |5.02E-05 3.954 58.84
265 | 4000/3.690| 0.889 | 0.122 3.04E-05 4.076 74.99
212 | 4000(3.722} 0.975| 0.091 2.28E-05 4.167 69.48
212 [ 2000[3.749| 1.044 | 0.074 3.70E-05 4.241 68.99
212 1 2000(3.764]| 1.147 | 0.105 5.23E-05 4.346 81.75
212 | 2000/3.808| 1.337 | 0.195 9.75E-05 4.541 76.96
212 500 |3.853| 1.471 0.141 2.82E-04 4.682 71.18
159 1000(3.855) 1.507 | 0.037 |3.65E-05 4.718 87.65
Failure 3.8951 1.700| 0.197 n/a 4.916 L 78.15
Failure 3.948( 1.900| 0.207 n/a 5.122 75.29
Failure 3.998] 2.200] 0.304 n/a 5.427 80.54




Table A4.2 Summary of 7050-T7451 Fatigue Crack Turning Tests (Set #1)

203

(Continued)

Crack Thickness w 2h
Specimen rc-TL-15-2 Front Type] (in) (in) 1 (in)
flat 0.0925 [11.995] 4.798
Load AN xave | yave [Curvilinea]l Aa/AN [Curvilinearl AK Theta
1b) (in) (in) Aaavg I(in/cycle)] a (in) Kksivin) (deq)

(notch)] o0 2.003| 0.000| 2.003 2.003
368 | 4000(2.035/ 0.000| 0.032 |8.00E-06| 2.035 - - 0.00
368 [ 6000(2.115] 0.000| 0.080 |1.33E-05| 2.115 8.09 0.00
368 |10000|2.254] 0.000| 0.140 |1.40E-05] 2.254 8.33 0.00
368 [10000{2.403| 0.000| 0.149 |1.49E-05| 2.403 8.64 0.00
368 [10000(2.570| 0.000| 0.167 |1.67E-05| 2.570 8.99 0.00
368 |10000|2.756/ 0.000| 0.186 |[1.86E-05]| 2.756 8.37 0.00
368 | 3000(2.813|-0.003| 0.058 |1.92E-05| 2.813 9.63 | -2.99
368 |7000|2.969(-0.003| 0.156 |2.23E-05| 2.969 9.86 0.00
368 | 5000(3.082[-0.003| 0.113 |2.25E-05| 3.082 10.16 | 0.00
368 | 60003.232(-0.003| 0.150 |2.50E-05| 3.232 10.44 | 0.00
368 | 6000(3.402|-0.003| 0.170 (2.83E-05| 3.402 10.79 | 0.00
368 | 4000|3.522]-0.003 0.121 [3.01E-05| 3.522 t1.11 | 0.00
368 | 50003.682] 0.019| 0.161 |3.22E-05| 3.683 11.41 | 7.68
368 | 4000/3.820| 0.019| 0.138 [3.45E-05| 3.821 11.73 | 0.00
331 [ 4000|3.916| 0.019| 0.096 |[2.40E-05| 3.917 10.78 | 0.00
331 | 6000|4.086/0.019| 0.171 |[2.84E-05| 4.088 11.04 | 0.00
331 17000(4.319/ 0.035| 0.234 |3.34E-05| 4.321 11.44 ] 3.93
331 [4000|4.457| 0.053| 0.139 |3.47E-05| 4.460 11.80 | 7.66
331 | 4000(4.604| 0.065| 0.147 [3.69E-05| 4.607 12.08 | 4.67
331 | 40004.753| 0.085| 0.150 |3.76E-05| 4.758 12.37 | 7.65
331 [ 4000|4.915) 0.126( 0.167 |4.18E-05| 4.925 14.20
331 13000(5.049]/ 0.162| 0.139 |4.62E-05| 5.063 Crack | 14.84
314 11000(5.084]0.175| 0.038 |3.78E-05]| 5.101 Curves | 20.11
314 12000(5.170| 0.198 | 0.089 |4.43E-05( 5.190 15.06
314 [ 2000 ]5.255| 0.231 0.092 |4.59E-05| 5.282 21.40
314 | 2000|5.339] 0.268| 0.092 |4.59E-05| 5.373 23.77
314 11000(5.383| 0.295| 0.051 |5.09E-05] 5.424 31.35
283 | 1000[5.404[ 0.308| 0.025 |2.51E-05| 5.449 31.16
283 | 3000(5.501| 0.372| 0.116 |3.88E-05| 5.566 33.62
283 | 3000 (5.623| 0.466| 0.154 |5.12E-05( 5.719 37.73
283 | 2000 |5.730| 0.558 | 0.141 |7.06E-05| 5.861 40.69
283 (1000 (5.775] 0.627 | 0.083 |8.27E-05| 5.943 56.60
283 | 1000|5.829[ 0.730| 0.116 |1.16E-04| 6.059 62.44
212 11000 (5.844| 0.745| 0.021 [2.12E-05( 6.080 45.00
212 | 2000 (5.883| 0.830| 0.094 |4.68E-05| 6.174 65.35
212 [100015.894] 0.903| 0.074 [7.44E-05| 6.248 81.11
170 1100015.913| 0.919| 0.025 |2.45E-05| 6.273 39.21
170 | 2000]5.949{ 1.011 0.099 [4.93E-05| 6.371 68.90
170 | 1500]5.977| 1.124| 0.117 |7.80E-05 6.488 75.90
170 11000]6.008| 1.280| 0.158 |1.58E-04| 6.647 78.90
170 | 276 |6.014[{ 1.375| 0.096 [3.47E-04| 6.742 + 86.40
170 121 [6.025| 1.468| 0.093 [7.70E-04| 6.836 82.91




Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

204

rc-TL-15-1 rc-TL-15-4 rc-TL-15-5 rc-TL-15-86
1 2 1 2 1 2 1 2

X y X y y X y X X Y X Y X y X y
0.00]0.00]0.00]0.00}0.00]0.00]0.00]0.00 0.00]0.00j0.00[0.00]0.00]0.00[0.00 0.00
6.4810.00] 6.47] 0.00 [0.00 ] 5.38[0.001 2.09 2.99/0.00| 3.05[0.00] 3.99]0.00] 4.00 0.00
6.54] 0.01] 6.50]0.00|0.03] 5.78]-0.02] 2.10 3.04{ 0.01] 3.06]-0.01] 4.04] 0.03] 2.03 0.01

6.57] 0.071°6.53]°0.02[ 0.05] 8.211-0.03 2.19] 3.11]0.02] 3.17-0.02] 4.13] 0.0¢6 4.06] 0.
6.60] 0.01] 6.57] 0.03] 0.07] 6.45[-0.04] 2.30 3.25] 0.04] 3.14]-0.04] 4.32] 0.09] 4.10 -0.01
6.64] 0.02] 6.62] 0.05] 0.08] 6.59]-0.04| 2.63 3.34] 0.05] 3.18]-0.05] 4.56] 0.09] 4.13 -0.03
6.67] 0.04] 6.66] 0.06| 0.11] 6.75]-0.04] 2.96 3.871 0.05] 3.24]-0.05] 4691 0.10] 4.29 -0.03
6.70] 0.06] 6.71] 0.09] 0.13] 6.88]-0.04] 3.14 4.13] 0.09f 3.30J-0.04] 4.97] 0.11] 4.35 -0.02
6.72] 0.08] 6.74] 0.13] 0.14] 7.07] 0.03] 3.96 4.40] 0.09] 3.42]-0.03] 5.21] 0.13] 4.45 -0.01
6.75] 0.11] 6.80] 0.18] 0.13] 7.37|-0.05 4.56) 4.51] 0.10] 3.91]-0.03] 5.45] 0.13 4.55{ 0.00

6.78] 0.14] 6.83] 0.21] 0.17] 7.581-0.06 5.29] 4.85] 0.08] 3.98]-0.03] 5.61 0.14] 4.76]-0.
6.80] 0.16] 6.86] 0.21] 0.19] 7.721-0.05] 5.44 5.06] 0.09] 4.26] 0.00] 5.72] 0.15] 4.87 0.01
6.82] 0.20] 6.88] 0.21] 0.22] 7.85]-0.04] 5.55 5.31] 0.09] 4.54] 0.01] 5.87] 0.17] 5.00] 0.02
6.83] 0.24] 6.94] 0.26] 0.22] 7.94]-0.02 5.93) 5.55] 0.11] 4.80] 0.01] 6.04] 0.20 5.05] 0.02
6.85] 0.26] 6.99] 0.31] 0.23] 7.98] 0.00 6.34) 5.82] 0.12] 5.08] 0.01] 6.18] 0.21 5.18] 0.03
6.86] 0.27] 7.07] 0.41] 0.26] 8.10] 0.01 6.61] 6.09] 0.12] 5.31] 0.01] 6.40] 0.25 5.35] 0.03
6.89] 0.31] 7.18] 0.51] 0.30] 8.21] 0.06] 6.84 6.34] 0.14] 5.58] 0.00] 6.55] 0.26] 5.47] 0.04
6.91] 0.33] 7.27] 0.62] 0.32| 8.351 0.06 7.01] 6.45] 0.15] 5.80] 0.01] 6.68] 0.30 5.55] 0.05
6.93] 0.36] 7.30] 0.67] 0.39] 8.55] 0.08] 7.12 6.58] 0.16] 6.11] 0.02| 6.83] 0.34] 5.69] 0.06
6.96] 0.39] 7.34] 0.70] 0.41] 8.65[ 0.08] 7.42 6.71] 0.17] 6.19} 0.03] 6.99] 0.37] 5.75] 0.07
7.02] 0.46] 7.38] 0.75] 0.47] 8.75] 0.10] 7.64 6.74] 0.19] 6.39] 0.04] 7.14] 0.40] 5.87 0.08
7.07] 0.51] 7.43] 0.82] 0.52] 8.83] 0.14 7.92] 6.85] 0.21] 6.51] 0.05| 7.28] 0.42 5.99] 0.08
7.10] 0.54] 7.50] 0.94] 0.58] 8.92] 0.22 8.21] 6.93] 0.23] 6.61] 0.07] 7.39] 0.44 6.09] 0.10
7.13} 0.57] 7.56] 1.01] 0.58] 8.96] 0.28 8.46] 7.08] 0.25] 6.89] 0.10] 7.47] 0.486 6.20] 0.12
7.16] 0.60] 7.61] 1.11] 0.59] 8.99] 0.33] 8.67 7.22] 0.27] 6.98] 0.13] 7.60] 0.53] 6.42] 0.15
7.20] 0.65] 7.70] 1.23] 0.63| 9.05] 0.40 8.801 7.37] 0.31] 7.18] 0.14] 7.68] 0.58 6.53] 0.17
7.22] 0.69] 7.72] 1.28] 0.68] 9.08] 0.49] 8.94 7.45] 0.32] 7.39] 0.17] 7.79] 0.67[ 6.65 0.20
7.32] 0.78] 7.75] 1.34] 0.81] 9.13] 0.55 8.99] 7.59] 0.36] 7.61] 0.23] 7.89] 0.75 6.75] 0.22
7.34] 0.81] 7.78] 1.40] 0.88] 9.15] 0.61 9.00] 7.74] 0.41] 7.77] 0.29] 7.98] 0.83| 6.89 0.26
7.39] 0.88] 7.82]'1.48] 0.98] 9.18] 0.63 8.98] 7.83] 0.42] 7.89] 0.31] 8.0al 0.92 7.04] 0.28
7.46] 0.99] 7.85] 1.54] 1.06] 9.20] 0.66 8.98] 7.96] 0.44] 8.01] 0.34] 8.11] 1.01 7.09] 0.29
7.52) 1.09] 7.87] 1.58] 1.19] 9.21] 0.73] 9.01 8.05] 0.46] 8.17] 0.37] 8.23] 1.20] 7.12] 0.30
7.57] 1.17 1.31] 9.22] 0.79] 9.03] 8.24] 0.52] 8.28 0.39] 8.30] 1.32] 7.29] 0.33
7.59] 1.20 1.41] 9.23] 0.88] 9.06] 8.35] 0.55[ 8.39 0.43| 8.36] 1.44] 7.36| 0.34
7.621 1.24 1.48] ¢.23] 0.94] 9.08] 8.46] 0.58] 8.55 0.48] 8.42| 1.56] 7.43] 0.34
7.661 1.31 1.57] 9.22] 1.01] 9.11] 8.56] 0.60] 8.68] 0.52 8.44] 1.62] 7.50] 0.37
7.71] 1.41 1.64] 9.20| 1.09] §.14] 8.65] 0.67| 8.82] 0.58 8.44] 1.68] 7.63] 0.42
7.78] 1.55 1.691 9.20] 1.17] 9.14] 8.77] 0.67] 8.95] 0.64 7.70] 0.46
1.73] ¢.19] 1.25] 9.15] 8.86] 0.72] 9.05] 0.71 7.87] 0.62
1.311 9.16] 8.92] 0.74] 9.14] 0.76 7.94]1 0.66
1.41] 98.16] 9.08] 0.84] 9.26] 0.84 8.02{ 0.74
1.531 9.17] 9.19] 0.93] 9.35] 0.90 8.09] 0.82
1.59] 9.15] 9.26] 0.97] 9.44] 0.98 8.15| 0.91
1.65] 9.14] 9.35] 1.06] 9.52] 1.06 8.22] 1.02
1.72) 9.12] 9.43] 1.14{ 9.56] 1.10 8.29] 1.11
9.49] 1.20] 9.60] 1.15 8.34] 1.20
9.55] 1.291 9.64{ 1.22 8.38] 1.27
9.59] 1.34] 9.68[ 1.28 8.43] 1.35
9.65] 1.47]1 9.72] 1.35 8.49] 1.47
9.68] 1.55] 9.75] 1.41 8.52] 1.55
9.789] 1.49 8.54] 1.65
9.81] 1.54 8.56] 1.75
9.82] 1.58 8.56] 1.78

9.83] 1.63




Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

205

(Continued)
rc-TL-15-7 rc-1L-15-8 rc-TL-15-9] rc-TL-15-10
2 2 Average Average
X y y X y X X y X X y X y
0.00 | 0.00[ 0.00]0.00fJ0.00[0.00] 0.00[ 5.60]0.00 6.0410.00
0.00] 4.25] 0.00} 0°00] 5.01]0.00] 5.08[10.00/0.00 10.00] 0.07
0.00] 4.32] 0.00] 0.02] 5.07] 0.00] 5.11
0.01] 4.41] 0.01] 0.04] 5.15]-0.02] 5.13 (straight) (straight)
0.03] 4.50] 0.01] 0.06] 5.20l-0.03] 5.63
0.05] 4.55] 0.00] 0.06] 5.31]-0.02] 5.86
0.06] 4.59] 0.01] 0.05] 5.47]-0.01] 5.92
0.08] 4.63] 0.02] 0.07] 5.68l-0.01] 6.15
0.10] 4.69] 0.04] 0.06] 5.87]-0.01] 6.34
0.12] 4.73] 0.06] 0.08] 6.04] 0.02] 6.55
0.14] 4.78] 0.07] 0.07] 6.12] 0.03] 6.61
0.16] 4.81] 0.08] 0.09] 6.23] 0.04] 6.79
0.19] 4.85] 0.10] 0.08] 6.29] 0.05] 7.00
0.22| 4.88] 0.13] 0.08] 6.36[ 0.06] 7.09
0.25] 4.91] 0.15] 0.08] 6.44] 0.09] 7.25
0.28] 4.94] 0.17] 0.10] 6.51] 0.12] 7.44
0.30] 4.98] 0.22] 0.11] 6.57] 0.19] 7.57
0.32] 4.99] 0.24] 0.11] 6.70] 0.22] 7.73
0.45] 5.00] 0.28] 0.13] 6.78] 0.25] 7.81
0.48] 5.00] 0.43] 0.12] 6.89] 0.32] 7.92
0.53] 5.00] 0.47] 0.73] 6.92] 0.41] 8.03
0.59] 4.99]70.52] 0.13] 7.00| 0.48| 8.09
0.64] 4.98] 0.60] 0.15] 7.07|] 0.58] 8.18
0.72] 4.95] 0.67] 0.16] 7.22] 0.66] 8.25
0.80] 4.93] 0.72] 0.18] 7.36] 0.75] 8.30
0.92] 4.90] 0.79] 0.23] 7.50[ 0.83] 8.36
0.98] 4.88] 0.85] 0.26] 7.60] 0.94] 8.43
1.07] 4.85] 0.91] 0.31] 7.75] 1.01] 8.45
1.13] 4.83] 0.96] 0.36] 7.85] 1.10] 8.49
1.18] 4.78] 1.03] 0.46[ 7.99] 1.18] 8.57
1.26] 4.76] 1.08] 0.58] 8.70] 1.26] 8.51
1.30] 4.73] 1.14] 0.74] 8.22] 1.36] 8.51
1.35] 4.72] 1.19] 0.93] 8.34] 1.43] 8.52
1.37] 4.71] 1.24] 1.08] 8.39] 1.49] 8.51
1.43] 4.74] 7.29] 1.17[ 8.43[ 1.56] 8.50
1.47] 4.74] 1.44] 1.26] 8.43] 1.64] 68.48
1.51] 4.74] 1.51] 1.37[ 8.43] 1.71] 8.47
1.60] 4.74] 1.61] 1.46] B.43] 1.80| 8.45
1.69] 4.75] 1.66] 1.57] 8.41] 1.84] 8.44
1.79] 4.77] 1.73] 1.68] 8.39] 1.92[ 8.44
1.89] 4.79] 1.80] 1.76] 8.37
1.97] 4.80] 1.86] 1.81| 8.36
2.06] 4.81] 1.90] 1.83] 8.36
2.09] 4.83| 1.93] 1.84] 8.37
4.84] 1.97
4.86] 2.03
4.88] 210
4.90] 2.14
4.91] 2.17
4.91] 2.20




Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

206

(Continued)
rc-LT-15-3 rc-LT-15-4 rc-LT-15-5 rc-LT-15-6]

1 2 2 2 1 2

X ) X y Yy X Y X Y X Y X X Y X y
0.0010.0010.0070.00]0.00f0.00]0.00J0.00]/0.00/0.00] 0.00]0.00[0.00]0.00]0.00 0.00
4.24]10.00] 5.46] 3.03]0.00[2.12[0.00]2.03] 0.00] 3.07]0.00] 3.00] 2061500 4.70] 0.00
4,301 0011 641} 0.03]-0.02]2.12]10.02]2.06]-0.02] 3.03] 0.01]3.03] 4111002 4.33]-0.01
4.70] 0.03] 6.47] 0.05]-0.03]/2.13] 0.04]2.08]-0.02] 3.08] 0.03] 3.05] 4 62l-0 02 4.59[-0.01
4.751 0.004 6.52] 0.05].0.04]2.3110.04]2.42]-0.04] 3.17]0.03]3.10] 4.70]-0.01 4.65] 0.00
5.02] 0.00] 6.58] 0.06[-0.04]2.4110.05]12.50]-0.02] 3.22] 0.03]3.18 4.88]-0.01] 4 89 0.00
5.12] 0.02] 6.63]°0.09[-0.04| 2.46]0.07] 2.50[-0.01] 3.27] 0051 223 5.70]-0.02] 4.95[-0.01
5.41} 0.00] 6.65] 0.13]-0.03]2.5710.12]2.68] 0.01] 3.3110.07| 3.28] 5.531.0 01 5.35]-0.01
6.40] 0.00 6.67] 0.18]-0.01] 2.65]0.20] 2.72] 0.04] 3.35] 0.12] 3.31| 6.51] 000 5.50] 0.00
5441 0.01]1 6.68] 0.31]10.02/2.73]0.26]2.76] 0.09] 3.38] 0.21]3.33] 6.94] 0.00 5.53] 0.02
6.51] 0.05] 6.70] 0.49]0.0812.81[0.34]2.76] 0.15] 3.41] 0.27| 3.37] 6 96] 0.01 6.21] 0.03
6571 0.14] 6. 72] 0.68] 0.5 | 285 0.35]2.781 0.24] 3.44[ 038 3381 700 003 6.90] 0.
6.62] 0.561 6.75] 0.85]10.20]2.87[0.54|2 79| 0.35] 3.46| 0.47]3.40] 7.03] 0.07 6.94] 0.03
6.65] 0.67] 6.78] 1.64]0.25]12.90[0.62]2.80] 0.44] 3.48/ 0.51[ 3.42| 7.05] 0.09 6.96| 0.04
6.691 1.39] 6.78] 2.10]0.38]2.9310.66|2.82] 0.51] 3.49] 0.60]3.43] 7.06] 0.15 6.98| 0.05
6.72) 1.59] 6.77] 2.2110.54[2.94]0.92]2.82] 0.65] 3.50] 0.95] 3.44| 7.06] 0.35] 7 02 0.09
6.72] 2.10] 6.74] 2.34]0.65 |2 95 1.13|2.831 0.79] 3.51[7.07 3461 7051 037 7.04] 0.11
6.72] 2.31) 6.73] 2.35]10.68]2.97]1.19|2.85] 1.07] 3.62] 1.06] 3.46] 7.05] 0 54 7.04] 0.14
6.70] 2.36] 6.73] 2.41]1.14]2.98[1.29[2.85] 1.11] 3.53] 1.09[ 3.46] 7.08] 0.79 7.05| 0.29
6.73] 2.39 1.1713.0011.36]12.83] 1.22] 3.53]1.2213.46] 7.09] 0.95] 7.08] 0.32
1.2613.0071.45]2.86] 1.30] 3.54]1.33]3.47[ 7.10] 1.17| 7.11] 0.37

1.29 /300 T.531286 1.39] 3.55]1.41]3.45] 7.12] 17.30[ 7131 0 4
1.4013.0011.62]2.86] 1.44] 3.56] 1.51]3.49] 7.18] 1.77] 7.13] 0.55
1.5713.0011.64]2.87| 1.58] 3.57] 1.63|3.49[ 7.18] 2.03] 7.15] 0.74
1.6613.0311.7512.88] 1.74] 3.57]1.71]3.49] 7.16] 2.21] 7.17] 0.97
1.75130311.81]12.89] 1.95] 3.57]1.96] 3.49] 7.16] 2.27] 7.17] 1.26
1861304187280 205 3.57|2.13]3.40[ 7.78] 238 72073
1.9813.0611.9812.90] 2.08] 3.57]22713.49] 7.20] 2.39] 7.21] 1.51
2.09]3.06]2.09]2.89] 2.19[ 3.56 7.23] 1.69
2.20] 3.06 2.29] 3.54 7.26] 1.90
2.30] 3.05 7.26] 1.94
2.35|3.04 7.25] 2.15
7.22] 2.26
7.21] 2.36
7.20] 2.39




Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

207

(Continued)
rc-LT-15-7! rc-LT7-15-8 r1c-LT7-15-9 1c-LT-15-1
i 2 1 2 2 1 2
X Y X Y Y X Y X Y X Y X X Yy X Y
0.00]0.0010.00§0.00]0.00]0.00]0.00/0.00]0.00]0.00[0.00 0.0010.00J0.00[0.00]0.00
4.5010.00] 4.48]'0.00 | 0.00] 4.69] 0.00] 4.90] 0.00] 55561 000 5.53] 5.99]0.00[ 6.02]| 0.00
4.561-:0.03] 4.521-0.01] 0.00] 4.92] 0.00] 4.98] 0.00] 5.60 0.00] 5.53! 6.06]-0.02! 6.06] 0.04
4.591-0.05] 4.54] 0.00] 0.01] 4.99] 0.03] 5.03[-0.02] 5.63] 0.01 5.59] 6.08]-0.04] 6.12] 0.04
4.611-0.061 4.58] 0.03] 0.02] 5.03] 0.08] 5.07]-0.02] 5.71] 0.04 5.63] 6.151-0.04] 6.17] 0.07
4.701-0.06] 4.68] 0.03] 0.09] 5.10] 0.11] 5.10] 0.00] 5.77] 0 07 5.70] 6.16{-0.03] 6.20] 0.09
4.73]-0.05] 4.71] 0.04] 0.71] 5.12] 0.15] 5.13] 0.02] 5.53] 009 5.77] 6.19]-0.03] 6.21] 0.13
4.801-0.04 4.75! 0.05] 0.17] 512] 0.22] 5.13] 0.05] 5.86] 0. 11 5.80] 6.23] 0.00] 6.23] 0.16
4.84)-0.011 4.79] 0.06] 0.25] 5.12] 0.24] 5.14] 0.09] 5.90] 0 13 5.84] 6.26] 0.04] 6.24] 0.24
4.89] 0.05] 4.80] 0.07] 0.34] 512] 0.64] 5.15] 0.15] 5.93] 027 5.87] 6.30] 0.11] 6.25] 0.27
4.904 0.11 4.80] 0.10] 0.46] 5.15[ 0.79] 5.18] 0.20] 5.95 0.32] 5.91] 6.31] 0.16[ 6.26[ 0.38
4.93] 0.27] 4.82] 0.18] 0.59] 5.16] 0.80] 5.23] 0.26] 5971 042 5.95] 6.33]70.23] 6.28] 0.95
4.95¢ 0.63] 4.83( 0.22] 0.74] 5.16] 0.88] 5.24] 0.29] 5.98 0.56] 5.97] 6.34] 0.31] 6.32] 1.17
5.01) 1.21] 4.85] 0.50] 0.90] 5.15] 1.00] 5.26] 0.35] 5.99] 0 58 5.98] 6.36] 0.92] 6.32] 1.39
5.02] 1.251 4.88] 0.70] 1.03] 5.15] 1.25] 5 27] 0.40] 6.01] 0.87 6.00] 6.39] 1.23| 6.38] 1.98
5.03] 1.51] 4.91] 1.00] 1.13[ 5.16] 1.40] 5.29] 0.47] 6.02] 104 6.02] 6.43] 1.90] 6.37] 2.14
5.07] 1.65] 4.93] 7.06] 1.19] 5.16] 1.51] 5.31] 0.57] 6.03] 705 6.04] 6.45] 2.00] 6.35] 2.27
5.071 2,131 4.95] 1.24] 1.28] 5.20] 1.60] 5.32] 0.63] 6.04] 1.19 6.04] 6.45] 2.11| 6.36] 2.40
5.06) 2.18 4.98] 1.52] 1.51] 5.21] 1.77] 5.34] 0.70] 6.06] 1 23 6.05] 6.40] 2.28
2.051 2.341 4.98] 1.66] 1.55] 5.21] 1.90] 5.35] 0.80] 6.06] 1 40 6.07] 6.40] 2.36
5.07] 2.38] 5.00] 1.91] 1.64] 5.23] 1.96] 5.37] 0.85] 6.07 1.48] 6.08
5.00] 2.08] 1.74] 523] 5.24] 5.37] 1.00] 6.09] 1.59] 609
4.99 2.21] 1.86] 5.23] 2.29] 5.35] 1 09] 6.10] 1.68] 6 10
5.01] 2.36] 1.95] 5.27] 2.35| 5.35] 1.17] 6.10] 1.79] 6. 11
5.02] 2.38] 2.02] 5.27 1.26) 6.10] 1.80] 6.12
2.07] 5.27 1.32] 6.12] 2.12] 6.12
2.12] 5.27 1.371 6.13] 2.15] 6.12
2.17] 5.27 1.44] 6.14
2.21] 5.27 1.56] 6.16
2.30] 5.27 1.71] 6.18
1.76] 6.18
1.89] 6.18
1.89] 6.19
2.06] 6.19
2.10] 6.19
2.17] 6.16
2.20] 6.15
2.26] 6.16




208

Table A4.4 Summary of 7475-T7351 Specimen Crack Paths (Set #4)

$57475LT-1 S7475L7T-2 S57475LT-4 S57475L71-5
Back Front Front Back Front Back Front Back
X Y x Y X Yy X y X Y x y X Y X Y
0.000 10.000 ['0.000 [ 0.000 | 6.000 | 0.000 10000 0.000 ] 0.000 | 6000 | 0.000 |0.000]0.000 0.000 J0.000 | 0.000
4.464 10 01714.464]-0.017]4.452 |-0.010] 4. 452 0.000 14.954 [-6.01714.054 |-0.017[3.852 -0.008[4.952 10.001
4.562 1-0.022]4 582 1-0.022]4.533 1-0.031 4.533 1-0.002]15°014 |-0.02015.014 |-6.020 5017100325017 10.03
4.600 1-0.04514.600 ]-0.002] 4.620]-0.060] 4.620 9.006 1 5.020]-0027] 5.020] 0.002] 5.040 0.007] 5.040] 0.059
4.640 |-0.05014.640 [ 0.004 | 4.6801-0. 060 4.680 | 0.0087 5. . .068] 0. 5.080] 0.008] 5. .074
4.800 1-0.06014.800 |-0.008] 4.7801-0.057 4.780 J0 017 ] 5.123 5.0 0.077] 5.140] 0.021] 5.140] 0.081
4,900 1-0.05414.900]-0.002]4.920 |-0.060] 4.820 0.010) 5.14 .080] 5.092] 0.080] 5.200] 0.042] 5.200 0.113
4.986]-0.052]4.966]-0.010 4.960]-0.068]4.960[0.004 5.158] 0.150] 5.094] 0.150 5.260] 0.065] §.260] 0.129
2.029 1-0.009J4.987 [ 0023 ] 5.0001-0.056 5.000 10.004 T 5759] 0.235] 5.095[ 0.235 $.320] 0.088] 5.320] 0.156
054 10.093 14.983 10.100 | 5.050)-0.030 $.050 10.074 ] 5.154] 0.280] 5.093] 0.280 -4001 0.129] 5.400] 0.206
5.062 10.300 ]'4.59210.300 | 5.108] 0 040 5.026 10.040 ] 5760] 0.389] 5.094] 0 389 5.520f 0.191] 5.500] 0.256
5.050 10.400 [4.08410.400 | 5.114] 0.060]5.042 0.060] 5169] 0.520] 5.102] 0.520] 5570 0.220] 5.539] 0.277
080 10,480 14,993 106.480 | 5.114] 0.080 5.05210.080 1 5774] 06501 5.111] 0.550 $.605] 0.265] 5.563] 0.310
5.058 10.580 14.996 | 0.580 | 5.114)0.160 5053 10.1680 5.165’ 9.580] 5.106] 0.580] 5.638] 0.323] 5.582] 0. 51
5.075 | 0.720 | 5.003 |0.716 | 5.123 0.210]5.053]0.210[ 5.167 0.660] 5.106 .880] 5.650] 0.40 5.584] 0.420,
$.071 10840 15010)0.840] 5.125] 0.300 5.05310.300 1 5172] 07201 5.7071 0,730 5.868] 0.49 .603] 0.49
5.072 10960 |5.003 ]0.960 | 5.1201 0.580 3.051 10580 s.176] 0.780] s.114] 0.780] 5.670 970) 5.608] 0.570
5.083[1.100]5011[1.100] 5.112 0.660]5.053 |0.660[ 5.174 0.890] 5.106] .890] 5.672] 0.610] 5.602 0.610
5.082 11.260 [5.075 [1.260] 5.128] 0.810 5.083 [0.810 ] 5.174] 0.960 5.115] 0.960] 5.673] 0.650] 5.614] 0.650
080 11,360 15.01317.360 5.131] 0.980 5.067 109801 5. 188[ 1. A1 1.04 87 80l 5.617] O
099 11.480 15036 ]1.480 [ 5.129] 1.060 5.080 11.060] 5.184] 1. S.1251 1.080{ 5.672] 0.780] 5.612] 0.780
5078 11.640 5013 1.640 5.136] 1.180]5066 | 1.180 5 194] 1. 5.124] 1.180] 5.672] 0.920 5.613] 0.920
$.08011.760 [5 0674 | 1.760 | 5.140] 1.250 2.076 11,250 " 5184] 1. 5.116] 1.220] 5 679] 1.080] 5.622] 1.080
S.1431 1.32015.073 J1.320 ] 5.180] 1. 5.115] 1.330] s.687] 1.200] 5.635] 1.200
5.152] 1.380]5.081 1 1.3807] 5.181] 1. 5.111] 1.360] 5.708] 1.320] 5.650] 1.320
5.153] 1.440]/ 5088 171.440] 5.1881 1. 5.125] 1.520] 57021 1.400] 5.643] 1.400
31791 158015114 11,580 | 5.187[ 1. K] 1, 2221 1.50 8581 1.500
5.180] 1.640]5.113 ] 1.640 5.202] 1. 5.142] 1.760] 5.724] 1.660 5.656] 1.660
5.174] 1.680f5.114[1.680 [ 5.202 1. 5.132] 1.800] 5.732] 1.720 5.668] 1.720
5.1821 174015716 [1.7401 5.198] 1. 5.135[ 1. S5.7321 2.000] 5°673[ 2.
5.182] 1.800] 5.114] 1.800] 5.191 1. 5.1 5.745] 2. 100l 5.678] 2.100
5.158] 2.040] 5.093] 2.040[ 5.191 2.140] 5. 5.749] 2.180] 5.692] 2.180
$.174] 2.200] 57031 2.200] 5.194] 2 280 5.758] 2,260 5.685] 2.260

Note: Bold signifies end of

static precrack.
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Table A4.4 Summary of 7475-T7351 Specimen Crack Paths (Set #4)
(Continued)

S57475TL-1

S7475TL-2

57475TL-3

S7475TL-4

Front

Back

Back

Front

Back

Front

Back

Front

e

X
0.000

Y X
0.000 ] 0.000

Y
0.000

X
0.000

Y
0.000

X Y
0.000 ] 0.000

X Y
0.000 ] 0.000

X
0.000

Y
0.000

b3
0.000

Y
0.000

X
0.000

Y
0.000

4.464

-0.013]4.464

-0.013

4.456

-0.023

4.456 |-0.023

4.953

-0.027

4.953

-0.027

4.955

-0.008

4.955

-0.008

4.554

-0.02114 559

-0.021

4.500

-0.024

4.500 -0 024

5.000 ]-0.028

5.000

-0.026

5.000

-0.007

5.000

-0.007

4.585

-0.049 4.585

-0.002

4.509

-0.041

4.509 ]-0.015

5.011 1.0.034

5.006

-0.0086

5.020

-0.0186

5.010

0.011

4.740

-0.048] 4.740

0.010

4.528

-0.045

4.528]-0.002

5.032 ]-0.033[ 5

4.850

-0.052] 4.850

0.009

4.580

-0.059

4.580]-0. 002

5.043]-0.028

4.940

-0.0601 4.940

0.002

4.880

-0.058

4.860] 0.000

5.0721-0.001

5.037

.011] 0.00

5.046

-0.011

5.012] 0.027

.016] 0.014

5.090

0.060

5.036] 0.087]

0.039

5.129

0.153

0791 0.180

5.014

-0.05715.074

0.002

4.960

-0.050

4.956] 0.014

5.120] 0.074

5.074

0.110

5.170)

0.257

5.116] 0.296

5.045

-0.030] 5.022

0.009

5.032

-0.037

5.016] 0.021

5.173] 0.200[ 5

J115] 0.221

5229

0.487

5.171] 0.507

5.078

0.000] 5.038

0.034

5.071

0.002

$.0298) 0.038

5.216] 0.386] 5

1601 0.400

5.249

.660

5.190] 0.672

5.109

0.060] 5.055

0.079

5.108

0.080

5.050] 0.100

5.282] 0.720

5.220

0.720

5.263

0.820

5.200] 0.831

5.157

0.200] 5.102

0.221

5.143

0.200

5.084] 0.220

5.319] 1.060] 5

.259] 1.060

5.287

0.960

5.226] 0.973

210

0.360] 5.158

0.383

$5.174

0.360

21111 0.370

$.322] 1.180] 5

.264] 1.180

5.320

1.249

2.259] 1.261

5.239

0.460] 5.188

0.480

$.207

0.540

5.150] 0.569

.257] 1.308

40

1.480

5.280] 1.480

5.276

0.640] 5.218

0.653

5.224

0.700

5.160] 0.709

5.316] 1.306] &
5.333] 1.417] 5

274 417

5.348

1.820,

5.291] 1.620

5.301

0.780] 5.243

0.795

5.240

0.900

5.1791 0.900

5.334] 15601 5

.274] 1.580

5.350

1,753

5.320

0.860] 5.264

0.972

5.247

1.040

5.181} 1.040

5.358] 1.780] 5

5.345

1.120§ 5.300

1.142

5.260

1.149

5.205] 1.180

5.364] 1.920] 5

.303,

22971 1.780

5.370

1.840

5.292
5.312

1.75
1.850

e =] wafs fa] <

.920

5.394

2.000)

5.338] 2.017

5.378

1.205] 5.320

1.220

5.300

1.360

5.242] 1.360

5.362] 2.090] 5

.304] 2.090

5$.405

2.140

5.344] 2.153

397

1.3401 5.340

2.304

1.400

$.243] t.400

2.370] 2.240] 5

3101 2.240

$.437

2.280

$.382] 2.300

5.416

1.520] 5.366

1
1.531

5.294

1.600

5.235] 1.600

5.438

1.611] 5.380

1.825

5.288

1.760

5.236] 1.760

458

11 5396

1.860

5.304

1.840

$.2501 1,839

5.481

2.079

5.320

1.960

5.258] 1.960

5.477

1
2.080] 5.403
2.260] 5.415

2.260

5.320

2.060

5.2569] 2.080

§.314

2.180

5.2%1] 2,180

$747

TL-5

Back

Front

X Y

0.000 ] 0.000

X Y
0.000 ] 0.000

4.8571-0.018

4.9571-0.018

5.001 1-0.025

5.001 [-0.025

-035 1-0.047

5.0351-0.017,

5.090 |-0.047,

§.090] 0.002

£.2401-0.051

£.240] 0,003

5.280]-0.049

5.280] 0.007

.3401-0.057

2.3401 0.006

5.440]-0.060

5.440] 0.003

£.6801-0.067

$.6801-0.003

5.780]/-0.066

5.780{-0.006

9001-0.057

£.8001-0.001

6.100]-0.058,

6.100] 0.002

.2001-0.055

£.2001 0.007

6.220/-0.049

6.220] 0.010

2001-0.041

6.500] 0.013

6.640]-0.034

6.640] 0.021

§.8001-0.017,

£.800] 0,039

6.920[-0.016

6.920] 0.045

7.0201 0.000

2.020] 0.062

7.123] 0.000

7.123] 0.061

7.200] 0.011

Z7.2001 0,064

7.310] 0.011

7.310f 0.070

3721 0.027

2.372] 0,077

7.540] 0.043

7.540] 0.097

7.620] 0.043

7.620

=
[
=
=

7.680] 0.053

7.680 112

7.8901 0.057

2.890 116

1.96Q1 0.063

7.960 117

8.120] 0.056

8.120 112

2801 0.073

§.280 128

8.380] 0.066

8.380 128

44901 0.075

8.440 125

8.600] 0.062

8.600 121

401 0,080

8.740 143

8.840) 0.085

8.840 141

9601 0,097

8,960l 0,153

Note: Bold signifies end of static precrack.




REFERENCES

[1]

[2]

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

R. G. Pettit, J. J. Wang, C. Toh, Integral Airframe Structures (IAS)—Validated
Feasibility Study of Integrally Stiffened Metallic Fuselage Panels Jor Reducing
Manufacturing Cost, Boeing Report CRAD-9306-TR-4542, NASA contract
NAS1-20014, Task 34, November, 1998 (See also NASA CR-2000-209342,
May 2000).

T. Swift, “Application of Damage Tolerance Technology to Type Certification”,
SAE Paper #811062, Aerospace Congress and Exp., Anaheim, CA October
1981.

H. F. Hardrath et al, NACA Tech Note #3856, 1956.
C. C. Poe, “Crack Propagation in Stiffened Panels”, ASTM STP 486, 1971.

J. Maclin, “Performance of Fuselage Pressure Structure”, 1991 International
Conference on Aging Aircraft and Structural Airworthiness, Washington D.C.,
November 19-21, 1991, NASA Conference Pub 3160 (1992).

T. Swift, “The Applications of Fracture Mechanics in the Development of the
DC-10 Fuselage”, in Fracture Mechanics of Aircraft Structures , AGARD-AG-
176 by H. Liebowitz, Neuilly sur Seine, France, pp. 226-287, 1974.

T. Swift, “Damage Tolerance in Pressurized Fuselage”, 11" Plantema Memorial
Lecture, 14" Symposium of the ICAF, New Materials and Fatigue Resistant
Aircraft, Ottawa, Canada, 1987.

M. Kosai, A. S. Kobayashi, M. Ramulu, “Tear Straps in Aircraft Fuselage”,
Durability of Metal Aircraft Structures: Proc. of International Workshop on
Structural Integrity of Aging Airplanes, Atlanta Technology Publications,
Atlanta, GA, pp. 443-457, 1992.

R. G. Pettit, J. C. Newman, M. S. Domack, Crack T: urning Damage Tolerance
Approach for Integrally Stiffened Structure, 19th ICAF Symposium, Edinburg,
June 1997.

National Transportation Safety Board Aircraft Accident Report, Aloha Airlines
Flight 243, Boeing 737-200, N73711, Near Maui, Hawaii, April 28, 1988,
NTSB/AAR-89/03, 1989.

M. Kosai, A. Shimamoto, C. T. Yu, S. I. Walker, A. S. Kobayashi, and P. Tan;
Axial Crack Propagation and Arrest in Pressurized Fuselage”, FAA/NASA
Symposium on Advanced Structural Integrity Methods for Airframe Durability
and Damage Tolerance, NASA Conf. Pub. 3274, Part 1, pp. 375-392, 1994,

210



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

211

M. Miller, K. Kaelber, and R. E. Worden, “Finite Element Analysis of Pressure
Vessel Panels”, Durability of Metal Aircraft Structures: Proc. of International
Workshop on Structural Integrity of Aging Airplanes, Atlanta Technology
Publications, Atlanta, GA, pp. 337-339, 1992.

D. O. Potyondy, Discrete Crack Growth Analysis Methodology for Cracks in
Pressurized Fuselage Structures”, FAA/NASA Symposium on Advanced
Structural Integrity Methods for Airframe Durability and Damage Tolerance,
NASA Conference Publication 3274, Part 2, pp. 581-601, 1994,

B. Knops, Numerical Simulation of Crack Growth in Pressurized F; uselages,
Ph.D. Thesis, Delft University of Technology, September, 1994,

C.-S. Chen, Crack Growth Simulation and Residual Strength Prediction in Thin
Shell Structures, Ph. D. Dissertation, Cornell University, January, 1999.

P. A. Wawrzynek, A. R. Ingraffea, “Interactive Finite-Element Analysis of
Fracture Processes: An Integrated Approach”, Theoretical and Applied Fracture
Mechanics, Vol. 8, 1987, pp. 137-150.

F. Erdogan, G. C. Sih; “On the Extension of Plates under Plane Loading and
Transverse Shear”, Journal of Basic Engineering, Vol. 85D, No. 4, pp. 519-527,
1963.

L. Finnie, A. Saith; “A Note on the Angled Crack Problem and the Directional
Stability of Cracks”, International Journal of Fracture , Vol.9, pp.484-486,1973.

M. B. Buczek, C. T. Herakovich, “A Normal Stress Criterion for Crack
Extension Direction in Orthotropic Composite Materials”, J. Composite
Materials, Vol. 19, pp. 544-553, 198S5.

M. Ramulu, A. Kobayashi, “Dynamic Crack Curving—a Photoelastic
Evaluation”, Experimental Mechanics, Vol, 23, pp. 1-9, 1983

B. Cotterell, J. R. Rice, “Slightly Curved or Kinked Cracks”, International
Journal of Fracture, Vol. 16, pp. 155-169, 1980,

T. J. Boone, P. A. Wawrzynek, and A. R. Ingraffea, Engineering Fracture
Mech., Vol. 26, No. 2, pp. 185-201, 1987.

[23] M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack”,

ASME Transactions, Journal of Applied Mechanics, Vol. 24, pp. 109-114, 1957,

[24] G. P. Cherapanov, Mechanics of Brittle Fracture, McGraw-Hill, New York,

1979.



212

[25] M. A. Hussain, S. L. Pu, and J. H. Underwood, “Strain Energy Release Rate for a
Crack Under Combined Mode I and Mode II”, Fracture Analysis, ASTM STP
560, Philadelphia, pp. 2-28, 1974.

[26] G. C. Sih, “Strain-Energy-Density Factor Applied to Mixed-Mode Crack
Problems”, International Journal of Fracture, Vol. 10, pp. 305-321, 1974.

[27] S. K. Maiti, R. A. Smith, International Journal of Fracture, Vol. 23, pp. 281-
295, 1983.

[28] Theocaris, P. S., “Variation on the Theme of Fracture Criteria”, Engineering
Fracture Mechanics, Vol. 33, pp. 205-214 (1989).

[29] M. Shirmohamadi, Stable Crack Growth T; rajectories and Fracture Due to
Interacting Cracks, Ph. D. Dissertation, University of California at Berkely,
1995.

[30] T. M. Maccagno, J. F. Knott, “The Fracture Behaviour of PMMA in Mixed
Modes I and I1”, Engineering Fracture Mechanics, Vol. 34, No. 1, pp. 65-86,
1989.

[31] T. M. Maccagno, J. F. Knott, “The Low Temperature Brittle Fracture Behaviour
of Steel in Mixed Modes I and IT”, Engineering Fracture Mechanics, Vol. 38,
No. 2/3, pp. 111-128, 1991.

[32] L. P. Pook, “The Effect of Crack Angle on Fracture Toughness”, Engineering
Fracture Mechanics, Vol. 3, pp- 205-218, 1971.

[33] A.F. Liu, Crack Growth and Failure of Aluminium Plate Under In-Plane Shear”,
AIAA Journal, vol. 12, pp. 180-185, 1974.

[34] J. W. Hutchinson, “Singular Behaviour at the End of a Tensile Crack in a
Hardening Material”, Journal of the Mechanics and Physics of Solids, Vol. 16,
pp. 13-31, 1968.

[35] J. R. Rice, G. F. Rosengren, “Plane Strain Deformation Near a Crack Tipin a
Power-Law Hardening Material”, Journal of the Mechanics and Physics of
Solids, Vol. 16, pp. 1-12, 1968.

[36] C.F. Shih, “Small-Scale Yielding Analysis of Mixed Mode Plane-Strain
Problems”, Fracture Analysis, ASTM STP 560, American Society for Testing
and Materials, pp. 187-210, 1974.



213

[37] N. Hallback, F. Nilsson, “Mixed-Mode I/II Fracture Behaviour of an Aluminium

[38]

[39]

[40]

[41]

[42]

[43]

Alloy”, Journal of the Mechanics and Physics of Solids, Vol. 42, No. 9, pp.
1345-1374, 1994.

B. E. Amstutz, M. A. Sutton, D. S. Dawicke, and J. C. Newman, “An
Experimental Study of CTOD for Mode 1/Mode II Stable Crack Growth in Thin
2024-T3 Aluminum Specimens”, Fracture Mechanics: 26" Volume, ASTM STP
1256, American Society for Testing and Materials, pp. 257-271, 1995.

C. Dalle Donne, H. Doker, “Plane Stress Crack Resistance Curves of an Inclined
Crack Under Biaxial Loading”, Multiaxial Fatigue and Deformation Testing
Technigques, ASTM STP 1280, American Society for Testing and Materials, pp.
243-263, 1997.

M. A. Sutton, X. Deng, F. Ma, J. C. Newman, M. James, “Development and
Application of a COD-Based Mixed-Mode Fracture Criterion”, International
Journal for Solids and Structures, (in press).

P. S. Leevers, J. C. Radon, “Inherent Stress Biaxiality in Various Fracture

Specimen Geometries”, International Journal of Fracture, Vol. 19, pp. 311-325,
1982.

Y. Sumi, S. Nemat-Nasser, L. M. Keer, “On Crack Path Instability in a Finite
Body”, Engineering Fracture Mechanics, Vol. 22, pp. 759-771, 1985.

K. Zaal, 4 Survey of Crack Path Stability Criteria and Their Application to
Crack Flapping Phenomena in Stiffened Structures, Report LR-681, TU Delft,
Faculty of Aerospace Engineering, The Netherlands, September, 1992.

[44] W.F. Hosford, R. M. Caddell, Metal Forming, Mechanics and Metallurgy, 2™

[45]

[46]

Edition, Prentice Hall, Englewood Cliffs, NJ, pp. 68-79, 1993.

Dugdale, D.S., “Yielding in Steel Sheets Containing Slits”, Journal of the
Mechanics and Physics of Solids, Vol. 8, pp. 100-104, 1960.

Barenblatt, G. 1., “The Mathematical Theory of Equilibrium Cracks in Brittle
Fracture”, Advances in Applied Mechanics, Vol. VII, Academic Press, pp. 55-
129, 1962.

[47] W. Becker, D. Gross, “About the Dugdale Crack Under Mixed Mode Loading”,

International Journal of Fracture, Vol. 37, pp163-170, 1987.

[48] J. Li, “Elastic-Plastic Study of Mixed Mode Semi-Infinite Crack by Using the

Dugdale Model”, International Journal of Fracture, Vol. 90, pp. L27-L31, 1998.



(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

214

F. Erdogan, “On the Stress Distribution on Plates with Collinear Cuts Under

Arbitrary Loads”, Proceedings, Fourth U.S. National Congress of Applied
Mechanics, p. 547, 1962

FRAN2D/L fracture simulation software and documentation available from
Kansas State University, www.mne.ksu.edu/~franc2d.

M. Isida, T. Nishino, “Formulae of Stress Intensity Factors at the Tips of Kinked
Cracks Under Various Loadings”, Engineering Fracture Mechanics, Vol. 36,
No. 5, pp. 697-711, 1990.

G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack
Transversing a Plate”, ASME Transactions, Journal of Applied Mechanics, Vol.
24, p. 361, 1957.

H. Tada, P. C. Paris, G. Irwin, Stress Analysis of Cracks Handbook, ond Ed, Paris
Productions/Del Research Corp., St Louis, 1985.

F. Lemant, A. Pineau, Mixed Mode Fracture of a Brittle Orthotropic
Material—Example of Strongly Textured Zinc Sheets, Engineering Fracture
Mechanics, Vol. 14, pp. 91-105, 1981.

A. P. Kfouri, “Crack Extension Under Mixed-Mode Loading in an Anisotropic
Mode- Asymmetric Material in Respect of Resistance to Fracture”, Fatigue &
Fracture of Engineering Materials & Structures, Vol. 19, No. 1, pp. 27-38,
1996.

R. J. Goode, “Identification of Fracture Plane Orientation, Materials Research
and Standards (MIRSA)”, ASTM, Vol. 12, No. 9, 1972. (see also ASTM E1823).

[57] Vaughn, H. “Crack Propagation and the Principal-Tensile Stress Condition for

(58]

[59]

Mixed-Mode Loading”, Engineering Fracture Mechanics, Vole 59, pp. 393-397,
1998.

T. M. Maccagno, J. F. Knott, “The Mixed Mode I/II Fracture Behaviour of
Lightly Tempered HY 130 Steel at Room Temperature”, Engineering Fracture
Mechanics, Vol. 41, No. 6, pp. 805-820, 1992.

M. Arcan, Z. Hasin, A. Volodshin, “A Method to Produce Uniform Plane-Stress
States with Applications to Fiber-Reinforced Materials”, Experimental
Mechanics, Vol. 18, pp.141-146, 1978.



215

[60] B. E. Amstutz, M. A. Sutton, D. S. Dawicke, and M. L. Boone, “Effects of
Mixed Mode I/II Loading and Grain Orientation on Crack Initiation and Stable
Tearing in 2024-T3 Aluminum”, Fatigue and Fracture Mechanics: 27" Volume,
ASTM 1296, American Society for Testing and Materials, Philadelphia, 1995.

[61] N. Hallback, “The Influence of Finite Geometry and Material Properties on
Mixed-Mode V/II Fracture of Aluminum”, International Journal of Fracture,
Vol. 87, pp. 151-188, 1997.

[62] A. K. Ghosal, R. Narasimhan, “A Finite Element Analysis of Mixed-Mode
Fracture Initiation by Ductile Failure Mechanisms”, Journal of the Mechanics
and Physics of Solids, Vol. 42, pp. 953-978, 1994.

[63] A. P.Kfouri, M.W. Brown, “A Fracture Criterion for Cracks Under Mixed-Mode
Loading”, Fatigue & Fracture Mechanics of Engineering Structures &
Materials, Vol. 18, No. 9, pp. 959-969, 1995.

[64] Y. J. Chao, S. Liu, “On the Failure of Cracks Under Mixed-Mode Loads”,
International Journal of Fracture, Vol. 87, pp. 201-223, 1997.

[65] M. James, A Plane Stress Finite Element Model for Elastic Plastic Mode I/1]
Crack Growth, Ph.D. Dissertation, Department of Mechanical and Nuclear
Engineering, Kansas State University, 1998.

[66] T. J. Stone, I Babuska, “A Numerical Method with a Posteriori Error Estimation
for Determining the Path Taken by a Propagating Crack”, Computational
Methods in Applied Mechanics and Engineering, Vol. 160, pp. 245-271, 1998.

[67]]. G. Williams, P. D. Ewing, “Fracture Under Complex Stress--The Angled Crack
Problem”, International Journal of Fracture Mechanics, Vol. 8, pp. 441-446,
1972.

[68] G.R. Irwin, “Plastic Zone Near a Crack and Fracture Toughness”, Proc. 7*
Sagamore Conf., p. IV-63, 1960.

[69] J. R. Rice, M. A. Johnson, “The Role of Large Crack Tip Geometry Changes in
Plane Strain Fracture”, Inelastic Behavior of Solids, McGraw Hill, pp. 641-690,
1969.

[70] I Constable, J. G. Williams, L.E. Culver, "Notch Root Radii Effects in the
Fatigue of Polymers”, International Journal of Fracture Mechanics, Vol. 6, No.
3, pp- 279-285, 1970.

[71] M. Ramulu, A. S. Kobayashi, “Dynamic Crack Curving—A Photoelastic
Evaluation”, Experimental Mechanics, Vol. 23, pp-1-9, 1983.



[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(8]

[81]

[82]

(83]

216

P. S. Theocaris, N. P. Andrianopoulos, N. P., “A Modified Strain Energy Density
Criterion Applied to Crack Propagation”, Journal of Applied Mechanics, Vol.
49, No. 1, pp. 81-86, 1982.

A. S. Selvaratinam, J. G. Goree, “T-Stress Based Fracture Model for Cracks in

Isotropic Materials,” Engineering Fracture Mechanics, Vol. 60, N0. 5-6, pp.
543-561, 1998.

R. Streit, I. Finnie, “An Experimental Investigation of Crack-Path Directional
Stability”, Experimental Mechanics, Vol. 20, pp. 17-23, 1980.

A. A. Wells, “Unstable Crack Propagation in Metals: Cleavage and Fast
Fracture”, Proceedings of the Crack Propagation Symposium, Vol. 1, Paper 84,
Cranfield, UK, 1961.

J. C. Newman, D. S. Dawicke, M. A. Sutton, C. A. Bigelow, “A Fracture
Criterion for Widespread Cracking in Thin Sheet Aluminum Alloy”, 17"
Symposium of the International Committee on Aeronautical Fatigue (ICAF 93),
Stockholm, 1993.

P. A. Wawrzynek, Interactive Finite Element Analysis of Fracture Processes:
an Integrated Approach, M. S. Thesis, Cornell University, 1987.

S. G. Larsson, A. J. Carlsson, “Influence of Non-Singular Stress Terms and
Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic
Materials, Journal of the Mechanics and Physics of Solids, Vol. 21, pp. 263-277,
1973.

Sham, T.-L. Sham, “The Determinationof the Elastic T-term Using Higher Order

Weight Functions”, International Journal of Fracture, Vol. 48, pp. 81-102,
1991.

T. Fett, “A Green’s Function for T-stresses in an edge-cracked rectangular plate,
Engineering Fracture Mechanics, Vol. 57, pp. 365-373, 1997

T. Fett, A Compendium of T-stress Solutions, Institut fur Materialforschung,
Karlsruhe, Report FZKA 6057, February 1998.

A. M. Al-Ani and J.W. Hancock, “J-Dominance of Short Cracks in Tension and
Bending”, Journal of the Mechanics and Physics of Solids, Vol. 39, No.1, pp.
23-43, 1991.

G. E. Cardew, M. R. Goldthorpe, I. C. Howard, A. P. Kfouri, “On the Elastic T-
term”, Fundamentals of Deformation and Fracture: Eshelby Memorial
Symposium, 198S.



217

[84] A. P.Kfouri, “Some Evaluations of the Elastic T-term using Eshelby’s Method”,
International Journal of Fracture, Vol. 30, pp. 301-315, 1986.

[85] J. Sladek, E. B. Becker, R. S. Durham, “A Contour Integral Computation of
Mixed-Mode Stress Intensity Factors”, International Journal of Fracture, Vol. 12,
pp. 359-368, 1976.

[86] F.G. Yuan, S. Yang, “The Application of Fracture Mechanics to Stitched Warp-
kit Fabric Composites”, AIAA Paper #98-2025, 39"
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Long Beach, CA, April 1998.

[87] C.-S. Chen, R. Krause, R. G. Pettit, L. Banks-Sills, A. R. Ingraffea, “Numerical
Assessment of T-Stress Computation Using a P-Version Finite Element
Method”, submitted to International Journal of Fracture, 2000.

[88] R. K. Bird, Evaluation of Tensile and Fatigue Behavior of Candidate Alloys and
Product Forms for IAS, Integral Airframe Structures Program—Joint NASA
Industry Workshop, NASA Langley Research Center, November, 1998
(unpublished).

[89] B. Gross and J. E. Srawley, Stress Intensity Factors for Single-Edge Notch
Specimens Subjected to Splitting Forces, NASA TN D-3295, 1966.

[90] R. M. L. Foote and V. T. Buchwald, “An Exact Expression for the Stress
Intensity Factor for a Double Cantilever Beam”, International Journal of
Fracture, Vol. 29, pp. 125-134, 1985

[91] M. S. Domack, Fatigue Crack Growth Rate and Fracture Toughess Testing at
NASA Langley Research Center, Integral Airframe Structures Program—Joint
NASA Industry Workshop, NASA Langley Research Center, April, 1998
(unpublished).

[92] J. Munroe, K. Wilkins, M. Gruber Integral Airframe Structure (IAS) Validated
Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing
Manufacturing Cost—Final Report, NASA Contract NAS1-20267, The Boeing
Company (Seattle), November, 1998 (See also NASA CR-2000-209337).

[93] M. Domack, W. Johnston, unpub. data, NASA Langley Research Center, 2000.

[94] J. C. Newman, Jr., B. C. Booth, K. N. Shivakumar, “An Elastic-Plastic Finite-
Element Analysis of the J-resistance Curve Using a CTOD Criterion”, Fracture
Mechanics: Eighteenth Symposium, ASTM STP 945, American Society for
Testing and Materials, Philadelphia, pp. 665-685, 1988.



[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

218

D. S. Dawicke, J. C. Newman, Jr., Residual Strength Predictions for Multiple
Site Damage Cracking Using a Three-Dimensional Finite-Element Analysis and
a CTOA Criterion”, Proceedings of the 29th National Symposium on Fatigue
and Fracture Mechanics (1997), American Society of Testing and Materials,
pp. 815-829, 1999.

H. W. Swift, “Plastic Instability Under Plane Stress”, Journal of the Mechanics
and Physics of Solids, Vol. 1, pp. 1-18, 1952.

R. M. Mc Meeking, “Finite Deformation Analysis of Crack-Tip Opening in
Elastic-Plastic Materials and Implications for Fracture”, Journal of the
Mechanics and Physics of Solids, Vol. 25, pp. 357-381, 1977.

A. R. Ingraffea, “Theory of Crack Initiation and Propagation in Rock”,
Fracture Mechanics of Rock, Academic Press/Harcourt Brace Jonavich,
pp.71-110, 1987.

R. M. McMeeking, D. M. Parks, “On Ceriteria for J-Dominance of Crack Tip
Fields in Large-Scale Yielding”, ASTM STP 668, American Society for Testing
and Materials, Philadelphia, pp. 175-194, 1979.

MIL-HDBK-5G, Metallic Materials and Elements for Aerospace Vehicle
Structures, Vol. 1, pp. 3-73, November, 1994.

M. L. Gruber, C. J. Mazur, K. E. Wilkins, R. E. Worden, Investigation of
Fuselage Structure Subject to Widespread Fatigue Damage, Federal Aviation
Administration Report DTFA03-94-C-00065,pp. 12-13, October 1995.

Irwin, G. R., “Onset of Fast Crack Propagation in High Strength Steel and
Aluminum Alloys”, Sagamore Research Conference Proceedings, Vol. 2, pp.
289-305, 1956.

T. L. Anderson, Fracture Mechanics, Fundamentals and Applications, 2™
Edition, CRC Press, New York, pp. 41-43, 1994.



