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Currentemphasisin theaircraft industrytowardreducingmanufacturing

costhascreatedarenewedinterestin integrallystiffenedstructures.Crackturning

hasbeenidentifiedasanapproachto improvethedamagetoleranceandfail-safety

of this classof structures.A desiredbehavioris for skincracksto turn before

reachingastiffener,insteadof growingstraightthrough. A crack in apressurized

fuselageencountershighT-stressasit nearsthestiffener--aconditionfavorableto

crackturning. Also, thetearresistanceof aluminumalloystypically varieswith

crackorientation,aform of anisotropythat caninfluencethecrackpath.

Thepresentworkaddressestheseissueswith astudyof crackturning in

two-dimensions,includingtheeffectsof bothT-stressandfractureanisotropy.

Botheffectsareshownto haverelationto theprocesszonesize,an interactionthat

is centralto thisstudy.

Followingan introductionto theproblem,theT-stresseffect is studiedfor

aslightly curvedsemi-infinitecrackwith acohesiveprocesszone,yieldinga

closedform expressionfor thefuturecrackpathin an infinite medium. For a

giveninitial cracktip curvatureandtensileT-stress,thecrackpath instability is

foundto increasewith processzonesize.

Fractureorthotropyis treatedusinga simplefunctionto interpolate

betweenthetwo principal fractureresistancevaluesin two-dimensions.An



extensionto three-dimensions interpolates between the six principal values of

fracture resistance. Also discussed is the transition between mode I and mode II

fracture in metals. For isotropic materials, there is evidence that the crack seeks

out a direction of either local symmetry (pure mode I) or local asymmetry (pure

mode II) growth. For orthotropic materials the favored states are not pure modal,

and have mode mixity that is a function of crack orientation.

Drawing upon these principles, two crack turning prediction approaches

are extended to include fracture resistance orthotropy--a second-order linear elastic

method with a characteristic length parameter to incorporate T-stress/process-zone

effects, and an elastic-plastic method that uses the Crack Tip Opening

Displacement (CTOD) to determine the failure response. Together with a novel

method for obtaining enhanced accuracy T-stress calculations, these methods are

incorporated into an adaptive-mesh, finite-element fracture simulation code.

A total of 43 fracture tests using symmetrically and asymmetrically loaded

double cantilever beam specimens were run to develop crack turning parameters

and compare predicted and observed crack paths.
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CHAPTER 1.0

BACKGROUND

1.1 Manufacturing Trends

About a third of the direct operating cost of a commercial aircraft is associated

with the manufacturing cost, which is probably the most critical competitive parameter

with regard to market share [1 ]. In the past, the airframe design process in the U.S. has

been focused on riveted aluminum skin and stringer construction, a structural concept

dating from the 1940's. Design and manufacturing processes based on this concept

have become highly mature, and therefore difficult to reduce significantly in cost

without substantial deviations from conventional practice. Nevertheless, metallic

structure is also well proven, and the industry will likely retain extensive metallic

production capability for the foreseeable future.

The continual need for low acquisition cost and the emergence of high speed

machining and other technologies has brought about a renewed interest in large,

integral, metallic structures for aircraft applications. An example of an integral

fuselage concept developed under the NASA Integral Airframe Structures (IAS)

Program [ 1] is shown in Figure 1.1, consisting of only two detail parts--skin and

frames. The conventional baseline structure is shown in Figure 1.2, and requires the

separate fabrication and assembly of skin, stringers, frames, stringer clips, and tear

straps. Integrating multiple parts into larger pieces of structure offers inherent savings

and flexibility, which is made increasingly more attractive as the labor required to

machine the parts is reduced by faster machines. Nevertheless, application of low-cost

integral structures has been inhibited in many applications by a perceived lack of

damage tolerance.
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Built-up thickness provides
sufficient stiffness to
eliminate frame/Iongeron
ties in many

Integral frame/shear cli
one-side machinable

High-strength,
intermediate toughness
material for low weight
and good crack deflection

Stiffener lower cap
provides built up area
for repair with
mechanical fasteners

Pocketed bays fully
enclosed by integral
lands/stiffeners for
crack deflection/arrest

Figure 1.1 IAS Integral Fuselage Panel Concept [1]

stringer clip

tear

stringer

/

frame
skin

frsnle

Figure 1.2 IAS Baseline Fuselage Panel Concept [1]



1.2 Damage Tolerance and Integral Structures

Properly designed integral structures with attention to fillet radii and other life-

limiting features, can potentially achieve very long fatigue lives. Nevertheless,

damage tolerance has long been a concern for integral structures [2], which have been

particularly shunned in critical areas like the fuselage. This concern was largely based

on NASA fatigue crack growth tests [3,4] which showed that a skin crack slows more

when crossing a mechanically fastened stiffener than an integral stiffener. Multi-bay

panels were seen to crack through considerably faster in integral construction,

compared to multi-piece designs. The NASA data would infer that catastrophic failure

of integral structure would likely develop more quickly than in built up structure--that

is, if the cracks grow straight through the stiffeners as they did in the NASA tests.

1.3 Crack Turning as a Mechanism to Enhance Damage Tolerance and Fail Safety

On the contrary, crack turning has long been recognized as a potentially

important crack arrest mechanism for pressurized aircraft fuselage structure, and for

longitudinal cracks can result in the turning and flapping behavior shown in Figure 1.3

as reported by Maclin [5]. This behavior contains the damage, vents the pressure in a

controlled manner, and results in obvious damage which can be subsequently repaired.

Flapping was observed to occur reliably enough during tests of thin skinned, relatively

narrow-body fuselages that it was utilized as a fail-safe criterion on the 707, 727, and

737 fuselages for regions excluding the joint areas. Similar phenomena have been

observed in unstiffened cylinders by Swift [6, 7], who also reported turning and

cracking in an experimental fuselage with adhesively bonded stiffeners [2], Kosai et al

[8], who studied crack turning in stiffened cylinders, and Pettit [9], who observed

crack turning and arrest in integrally stiffened fuselage structure with transverse

cracks.



Figure 1.3 Crack Turning and Flapping in a Boeing 707 Test Panel [5]

These behaviors were observed in tests, but have been troublesome to model

adequately. Turning and flapping was observed in narrow-body aircraft (skin

thicknesses down to 0.04 inches or so), but not wide-body aircraft like the 747 aircraft.

Also, it was found that aging aircraft develop multi-site damage, which can potentially

alter the crack turning and flapping performance [10]. The need for an accurate crack

trajectory modeling capability was evident.

In the last decade, a sequence of authors have studied the fuselage flapping

phenomenon, including Kosai et al [ 11 ], Miller et al [ 12], Potyondy et al [ 13], Knops

[14], and Chen [15]. Beginning with Potyondy, an adaptive mesh finite element code

was used similar to that proposed by Wawrzynek and Ingraffea [16] but extended to

three-dimensional shell problems, which allows the trajectory of the crack to develop

naturally in accordance with a user-selected crack turning theory. Potyondy used the

first order maximum tangential stress theory of Erdogan and Sih [17] to predict the

crack trajectory of an adhesively bonded narrow-body fuselage panel tested at Boeing.

He was able to approximate the actual behavior fairly well in the gently curving region



until thecrackgrewnearto thetearstrap,but wasunableto predictthe sharp turning

radius observed as the crack grew parallel to the tear strap, resulting in flapping.

The work of Kosai, Knops and others gave substantial evidence that to more

accurately model crack turning behavior in pressurized cylinders, a second-order

theory was needed such as that described by Finnie and Saith [18]. (Here, second-

order refers to the inclusion of the second term, or T-stress, in the asymptotic stress

field in the vicinity of the crack tip, which is neglected in the Erdogan and Sih theory.)

Knops was the first to implement this theory in an adaptive mesh finite element code _,

and showed that for simulations of various specimens with tensile T-stress, the

second-order theory predicted that the crack would turn more sharply than the first

order theory, improving correlation with test results. Yet despite the improved theory,

his results for the Boeing narrow body panel test compared very closely with those of

Potyondy. Like Potyondy, he was unable to simulate the small turning radius of the

crack in the vicinity of the tear strap, and the resulting flapping phenomenon.

Pettit [9] observed a similar rapid turning phenomenon when testing integrally

stiffened fuselage test panels with a symmetric, two-bay, circumferential crack. The

panels were loaded with pressure and axial tension. Crack turning was attributed to

the T-stress, which was shown to be significant as the crack passed through a narrow

region (on the order of a ten skin thicknesses) immediately adjacent to the edge of an

arresting stiffener. The analyses also indicated that the presence of the T-stress was

largely driven by geometrically nonlinear behavior (pressure pillowing) which would

not occur if the panels were unpressurized. In the pressurized panel, which turned (but

did not flap) at both crack tips, a 23 percent increase in residual strength was observed.

1Adaptive mesh, in this context, refers to a code that remeshes the area around the crack tip as it grows,
allowing the crack to follow a natural path.
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Nevertheless,somespuriousturning results were also observed that indicated a need

to take into account fracture toughness anisotropy.

Pettit et al [ 1] later combined the 2nd order turning criterion of Finnie and

Saith with the orthotropic theory of Buczek and Herakovich [ 19] to formulate a

second-order crack turning criterion with fracture toughness orthotropy that will be

described in more detail in Chapter 5. This theory was implemented by Chen [ 15] into

a 3D shell adaptive mesh environment similar to that of Potyondy, and subsequently

used to model the same Boeing test panel studied by previous authors. His results,

comparing first and second-order isotropic theories, and second order theory for both

isotropic and orthotropic cases are presented in Figure 1.4. Note that in the second-

order isotropic run, he was for the first time able to negotiate the fairly tight turn

observed in the test data as the crack approaches the tear strap. In the second-order

orthotropic case, he matched the first part of the trajectory considerably better, but was

still unable to simulate crack turning at the tear strap, because the crack was growing

in the preferred direction of the 2024-T3 fuselage skin, and the effect of the T-stress

was insufficient to turn the crack. Despite this shortcoming, the ability to simulate

crack deflection by a tear strap for the isotropic case was a significant first.

While there were various differences in the finite element implementation, it

appears that the main difference in Chen's isotropic analysis which enabled him to

show turning and flapping where Knops did not was the characteristic length, rc,

chosen for use in the analysis. Chen used a value of 0.09 inches which was found

during finite element simulations to correlate fairly well with crack paths observed in

double cantilever beam specimens reported by Pettit [9], whereas Knops used a value

of 0.05 inches 2.

2Actually, Knops is not explicit with regard to the value of re utilized for 2024-T3. However, he did

quote a value for PMMA plastic plate of 1.3 mm (0.05 inches) based on the results of Ramulu and
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Figure 1.4. Comparison of Narrow Body Fuselage Panel Test Data with Fracture

Simulations, After Chen [15]

Kobayashi [20]. Kosai, Kobayashi and Ramulu [8] later gave the same value for 2024 aluminum, and
it is appears that Knops used this value for both materials.



8

Attemptsin the literatureto evaluaterc often give contradictory results, as will

be discussed at length in Chapter 5. While presumably associated with some process

zone dimension, the phenomenological basis by which the process zone affects the

crack path has not been well understood. Nevertheless, comparison of fatigue and

static tearing crack paths in aluminum under a high T-stress environment have shown

a pronounced difference in crack path [9] (the statically torn specimens turning more

sharply), confirming at least the notion that increased process zone size should

promote crack turning.

1.4 Program Focus and Scope

The present study will focus on the crack turning problem in the context of a

crack growing in a large integral metallic panel, with specific focus on factors that

decrease the radius of turning. The basic phenomenology of crack turning will be

explored, with the primary hypothesis that process zone effects result in the

acceleration of crack turning in the presence of T-stress. It is hoped that the present

study will result in greater understanding of that role, as well as provide improved

methods for more accurate simulation of crack turning. In a broader sense, the

following factors are believed to be potentially important with respect to crack turning

behavior.

1.

2.

3.

4.

5.

Mode mixity (load asymmetry)

T-stress

The size and nature of the inelastic fracture process zone at the crack tip

Fracture toughness anisotropy

Transition between competing fracture modes



An important theme that will be underlying this work is the observation that

tensile T-stress often arises as a crack nears an integral stiffener, particularly in a

stiffened skin arrangement loaded under lateral pressure, such as an aircraft fuselage.

As will be described in Chapter 2, tensile T-stresses cause the crack to become

directionally unstable[21 ], potentially resulting in the desired turning behavior. The

more T-stress, the sharper the crack is likely to turn. From a damage tolerance and

residual strength perspective, it is desirable for the crack to turn until it is oriented

parallel, or nearly parallel to the stiffener. However, the region of the crack path over

which the T-stresses arise is often quite small [9], perhaps on the order of ten skin

thicknesses or less. Thus it may be necessary for the crack to turn at a fairly small

radius if it is to miss the stiffener, or impinge upon it at a sufficiently grazing angle to

effectively blunt the damage. It has been observed that the process zone size can have

a significant effect on the crack path [9], with larger process zones in a high T-stress

environment turning the crack far more sharply than commonly used linear elastic

theories predict. In view of the need for the crack to turn with a small radius, proper

understanding of this effect is considered to be critical.

Engineering materials often exhibit fracture resistance anisotropy, which has

been shown to strongly affect the crack path [22]. An attempt will be made to extend

the most promising theories to include fracture resistance orthotropy, a special (and

very common) case where the toughness function exhibits symmetry in an

orthonormal basis. This will be discussed in two and three dimensions in Chapter 4.

While cracks most often propagate in-plane in a nearly pure crack opening

mode (mode I), it is possible for a crack in a ductile material to grow in a crack sliding

mode (mode II) when the crack is heavily shear loaded. While transition between the

two modes is rarely observed in practice, it has been observed in laboratory
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experiments,mayprovideanalternativemethodto achievecrackturning,andisgiven

limited attentionin Chapters4 and5.

Drawingupontheforegoing,apractical,second-orderlinearelastictheoryfor

thepredictionof cracktrajectory,includingT-stressandfracturetoughness

orthotropy,will bedevelopedin Chapter5, includingmethodsdevelopedconcurrently

by theauthorundertheNASA IAS program. Also includedis amodificationof an

elastic-plasticcracktrajectorymethodto includefractureresistanceorthotropy.

Chapter6 describestheimplementationof elasticandelastic-plasticcrack

turning theories into the FRANC2D/L fracture simulation code. A method is also

presented to enhance the accuracy of the T-stress calculation utilized by the elastic

theories. Simulations are compared to test data in Chapter 7, including selected data

from the NASA IAS program.

Chapter 8 will provide a concluding discussion, and recommendations for

future work.



CHAPTER 2.0

ISOTROPIC CRACK TURNING THEORY IN TWO-DIMENSIONS

2.1 Linear Elastic Crack Kinking Due to Mixed-Mode Loading Without T-Stress

The mixed-mode expressions for the two-dimensional elastic stress field

around a crack tip (Figure 2.1) are given to the first two terms [23] as

10[ ( O)+3KttsinO_2KntanO]+T(l+cos20 ) (2.1)°'r- 2_f2_c°s Kt l+sin2zj z Zl Z

1 0 2 sin 0] + Tty0=  cos [K, cos 3K,,  (1-cos20) (2.2)

1 0 T
= _cos_-[K t sin 0 + Kn(3cosO - 1)]- _-sin 20 (2.3)(Yro

l. _l z rcr _

i
v

X

Figure 2.1 Crack Tip Coordinate and Stress Notation

where KI and Kzi are the stress intensity factors associated with mode I and mode II

loading as illustrated in Figure 2.2. The T-stress is the constant component of the

stress field, and oriented parallel to the crack tip as shown in Figure 2.1.

11
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Figure 2.2 Illustration of Crack Tip Loading Modes

(Shown with Positive Sense)
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Most of the studies related to crack turning found in the literature focus on

determining the kink angle that occurs when a crack is loaded with in-plane

asymmetry. The leading stress terms are singular in r, thus dominating crack tip

stresses in the elastic solution. Thus, with the tacit assumption that the mechanism by

which the crack is directed occurs at or very close to the physical crack tip, the second

and higher order terms are often neglected, even though they may be significant at

some distance from the crack tip. In these first-order turning theories, the asymmetry

is characterized exclusively in terms of the mode mixity, KII/Kz. For the time being,

we will postpone our discussion of second-order kinking theories, which assume a

process zone size large enough that T affects the kink angle.

The classical first-order maximum tangential stress (cro0 max) theory, proposed

by Erdogan and Sih [17] for isotropic materials, asserts that the crack will grow

toward the location of the maximum tangential tensile stress. By differentiating the

first term in Equation (2.2) with respect to theta and setting it to zero (equivalent to

setting Crro = 0) they obtained (shown somewhat rearranged)

K/I = -sinAOc

g I (3cos A0 c -1)
(2.4)
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or [24]

AOc=2tan-l(1-41+8(Kn/K,)2 I
4(Ku/Kt) (2.5)

where a0 e is the kink angle. This expression predicts straight crack growth unless

KI_O, as in asymmetric loading or in the case of a crack with a perturbed trajectory.

Equation (2.5) is plotted in Figure 2.3, along with two other well-known first

order linear elastic theories, the maximum energy release rate (G(O)m_) theory

proposed by Hussain et al. [25], and the minimum strain energy density theory

(S(0)min) proposed by Sih [26]. For convenience, the data is plotted using the mode

mixity parameter

(2.6)
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Figure 2.3 Comparison of First-Order Linear Elastic Crack Kinking Theories
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By assuming other quantities, such as maximum principle stress, maximum hoop

strain and/or void growth, numerous first-order kinking criteria have been proposed

[e.g. 27, 28, 29].

For the most part, all these theories predict quite similar kink angles,

particularly as KI1<<Kz. Nevertheless, the data of many authors have been correlated

with the various theories [28, 29] in an attempt to determine the most accurate.

Noteworthy among the empirical studies in this respect is the very meticulous work of

Maccagno and Knott [30, 31], who, unlike most authors, chose a specimen geometry

with near zero T-stress in order to minimize higher-order effects. They also designed

their specimens of sufficient thickness to ensure a plain strain state of stress near the

crack tip. Their work included testing of plexiglass at room temperature, and various

grades of steel at low temperature (-196°C, resulting in transgranular cleavage

fracture), and showed that even for moderate amounts of ductility, the initial kink

angle was well predicted by the maximum tangential stress theory of Erdogan and Sih.

This was true even when the ductility was sufficiently high that they had to resort to

an elastic-plastic failure criterion to correlate the fracture initiation loads. However,

they cautioned that while this was true of the transgranular cleavage failure mode, it

might not be true of other failure mechanisms (more on this momentarily).

Pook [32], and Liu [33] provided crack kinking data for aluminum alloys that

also correlates well with the maximum tangential stress theory, at least in the

predominately mode I regime.

2.2 Elastic-Plastic Crack Kinking

Huchinson [34] studied the stress field at the tip of a crack in a strain hardening

material which follows the Ramberg Osgood constitutive law
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,o (;o/n- t- _z (2.7)
Eo t7 0

where cr and e are the stress and strain, and ao and eo are the corresponding yield

values. A theoretical description of the asymptotic stress field was developed of the

form

_ Km
cr0 r,/(,+,) fj(O) (2.8)

An equivalent theoretical development was concurrently published by Rice and

Rosengren [35], thus (2.8) is has become known as the HRR stress field. The HRR

theory assumes proportional loading, and thus is not valid for a propagating crack, but

provides insight into the crack behavior at initiation.

Shih [36] extended the HRR theory to include mixed mode loading under

plane strain conditions, and applied it to develop a maximum circumferential stress

theory for elastic-plastic crack initiation. Note that the HRR fields assumes that T and

higher-order terms are zero in the far-field elastic stress field, and represents only the

leading term in the elastic-plastic stress field. Thus, though it includes a process zone,

the elastic-plastic theory of Shih is still a first order theory. The results of his work are

reproduced in Figure 2.4, and revert to the theory of Erdogan and Sih for n=l. For

higher values of n, the kink angle predicted is still not dramatically different from the

linear elastic theory, thus the observation that the linear elastic theory may adequately

predict the kink angle even in the presence of significant plasticity is not surprising.
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As mentioned earlier, there remains the issue of the failure mode. Aware that

the tearing failure mode of HY 130 steel at room temperature would involve void

growth and decohesion along planes of maximum shear, as opposed to the

transgranular cleavage failure mode observed in earlier work, Maccagno and Knott

proceeded to run otherwise identical room temperature tests [31 ]. While large-scale

plasticity was found to exist in the specimens, the failure mode clearly followed planes

of maximum shear, rather than maximum tension. For mode I loading, this resulted in

a zigzag pattem directed macroscopically along the original crack plane. However,

increased proportions of mode II loading resulted eventually resulted in straight crack

growth along the plane of maximum shear. Subsequent tests by other investigators

[37, 38, 39, 40] have shown that various aluminum alloys also fail macroscopically

along the direction of local symmetry when loaded predominately in mode I, and the

direction of local asymmetry when loaded mostly in mode II, with transition between
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themodesoccurringat someintermediatemode-mixity. Thismodaltransition

behaviorwill bediscussedin greaterdetailin Chapter4. Nevertheless,modeII

dominantcrackpropagationis rarelyif everobservedin aircraftstructures(and

probablymoststructm'es),thusattentionwill begivenprimarily to modeI dominant

crackpropagation.

2.3 LinearElasticCrackPathInstability in aPositiveT-stressEnvironment

Notwithstandingtheforegoingdiscussionof crackkinking theories,thecrack

turningproblemsencounteredin manyrealstructuralapplicationsarenot reallycrack

kinking problems. In anaveragemacroscopicsense,crackstypically initiate normal

to themaximumtensilestress,andpropagatein a rathersmoothlycurvingfashionas

thecracknegotiatesits wayamongthestructuralfeaturesof thepart. Sincethefirst-

orderisotropictheoriespredictcrackkinking for non-zeroKI1, it would appear that the

only way for a crack to propagate smoothly is for the crack to follow a path along

which Klr = 0. Since all the first-order isotropic theories agree exactly for this

condition, the crack path is apparently independent of any first-order theory.

While it is true that at a sufficiently small scale the crack path is not smooth

due to material inhomogeneities, microscopic failure phenomena, or fluctuations about

a mean loading orientation, these anomalies are may be considered random in nature,

and may be viewed as perturbations 3 to the crack path. Nevertheless, short of

characterizing these perturbations and including them explicitly in a probabilistic

analysis, it would appear that the best deterministic estimate of the crack path in an

average sense would be the path for which Kit = 0.

3 It is duly noted that in the late stages of catastrophic failure of an assemblage, failure of secondary
members, crack branching, multiple crack coalescence, and other major load or path disruptions may
occur, and are beyond the scope of the present discussion.
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The above conclusion seems quite intuitive, and was suggested at least as early

as Cotterell and Rice [2 1], who further proved that for crack propagating in pure

mode I, the strain energy release rate is locally maximized for a straight crack

extension. They started with an approximate kinked crack solution for infinitesimal

kinks,

K t = Cllkt + Ci2k n

Ku = C21kt + C22k u (2.9)

where kl and kn are the stress intensities of the lead (unkinked) crack, Kt and Kzl are

the resulting stress intensities at the kink tip, and

Cll = 1[3cos(A0/2) + cos(3A0/2)]

C12 = --34[sin (A0 / 2) + sin(3A0 / 2)]

C21 = l[sin(A0/2) + sin(3A0/2) ] (2.10)

C22 = ¼[cos(A0/2) + 3cos(3A0/2)]

which was shown accurate to the second order in AO. For small angles

Kt = Cilkl = klI1-3 (AO2)]+ O(A03 )

AO
K u = C21k I - k t + o(m0 3)

2

The strain energy release rate is (plane stress)

G=I(Kt2 +KH 2)

-T-) ' +O(AO )

which is clearly maximized for ,40= 0.

Cotterell and Rice then considered the future path of an (initially straight)

crack propagating in pure mode I as shown in Figure 2.5, subject to a small

perturbation in ku as the crack reaches the origin of the local coordinate system

(2.11)

(2.12)



19

indicated.TheyretainedtheT-stresstermin their calculationsto observe its influence

on the crack path.

Y

Figure 2.5

X

Schematic of a Growing Crack

Based on a formulation of their own derivation which integrates the tractions due to

the lead crack stress field over the developing crack path to obtain the stress intensity

factors at the crack tip, they obtained for KII,

KIl = k11+l _'(l)kt _ _ T f l /]''(l) (2.13)

accurate to the first order in A,'. Cotterell and Rice gave evidence that this solution

was accurate to within about five percent up until the slope of the extending crack

crack exceeds 15 degrees. Setting K,I = 0 at the developing crack tip,

oo AL/4 -xj
where

(2.14)

(2.15)

Note that the expression for the small perturbation angle, 00, has been defined

in such a way as to be in agreement with the Equation (2.5) as Kzt becomes small
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comparedto KI (see also (2.11)).

Transforms, Cotterell and Rice obtained 4

Solving (2.14) for Mx) using the method of Laplace

 ,x,: [expl  xle c(l
which is plotted in normalized format in Figure 2.6.

(2.16)
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Figure 2. 6 Normalized Plot of the Perturbed Crack Path of Cotterell and Rice
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The primary conclusion drawn is that if T>0, the crack path diverges, if T<0,

the crack path turns back toward a relatively straight trajectory after the initial

perturbation. These behaviors are in qualitative agreement with test data [41 ]. The

predicted rate of divergence is proportional to the perturbation and the square of the T-

stress. A similar analysis was performed by Sumi [42], who included one additional

4 Equation (2.13) differs slightly from the published result due to a typographical error.



21

higher order term in the stress field expansion, and was able to obtain additional

information about whether the crack was approaching a region of greater stability or

instability.

Based on the foregoing, we observe that given a set of initial conditions kz, k11

(small compared to kl), T, and higher order terms should one desire to include them,

there is only one path for which K_rf O. Yet, crack paths observed in nominally self-

similar specimens with tensile (positive) T-stress indicate a process zone size effect.

To illustrate this, crack path data [9] from 2024-T3 double cantilever beam (DCB)

specimens is re-plotted in Figure 2.7, shown slightly translated so that the initial notch

tips are superimposed. The value of fl was about 0.37 for both specimens.

Neglecting the roughness of the crack paths observed in measurements taken

from both faces, both paths initially grow straight ahead, and then turn in a relatively

smooth fashion. However, the stable tearing crack path, which would be associated

with the larger process zone condition due to the higher loading, turns much more

sharply than the fatigue cracked specimen. Both specimens were of the same (T-L)

grain orientation, and presumably had similar (though unknown) perturbations. The

paths of only two specimens are shown, but qualitatively similar behavior was noted

in comparable specimens from this and other aluminum materials [1].

The Cotterell and Rice solution is for an infinite plate, and would therefore not

be valid for a large enough crack extensions within the DCB specimen to render useful

any quantitative comparison of the predicted and observed paths. Nevertheless,

postulating that the tiny process zone associated with fatigue crack growth might

result in something approximating a K_r_ 0 path (neglecting fracture orthotropy for the

time being), we must now ask on what phenomenological basis the more sharply

turning crack could be anticipated due to a larger process zone.
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comparedto Kz (see also (2.11)). Solving (2.14) for A(x) using the method of Laplace

Transforms, Cotterell and Rice obtained 4

 'x : [expl  xle c(l
which is plotted in normalized format in Figure 2.6.
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Figure 2.6 Normalized Plot of the Perturbed Crack Path of Cotterell and Rice
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The primary conclusion drawn is that if T>0, the crack path diverges, if T<0,

the crack path turns back toward a relatively straight trajectory after the initial

perturbation. These behaviors are in qualitative agreement with test data [41 ]. The

predicted rate of divergence is proportional to the perturbation and the square of the T-

stress. A similar analysis was performed by Sumi [42], who included one additional

4 Equation (2.13) differs slightly from the published result due to a typographical error.
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higher order term in the stress field expansion, and was able to obtain additional

information about whether the crack was approaching a region of greater stability or

instability.

Based on the foregoing, we observe that given a set of initial conditions kt, kt_

(small compared to k0, T, and higher order terms should one desire to include them,

there is only one path for which Kit = 0. Yet, crack paths observed in nominally self-

similar specimens with tensile (positive) T-stress indicate a process zone size effect.

To illustrate this, crack path data [9] from 2024-T3 double cantilever beam (DCB)

specimens is re-plotted in Figure 2.7, shown slightly translated so that the initial notch

tips are superimposed. The value offl was about 0.37 for both specimens.

Neglecting the roughness of the crack paths observed in measurements taken

from both faces, both paths initially grow straight ahead, and then turn in a relatively

smooth fashion. However, the stable tearing crack path, which would be associated

with the larger process zone condition due to the higher loading, turns much more

sharply than the fatigue cracked specimen. Both specimens were of the same (T-L)

grain orientation, and presumably had similar (though unknown) perturbations. The

paths of only two specimens are shown, but qualitatively similar behavior was noted

in comparable specimens from this and other aluminum materials [ 1].

The Cotterell and Rice solution is for an infinite plate, and would therefore not

be valid for a large enough crack extensions within the DCB specimen to render useful

any quantitative comparison of the predicted and observed paths. Nevertheless,

postulating that the tiny process zone associated with fatigue crack growth might

result in something approximating a Kit = 0 path (neglecting fracture orthotropy for the

time being), we must now ask on what phenomenological basis the more sharply

turning crack could be anticipated due to a larger process zone.
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2.4 Summary

First-order linear elastic and elastic-plastic crack kinking theories have been

presented. First-order refers in this sense to the absence of the T-stress or higher order

crack tip field parameters in the crack kinking expression. This infers that the theory

either assumes a process zone of negligible size, or allows a finite process zone, but

excludes or neglects the presence of higher order terms in the in the analysis. All first

order theories predict kinking for non-zero Kit, thus inferring that the crack path will

be smooth only if K_r=0.



23

Crack path instability theory has been presented in the case where the linear

elastic crack kinking theory is construed to admit the presence of T-stress, but (tacitly)

with vanishing process zone size so that the kinking theory is first order (KH=0). A

divergent crack path is predicted in the presence of positive (tensile) T-stress, which is

in qualitative agreement with observation. This behavior will be referred to hereafter

as the "first-order crack path instability" associated with the T-stress.

Lastly, test data is presented showing that when the process zone is large and

the crack grows in a strong T-stress environment, the crack may turn smoothly along a

much sharper radius. This now motivates a discussion of mechanisms by which such

accelerated turning may occur.



CHAPTER3.0

CRACK PATH INSTABILITY IN A MATERIAL WITH A COHESIVE
PROCESSZONE

While thefactthatcrackstendto exhibit directionalinstability in tensileT-

stressenvironmentshasbeenwell established,thereissomedisagreementasto therole

of theprocesszone.Thetheoryof FinnieandSaith5[18]requirestheuseof aprocess-

zonerelatedcharacteristiclength,re, to explain the directional instability. On the other

hand, Cotterell and Rice [21 ] explained the T-stress-related path instability for linear

elastic cracks devoid of any process zone assumptions. Notably, the former theory

predicts that given sufficient T-stress, the crack can turn sharply from a symmetric

starting configuration--whereas the latter theory predicts a smoothly turning crack

resulting from a small perturbation in a self-similar crack path. Initially symmetric

fracture tests tend to show smooth crack paths, but indicate that turning is accelerated

if the process zone size is increased, as noted in differences between fatigue crack

growth and stable tearing crack paths in otherwise identical specimens [9]. There is

also evidence that the accelerated turning behavior plays a significant role in observed

fuselage flapping tests [9, 14, 15, 43].

In order to study the effects of process zone size on the crack path, it was

desired to extend the more rigorous approach taken by Cotterell and Rice to include the

effects of a process zone. The following development will be discussed in the context

of plasticity, with focus on metallic materials. Nevertheless, the general principles

described could likely be applied to materials that fracture by way of micro-cracking or

other inelastic effects.

5This theory will be discussed in greater detail in Chapter 5

24
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3.1 StrainLocalizationConcept

A simpletensiletestof astrainhardeningmaterialyieldsthefamiliar

engineeringandtruestress-strainplotsshownschematicallyin Figure3.1. In

t/}
t/}

¢J)

Uniform
Plastic
Deformatior

Onset of

Necking
Considere' Criterion

&_/_=_

4

Failure Point J / __l
Determined

Engineering
S

-V I

Void
Growth/Strain
Softening
Zone

Strain

Figure 3.1 Schematic of Typical Tensile Test of Strain Hardening Material

accordance with a well-known plastic instability theory attributed to Considere, the

maximum load, F, occurs when the specimen rate of area reduction equals the rate of

strain hardening [44]

dF = tydA + Adty = 0

Rearranging,

dry dA

o" A
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d(r
-- =o" (3.1)
de

It is equally well established in this context that the point of maximum load

also defines the onset of localized deformation or necking in the specimen. This can be

clearly illustrated by likening the specimen to a series of nonlinear springs of unit

length, as illustrated in Figure 3.2. Each spring may be considered to have a local

dF
spring constant 7e • As the series is stretched, all the springs elongate in proportion

de
to their compliance,-d--_. Obviously, as the stiffness of any one of the springs becomes

zero, then its compliance becomes infinite, all the other springs unload, and only that

spring elongates. All along the specimen a stiffness of zero is approached as the

maximum load is approached, but due to some imperfection one segment reaches that

point first, and strain localization (necking) begins there. Once strain localization has

begun, the failure location is set. If the specimen is pulled continuously to failure, the

failure will occur through the location where the onset of strain localization first

occurred.

$

1

l +AI 2

3

dF l dF 2 dF 3 dF 2
=--=-->0 __<0,

de I de 2 d,_ 3 d_ 2

d5 dF3
--=-->0
de1 de3

Figure 3.2 Illustration of Instability Principle Using Nonlinear Springs
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Strain localization ahead of a crack tip may occur by a necking or dimpling

phenomenon, as illustrated in Figure 3.3, and/or by other mechanisms such as void

growth, which also results in strain softening. An attempt to quantify the distance

ahead of the crack tip, rc, over which strain localization occurs by necking is presented

in Appendix 1.0, though it is approximate even within the rather severe limitations of

the HRR elastic-plastic theory. Nevertheless, the principle that where failure is, strain

localization once was, must be true for all but the most brittle material states. Thus

the future path of the crack is set for the distance ahead of the crack within which

strain localization has occurred 6, and the stress field in the vicinity of the point of

onset of strain localization decides the future path of the crack. Due to the nature of

the phenomena that result in strain localization, it is expected to occur at a length scale

considerably smaller than the plastic zone size.

A-A

U
B-B

Zone

J
B A

r C

Onset of Strain
Localization

I
Future Crack Path Along
Line of Minimum Thickness

/
g Boundar

Figure 3.3 Schematic of Physical Process Zones in the Vicinity of a Propagating Crack

6 Note that this assertion may not be true if the loading on the crack tip is suddenly changed, causing

strain localization and failure to reinitiate along an alternate path.
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3.2 Proposed Cohesive Crack Model

We can simulate this mechanism by modeling the strain localization point as

the crack tip in a linear elastic material, trailed by a region of cohesive tractions acting

to close the crack in a manner similar to the Dugdale-Barenblatt model. The primary

difference is that, unlike the Dugdale-Barenblatt model [45, 46], the resultant of the

tractions in the strain localization (cohesive) zone accounts only for a fraction,/7, of

the total stress intensity factor (because the strain localization zone length, rc, is likely

smaller than the plastic zone size, rm given by the Dugdale model).

-KIP

11 - KI (77< 1) (3.2)

Here/(1 p is the component of mode I stress intensity factor resulting at the cohesive

crack tip from the tractions in the cohesive zone, and is negative because it acts to

close the crack. Any plasticity in the physical problem outside of the cohesive strain

localization zone is neglected. The stress intensity, KI, represents the total stress

intensity that would act at the crack tip if the cohesive zone were not present, and for

a propagating crack equals the effective fracture toughness of the material. We will

further impose as an initial condition that the process zone is fully developed. That is,

the proposed model assumes that the crack has tom statically for a sufficient distance

prior to the beginning of the analysis that the process zone has reached a steady-state

condition, and K_, K/p, and the strain localization zone size remain constant as the crack

propagates.

In order to determine the future crack path from some initial position of the

crack, we apply the assertion that a naturally curving crack follows a path that results

in local symmetry of the stress and displacement fields at the crack tip. Thus, the

mode II stress intensities due to external loads and cohesive stresses must cancel.

KII + KII p = 0 (3.3)
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CotterellandRicedevelopedaframeworkto solvethisproblem(in theabsence

of K1f) for a slightly curved extension of a perturbed crack. They used an expression

for KII that was accurate to the first order with respect to deviations from a straight

crack path, and provided evidence that this expression was accurate to within five

percent for angular deviations up to 15 degrees. In order to account for the strain-

localization zone effect a comparable first-order approximation must first be derived

for KI/p. Other investigators [47,48] have proposed mixed-mode Dugdale models,

allowing the cohesive zone to lie along a linear extension of the crack, but none are

suitable for the curved crack problem at hand.

Cotterell and Rice, Erdogan and Sih, and others have shown that small angle

changes in crack path are of the same order as KII/Kz. With the restriction to a slightly

curving crack, the absolute magnitudes Of Kll and KIP must likewise be small compared

to Kz, thus only first order terms in KI1, Kzf and the corresponding tractions will

likewise be retained in the analysis. As will be shown, Ktt p is not a constant, but varies

with the curvature of the cohesive zone. Further, the effect of the variance of the mode

II tractions within an otherwise "steady state" cohesive zone will be shown to have an

influence on the mode I tractions of less than first order. Thus KIp remains constant to

the first order for a constant cohesive zone length as previously inferred.

An expression for KIP can be obtained in terms of the tractions within the

cohesive zone. These tractions are a function of the crack flank displacements, which

displacements include contributions both from the far field loading and from the local

tractions. A constitutive model for the cohesive material is then required, which

provides the additional relationship between the tractions and the displacements

necessary to obtain a solution for a given crack configuration. In the next four

subsections, these individual building blocks are assembled, setting the stage for the

solution of the future crack path in the remainder.
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3.2.1 A First OrderSolutionfor theSlightly CurvedCrackwith OpposingCrack
FlankTractions

A solutionfor thisproblemhasalreadybeenprovidedby CotterellandRice,

but will bederivedby analternativemeansherein orderto setthestagefor further

development.Wewill beginby developingasolutionfor theopposingpoint loadcase

illustratedin Figure3.4. Equalandoppositepoint loadsactat point B = (-b, A(b)) on

the upper and lower surfaces of the crack, which lies with its tip tangent to the x-axis.

Is 8 Px

[ _-x

2___b

a. Actual Curved Crack

b°

py , _nfiki_kmai

First-Order Representation of Crack Corresponding to Point Load Location

Figure 3.4 Slightly Curved Crack Loaded with Opposing Point Loads
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The crack is assumed to deviate only slightly from a straight path (_(r)<< r along the

crack path), and we seek a solution of first order accuracy in _. For such a solution,

the crack path need only (indeed can only) be represented to the first order--that is, as

a straight line. The characteristic line for the problem is that which passes through the

load point and the crack tip. Presumably, all slightly curved crack paths passing

through and loaded in the same manner at B, and terminating at the origin tangent to the

x-axis, must have the same stress intensity solution to the first order in _ (to say

otherwise would require information of higher order in the solution).

A special case that meets this description is a straight crack passing through B,

and terminating at the origin with an infinitesimal kink in the positive x direction as

shown in Figure 3.4b. The stress intensity at the kink tip can be easily determined

from two known solution. Erdogan gave the solution for the stress intensity of a

straight, semi-infinite crack in an infinite medium with opposing point loads [49]

k,, [ex'J (3,4)

where Px and Py' are the components of the point load parallel and normal to the

straight crack, as shown in Figure 3.4b. Lower case k is used to denote stress

intensities of the main crack, as opposed to the stress intensity at the kink tip, which

Rewriting this expression in terms of Px and Py to thewill be referred to in upper case.

first order in q_(b)

lPx-qJ(b)PyJ
(3.5)



32

Thestressintensityat thetip of the infinitesimalkink at angle_oto themain

crackis givenin termsof thefar field stressintensityof themaincrackby [21]

where

(3.6)

C,I = ¼[3cos(q_/2) + cos(3q_/2)]

C12 = --34[sin(q_/2)+ sin(3_o/2)1

CEl = ¼[sin(q_/2) + sin(3(0/2)]

C2z = ¼[cos(cp/2) + 3cos(3_0/2)]

Cotterel and Rice showed (3.6) to be accurate to better than first order in (p. Since only

first order accuracy is required here, we expand Co about _0= 0, so that (3.6) simplifies

to

(3.7)
r,, Lk,,] 2L J

Combining (3.5) and (3.7) and retaining only first order terms we obtain for the kinked

crack representation of the crack tip

2 Py _I Px _o(b)] (3.8)

For the cohesive crack problem at hand, tractions Tx and Ty act over a distance re

trailing the crack tip. Letting t =b/rc and recognizing that dPp Tflb= (T/rjdt, we can

find the stress intensity factors at the crack tip due to the cohesive tractions by

integration of(3.8) over the cohesive zone.

KHp] [{T:}-l{T;}q_(t)]_ dt
(3.9)
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Usingamorerigorousstressfunctionapproach,CotterellandRicedeveloped

anequationfor thestressintensityfactorsattheendof aslightly curvedfinite crackin

aninfinite plate

{KK*/}= [_Tyl(L-r')'12+._{Ty}(q)(L ) q_(r)L_(r _'12]d r (3.10)L{TxJk r J r J\-_-rJ J

where L is the total crack length. By letting r become vanishingly small compared to L

in (10), and integrating over a cohesive process zone from r= 0 to rc with t=r/rc it can

be verified that (3.10) reduces to (3.9), thus confirming the foregoing development.

3.2.2 Determination of Crack Tip Opening Displacement Due to Far-Field Loading

Encouraged by the preceding result, we shall now use a similar approach to

obtain the crack opening displacements of a slightly curved crack associated with the

far field stress intensity factors K_, K11. The analogous first-order representation of the

crack pertaining to the displacements at a point on the crack flanks is illustrated in

Figure 3.5. The stress intensities at the tip of the infinitesimal kink are taken to

represent the stress intensities at the tip of the curved crack to the first order, and for

the present are assumed to be given. Equation (3.7) can then be solved for the stress

intensities corresponding to the main crack in terms of the kinked crack stress

intensities.

k,, K u 7 t-K, J (3.11)

For the straight (main) crack, the displacements are expressed in circular

coordinates by (neglecting terms of order r3/2 and above)
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a. Actual Curved Crack

_-- Infinitesimal

Uy / kink

u" ux" _0 Y Y"

b. First-Order Representation of Crack Corresponding to Point Load Location

Figure 3.5 Deflections of Slightly Curved Crack Associated with Stress Intensity Due to

Far-Field Loading

u'x = _G _-_ {kII(2_c-1)c°sO-c°s3-_O21+ kuI(2_c + 3)sinO + sin 3_021}_ TrUc + l) c°SO8G

Uy= _G 2_{k'[ (2t¢+ 1)sinO-sin-_l+2 kI'[(2tc-3)c°sO+c°s3_021}-TF(3-8G _') sin0

(3.12)

where G is the shear modulus, v is Poisson's ratio, and

3 - 4v (plane strain)t¢ = (3 - v)/(1 + v) (plane stress)
(3.13)

Evaluating these displacements at 0-_---2-x,the crack opening displacement,

Au_ = u_(Tr)-u_(-rc) at r is given by
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(3.14)

NotethattheT-stresstermsaresymmetric,andhavebeencarriedhereonly to

illustratethattheymakenocontributionto thecrackopeningfor thefirst order

representationof thecrack. ThedisplacementsAuxandAuy in the original coordinate

system can be expressed in terms of their primed counterparts to the first order by

u!l
Ux(r)J [Ux(r)+_o(r)Uy j (3.15)

Combining Equations (3.11), (3.14) and (3.15) and disregarding higher order

terms, we obtain

IAUyk(r)__ (I¢+l) ff-r-I_Kl;+q)(r)2{K11} ] AUxk(r)J  / LIK,,J
(3.16)

The superscript k is introduced to denote crack opening components due to the

stress intensity induced by far-field loading. With the further restriction that the stress

intensity approaches pure mode I or pure mode II, we can write the normalized

expressions

Auxk(r) _ K u + _O(r)

AUyk(r) g I 2

AUyk (r) = 1(i + _O(r)

Auxk (r) K n 2

for KII<<KI (3.17)

for KI<<Ku (3.18)

Equation (3.17) should be applicable to the case of a naturally curving mode I

crack. To check the accuracy of these expressions, we run finite element analyses of

non-rectilinear cracks and to plot the normalized crack opening displacements as a

function of _0. A 20 x 20 inch plate was modeled in FRANC2D/L [50] with a 2.0 inch



36

centercrack. As illustratedin Figure3.6,akinkprojecting0.01inchesalongthecrack

axiswasmodeledat one end of the crack. The relative scales of the panel, crack and

kink were selected so that that finite width and finite crack length effects on the kinked

crack stress intensity would remain well below one percent.

I i i
_ I I I I l I I I I l I I I I I I ;:k...... / ,\ '_. ,,'",, .

, _ , _._..._..i .._,._....:zK_ _

' _ ,'(. • -'-__,J',.....--Ii_,)/_i_i]-"_"_-,_.''--_ s .'_

4"J[_ _[_k__l - 'kY.._ - _-7 i

_:._?'" _I,z , -_....,".:'.....:_-",
, :_" i"'" _ _-'_.... _'

, _ 0 O1 in _ I -:_!........._ ..........

Ratio of _:/ff applied for each case

Kink angle_ o_--> 15° 45 °

20x20 inch model Klr---0 -. 13398 -.57041

2.0 inch center crack plus kink Kr=0 2.5231 .80077

Figure 3.6 FRANC2DtZ Finite Element Model of Crack with Finite Kink

Two kink configurations were modeled, a 15 degree kink to represent a

minimum standard for which the first order solution should hold, and a 45 degree kink.

To isolate the first order term in ¢p,only pure modal cases were run. The loading

scenarios consisted of a biaxial tension stress of unity, coupled with a shear stress

determined based on the results of Isida and Nishino [51 ] to result in pure mode I or

pure mode II stress intensity at the kink tip (including the small finite crack length

effect). The crack tip opening displacements were measured at the kink comer (q_ = 0),
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and at six additional points along the main crack in the immediate vicinity of the kink,

corresponding to different values of tp. The results, plotted in Figure 3.7, show

excellent correlation with the first order theory for the 15 degree kink, but degrade as

the deviation from straightness increases.

Au_/Auy for Ka = 0
Auy/aUx for KI = 0

] 1 st Order Theory, Pure Modes

0.20 I [] Kz1=0,15°Kink

o Kx = 0, 15 ° Kink

• /Oi= 0, 45 ° Kink
0.15

• Kx= 0, 45° Kink

0.10

0.05

0.00 •

i
-0.05 _

0 5 10 15 20 25 30

Figure 3. 7

¢p (degrees)

Correlation of FEM Results with First Order Crack Tip Opening Expression
Corresponding to Far-Field Loading

3.2.3 Determination of Crack Tip Opening Displacement Due to Cohesive Tractions

Having solved for the crack tip opening displacements due to the far field loads,

we now need an expression for the displacement components due to the cohesive

tractions imposed near the crack tip. An approximate expression will suffice if it can

be shown that the effect of these tractions on the overall solution is small. Such an

expression may be deduced from the straight crack solution. For a straight crack
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loadedwith opposingpoint loads(aspecialcaseof Figure3.4a),Irwin [52] givesthe

Westergaardstressfunctions

{ztZ11}=-2_PY_tan-l_rrlPxJ

where z =x+ iy and b is the distance trailing the crack tip at which the point loads are

applied. This yields the displacements

(uyt t  modeI,u x = 4G[(_c-1)ReZIJ Y ImZ_

-ImZ;,

{:_}=I--_-_-(tr-1)ReZn_+Y{ReZ'tl}4G[(tf+l)ImZ n J (mode II)

Setting y=0 ±, and defining r=-x, we evaluate the deflections along the crack flanks

JUy+(r)l=+(_+l)_Py } 1+'_ 4 (tO- 1) (-Px}-- H(r-b) (3.19)
[Ux±(r)J - 4Glr [Px lOgl _ 4G Py

where the first term is equivalent to that given by Tada [53]. In the second term, H(x)

is the Heaviside step function (omitting the point of load application). The term is

antisymmetric, and thus drops out when calculating the relative displacements between

adjacent points on the upper and lower crack faces, leaving

AUy(r)l_ (tf + l) IPY;logl+_fr_

Aux(r)J 2G_r [PxJ 1-.x/-;_
(3.20)

For the slightly curved crack, it is not unreasonable to assume that the

corresponding antisymmetric terms can likewise be disregarded, and postulate that an

approximate solution to the first order in tp would take the form.



39

( }l:IAuy(r  _ py
lAux(r)J -2G_ Px +tP(r)Cxr +tP(b)Cxb -._-r_

(3.21)

where coefficients C Uremain to be determined. An initial approach to obtain

coefficients is to observe that as r-)O, the deflections due to the singular stress field

must dominate at the crack tip, thus Equation (3.16) must be satisfied in the limit,

requiring that for r<<b

UIK, . . ' fK,,1]lPx + q)(r)Cxr + ¢P(b)Cxb J= L[ Kt/J+ ¢p[r)-_ K,
(3.22)

The stress intensity factors in this case are those incurred by the point forces, as given

by Equation (3.8), which, neglecting higher order terms, yields the tentative relation

{Auy(r)_ (K" + 1) Px 1 +
zXux(r)j = _r[{P_}-2[cP(b)-cP(r)]{py}]log-___ (3.23)

Equation (3.23) was checked using the same finite element model as before, but with

four different kink configurations as illustrated in Figure 3.8. The predicted deflections

from Equation (3.23) and the finite element analysis for Case #4 are presented in

Figure 3.9. Note that the finite element results exhibit the expected symmetry between

pure modal load states, and also that the deflections corresponding to the primary

loading mode are accurately represented. For displacements transverse to the load axis,

however, Equation (3.23) approaches the correct solution very near the crack tip, but

does very poorly everywhere else. Similar results were observed for the other cases.

By allowing the solution to differ on either side of the point load, a modified

expression was obtained.

{Px}] p1 + _v/-_--b (3.24)_Auy(r)_-(t<+l)U_PY_-[O.25q_(b)+O.50[tp(b)-qg(r)[]py log 1lZXUx(r)J 2Gtc LlPxJ
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Figure 3.8 Crack Tip�Point Load Configurations for Finite Element Analysis
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for Pj =0
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Case #3 Finite Element Crack Tip Opening Results Due to Point Load

Compared with First-Order Approximations
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A least squares fit could slightly improve the fit on the average over the entire

region where data was taken, but worsened the fit as r>>b and b>>r. Equation (3.24)

is also plotted in Figure 3.9b, showing much improved correlation. Yet, while the

coefficients look suspiciously familiar, the solution is considerably more approximate

than the equations derived previously for stress intensity due to local loading, and

deflections due to far-field loading. Nevertheless, based on (3.24), we can write for

pure modal loading,

Au,(r) + 0.25(p(b) = 0.5ko(b)- q (r)I where Pi =0 (3.25)
Aus(r)

The transverse deflection data from pure mode loading of all configurations is

correlated in this manner in Figure 3.10, showing good agreement overall. As will be

shown, the present solution will be sufficient for the present purpose 7.

As mentioned previously for the naturally curving crack, 1£11,and KiP must be

of the order of tp Kt. Consequently, the mode II deflections and tractions along the

cohesive zone must be small compared to the corresponding mode I values, allowing us

to neglect tPPx terms. Further recognizing that dPj = Tflb and integrating (3.24) over

the cohesive process zone, we obtain an approximate expression for the overall

displacements due to the cohesive tractions.

!AuyP(r)l_(____+!)frc { ry } _--_AuxP(r)J 2GJr Jo Tx Ty[0.25_o(b)+0.51_o(b) _O(r)l] l°g, +_ _

-2C,_r Tx - Ty[O.25(p(t)

db

+o.5l_p(t)_tp(r/rc)l ] log _ /(r/rc)l t
dt

(3.26)

7 A more precise solution could possibly be obtained by further development of the Muskhelishvili
stress functions discussed by Cotterell and Rice.
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I
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Equation (24)
a Case #1
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o Case #3

_} Case #4
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&
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Figure 3.10 Finite Element Crack Tip Opening Results from all Cases Correlated with

Modified First Order Approximation

The total relative displacement at any point along the crack face is thus given by

superposition of Equations (3.16) and (3.26)

m lot

U) = Auj I_+ Auj p (3.27)

with the stress intensities in (3.16) construed as those that would exist if the cohesive

zone were absent. The total displacement distribution is then imposed (implicitly) on

the cohesive zone as a boundary condition to determine the tractions.
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3.2.4 RelationshipBetweenCrackTip OpeningDeflectionsandCohesiveTractions

Forthepresentinvestigation,wewill modelthecohesivezoneasa stripof

perfectlyplasticmaterialthatis narrowwith respectto theradiusof crackcurvature.

If the imposeddisplacementsareexpressedin termsof the localcoordinatesystem,

(s,n) shown in Figure 3.4a, we observe that

Ys, 2 esn = Aust°t desn dens
_n'---'n= Enn Ann t°t d--_nn << 1 << 1 (3.28)dEnn

where e o are plastic strains in the cohesive zone, with Y_nthe engineering shear strain.

The first inequality follows from the prior observation that for a slightly curving crack

propagating in mode I, the shear displacements must be small compared to normal

displacements (which must also be true of the respective differentials). The second

inequality follows from the assumption of strain localization--that is, the normal

cohesive strains are large as the crack opens, and strain in the cohesive region parallel

to the crack is resisted by the comparatively rigid crack flanks.

We define the yield surface, F, according to the Von Mises yield criterion

F=(lsijsij-To 2 )

where zo is the shear flow stress, and s O are the components of the deviatoric stress

tensor,

so = fro _ 1 rrkkSO

For plane stress, this yields

1
(3.29)
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EmployingthePrandtl-Reussflow rule

a_,_ = (dZ)s 0 = (dZ) aF
aa;j

where d& is a scalar multiplier, we obtain the incremental strain components in two

dimensions

de..,. =deu, =(d&)o's.

(3.30)

Normalizing these equations with respect to e."

dess _ 2_Yss - ix" n

dE'n 2tTnn -- O'ss

des. _ 3Crs.

d_.nn 2(7.. - (Yss

(3.31)

we can then solve for the corresponding normalized stress ratios

• 1de'st +

tTss_ den. 2

1 des_(Tnn 1 + -
2 den.

1

2
+

cry. _ 1 des.

tYn. 3 de,,,,

CYss 1 de_,,2- I =
a,,,, ") 2 de.,,

o[ dess des.]
Lde..  e..j

(3.32)

(3.33)

Retaining only first order terms and applying (3.32) and (3.33) to the von

Mises yield criterion (F=0), we note that

or.. = 2r o (3.34)
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Assumingproportionalloading,theratiosof thestrainincrementsmaybe

approximatedby ratiosof thetotalstrains,andweobtainfrom Equations(3.28)and

(3.33),

T_ _ t:rsn _ I desn ___i es___= 1 Aus (3.35)
T, on,, 2 de,,,, 2 e,,,, 4 Au,,

or

= c Au--L_ (3.36)
T, Au n

where c has a nominal value of 1/4 for the plane stress case. One should bear in mind

that this represents an ideal condition, not only with regard to the extent of strain

localization, but also with regard to the foregoing assumption of a perfectly plastic

cohesive zone in plane stress (and the assumption of proportional loading).

Conceivably, this factor could vary for different types of cohesive zones and shall

therefore be carried as a constant. For example, a derivation given in Appendix 2.0

shows that for a slant crack deforming along a shear slip plane (a common failure mode

for thin sheet materials), c = 1/2.

To add further realism to the cohesive model, we note that the normal traction

may not be constant as might be suggested by (3.34), but in fact decrease due to

necking, void growth or other phenomena from a maximum value, T¢, at the cohesive

crack tip, down to zero as the cohesive zone separates at r= re. This can be written

Tn =-T_f(r/rc) (3.37)

where the cohesive softening functionf(t) presumably varies betweenf(O)= 1 and

f(1) = O, and is assumed to represent a steady-state characteristic of the material. The
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negative sign indicates that Tn acts to close the crack for positive Tc. A suggested form

forf(t) capable of representing a broad range of softening behaviors is

f(t)=l-t m (3.38)

which is plotted in Figure 3.11 for various values of m.

f r/rJ
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Figure 3.11 Suggested Softening Function, f(r/rJ

Expressing the normal and shear tractions and displacements in terms of their x

and y components to the first order in A/, where prime here denotes differentiation

with respect to r,

Z n =Zy+Zx_l," u n =Uy+Ux/_"

T s = Z x - TRY," u s = u x - Uy_L" (3.39)

we can rewrite Equation (3.36), neglecting 2 ndand higher order terms in _'.

__ = An totTx c --- x

Ty AUy t°t
(3.40)
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Also Tx< < Ty, thus Tx A," may be considered of second order and can be neglected,

allowing us to write

Ty =-Tof(r/rc)

AUx t°t
Tx = -Tcf(r/rc)c_.tot

/XUy

(3.41)

3.2.4 Estimating the Cohesive Components of Stress Intensity

The cohesive contribution to the mode one stress intensity, Kp, can be now be

obtained to the first order by combining equations (3.9), (3.38), and (3.41).

2f_c _1 f(t) dt=_T 2_c_rc( 4m )KtP =-Tc_Z:-_- Jo _ c-_ lr _,l +-2m
(3.42)

The crack path plays no first-order role, and the steady-state value of Kp may be

considered constant for the slightly curved crack as previously claimed. For the

special case where Ty is constant throughout the cohesive zone (m approaching

infinity), we further observe that

where rp is the Dugdale-Barenblatt plastic zone size

(3.43)

(3.44)

On the other hand, K_/' is dependent entirely on the crack path, thus requiring a

further assumption to obtain an estimate for it. For the gently curving crack, the radius

of curvature, R, at the crack tip must be large compared to rc, and may be considered to
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beapproximatelyconstantwithin theprocesszone. Recognizingthat tp(t)= A(t)/r, This

is equivalent to assuming

tp(r / rc) = A r
r_

or

T 2

A,(r/r_) = A--
rc

(3.45)

Thus,

and

 o(t)= 5L
2R (3.46)

Equations (3.9), (3.17), (3.26), (3.27), (3.40), and (3.41) can be solved

iteratively to converge on the actual traction and displacement distributions until a

sufficiently accurate solution is obtained. As a first iteration, we assume only the

displacements associated with Kz, and set KzzC°)=Kif c°)= 0 (numeric superscripts

denoting iteration number). Combining (3.40) and (3.17), we obtain the first

approximation for the tractions

rx" = c Aux">= c
Ty mUy(1) 2

(3.47)

Employing these tractions in Equations (3.41) and (3.9), and afterwards

employing (3.38) and (3.46), we obtain a first estimate for Klf.
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Ku p(I) c_ tc Jo( _yy -_(p(t) dt

(l-c) T 2_r_ Ii (P(t)(l-tm)dt= 2 c_ _/7

(1-c) rc 2_[( 4m

In view of Equations (3.42) and (3.2) this can also be written

(1-c) rc Klp(l+ 2m_KHP(I) = "4 R _6-mm J

(1-c) rc _.. (1+2m')

(3.48)

(3.49)

Because the total mode II stress intensity at the crack tip must be zero for the

naturally curving crack, we now assume a revised remote loading configuration that

results in just enough Kzz to offset Kff', maintaining local symmetry at the cohesive

crack tip

KII (i) =-KIt p(i)

Including the mode I and mode II tractions associated with Kf and K1/' (1), we now

invoke Equations (3.40), (3.16), (3.26) and (3.27), to obtain a second estimate of the

tractions.
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__Tx(2)= ¢ Aux k(l) + AuxP(I)

_, Auy k + Auy p

=c

K. _" + q_(rlr.)
K I 2 T_I rc _if(t )Ic-_ -.25q_(t)- .51¢p(t) - _o(r/r c)ll log 11+_ dtK t 2zr(r/r c) -_/(r/rc)/t I

_/ rc _if(t) log +_dt1-_ t 2rc(rlrc) 1-_

_-C

(1-c)r c Z_ 2f_ ( 4m _+ rc r Tc _./^ rc f'f(t)rt(c-.5)- t -r ]log l +_dt
4R K t _---_-k._) 4R rc K, qt_Vzlr(r/rc)do L r_ _j ,-_

Tc/ rc fif(t)logl __ dt1- K, 27r(r/rc)

4mTc (,_c)(9_____m)_1_[--_f'f(t)[t(.5_c)+t r]log I+_ dtl
K s 2_r/r_d0 L I r_ j 1-_ j

l_ Tr / re r I .... 1+_t .

where

rI 1 + 2m 4m 1 1 i

l - _rc ( _m-m ){(1- c)( 9--_m ) - -2 r_lrc _o(1- tm )[t('5 - c) + t - _ ] l°g ll+ _ dt l-_/(r/r_)/t J

1 rl 1 t )

The function g(t) was numerically evaluated using Mathematica ®, and is

plotted in Figure 3.12 for m = 2, c= 1/4, and various values of r/.

(3.50)

Mathematica ® is a trademark of Wolfram Research, Inc.
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Function g(r/rc) Plotted for m=2, c= 1/'2

From the second estimate of the tractions, we obtain a second estimate of Ktt°.

_ 2_c t'(Tx '1) ... 1 __')f(t)

KztP{2) = -Tc_-ff - Jo (-_y g_t,-_o(tJJ--_d,

_ Z 2_crc I
: c_l r f,(2¢'P(t)g(t)-lcp(t))-f-_ dt

r_ _ 2[_t l

= _- 1_-_ Jo [1- c g(t)](1- tm)_ dt

from which we obtain a first estimate of the error in KI/'(0

(3.51)

Z,,)_ Ku pO' 4m(1-c) [_fl[l_cg(t)](1 t m }-'KuT(-_5 1- 9+6m [do - )a/t dt -1
(3.52)

Equation (3.52) was numerically evaluated and is plotted as a function of r/for various

values of m and c in Figure 3.13. Clearly, KIP (1) is a sufficiently accurate
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Figure 3.13 First Estimate of Error in K1[ when Evaluated Using Equation (3.36)
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approximation only for small values of r/. For higher values of 7/, it is possible to use

Z to correct K_f a)

KJ- Kllp(I) (3.53)
I+Z

However, assuming a second iteration would yield additional error on the order

of (Z(1)) 2, the first estimate of Z is likely to provide an increasingly poor estimate

beyond a value of about 0.2. Nevertheless, from the foregoing it is apparent that Z is

independent of the curvature. Thus, if by further iteration, sufficiently accurate values

ofz were to be obtained for higher values of 7/, KIf could be obtained from (3.53).

3.3 Solution for Future Path of a Naturally Curving Crack

We now consider a gently curving cohesive crack propagating naturally in an

isotropic medium. Defining coordinate axes tangent and normal to the cohesive crack

tip at an initial position, we now wish to determine the future path of the crack, &(x),

as shown in Figure 3.14. In the absence of a cohesive crack tip, Cotterell and Rice

expressed the mode II stress intensity at the crack tip to the first order in A, as

Ktl=ktl +l A'(l)kt-_ T f t 2c'(l)Jo-_ dx
(3.54)

where the lower case k's are the stress intensities that would act at the initial crack tip

in the absence of a cohesive zone, T is the T-stress of the initial crack tip, and l is the

length of crack extension beyond the initial crack tip. In keeping with the assertion of

a naturally curving cohesive crack, we impose Equation (3.3) to obtain
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1"0 ku+lA'(l)kl t ,
= - rjo-/.__ x ,/x +/_."

(3.55)

Initial Radius,

R(O)

Figure 3.14 Schematic of Curvilinear Crack Problem

v

x

Cotterell and Rice give the equation for K_ in terms of kl for the slightly curved

semi-infinite crack. To the first order, the equation is identical to the solution for a

straight crack, thus kz=Ki. Further recognizing that X"(l) = 1/ R to the first order in

A'(l), and substituting this result and Equation (3.49) into (3.55), we obtain

0 o = &'(l)--_ .(!:-_/27 + p_,"(1)

where

0 o = -2 ku - P
k t R(0)

fi = 2.4_ T
kl

r/rc (1 -c)

2(l+z)

K l,
T1 =_ "'1 = KI p

Kt kt

(3.56)

(3.57)
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and

IC _

l+2m

9+6m

The latter expression for lc assumesf(t) is of the form given by Equation (3.38). It

should be observed that the perturbation, 0o, is of a different nature in the present

work in that the total mode II stress intensity at the cohesive crack tip is never non-

zero, and the crack never kinks as in the solution of Cotterell and Rice. The initial

slope of the extending crack is thus zero, and 00 relates to the initial curvature at the

crack tip, rather than an initial kink.

Taking the Laplace transform of Equation (3.56) we obtain (imposing zero

initial slope)

O°s = s_(s) - --_ssS_,(s) + ps2_(s) (3.58)

or

0° (3.59)
sZ(s)= + +

Recognizing the parenthetical expression in the denominator as a cubic polynomial in

-x/s, with roots

al = _l - d2 - 3p
3pd

a2 = _2 = 3,o- d E

6pd

3p - d E

a3 = _ - 6pd

__af_ 3P + d2--i
6pd

-qr33p+d2 i

6pd

(3.60)
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where d =

1

27p2fl + _/108p32 + 729p4f12 )3

we can rewrite (3.59) as

-- 0 o

s_(s)=,_(_-all(_-a_)(_-a_) (3.61)

This can be expanded as partial fractions

ta,a2a3_sj_,(aj )

where

(3.62)

1
Pl =

a,(a, -az)(a 1 -a3)

1

P2 = a2(a 2 __ a3)(a2 _ al )

1

P3 = a3(a 3 _ al)(a 3 _ az )

Taking the inverse Laplace transform of Equation (3.62) we obtain

1 3[ )]fro - a,a2a3af-_-x + _'pj ---_ + exp(aj2x )erfc(-ai_f_
j=l

3f_ 3_,(x) 2 y &[exp a.2x erfc -a._C-x -1]- +--a_ (') (_ )_
O° ala2a3 j=l J

(3.63)

(3.64)

When equation (3.64) is evaluated, imaginary parts vanish and only real parts

remain. The future crack path predicted by Equation (3.64) is plotted in dimensionless

format in Figure 3.15.
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3.4 Discussion

The results shown in Figure 3.15 illustrate that crack path perturbation

sensitivity in a positive T-stress environment is influenced by process zone

phenomena. The process zone size parameter, p, has units of length, and presumably

scales with the plastic zone size. Despite potential errors arising from assumptions

made in the analyses of the parameters included within p in Equation (3.57), the form

of the equation (3.56) should be correct. Thus, the larger the process zone, the faster

the crack is expected to diverge from a straight path in a tensile T-stress environment.

It is also predicted that a compressive T-stress environment tends to stabilize the

crack path as suggested by previous investigators, but the present analysis indicates

that for the same perturbation magnitude, 0o, specimens with larger process zone size

exhibit greater path disruption.

Qualitatively, this result matches experimental findings given in [9] for Double

Cantilever Beam (DCB) specimens made of 2024-T3 aluminum sheet. The present

analysis is for a semi-infinite crack in an infinite medium, and is not sufficiently valid

for the finite size specimen to warrant direct quantitative comparison. Nevertheless,

crack paths observed during stable tearing in static tests turned much more sharply

then crack paths developed by fatigue cracking, as shown in Figure 2.7. This confirms

the predicted result inasmuch as the loads required to achieve stable tearing were much

higher than those imposed during the fatigue cracking process, and thus the process

zone would have been much larger, corresponding to faster turning. For both tests, the

normalized T-stress corresponded to fl-- 0.37 mm -_/2. The present theory is only

valid for the first 10-15 degrees of turning, though the predicted trends would be

expected to perpetuate.

As mentioned previously, the perturbation, 0o is of a different nature than that

of Cotterel and Rice, representing an initial curvature, rather than an initial kink angle.
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Thus,the present solution cannot be directly compared to their prior solution. In fact,

if there is no cohesive zone, 19=0, and the present solution reverts to an unperturbed

crack.

3.5 Summary

A boundary layer solution has been developed for a slightly curved cohesive

crack propagating in an elastic medium with a cohesive constitutive relationship

generalized from a plane stress yon Mises plasticity theory to simulate a strain

localization zone. An approximate expression for crack face deflections due to the

cohesive tractions was developed for the slightly curved crack with zero mode II stress

intensity at the crack tip, and it was shown that the stress intensity resultant of the

tractions is insensitive to the cohesion induced deflections as long as the strain

localization region is small compared to the plastic zone size. Correction factors were

provided to estimate the effect of cohesive tractions, extending the solution to

somewhat larger cohesive zone sizes.

By enforcing zero mode II stress intensity at the cohesive crack tip, and

neglecting the curvature gradient within the cohesive zone, an approximate solution for

the future crack path was obtained. The crack path solution predicts that increasing

the size of the strain localization zone will amplify crack path instability in a positive

T-stress environment, a result that agrees qualitatively with test data.



CHAPTER4.0

FRACTURE RESISTANCE ORTHOTROPY AND MODAL TRANSITION

4.1 Fracture Orthotropy in Two Dimensions

In general, materials may exhibit elastic anisotropy as well as anisotropy in

fracture resistance. Nevertheless, many materials, such as wrought metal products, are

virtually isotropic elastically, but have a preferred direction of (mode I) crack

propagation resulting from the manner in which the material is processed. Often, as

for rolled sheet or plate, the processing is of symmetric character, and the two-

dimensional relation describing the crack growth resistance as a function of orientation

has two axes of symmetry. This special case is referred to hereafter as two-

dimensional fracture orthotropy. For convenience, the orientation describing the crack

angle in material coordinates is measured from the longitudinal grain direction, which

corresponds to the rolling direction for rolled products. The crack growth resistance is

maximum for growth across the rolling direction (0 =90 °, or L-T) and minimum for

growth parallel to the rolling direction (0 °, or T-L) [54, 1]. Materials produced by

other processes, such as extrusion, and to a lesser extent forgings, would be expected to

exhibit comparable symmetries, at least locally.

We can approximate the orthotropic crack growth resistance as a function of 0

of the form [15]

K 0 _( c°s20 sin 2 0 / =

+ Kp(90o)_ ) 1
(4.1)

where n is a constant exponent. For the present study, Kp is taken to represent the

stress intensity at which the crack propagates. It is proposed [ 1], that Kp is a

material-dependent function of the orientation of the crack tip consistent with the

61
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regimeof crack growth. Thus, for fatigue crack growth, Kp represents the stress

intensity at which the crack propagates at a given rate; for stable tearing, Kp represents

the fracture toughness.

In the context of a maximum stress theory, Buczek and Herakovich [19]

suggested a fracture orthotropy relation equivalent to setting n=(-1). They deduced

the form of the equation by requiring that the toughness function be independent of 0

for isotropic materials, and that it possess the desired orthogonal symmetry,

collocating to Kp(0) and Kp(90) values. Kfouri [55] used the more familiar form of an

ellipse (n=2). Either case produces a nearly identical oblong shape in polar coordinates

for fairly small orthotropy ratios, as illustrated in Figure 4.1. However, for severe

values of orthotropy, positive exponents result in an unjustifiably spiked

Figure 4.1 Assumed Elliptical Function Describing Crack Growth Resistance as a

Function of Orientation for Materials with Fracture Orthotropy

relationship, as illustrated in Figure 4.2, plotted in a normalized format given below. In

the absence of data to show otherwise, the use of n=( - 1) is favored, or

Kp(O) = Kp(0°)cos 2 0 + Kp(90°)sin 2 0 (4.2)

For the two-dimensional problem we define the normalized crack growth resistance as
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_ Kp(O)
K(O) - (4.3)

Kp(O °)

b m

which varies between unity and Kin, where K m is the fracture orthotropy ratio defined

by

_ Kp(90 °)
Km- (4.4)

Kp(O °)

We can rewrite (4.1) in normalized form as

K(O) = (cos 2 0 + r"-_-" sin 2 O) -'/" (4.5)

or, for n=( - 1)

K(0) = cos 2 0 + K,, sin 2 0 (4.6)

m

Unless otherwise specified, K and K,n will be assumed to apply to mode I dominated

crack growth, and could thus be designated K t and Ktm. For convenience, the modal

subscripts will be omitted unless clarity requires them.
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Figure 4.2 The Orthotropic Toughness Function, K(O),Evaluated for Km =0.1



64

4.2 Extensionto Three Dimensions

In a three-dimensional body a crack may be non-planar, and oriented arbitrarily.

At any point along the crack front in an orthotropic material, however, we can

characterize the local orientation in terms of the tangent plane and the crack front

normal vector within that plane, defined relative to the principal axes of the material.

For an orthotropic material such as a rolled or extruded plate, there are three

orthogonal planes of symmetry. Within each of these planes there are thus two

orthogonal axes of symmetry. This results in six principal fracture toughness values.

The material is assumed to be homogeneous, thus the toughness for a given orientation

relative to these principal planes is invariant with regard to translation.

Following the convention established for metals [56], the principle values of

fracture toughness are written in a two-letter code (i-j) where the first letter refers to

the principle axis normal to the crack plane, and the second subscript identifies the

principle axis corresponding to the direction of propagation. These designations have

already been mentioned. The standard principal axes for rectangular products (plate,

extrusion and forging) correspond to the longitudinal grain orientation (L), the long

transverse grain orientation (T), and the short transverse grain orientation (S). Thus, a

crack growing normal to the width in the rolling direction of a plate corresponds to the

T-L orientation. The (mode I) fracture resistance in this direction we shall designate as

KVL. For convenience and generality, we will use numeric subscripts (1,2,3) in place of

the metallurgical (L,T,S). The six principal fracture resistances are thus Kl2, K21, K23,

K32, Ki 3, and K31.

What is needed is a function to interpolate the fracture resistance for arbitrary

orientations in terms of these principal values. As illustrated in Figure 4.3, a crack (or
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apoint onanarbitrarycrackfront)maypropagatein anarbitrarydirectiondefinedby

unit vector

a = ati + a2j + a3k (4.7)

where i, j, and k are unit vectors corresponding to the principal material axes x_, x2, and

x3. Vector a lies within a plane tangent to the developing crack surface at the crack

front, which plane is uniquely described by its unit normal vector

n = nti + n2j + nak (4.8)

Crack Front

n

Plane Tangent

Developing Crack at
Crack Front

Figure 4.3 Geometry of Crack Orientation at a Point on an Arbitrary Crack Front

The crack orientation is uniquely defined by the direction cosines ai and ni.

Following the work of Buczek and Herakovich, the interpolation function must

1. Be independent of ai and ni for an isotropic material

2. Retum the principal fracture resistances for cracks in the corresponding

principal orientations.
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We seek the lowest order function that can achieve this. Presumably such a function

must revert to the two-dimensional form of Equation 4.2 (for this development, we

shall assume n = - 1).

The angles (using right hand rule) describing the trace of a on the principle

planes are given by

tan(Or) = a---L tan(O2) = a--L tan(03) = a2 (4.9)
a 2 a 3 al

where the angle subscript refers to the axis normal to the principal plane. The fracture

resistance of a crack, were it to lie in a principal plane normal to axis xk and propagate

in the direction of the corresponding trace defined in (4.9), can be interpolated in two

dimensions in a manner analogous to Equation (4.2)

Kk(Ok) = Kki COS 2 O k + Kkj sin 2 Ok (4.10)

Further observing the trigonometric identity

cos 2 tan -I = b 2+c 2

b 2

sinZ(tan-I b/= b2 + c 2

(4.11)

and the property of direction cosines

al 2+a2 2 +a3 2 =1 (4.12)

we can combine (4.10) and (4.11) to write

1_-- 1a +

----_1 _-(K23a32 + K21al 2)
K2(a) = l_a2

K3(a) = 1 (K31al 2 + K3za22 )
1 - a32

(4.13)
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In essence, these may be considered as the fracture resistance components of a

in the principal planes, as illustrated in Figure 4.4. Presumably, they must be summed

X3

a

K/3

,(a)

Xl

Figure 4. 4 Principal Orthotropic Components of Crack Growth Resistance for Crack
Growth Parallel to Unit Vector a

in some weighted combination based on crack-plane normal n to obtain the effective

fracture resistance, Kp(a,n). Since the weight factors must sum to unity to satisfy the

isotropic case, it seems reasonable to write

Kp(a,n) = Klnl 2 + K2n2 2 + g3n3 2

nl 2 2

- 1
- 1 - a 2 1 -- a3

(4.14)

An inspection of (4.14) shows that it satisfies the criteria previously outlined.
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4.3 Modal TransitionandFractureMode Asymmetry

Thefirst-orderisotropiccrackturningtheoriesdescribedearlierall predictthat

thecrackwill seekout adirectionof local symmetryin thestressandstrainfields

(puremodeI). Forthemostpartcracksareobservedto grow in amodeI dominated

fashionfrom amacroscopicpoint of view. Fractureexperimentshaveshownthatthis

is particularlytrueof materialsfailing in aso-calledbrittle materialstate,evenwhen

thecrackis initially loadedin nearlypuremodeII. Themaximumhoopstresstheory

(Equation2.4)predictsthat asK/vanishes,

10cl= cos-I(1/3) = 70.5 ° (4.15)

where the sign of the Oc is opposite the sign OfKll. Vaughn [57], validated this result

for plexiglass (PMMA) within 1° for each of 30 samples tested in pure mode II.

Mixed mode testing of materials in more ductile states, however, can result in

straight mode II propagation when the mode mixity includes a sufficiently large mode

II component. This was demonstrated in HY130 structural steel at room temperature

by Maccagno and Knott [58], who observed that even in mode I loaded static tests, the

failure mode clearly followed planes of maximum shear, rather than maximum tension,

resulting in zig-zag crack extension macroscopically parallel to the starter crack. With

additional mode II loading, crack propagation became less zig-zag, eventually extending

in planar fashion along the plane of maximum shear. The failure mode in the regime

tested involved void growth and decohesion along planes of maximum shear. Prior

work by the same authors [31 ] noted that mode II propagation was not observed under

transgranular cleavage fracture conditions when identical tests were run at low

temperature.
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In aluminumalloys,crackpropagationin modeI understaticloading involves

void growthandcoalescence.Severalinvestigators have observed mode II propagation

in aluminum alloys when statically loaded with a large proportion of mode II loading.

Among the more recent studies, Hallback and Nilsson [37] observed a transition from

mode I to mode II propagation in 7075-T6 at a mode mixity M e= .56, where M e is as

given in Equation (2.6). Their results from 9.5 mm thick Arcan [59] and compact

tension/shear specimens showed that crack kinking at initiation followed the maximum

tangential stress criterion in the mode I critical regime, and a maximum shear stress

criterion in the mode II critical regime. They studied the transition phenomena using a

plane strain, small-scale yielding, large-deformation theory to predict shear

localization, and obtained results qualitatively similar to the observed behavior.

Amstutz et al [38,60] presented the results of mixed mode fracture experiments

using 2.3 mm thick 2024-T3 aluminum, showing modal transition to occur at

M e= 0.24.

For an initially smooth notch tip loaded under mixed mode static loading, Dalle

Donne & Doker [39] described two competing failure modes--a self sharpening

phenomenon in the region of maximum shear stress, and a blunting zone in the region

of maximum tensile stress. They studied modal transition behavior for the initiation of

sharp cracks in 6mm thick StE 550 steel and 5 mm thick 2024-T3 aluminum alloy

sheet using biaxial cruciform specimens. While their results did not allow precise

determination of the transition mode-mixity parameter, it was about 0.7 to 0.8 for the

steel, and somewhere between 0.2 and 0.5 for the aluminum.

In most structural applications cracks initiate and grow macroscopically in such

a way that mode I loading dominates. Nevertheless, the preceding information has

been provided as a guide to when mode II propagation might become a factor. Also,

Dalle Donne and Doker suggested that higher order crack tip stress field parameters
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associatedwith partgeometrymightaffectthetransitionmodemixity. This concept

wasstudiedfurtherby Hallback[61], whoalsogaveathoroughreviewof relatedwork

in modal transition. It shouldalsobementionedthatthetransitionmaynotalways

representa sharpdiscontinuityin behavior,but thattheremaybeanintermediate

regimewheremodeI andmodeII failuremechanismsmaycoexist,asdiscussedby

GhosalandNarasimhan[62].

While theprocessesthatresultin modaltransitionappearto be inelastic

phenomenaassociatedwith theprocesszone,it is possibleto view theproblemin the

contextof linearelasticity.Kfouri andBrown [63] explainedtransition-likebehavior

asaresultof thecritical fracturetoughnessbeinga(smooth)functionof modemixity.

In a laterpaperKfouri [55] extendedthetheoryto alsoincludefracturetoughness

orthotropy,andcoinedtheterm"fracturemodeassymetry"to describethe condition

whenthecritical fracturetoughnessdiffersbetweenfracturemodes.

ChaoandLiu [64] alsorecognizedthepotentialfor fracturemodeasymmetry

to exist,but ratherthandefiningasmooth-functioninteractionbetweenmodes,they

asserted,basedon theexperimentalresultsof Amstutzandothers,that thecrack

wouldpropagatein themostcritical of modesI or II. Theydefinedcompetingfailure

modesbasedonacriticaltangentialstressor shearstressat acharacteristiclengthfrom

thecracktip (weshallcall this re). The transition from mode I to mode II fracture

would thus be predicted to occur according to the criterion

cr°°(AO'rc) < tTr°(AO'rc) (4.16)

acrit max "ff crit max

The value of A0 corresponding to the dominant mode based on (4.16) would be the

predicted kink angle. This is shown schematically in Figure 4.4, where the competing

failure criteria may be determined from either linear elastic or elastic-plastic (HRR)
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stressfield solutions.Whenthecrackis critical with respectto themaximum

tangentialstress,thenthecrackkinksin thedirectionin whichthemaximumtangential

stressoccurs,asgivenby Equation(2.5)or Figure2.4,dependingonwhetherelasticor

elastic-plastictheoryis used.Otherwise,thecrackpropagatesin directionof

maximumshearstress.Basedon theVon Misesyield criterion,ChaoandLiu further

arguethattheratiobetweenthecritical stressesfor metalswouldbe "rc,-it/tYc,.it=0.577,

which infers for the linear elastic case that transition occurs at M _= 0.54.

Figure 4. 5
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4.4 Summary

Orthotropic interpolation functions have been presented to estimate the

fracture toughness for cracks of arbitrary orientation in terms of known principal

fracture toughness values. The two-dimensional interpolation approach defined was
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extendedto threedimensionsto supportfuturework in three-dimensionalcrack

turningsimulation.

Variousliteraturereferenceshavebeencitedshowingthatunderambient

conditionssteelandaluminumalloysfail macroscopicallyalongthedirectionof local

symmetrywhenloadedprimarily in modeI, andthedirectionof localasymmetry

whenloadedprimarily in modeII, with transitionbetweenthemodesoccurringat

someintermediatemode-mixity. Thetransitionmode-mixitymaybetreatedeitherasa

materialproperty,or asaresultof differencesin critical fracturetoughnessbetween

thedifferentmodes.



CHAPTER5.0

CRACK TURNING THEORIESWITH PROCESSZONE

EFFECTS AND FRACTURE RESISTANCE ORTHOTROPY

It is the purpose of this chapter to develop practical approaches to simulate

crack turning in two dimensions, including process zone effects and fracture

orthotropy. The discussion of Chapter 3 provides valuable insights into at least one

mechanism by which crack path instability in a positive T-stress environment may be

accelerated by the action of a process zone. Nevertheless, the approach has severe

geometric limitations, and appears to underestimate the rate at which the crack path

diverges.

It was decided to explore two options with regard to crack path simulation, a

second-order linear elastic approach which includes a single empirical process zone

parameter [ 18], and a fully elastic-plastic approach which directs the crack based on

the crack tip opening displacement [40, 65]. In order to be useful in practical

problems, both methods are extended to account for fracture toughness orthotropy,

based on the two-dimensional approach of Chapter 4. To a lesser degree, fracture

mode asymmetry is also treated where possible.

Both linear-elastic and elastic-plastic methods are later implemented into the

FRANC2D or FRANC2D/L adaptive mesh, finite element fracture simulation

environment, building on the work of previous researchers. Therefore, it is

appropriate to begin with a brief discussion of the piecewise linear manner in which

cracks are represented in such simulations.

73
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5.1 Representationof a Curvilinear Crack by a Series of Segments

Following a discussion of crack kinking theories in Chapter 2, the statement

was made that "the crack turning problems encountered in many structural

applications are not really crack kinking problems". From the first-order theoretical

perspective, this meant that a "real" smoothly curving crack followed Klr=O regardless

of the kinking theory used, suggesting that the kinking theories are virtually irrelevant.

With the exception of the initial kink angle when a crack initiates from a mixed-mode

load state, and provided that process zone effects and toughness anisotropy effects are

absent, this is largely true.

Nevertheless, when simulating the crack path, it is typically convenient to

represent the curved crack as union of a series of linear segments, thus involving a

series of kinks. In the FRANC2D environment, the need to kink reflects a limitation

of the quadratic element type used, as well as to the fact that the small amount of

mode II stress intensity detected at each step is used to determine the incremental path

of the crack by virtue of some kinking theory. The program remeshes in the region of

the crack tip for each step. Ideally, the path so determined should converge to the

"true" crack path as the step size and element size is reduced.

For the isotropic case, following the Kjr = 0 criterion, a method was proposed

by Stone and Babuska [66] to model the crack path as a C I continuous (kink free)

series of polynomial segments, and implemented their approach in a p-element finite

element program using quadratic segments. Two of the three coefficients associated

with the quadratic polynomial of each segment were defined to make the path C I

continuous. The remaining coefficient was iterated to drive KH at the tip of the crack

extension to zero within some tolerance.
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StoneandBabuskaprovidedtheoreticalandnumericalevidenceto substantiate

thatthismethodindeedconvergesto anarbitrarilyaccurateapproximation(limited by

theaccuracyof thestressintensitysolution)of thetrue crackpathsolongasthe

junctionsbetweensegmentsareat leastC_continuous.Kinks, of course,areonly CO

continuous,andthetheorycouldnotproveconvergencein thiscase.Nevertheless,

StoneandBabuskaperformedahighlyaccurateanalysisof acurvilinearcrackspanning

anarcof about27degrees,andcomparedthepathwith pathsdevelopedby various

sequencesof quadraticsegments,andalsoby sequencesof linearsegmentsusingthe

kinkingcriterionof Equation(2.4). As thestepsizewasreduced,thekink anglesalso

reduced,thusapproachingasmoothcrackpath. While thecurvilinearmethodwas

seento convergemorerapidly (with fewersegments)thanthekinkedcrack

approximation,it seemsapparentfrom their resultsthat if thekink anglesarebelow 10

degreesfor thepropagatingcrack,thepathisprobablyof sufficientaccuracyfor most

engineeringpurposes.With adaptivemeshcodes,suchconvergenceis easilyobtained,

asobservedby WawrzynekandIngraffea[16],andKnops[ 14],amongothers.

This is not surprisingin view of theresultspresentedin Chapter3, whereit is

foundthatin manyrespects,aslightly curvedcrack(limited to athresholdof 15

degreesarcby CotterellandRice)canberepresentedto thefirst orderin arcangleby a

straightline with aninfinitesimalkink atthetip, alignedwith thetip of thetruecurved

crack. Thus,onemightexpectthataslightly curvedsegmentwouldbesufficiently

well representedby astraightsegmentwith aninfinitesimalkink orientedtangentto

thedirectionof thenextsegment(determinedaccordingto thecriterionKiz=O). Note

that for small KI/Kz, Equation (2.5) predicts turning angles resulting in Kz/=0 to the

first order in A0, as can be verified be Equations (2.11).
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Theabovediscussionisbasedon first order,isotropiccrackkinking theory,but

atleastprovidessupportto thenotionthat for othercrackkinking theories,an

assemblageof straightsegmentsshouldconvergeto acorrecttheoreticalcrackpathif,

asthesegmentlengthis reduced,thediscreteturninganglesbecomesmallin regionsof

curvilineargrowth. Of course,this restrictiondoesnot applyat thefirst kink of a

crackloadedwith mixedmodeloading,wherethephysicalfractureresponseis well

representedby a kink.

5.2 Second-OrderLinearElasticMaximum StressKinking Theory

5.2.1 IsotropicMaximumTangentialStressTheory(ModeI Dominated)

Themixedmodeexpressionsfor theelasticstressfield arounda cracktip were

introducedin Chapter2, andarerepeatedherefor convenience,includingthefirst two

terms.

tYr = _COS-_[K/(l +sin2-_)+3 KiisinAO- 2KHtan-_-]+T (1

1 A0[ 2A02 23Kl'sinA01+T(1-c°s2A0)cr0 = _cos_ K 1 cos

1 A0. T
= __ cos _"7-/KI sin AO + gll(3COS A0 - 1)]- _z_sin 2A0lYro

2-q2rrr 2" 2

+ cos 2A0)

(5.1)

(5.2)

(5.3)

The classical first-order maximum tangential stress theory given by Equation

(2.5) maximizes only the first (singular) term of the tangential stress. This expression

predicts straight crack growth unless KI/-#0, as in asymmetric loading or in the case of a

perturbed crack.
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Williams and Ewing [67] proposed that the crack would propagate in the

direction corresponding to the location of maximum tangential stress evaluated at a

material dependent finite distance, rc, ahead of the crack tip, and included the second

term in the crack tip stress field expansion. Note the similarity in function of Williams

and Ewing's rc to the parameter of the same name in Chapter 3. Finnie and Saith [ 18]

corrected the formulation of Williams and Ewing for the angled crack problem, and

Kosai, Kobayashi and Ramulu [8] later derived a more general formulation of the same

second-order theory by forcing the A0 derivative of (5.2) to zero at r---rc to obtain the

implicit expression

Kit_ -2sin-_ I AOc 8 T 2_ccosA0c
K, cos 2 3 X, (5.4)

Note that according to this expression, the crack may turn with sufficient T-

stress even if Kit = 0. In this case, Equation (5.4) yields AOc > 0 only if Finnie and

Saith's inequality is satisfied 8.

9 (x,) (5.5)
rc > r° =128x \ TJ

where, for 7">0, ro represents the distance forward of the crack tip at which the angle

of maximum tangential stress becomes non-zero. In Figure 5.1, equation (5.4) is

plotted in normalized format using the dimensionless parameter (defined to result in a

bifurcation value of unity)

8 It is observed that KI2 in Equation (5.5) could be replaced with (K_2+ KJ) in order to more
conveniently represent the behavior in the vicinity of pure mode II. Nevertheless, the present
formulation has been chosen to be consistent with previous authors, recognizing also that the theory
is not likely valid as K:-)0.
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T = 8 T 2_-_ = T _c
3 Kt _1_,,,

(5.6)

Equation (5.4) can be rewritten in terms of T

T=

sin AOc +Ktt (3 cos A0 c - 1)
Kt

2sin AOc cosA0 c
2

(5.7)

From Figure 5.1, straight crack growth is predicted only for the case where Kil =0, and

ro > rc. As ro approaches rc, the predicted path becomes very sensitive to small

amounts of KII.
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As should be the case, with T= 0 or rc= 0, the maximum tangential stress theory

of Equation (5.7) reduces to the first order theory of Equation (2.4). As has been

mentioned, Equation (2.4) can be derived either by maximizing tyo or by setting tyro = O.

In the case of finite T-stress, one might likewise consider enforcing tYro = 0 to obtain

(sinAOc + Ku (3cosA0c - 1)/

- 4/ __ K,
7(ar°_°) = 3 _ 2sin __cosA0¢

3

(5.8)

which indicates that the two criteria predict identical kink angles if one recognizes that

the applicable characteristic lengths are related by

16

rc(arO-_°) 9 rc (5.9)

where the unsubscripted rc is the characteristic length pertaining to the maximum

tangential stress theory defined previously. Thus, the definition of the characteristic

length may vary with the criterion used. Before formulating the extension to fracture

orthotropy, a discussion with regard to the physical basis and determination of the

characteristic length is in order.

5.2.2 The Characteristic Length, rc, of the Second-Order Maximum

Tangential Stress Theory

Irwin [68], Dugdale [45] and others gave approximate expressions for the size

of plastic zone in front of a crack tip in elastic-plastic materials. Reasoning that r_ is
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relatedto somefailureprocess,it seemsprobablethatthecharacteristiclength

associatedwith themaximumtangentialstresscrackturning theory should be no larger

than the inelastic zones identified.

Rice and Johnson [69] discussed the role of various characteristic lengths

associated with microscopic failure mechanisms in elastic plastic materials, including

the crack blunting radius and void spacing, in the context of plain strain fracture

problems.

As mentioned previously, the characteristic length associated with crack

tuming was proposed by Williams and Ewing. As an estimate of the characteristic

length for PMMA (plexiglass), they referenced a previous work by Constable,

Williams, and Culver [70] which identified equivalent flaw sizes based on fatigue

thresholds in polyvinyl chloride of the order of 0.0025 inches. Constable et al

conjectured that the equivalent flaw effect might be associated with crazing.

Using photoelastic methods to observe path instability of a nominally

symmetric specimen, Ramulu and Kobayashi [71] experimentally determined rc for

PMMA 9 to be 0.05 inches. This was a considerably larger value than those obtained

by prior authors, but Theocaris and Andrianopolis [72] independently obtained similar

results. While the independent corroboration of rc data from these authors would seem

encouraging, the characteristic length estimate was more than an order of magnitude

larger than the plane stress Irwin plastic zone size for this material. Further, based on

the fracture toughness and critical T-stress for crack path instability in PMMA given

by Selvarathinam and Goree [73], Equation (5.5) would yield a value ofrc = 0.1 inches.

9 Actually, the material used by Ramulu and Kobayashi is designated as "Homelite 100" which the

author understands is a commercial form of PMMA. Also, their experiments were dynamic in nature,
though they claimed that static values of rc would be comparable.
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While the cohesive, strain softening nature of fracture in this material could enlarge the

process zone somewhat, these values of rc would seem too large based on the scale of

any known failure mechanism in that material.

Because imperfections or perturbations giving rise to small amounts of Kil can

be found in any real specimen, the onset of path instability in nominally symmetric

specimens would be expected to occur at an ro value in excess of re. Note from Figure

5.1 that the predicted sensitivity even to very small amounts of KH is substantial as

one nears the bifurcation. The more sensitive the manner in which the onset of path

instability is detected, the larger the overestimate of rc that might be expected.

Also using photoelastic methods to observe the onset of path instability in

symmetric specimens, Streit and Finnie [74] determined rc for 7075-T651 aluminum

plate to be 0.010 inches. They described rc as the distance at which void growth or

crack initiation will occur, referencing Rice and Johnson and others. Using values of

strength and toughness they provided, their value of rc is about 0.7 times the size of

the plane strain Irwin plastic zone radius (plane strain assumed based on their

specimen configuration).

Kosai, Kobayashi, and Ramulu [8] later estimated r e for 2024-T3 and 7075-T6

sheet to be 0.06 inches based on the lengths of micro-crack branches observed along

dynamic fracture surfaces of test specimens. This is considerably larger than the value

given by Streit and Finnie for 7075-T651 plate, but the method of determination of re

is completely different than previous methods, and the thickness of the material used

would justify a plane stress assumption. In this case, the characteristic length estimate

is about a third of the plane stress Irwin plastic zone size for 7075-T6, and more than

an order of magnitude less than the plastic zone size of 2024-T3.
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Pettit et al [9], foundthat severepathinstability occurredconsistentlyin 2024-

T3j° doublecantileverbeamspecimensat valuesOfroatleastashighas0.11inches

(thespecimenwith theshortestcrack,andlowestT-stresstested). To obtain an

estimate of rc, the turning radius was plotted as a function of ro, and extrapolated to

zero turning radius (a sharp kink), at critical value of ro -- 0.05 inches. This was

subsequently used as a conservative estimate of ro though it tended to underestimate

crack turning in crack turning simulations. Chen [15] used an rc value of 0.09 to obtain

improved correlation with Pettit's results. A larger rc would have further improved

correlation, but there was concern that rc was growing too large compared to the K-T

dominant zone of the specimen. Also, spurious oscillation was observed in the

predicted crack path, and increased with higher values of rc.

The disagreement in the literature with regard to values of rc for the various

materials tested, and the apparent disparity between some of the values derived from

test data and the assumed physical significance of r_ begs reconsideration of the

significance of this parameter. The possibility of the onset of plastic instability was

considered as a motivating phenomenon as described in Appendix 1.0 (see also

Chapter 3). While this concept has merit, it also gives rc values that are somewhat

small with regard to correlating fracture simulations with test data.

Nevertheless, from the equivalence of Equation 5.9, we realize that the

characteristic length may not correspond to the actual size of any particular physical

damage phenomenon, but that its use in the maximum tangential stress theory is simply

a surrogate for something more complex than the theory describes. However, if the

10More precisely, the material was of NASA vintage stock made to the earlier 24ST designation.
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theory is even a decent surrogate, it would be expected that the rc would be at least

proportional in size to some phenomenological length scale. In a later Chapter, rc will

be treated as a state variable, determined to best correlate simulations and test data.

5.2.3 2nd Order Maximum Tangential Stress Theory for Materials with Fracture

Orthotropy (Mode I Dominated)

Whereas the isotropic crack turning theory maximizes tangential stress, Buczek

and Herakovich [19] suggested that the crack path in anisotropic materials would

follow the maximum of the ratio of the tangential stress to the crack growth resistance

obtained by

d (o'0(A0) 1
d(AO) _R-_ _-0) J = 0

(5.10)

Separating variables, we obtain

1 dry o 1 dK

tYo(A0 ) dO K(O + A0) dO
-W (5.11)

m

can be obtained in terms of K,n using Equation (4.5)

(2) flsin2(O+ AOc)W(O+AOc) = l+flcos2(O+AOc)

m

where fl- Kmn -1 (5.12)
Km n +1
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To simplify notation,theargumentof Wwill not beshownexplicitly unlessit differs

fromthat givenaboveor is requiredfor clarity. Basedonthediscussionof Chapter4,

avalueofn=-I will beused.Defining WI with referenceto themodeI orthotropy

ratio Kin , evaluating the lett hand side of(5.11) with use of Equation (5.2), and

solving for T,

l<l+c°s °c,lsinA0 c + Kit (3cosA0c - 1)- 2_Ft sin A0c -3
Kt

sin(_--_)(2 cos A0_- W, sinA0c)

(5.13)

Note that forK/re=l, W/=0, and (5.13) reverts to the isotropic form of Equation (5.7).

Equation (5.13) is plotted in Figure 5.2 for KIm=I.6 with various crack

orientations, illustrating how the orthotropy influences the location and nature of the

bifurcation. As would be expected, a crack propagating in the direction of least crack

growth resistance requires a higher KII or T-stress to alter its course. Conversely, a

self-similar crack propagating along the direction of maximum crack growth resistance

may turn in a compressive T-stress environment given sufficient fracture orthotropy.

One must take care when evaluating (5.13) to obtain maxima, and not minima.

The minima occur to the right of the bifurcation line. In order to derive an expression

for the value of T where the bifurcation occurs, we examine the limiting case of(5.13)

limA0c--_0, T:AOc_.K + W,(0+A0c) (5.14)
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Note that the theory only predicts straight growth where T is below the bifurcation

value and

t,K, Jcr,
(5.15)

where q_lo is defined as Equation (5.12) evaluated at A0c =0. IfKII/KI exceeds this

value, then A0c <0. The bifurcation value of T is obtained when we assume that

(5.15) is satisfied and continue with the limit, from which we obtain

- 4( 4fl(fl+cos20))Tcrit = 1-1- kiS,o2 -I.- -_--_-,-__ )
(5.16)

where fl is as given in (5.12).
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5.2.4 2nd Order Maximum Shear Stress Theory with Fracture Orthotropy

(Mode II Dominated)

The above theory is mode I dominant, inasmuch as _0 is analogous to mode I

stress intensity. As discussed in Chapter 4, it has been observed that under certain

conditions the crack propagates in the direction of maximum Crro. Following a similar

development to the maximum tangential stress theory, the second-order orthotropic

maximum shear stress theory can be obtained by maximizing via

d f Oro(AO ) )
d(-io)t P, )

0 (5.17)

to obtain

_, = 2cosr + cos o )2[. K n -K_t sin A0c )] - 219sin-_ + sin-_S-)+ 6 KI---fKs c°s 3A0c2

3(2 cos 2A0c - Vn sin 2A0<)

(5.18)

where Wss is evaluated in terms of the mode II fracture resistance orthotropy ratio, and

3 K. (5.19)

Selected plots of(5.18) are shown in Figures 5.3 and 5.4. In this case, there is no

bifurcation, but one must be careful to obtain the global maximum or minimum of the

greatest absolute value of the ratio in brackets in Equation (5.17). For the maximum

stress theory, transition from mode I to mode II dominated fracture may be postulated

to occur when

max( °'°(AO) /<max O's(A0) A0) I (5.20)
KI(O)_,I(O+AO) ) - Kn(O)Kn(O+
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5.3 Second-OrderLinearElasticVirtual Kink Theory

Considera leadcrackunderplanestressconditionswith aplasticzoneas

shownin Figure5.5a.Comparedto anelasticcrack,theplasticzoneresultsin

additionaldeformationthatcanbeapproximatedby avirtual elasticcrackkink as

shownin Figure5.5b. For self-similarcrackgrowth,Wells [75], usedtheIrwin plastic

zonecorrectionasanapproximationof theeffectiveelastickink lengthto obtainan

estimateof theCTOD. While theappropriatechoiceof lengthmayremainin

a) Physical crack tip and plastic zone

b) Physical crack with virtual kink

Virtual

Kink

Figure 5.5 Crack Tip Plastic Zone Deformation Simulated by an Effective

Virtual Kink
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question, it is not unreasonable to assert that for a given material and loading, there is a

unique kink length, bo and orientation, A0c, which will best simulate the deformation

field as one moves away from the crack tip into the elastic region. One might even

postulate that a crack kink so defined would provide a reasonable approximation of the

future crack trajectory. For a crack propagating under steady-state conditions, bc

would be expected to assume a constant, material-dependent value analogous to re.

The direct implementation of such a criterion is problematic. Nevertheless, as

linear elasticity is approached (as for so-called brittle materials, and also approximately

for slow fatigue crack growth), the length of the virtual kink necessarily vanishes. In

this limiting case, Cotterel and Rice [21] concluded, based on a maximum energy release

rate argument, that the crack propagates in pure mode I, which is equivalent to the

criterion KII =0. For a finite (virtual) kink in the presence of non-zero T-stress, setting

Kll =0 does not generally result in maximizing strain energy release rate, nor does it

maximize KI. Nevertheless, depending on the materials and loading conditions, cracks

are observed experimentally to develop trajectories corresponding either to pure mode

I or pure mode II cracking (see Chapter 4). Based on this evidence, an isotropic theory

is proposed based on the concept that the virtual kink representing the process zone of

an extending crack will develop in the direction of either pure mode I or pure mode II

crack opening.

Isida and Nishino [51] (see also Kfouri [55]) give a solution for a crack in an

infinite plate with a kink at one end subject to general in-plane loading. The stress

intensity factors at the kink tip, (uppercase) KI and Klz, are expressed in terms of lead

crack (lowercase) stress intensities and T as
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K,=r,,%+_,%,- F]2'r4_
= _3>_ _ F,_2_r4-_Ku Fff)kt +-tt "u

(5.2t)

where a is the crack length, and F, O)are functions of the kink angle, AO, and the

normalized kink length, b/a, given in polynomial form by [51 ]. The crack length

parameter can be eliminated by normalizing in the form

K, Fit,+ FI(S) k,, F] 2, 3_= _, b4_ 84__
t:(2) 3

r. = F_?_+ @_ k. . ,,k-7 k, b4_ 84__

(5.22)

where _ll-b/a divides cleanly out of functions F(,,2), and Tb is defined with b = bc in a

manner similar to Equation (5.6).

Tb =__8 T _ (5.23)
3 K t

For mode I dominated growth, values of the crack propagation angle, 0c, can be

obtained by varying AO to enforce Ku = 0 for various combinations ofku/kl and T, as

presented in Figure 5.6. Also shown for comparison is the second-order maximum

tangential stress theory of Equation (5.7) with its characteristic length, rc. The two

theories are fairly equivalent (though not identical) if one recognizes that the

characteristic lengths differ at the bifurcation by a constant factor,

b c ---2.21r c (5.24)
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Figure 5. 6 Comparison of Mode I Virtual Kink Theory with Maximum Tangential

Stress Theory
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The corresponding mode II fracture behavior was not evaluated, but could

easily be developed in the same manner. Nevertheless, from a linear elastic

perspective, there is no apparent advantage to this theory over the the maximum stress

theory, which is easier to implement, and has already been extended to include

toughness orthotropy and modal transition.

5.4 Elastic-Plastic Crack Tip Opening/Virtual Kink Theory

Because the accelerated turning phenomenon sought is believed to be associated

with the interaction of the process zone with the T-stress, it seems natural to directly

consider crack turning in an elastic-plastic fracture model. Early work in this field

showed that plasticity can affect the crack trajectory [36], and supported a notion that

crack propagation and trajectory could be correlated with CTOD values [76,38].

Based on results from a small scale yielding (SSY) boundary layer crack tip model and

laboratory experiments using 2024-T3 Arcan specimens, Sutton et al [40] recently

developed curves which can be used to infer the crack growth direction from the ratio

of the mode I and mode II CTOD components. These are plotted in Figure 5.7 in

terms of the crack tip opening displacements using the notation of Sutton

tx= arctan/--_/-tl / (5.25)

where D 1 and D 11are the mode I and mode II components of crack opening

displacement measured or simulated near (0.04 inches from) the tip of the crack. Also

shown for comparison is the isotropic linear elastic maximum stress theory based on

the observation that for the linear elastic case DIJDI=KIt/KI.



95

0 c

100

8O

60

40

20

0

i

I

--'--LEFM Max stress

...... Pure mode virtual kink, Eq. (5.30)

.... Curve fit to 2024-T3 Test Data [40]

[] SSY CTOD Analyses [40]

• 2024-T3 Arcan Test Data [40]

-40 _

0 10 20 30 40 50 60 70 80 90

Mode mixi_,-a

Figure 5. 7 Comparison of Various CTOD related Crack-Turning Curves, Including

the data of Sutton [40]

Sutton reported 2-D simulations 1_using an elastic/small-deformation plasticity

model of a edge crack in a 30.4 inch radius circular plate of 2024-T3 aluminum. The

crack tip was centered on the model, and traction boundary conditions were applied

representing various amounts of KI, KH and T. For a given mode mixity, the CTOD

components Dt and Dz_ were determined at a distance d=0.04 inches behind the crack

tip as loading was increased until the total CTOD,

11Several of the details given here were not included in the referenced paper, but were provided via
private correspondence with Dr. Sutton.
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(5.26)

reached the critical value for propagation, De. The crack was then extended 0.0076

inches as a physical kink in several trial directions to find the kink angle, A0c, that

resulted in the maximum total CTOD a small distance back from the kink tip, or

max t_(A0)[a,r (5.27)

where

and 6z and t_l_are the CTOD components near the kink tip. Angle predictions obtained

from these analyses (with T=0) are included as datapoints in Figure 5.7. Significantly,

the analyses also showed that the kink orientation that produced the critical CTOD

also produced nearly pure mode I or mode II displacement near the kink tip, with a

transition between the two modes occuring at about o_=70 degrees. A corresponding

similar trend was observed in the CTOD displacements and modal transition behavior

observed in the Arcan test specimens.

Based on this observation of pure modal growth, which is consistent with the

results of other investigators described (see Chapter 4), it is possible to infer some

generality into Sutton's results by way of the virtual kink concept introduced earlier.

For the kinked-crack representation of the elastic-plastic crack tip, the crack tip

opening displacements may be approximated as indicated in Figures 5.8a and 5.8b,

depending on whether the virtual kink is assumed to develop in pure mode I or pure

mode II. Assuming the CTOD is obtained from an elastic-plastic simulation at some
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small distance, d, behind the physical crack tip (the physical crack tip being

represented by the base of the kink), the following relations may be obtained.

DJ--L= -sinAOtc for a pure mode I kink (5.29)
D I cos AOic + 4/b c

-- - tan A0/c (approximation for d/b_--)0) (5.30)

DJ-L= cot A0t_ for a pure mode II kink (5.31)
DI

Clearly these equations are only crude approximations, but are most accurate

and meaningful for small d/b_. As d/be becomes large, D u/D I must approach the

elastic KH/KI of the physical crack tip, and the effect of plasticity and the T-stress on

the turning angle is lost. In the limit as d/bc')O, the Equations simply state that for

isotropic mode I dominant growth, the crack grows perpendicular to the CTOD, and

for mode II dominant growth, the crack grows parallel to the CTOD.

With the plane stress plastic zone for 2024 on the order of inches, it is

expected that d/bc for Sutton's model is sufficiently small to allow the tangent

approximation of Equation (5.30). Equations (5.30) and (5.31) are compared with test

data and CTOD-based crack turning angle data in Figure 5.7, showing fair correlation

for both mode I and mode II cases.

The point of this discussion lies in the fact that the development of Equations

(5.30) and (5.31) make no assumption with regard to the T-stress, or even KI or KI1.

The underlying assumption is that the opening of the virtual kink will be either pure
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modeI orpuremodeII. InasmuchasFigure5.6ais alsobasedonpuremodeI opening

of thevirtual kink tip, it is apparentthat severaldifferentcombinationsof K1, Km and

T acting about the physical crack tip can result in the same kink angle. This implies

that D JD 1 measured near an elastic-plastic crack tip will be fairly uniquely related to

A0c, but may not be uniquely related to Kn/K1 if plasticity is significant, and the T-

stress is substantially non-zero 12. Sutton also attempted to show this by including T-

stress in some of his analyses. Little change was observed in the results, but

magnitude of the T-stress used was not disclosed.

Despite the above development, it is not suggested that Equations (5.30) and

(5.31) be used as an elastic-plastic crack turning theory. The data from the boundary

layer SSY analyses presented in Figure 5.7 are based on a more sound and likely

accurate approach, and correlate better with test data. Also, for the purpose of

analyzing a smoothly curving crack, the kink angles used in the simulation should be

very small as convergence is obtained, thus of greatest importance is the accuracy of

the slope of the curve at the origin in Figure 5.7. In this region, the virtual kink

approximation appears to perform poorly, and the SSY analyses and test data seem to

approach the linear elastic solution.

Sutton curve fit the 2024 Arcan test data as shown in Figure 5.7 and given by 13

AOlc = -36.5 tan -l (2.2 a) for a < gc (mode I dominated) (5.32)

_2Also worth mentioning is the likelihood that even as the crack tip nears a stiffener or other geometric
feature, the virtual kink might still open in pure mode I or mode II. While the plastic zone shape
would be distorted by the presence of such irregularities (which would likely affect the crack turning
angle), the assumptions associated with the derivation of equations (5.30) and (5.31) are still valid with
sufficiently small d, and the crack trajectory should remain a substantially unique function ofDu/Dt.
_3For Equations (5.32) through (5.35), a is in degrees, but the inverse circular functions are evaluated
in radians, with constants defined to give a result in degrees.



lO0

A0ttc = 57.3_-_ cos(a)
for a > ctc (mode II dominated) (5.33)

a c = 70 ° (5.34)

Arguing that, like the linear elastic solution, the A0c-ct relationship for the elastic

plastic case should not be a strong function of material properties, particularly as

a-)0, Sutton and his colleagues used these curves to predict both initiation and stable

tearing crack paths in various aluminum alloys, with encouraging results. However, as

part of their study, they also analyzed some of the L-T 7050-T7451 double cantilever

beam specimens tested under the NASA IAS program and described in Chapter 7.

Due to the significant toughness orthotropy of the 7050-T7451 plate material, cracks

turned significantly faster than predicted using Equation 5.32. An extension of the

approach to include fracture orthotropy is now presented.

5.5 Extension of Elastic-Plastic Theory to Materials with Fracture Orthotropy

The maximum stress theory for materials with fracture orthotropy discussed

earlier predicts that cracks not growing along a material axis of symmetry will grow

straight only if loaded at a specific mode mixity, which is a function of the orthotropy

ratio and the orientation of the crack (Equation 5.15). At least qualitatively, this

description is supported by experience and intuition. In essence, Equation (5.15) is

the equivalent to the "criterion of local symmetry" for a crack in a body with fracture

toughness orthotropy (an identical criterion can be developed for the linear elastic

virtual kink theory described in Section 5.3).
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Often, thetoughnessorthotropydoesnot appearto beassociatedwith in-

planeanisotropyof theyield strength. In 7050-T7451platemachinedto sheet,for

example,aplanestressfracturetoughnessorthotropyratioof 1.3hasbeenobserved,

but the0 and90degreetensilepropertiesarevirtually identical[1]. 2024-T3differs

somewhatin the0 and90degreetensileproperties,but haslesstoughnessorthotropy

than7050-T7451. Thusit wouldappearthat thoseprocessesthatresult in toughness

orthotropymight largelytakeplaceafterstrainlocalization,wherethecontinuum

theoriesbreakdown.

From amodelingstandpoint,this suggeststheuseof isotropicplasticity for

modelingof theneartip stressanddeformationfield evenin materialswith fracture

orthotropy. For the isotropiccase,Suttondeterminedtheelastic-plastickink angle

correspondingto themaximumkink CTODasdescribedby (5.27). For the

orthotropiccase,wherethecritical CTOD,De, is a function of orientation, one might

determine the orthotropic turning angle according to

(5.36)

Presumably, such an approach could predict transition in much the same way

as Equation (5.27). While the CTOD orthotropy function in the denominator could be

represented in the manner similar to Equation (4.5), the kink tip CTOD function in the

numerator is unknown. One could evaluate (5.36) numerically in a manner similar to

that used by Sutton. However, for small kink angles, such as would be needed for

simulation of a continuously curving crack, an alternative approximation is suggested
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basedon theequivalentconditionof local symmetryfor fractureorthotropy. Only

modeI growthis considered,thoughasimilarapproachis possiblefor modeII.

ForasmoothlygrowingmodeI crackin a linear-elastic material with fracture

toughness orthotropy, the instantaneous kink angle A01 tot must be infinitesimal, and

Equation (5.15) must be satisfied at every point along the path. Under these

circumstances, the mode mixity is generally non-zero (assuming the crack tip does not

happen to be tangent to an axis of material symmetry). Thus, if one were to predict

the turning angle assuming isotropy, an additional finite kink angle would be predicted

as given by Equation (2.5) for the mode mixity corresponding to (5.15). We thus

define an orthotropic correction angle of the same magnitude, but opposite sign, given

8 _ A 01 orth ),(o+ Ao,c+
(5.37)

where A01¢ is given by Equation (5.35), and

AOltot = AOlc + AOlort h (5.38)

Equation (5.37) is implicit and self-convergent. For a sequence of finite kinks

simulating a continuously curving crack, AOltot would be finite, but small for a

convergent solution. For straight crack propagation the two components of turning in

(5.38) cancel.

The orthotropic correction of (5.37) is defined in an exclusively linear elastic

context, requiring evaluation of u?l via Equation (5.12), which employs the fracture
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toughnessorthotropyratio. Nevertheless,basedon thework of Wells [75], the

CTOD maybeapproximatedfor planestressby

CTOD KI2

(yyE (5.29)

Thus we obtain the ratio

_ Ktp(90 °) IDc(90°)Kt,,,- Kip(0 o) -- De(0 o) (5.40)

from which WI can be evaluated in an elastic-plastic context. Based on Equations (4.3)

and (5.29), we can in similar fashion write

Ke(O) [ Dc(O) (5.41)
G(oo ) =

from which it follows by Equation (4.6) that

-- 2 2

Dc(O)= Dc(O°)[cos20+ Kmsin 0] (5.42)

5.6 Summary

The concept of modeling a smoothly curving crack using a C ° continuous series

of linear segments has been discussed in light of the recent results of Stone and

Babuska. Their results are strictly valid only for first order, linear-elastic crack turning

(K_z=0), but suggest that (1) for a convergent solution, the kink angles should approach
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zeroasthestepsizeis reduced,and(2) theproblemis probablysufficiently converged

for engineeringpurposeswhenthekink anglesfall belowabout10degrees.

Varioussecondordercrackkinking theoriesarethenstudied,includinglinear

elasticmaximumtangentialandshearstresscriteriafor modeI andmodeII dominated

fracture,respectively,andalinearelastictheoryassumingpuremodalgrowthboth in

stress(O'ro=0),andCTOD. Theselinearelastictheoriespredicteitheridenticalor

very similarbehavior,if onerealizesthatthecorrespondingprocesszonesize

parameters(ro be) differ in size for the various theories. The mode I second-order

theory predicts a bifurcation behavior that results in crack kinking under self-similar

loading if sufficient T-stress is present. The linear elastic maximum stress theories are

extended to account for fracture toughness orthotropy, and to provide a linear elastic

prediction for the point of modal transition based on the concept of fracture mode

asymmetry.

An elastic-plastic crack turning approach based on the work of Sutton is

discussed. Also, an angular correction to account for fracture orthotropy during a

smoothly (albeit sharply) curving mode I growth pattern is suggested based on the

linear elastic orthotropic theory.



CHAPTER6.0

SOFTWARE IMPLEMENTATION

In this Chapter,thesoftwareimplementationof second-orderlinear-elastic

maximumtangentialstresstheoryandtheelastic-plasticCTOD crackturningtheories

will bedescribed.Thepresenteffort buildson theframeworkof theFRANC2D

fracturesimulationenvironment,addingvariousfeatures.In additionto theangle

predictingalgorithmsthemselves,a largeportionof this Chapterdescribesthe

developmentof adomainintegralT-stresscalculationmethodwith a posteriori error

correction.

6.1 The FRANC2D Fracture Simulation Environment

FRANC2D (Fracture ANalysis Code in 2D), developed originally by Paul

Wawrzyneck [77, 16] at Cornell University, provides an interactive, adaptive-mesh

finite element modeling environment for two-dimensional problems. Cracks are

modeled explicitly, and are allowed to develop along arbitrary curvatures (developed

out of straight segments). The FRANC2D environment includes:

. A preprocessor (CASCA) for building the initial (uncracked) geometric model,

and meshing it with (isoparametric) quadratic triangular and quadrilateral

elements.

2. Interactive databases for material properties and boundary conditions.

3. Adaptive meshing capability modify the mesh to include new or growing

cracks.

105
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4. Optionsfor calculatingstressintensityfactorsby differentmethods.

5. Optionsfor crackkink angleprediction.

6. Postprocessingfunctionsfor viewing results,stressintensityhistory,etc.

During fracturesimulation,a finiteelementmodelcontainingacrackis first run

to determinethestressintensityfactors.Thekink angleis thencalculated,andthe

modelis remeshedlocally to growthecrackan incrementin thepredicteddirection.

Thecycleis thenrepeatedto simulatefurthergrowth. For thepurposeof thepresent

study,stressintensityfactorswerecalculatedusingtheJ-integralmethod.

FRANC2Dintegratesaroundaneight-segmentcrack-tiprosetteof triangular,quarter-

point elements,resultingin stressintensityfactorswith accuracytypically well within

onepercent(for thehigheststressintensityfactor)with reasonablygoodmeshquality.

6.2 Second-OrderLinearElasticCrackTurningAlgorithm

An algorithmwaswrittento determinethecrackkinkingangleaccordingto the

maximumtangentialstresstheoryusingEquations(5.12)and(5.13). Equations(5.15)

and(5.16)wereusedto ensurethatthefunctionwasevaluatedin theregionof

maximum(notminimum)tangentialstress.

Implementationof thealgorithmrequiredsomeadditionalprogrammingto

supportrc as an additional material property, and to calculate the T-stress.
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6.3 Calculationof theT-Stress

6.3.1 LiteratureReview

T-stress calculations have been performed by various authors. In one of the

earliest studies, Larsson and Carlsson [78] evaluated the T-stress using finite elements.

Later, Leevers and Radon [41] directly imposed the infinite series solution given by

Williams [23] in a variational approach to obtain estimates of KI and T simultaneously.

They gave estimates of the T-stress in the form of the dimensionless parameter

v4-d
B= -- (6.1)

Kt

Based on the convergence observed, Leevers and Radon estimated the error in

the B values they provided for various specimen geometries to be less than three

percent. Sham [79] used second-order weight functions and a work conjugate integral

to calculate T-stresses in various specimen configurations. Fett [80,81 ] introduced a

Green's function approach to calculate T-stresses, and analyzed numerous

configurations. A more approximate displacement correlation method was outlined by

A1-Ani and Hancock [82] which is nevertheless easy to implement in plate and shell

codes, and has been utilized in various forms by other authors [9, 14, 15].

Cardew et al [83] and Kfouri [84] computed the T-stress using a modified J-

integral based on unpublished work of Eshelby, and also gave results for selected

specimens based on finite element analyses. Another type of path independent

integral based on the Betti-Rayleigh reciprocal theorem has also been proposed by

Sladek et al [85] and also by Yuan and Yang [86], and was shown to be

mathematically equivalent to the J-integral method by Chen et al [87, 15]. By

implementing the contour integral solution into a high polynomial order (p-version)

finite element program, Chen obtained T-stresses that were claimed to be numerically
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exactto atleastfive significantfigures. Thenumericalaccuracywasverifiedby way

of anexactbenchmarksolution(acracktip andsurroundingregionwith theexact

boundaryconditionsappliedcorrespondingto arbitrarycombinationsof K1, K11, and T)

and a theoretical error relationship

er = TEE -- T = er KI
(6.2)

where er is the error in the computed T-stress, r_ is a characteristic dimension of the

integration zone, and _T is a coefficient related to the discretization error in the

vicinity of the integration zone.

Note that (6.2) predicts that the error in the computed T-stress is degraded as

the size of the integration domain is reduced--a trend common to both integral

methods described. Also, the integration must be performed about a straight segment

at the crack tip. This means that when modeling a curvilinear crack, the integration

radius cannot exceed the increment dimension, and as the step size is reduced, as

required for path convergence, the accuracy of the T-stress solution will be

simultaneously degraded.

Nevertheless, using the highly accurate solutions for simple geometries

provided by Chen as benchmarks, together with the error estimation parameter, it was

found that much of the error in the contour integral results is of a systematic nature,

and can be corrected a posteriori for a given rosette geometry. Following a brief

review of the contour integral solution based on the Betti-Rayleigh reciprocal theorem

[15], an error correction scheme will be discussed, and correction parameters will be

determined for the element type and rosette geometry of FRANC2D.
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6.3.2 ContourIntegralMethods

TheBetti-Rayleighreciprocaltheoremcanbewritten for a two-dimensional

bodyboundedby aclosedcurveS without body forces as

_(Ti'ui - Tiu_ )dS= O (6.3)

s

where T; represents a set of surface tractions with resulting surface displacements ui,

and T,* and ui* are an independent set of surface tractions and corresponding surface

displacements, referred to as auxiliary fields. By evaluating the integral at a crack tip

around the closed four-segment path shown in Figure 6.1, and recognizing that

segments C÷ and C. are traction free, path independence can be shown with regard to

the other two segments.

(T_ u i - T_u )dC= (T_ u i - T_u )dC E

C Ce

(6.4)

+

C_ e

Figure 6.1 A Closed Contour Around a Crack Tip

By substituting T_ tyv.nj for each field, where nj are components of the outward normal

vector along the corresponding path segment, we obtain
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f O'Oui * f * *• - CYoui)njdC= (ffijui - CYoUi)nj dC e

C C e

(6.5)

Defining e as a characteristic dimension of path C,, the right hand side can be

evaluated analytically as e--)0 using the two-dimensional crack tip stress and

displacement field solution given by Williams [23]

+** 2

CY0 = £Aar-2#(O)
).=--._

+on

uo = Z B_'r-)+ngi_(O)

(6.6)

where _- is the eigenvalue, and A a and B_ are the corresponding coefficients for each

eigenvalue. By choosing auxiliary fields corresponding to

O'., ~r
q

, --_-I

u.-r 2
t

(6.7)

in Equation (6.5), coefficients of order _ alone are obtained. T is of order _=0,

corresponding to auxiliary stresses and displacements in local Cartesian coordinates

(see Figure 6.1) of

O" =
x-lf

cos20 + cos40

yy 2/0 .2

sin40
0"* --

xy 2_.r 2

2/O .2

cos20-cos40
(6.8)
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U
X

U
Y

t¢cos 0 + cos 30

8nrG

K'sin 0 - sin 30 (6.9)

8nrG

where G is the shear modulus, l¢=(3-v)/(4+v) for plane stress, and 1¢=(3-4v) for plane

strain problems. The T-stress is then obtained for e --)0 as

B

8G t • ,

_c+ 1 J rko.iju i - _iju i '_)nj
dC_

ce

(6.10)

By virtue of the path independence of (6.5), an equivalent integral can be

performed numerically using stresses and strains from the finite element analysis

(superscript FE)

T- 8G _. • Fe_(rFeu. ` dC (6.11)
t¢ + 1J (cLjui o i )nj

C

or the equivalent domain integral [15]

T- 8G _ , FE _FE *..t¢ + 1 (aijUi -- OiJ ui )q'j dA (6.12)
A

where A is a domain surrounding the crack tip bounded by curves F0 and Fi, and

function q is equal to unity on F0 and zero on F1. For the FRANC2D implementation,

the domain A is the area comprising the outer ring of the crack tip rosette as illustrated

in Figure 6.2. The integration zone radius, rl, also shown in Figure 6.2, is twice the

internal radius of the domain for the FRANC2D implementation.
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Figure 6.2 Rosette Configuration (Midside Nodes not Shown) and Integration Domain

Used in FRANC2D Implementation

6.3.3 Error Correction Scheme

Equation (6.2) was derived by recognizing that the stress contribution of the

singular terms in the stress field will converge far slower than the contribution of the

non-singular terms, leaving an error in the coefficients of all terms proportional to the

coefficients of the singular terms _3. The square root term in the denominator was

included due to dimensional considerations, consistent with the form of Equations

(5.1) through (5.3). Based on a similar convergence rate argument, terms of higher

order than T are expected to contribute little error to the computed value of T.

Unlike the error estimation expression given in [87,15], we have taken the

liberty to write Equation (6.2) with no absolute value signs enforcing that the error

measure always be positive. This represents an assertion which we now

acknowledge--namely, that the sign and magnitude of _r is (at least on an average

basis) a characteristic of the rosette configuration. Thus, if the value of _r were

13In spite of this argument, Kit was found to have no pollution effect on the T-stress in numerical
experiments.
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known for a given rosette configuration, the systematic error in a T-stress value

calculated using that rosette could be estimated (and thus corrected) via Equation (6.2).

The influence of scaling the rosette dimension is captured by way of the length

parameter rl.

The veracity of this assertion can be supported by rewriting (6.2) in the form

of the relative error

e-L = eT K/
erret = T T_f-ffl (6.13)

The assertion that the relative error in T-stress scales with the dimensionless

parameter Kt/T_f_ I is supported by the observation that geometrically similar finite

element models which differ only in scale (which implies that the integration path is

likewise scaled), should give numerically identical error fractions in the computed T-

stress (or any other local stress measurement). In essence, the rosette may be

considered as a finite element model with imposed boundary conditions representing

K_ and T. Recognizing the similarity of all/(i and T fields relative to a characteristic

length (KilT) 2, one may therefore conclude that the combination of such a field with a

rosette model of fixed geometry and scale relative to the field characteristic length will

be similar (and thus have comparable relative error) to all other rosette/field

combinations with the same relative scaling ratio.

Because eT represents the discretization error in the vicinity of the integration

zone, it should thus be relatively constant so long as the mesh geometry, or rosette,

within the integration zone is geometrically similar for all problems. The mesh

geometry outside of the integration zone is of secondary influence, and may change

from problem to problem, thus its effect will be treated as a probabilistic source of
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error. Nevertheless, provided that the external mesh is reasonably proportioned, the

error introduced should be relatively small.

Based on some highly accurate T-stress solutions, we now proceed to

numerically verify the foregoing assertions, and determine the value of the error

parameter, _T, for the rosette configuration of Figure 6.2.

6.3.4 High Accuracy Reference Solutions

Chen [87, 15] implemented the Betti Reciprocal type integral into a highly accurate p-

finite element code, and analyzed various model configurations. First, a square model

of a crack tip was constructed as shown in Figure 6.3, with a numerically exact external

traction distribution imposed representing arbitrary combinations of KI, Kzz, and T.

Mesh has 6 layersof
refinement (only 2
visible). Each layer 15
percent size of next
outer layer

Crack
__/

Figure 6.3 Rosette Configuration Used in p-element Implementation [87,15]

With this model, Chen showed that by increasing the polynomial order of the solution,

the relative T-stress error could be reduced to about 10-6 with the rosette geometry

used and an element shape function order, p = 11. Extremely accurate stress intensities
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were also obtained. The T-stress error data is re-plotted in Figure 6.4 in terms of eT,

showing that for the rosette of Figure 6.3, _'T is characteristically negative for all p

values evaluated, and is a logarithmic function ofp. It was also verified by varying

load (K1) and r 1 that _'T is constant for a given level ofp.

Having established the extremely tight accuracy of the rosette geometry at high

values of p, Chen then embedded the same rosette geometry within the meshes of

various test specimen geometries to obtain solutions estimated to be within five

significant figures of accuracy. The specimen geometries are summarized in Figure 6.5,

and the results tabulated 14 in Table 6.1.

1E+00

1E-01

1E-02

1E-03

-e r 1E-04

K___ 1 1E-05

1E-06

1E-07

1E-08

1E-09

1E-10

r/Kt _e(-1-58p -0-430) [eT = e _11:

o 11475.5 I
a 114.755 J

A 1.14755

0 2 4 6

Order of Finite Element Shape Functions, p

Figure 6. 4 Accuracy Assessment ofT-stress Computations Using p-version FEM [87]

_4 Chen also included a fairly comprehensive comparison to the results of previous authors not included
here.
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Table 6.1 High Accuracy Solutions for Selected Test Specimens, After [87,15]

Specimen Description Kt /cr,vr--_ T/cr B= T,,f-_/K,

3.9225 11.5745DCB (h/w=0.2, a/w=0.5)

SENT (h/w=12, a/w=0.3) 1.6598 -0.61033

SENT (h/w= 12, a/w=0.5) 2.8246 -0.42168

SENB (h/w=12, a/w=0.3) 1.1241 -0.079177

2.9508

-0.36771

-0.14929

-0.070436
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Figure 6.5 Summary of Reference Test Specimen Geometries, after [87,15]
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6.3.5 Calibration of the FRANC2D Rosette Geometry

Using the data of Table 6.1 as a sort of calibration standard, the error

parameter, _T, was determined for the FRANC2D rosette configuration of Figure 6.2.

To do this, FRANC2D models were created of the various specimen types _5shown in

Figure 6.5 using the FRANC2D rosette configuration, and the T-stresses were

calculated using the methods of Section 6.3.2. A range of integration radii were

included for each specimen configuration to provide more data points (each also

representing a unique outer mesh). The error, er, in the as-calculated T-stress for each

case was then determined by

er = TeE- Trey (6.14)

where Tref is the reference T-stress value from Table 6.1 corresponding to the specimen

geometry and loading. As plotted in Figure 6.6, it is seen that the error for the

FRANC2D rosettes is characteristically negative (the T-stress is underestimated by

the FEM).

For each data point, a value of the error parameter was calculated by

KI
(6.15)

As would be expected, the eT values calculated in this way do not agree precisely, but

vary according to some distribution function, and can be characterized in terms of mean

and standard deviation values:

eT "- eT M --k eTSt D --. -0.00825 + .00255

(Mean) (Std. Deviation)

(6.15)

15The FRANC2D DCB specimen model neglected the loading holes with no loss of accuracy (point
loads were used instead).
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A corrected estimate, Tcor, of the T-stress can then be calculated by solving Equation

(6.2) for T, and employing the mean value of _'T

KI

T= Tcor = TFE "eTM _1 (6.16)

The standard deviation of the remaining (random) error in T¢or can be estimated as

KI

Std. Deviation = ersto _ (6.16)

t_

r13

o

. _"4

1E+00

1E-01

1E-02

1E-03

L

....

f• ...............................

• DCB, 1Vw=0.2, a/w=0.5

• SENT, h/w=12, a/w=0.3

• SENT, h/w=12, a/w=0.5

• SENB, h/w=12, a/w=0.3

_avg uncorrected
i I

1 10 100

gt/_l (Units of Stress)

Figure 6.6 As-Calculated Error in T-stress Using FRANC2D

A plot of remaining error in the corrected data, ercor is shown with lines denoting

50 and 90 percent confidence levels is given in Figure 6.7. The average error (50

percent confidence level) of the corrected solution was about one fifth of the original
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error--a significant improvement in accuracy obtained with negligible additional

computation.

1E+00

r,¢2

.b 1E-01
r.t3

o

,-- 1E-02

o

m 1E-03

1E-04

'.
I- • • SENT, h/w=12, a/w=0.3i

• A SENT, h/w=12, a/w=0.51

• SENB, h/w=12, a/w=0.3
..... 90% confidence

_50% confidence
i

I J

1 10 100

KI/_I (Units of Stress)

Figure 6. 7 Corrected Error in T-stress Calculated by FRANC2D with Upper Bounds
Representing Estimated Error

6.3.6 Other Details of Potential Significance with regard to T-stress Calculation

A few other observations arising in the course of the T-stress computation

development effort include the following:

1. The presence of K, was not found to incur any numerical pollution into T.
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, It was found necessary to start with an initially closed crack to get good T-stress

results. As a programming expedience, FRANC2D historically has modeled

the crack with a slight initial opening. The T-stress calculation was more

sensitive to this than the calculation of Kt, thus in the present implementation,

the code had to be modified to start with an initially closed crack.

3. The singular elements at the center of the rosette shown in Figure 6.2 were

intentionally omitted from the integration domain, requiring the use of a two-

layer rosette configuration. If included, the singular elements resulted in

additional scatter in the T-stress calculations, making error correction less

effective. The reason for this is not known, but may have something to do with

the Gauss integration algorithm as applied to singular elements. An alternate

path not chosen, would be to integrate throughout a single stage rosette without

singular elements, and to correct both T and the stress intensities obtained from

the J-integral by correction methods similar to those presented above. In this

regard, it was found that the systematic component of relative error in Kt was a

constant for a given rosette configuration, and is independent of scale.

. Since the error in the T-stress depends on Kp and not T, the relative error in T

will of course be large if T is small compared to Kp This is acceptable for the

present crack turning application, because the influence of T is only significant

as it becomes large compared to K_.
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6.4 FRANC2D/L Elastic-Plastic Crack Tuming Implementation

FRANC2D/L is a modified version of FRANC2D maintained at Kansas State

University. Its original purpose was to add the ability to model 2D assemblies such as

joints and laminates, but has recently been modified by James [65]to include enhanced

elastic-plastic crack simulation functionality. In addition to the capabilities described

previously for FRANC2D, the elastic-plastic version of FRANC2DL includes the

following capabilities relevant to the present work:

1. An isotropic hardening elastic-plastic finite element implementation

(infinitesimal strain, small displacement).

2. An implementation of an inverse isoparametric mapping algorithm for mapping

elastic-plastic state variables from a starting mesh to an arbitrarily remeshed

geometry. This allows crack extension and local remeshing without losing the

history-dependent plastic state information for the yielded material in the

vicinity of the crack.

3. Implementation of a critical CTOD crack propagation criterion (Equation

(5.26))

4. An implementation of the CTOD crack kinking criterion of Sutton et al [40]

(Equations (5.32-5.34)) for elastic-plastic mixed-mode crack path modeling.

Item #2 is a particularly significant advancement, because it allows an elastic-

plastic crack to propagate along a curvilinear path that is not known a priori, without

losing the plastic history. The plastic history is vital to model a propagating crack,
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and is responsible for such macroscopic phenomena as R-curve behavior. A complete

description of the elastic-plastic finite-element implementation is given in [65]. The

elastic-plastic version of FRANC2D/L was used with minor modification, except that

the crack kinking implementation was modified to predict the crack turning angle

according to Equation (5.35) with the orthotropic correction of Equation (5.38).

6.5 Summary

A description of the software implementation has been given for the linear

elastic and elastic-plastic crack turning theories given in Chapter 5. For the second

order linear elastic maximum tangential stress theory, the FRANC2D fracture code was

used, and an implementation of a T-stress calculation algorithm is described that

utilizes a domain integral approach based on the Betti reciprocal theorem. An a

posteriori error correction scheme is also described that reduces the error of the T-

stress calculation by a factor of five. An estimate of the remaining T-stress error is

also provided based on available high-accuracy solutions.

The orthotropic correction to the elastic-plastic CTOD crack turning criterion

was implemented into FRANC2D/L.



CHAPTER 7.0

TEST PROGRAM

A key phenomenon associated with crack turning to enhance the damage

tolerance of aircraft structures is the ability to turn the crack at a fairly small radius (on

the order of an inch or less) in a region of high T-stress that often occurs as the crack

nears a stiffener [9]. While recent advances have brought us closer to being able to

model these phenomena with some success at the structural component level [14,15],

certain refinements of the present study are not yet available in shell codes 16, and

require further evaluation at the coupon level. The FRANC2D and FRANC2D/L

implementations described in the preceding chapter provide a means to study crack

turning phenomena in a high T-stress environment with high fidelity models of simple

test specimens.

In order to utilize the second-order orthotropic theory, the characteristic length,

rc, and the fracture orthotropy ratio, Kin, must be known for the material being

analyzed. Part of the purpose of this investigation is to develop an understanding of

these properties and develop test methods to determine them empirically. Also, crack

paths predicted by appropriate linear elastic and elastic-plastic methods will be

compared with observed paths.

In the following, the test program will first be detailed, including a description

of the specimens used, the test setup, the test procedure, and a documentation of the

response of the various specimens. Selected results will then be discussed in more

16Specifically, the contour integral method of T-stress calculation is still problematic for curved shells,
and the displacement correlation technique presently used has no component of correctable systematic
error, thus the T-stress calculations are far less accurate than can be currently achieved for two-
dimensional problems. For the elastic-plastic CTOD method, the state variable re-mapping method has
not been implemented for shells.

124
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detail,includinganeffort to extractkeymaterialparameters,andto compareobserved

fracturepathswith FRANC2DandFRANC2D/L simulations.

7.1 TestSpecimens

TheDoubleCantileverBeam(DCB) andSkewDoubleCantileverBeam

(SDCB)specimenconcepts,shownin Figure7.1,wereusedto achievesymmetricand

mixed-modefracturein ahighT-stressenvironment.Specimendimensionsof h=2.4

inches, and w=12 inches were chosen 17, identical to the DCB configuration of a

previous crack turning investigation [9]. The standard DCB and SDCB specimen

configurations are shown in Figures 7.2 and 7.3, respectively (some deviations from

these standards will be noted hereafter). The geometry was sized to allow about an

inch of stable tearing without excessive plasticity for high strength aluminum alloys,

and results in high T-stress, similar in magnitude to that which may occur in a

pressurized fuselage as a crack approaches a stiffener [9]. Note that LEFM analyses

given hereafter are continued as the crack approaches the edges of the specimen, but

should be viewed with the understanding that plasticity becomes widespread as the

shortest intact ligament decreases.

A total of 43 crack turning tests in four aluminum alloys were run overall,

divided into four specimen sets based on material and test type. Of these, 23 DCB

tests were performed at Boeing under the NASA IAS program [1], and eight DCB and

12 SDCB specimens were tested at Cornell under NASA grant. A detailed matrix of all

crack turning specimens tested is given in Table 7.1. The source material lots for all

specimens except specimen set No. 2 pertain to the IAS program, and material test

_7As an exception, the SDCB specimens made from the IAS 7050-T74511 large extrusion material
were modified from DCB specimens, leaving w=10.9 inches instead of 12 inches for these specimens.
The slightly shorter length was not expected to make a significant difference in the specimen
performance as long as the crack never grew closer than 4.8 inches from the end. This condition was
satisfied for all specimens except those that grew straight.
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results[88] for these lots are given in Table 7.2. Median stress strain curves for finite

element analyses are given in Appendix 4.0.

t = thickness

_d
_ W

a. DCB

F,P

2h

_t_

P

Figure 7.1 Illustration of DCB and SDCB Specimens. Specimens Precracked at Hole

Set F to a = at, then Tested Using Hole Set.

EDM Notch/Sawcut /

+0.010
1.000 -0.000

-C-,

EDM ,
Notch/

Sawcut

_4.500 i-O.020.

13.00-i-O.040

l DETAIL OF KNIFE EDGE

2.40i-0.020

NOTES:

1) ALL DIMENSIONS IN
INCHES.

2) -C- SURFACES SHALL
BE PERPENDICULAR OR
PARALLEL WITHIN 0,005
AS APPLICABLE.

0.020

Faces must

line up with 3) THE EDM NOTCH SHALL
load hole COINCIDE WITH THE
centers SPECIMEN CENTERLINE
within 0.005 WITHIN 0.010.

1.650-J:
0.020 4) ADDITIONAL HOLES

DRILLED FOR SDCB
.__L CONFIGURATION

INDICATED THUS: ,_'_:_
=.=-I

Figure 7.2. Double Cantilever Beam (DCB) Specimen, h=2.4, w=12

(Specimen Sets No. 1, 3)
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L

EDM Notch : Use minimum slit width

available (approx. 0.010 inches).

Terminate with full radius. Notch centered _(_

vertically on specimen within 0.010. --_. F

/
F

®

0.515

_ f 0.503 TYP

P

14.00

"91"_
6.460 for -1, -2

6.960 for -3, -4

NOTES (UNLESS OTHERWISE NOTED:
1. ALL DIMENSIONS IN INCHES PER FOLLOWING TOLERANCES

X.XX ± 0.020
x.xxx ± 0.010

2. FOR ENG'G REFERENCE, KII/KI VALUES FOR SELECTED LOAD HOLES
ARE AS FOLLOWS:

_fKm
P, P 0.20

F, F 0.00 (USE FOR PRE-CRACKING)
3. -1, -2 SPECIMENS USED FOR FATIGUE PLUS STATIC PRECRACKING

-3, -4 SPECIMENS USED FOR FATIGUE PRECRACK ONLY

4. HOLE PATTERN FOR -5 DCB CONFIGURATION INDICATED THUS : I'_
,o

(2.400)

1.100 TYP

__t_

4.8O

Figure 7.3 Skew Double Cantilever Beam (SDCB) Specimen, h=2.4, w=12

(Specimen Set No. 4)

The test specimen geometries show some evolution, the first two specimen

sets being entirely of the DCB type. While the DCB configuration is the most

sensitive to T-stress/process zone interactions associated with the second-order

theory, a random perturbation also exists in every specimen due to imperfections and

small-scale material inhomogeneity. The SDCB specimen provides a finite asymmetry

designed to be sufficiently larger than specimen imperfections to allow a more

reproducible, and hopefully more informative, behavior.
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Table 7.1 Crack Turning Specimen Test Matrix

Specimen Set No. 1
t=0.090 inches, h=2.4, w=12

DCB Specimens from 1.5 inch 7050-T7451 Plate (Pc4

Specimen ID Nominal Starter Notch Length,
a (in)

hiney Lot #75394/011)_ tested at Boeing [1]

Precrack,R=.05, 5 Hz.
Max Load (lb)

rc-LT- 15-2 2.0 320/variable

rc-LT-15-3 6.5 71

rc-LT- 15-4 2.0 165

Fatigue Precrack_ (in)

Fatigue Crack to Failure
0.04

0.04

rc-LT- 15-5 3.0 129 0.04

rc-LT- 15-6 7.0 65 0.04

rc-LT-15-7 4.5 98 0.04

rc-LT-15-8 5.0 94 0.04

5.5 84 0.04

6.0 78 0.04

6.5 78 0.04
2.0 320/variable

2.0

rc-LT- 15-9

rc-LT-15-10

rc-TL-15-1

rc-TL- 15-2

rc-TL- 15-4

rc-TL-15-5

rc-TL- 15-6

165

129

106

3.0
4.0

Fatigue Crack to Failure
0.04

0.04

0.04
rc-TL- 15-7 4.5 98 0.04

rc-TL- 15-8 5.0 94 0.04

rc-TL- 15-9 5.5 84 0.04

786.0rc-TL-I 5-10 0.04

Specimen Set No. 2
t=0.090 inches, h=2.4, w=12

DCB Specimens from 2324-T39_ 7475-T7351_ and 7050-T76511 (misc. material lots)_ tested at Boeing [
Specimen ID Nominal Starter Notch Length, Fatigue Precrack, R=.05, 5 Hz., 0.04 in

a (in)
5.0rc-TL-2324-1

rc-TL-2324-2 5.0 113
rc-TL-7475-1 5.0 113

rc-TL-7475-2 5.0 113

rc-TL-7050-1 5.0 113

Max Load (lb) Comments

113 cut from .95 inch plate

cut from .95 inch plate

cut from 1.75 inch plate

cut from 1.75 inch plate
cut from scrap extrusion

1]
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Table 7.1 Crack Turning Specimen Test Matrix (Continued)

Type

DCB

DCB
DCB

SDCB

SDCB

DCB

DCB

DCB

SDCB

SDCB

Specimen Set No. 3
t=0.090 inches, h=2.4; w=12 for DCB, 10.9 for SDCB specimens

Specimens from IAS 7050-T76511 large extrusion [ 1]r tested at Comell
Specimen ID Nominal Starter Fatigue Precracking

rc-LT-EXT1-2

rc-LT-EXTI-3

rc-LT-EXT1-4

rc-LT-EXT 1-6

Notch Length, a (in)

3.0

5.0
5.0

4.4

R=.05, 3-5 Hz.

Max Load (lb)
200

106

108

370

rc-LT-EXT1-7 4.9 270

rc-TL-EXTI-2 3.0 200

rc-TL-EXTI-3 5.0 106

rc-TL-EXT 1-4 5.0 168

360

3OO

rc-TL-EXT1-5 4.4

4.9rc-TL-EXT1-7

o9 KjdKI

Precrack (in) Precmck

0.04 fatigue 0 0

0.04 fatigue 0 0

0.04 fatigue 0 0
0.04 fatigue + 0.5 static 44.78 ° 0.21

0.04 fatigue 44.78 ° 0.21

0.04 fatigue 0 0

0.04 fatigue 0 0
0.04 fatigue 0 0

0.04 fatigue + 0.5 static 44.78 ° 0.21

0.04 fatigue 44.78 ° 0.21

Type

SDCB
SDCB

SDCB

SDCB

DCB

SDCB

SDCB

SDCB
SDCB

DCB

,

Specimen ID

$7475LT- 1 4.46
$7475LT-2 4.46

$7475LT-3 4.96

$7475LT-4 4.96

$7475LT-5 4.96

$7475TL-1 4.46

$7475TL-2 4.46
$7475TL-3 4.96

$7475TL-4 4.96

$7475TL-5 4.96

Specimen Set No. 4
t=0.063 inches, h=2.4, w=12

_ecimens from IAS 7475-T7351 tested at Cornell

Nominal Starter Precracl_ing L'oacl, R=.05, 3-5 Hz.

Notch Length, a (in)_ Max Load (lb) Precrack (in)
CO KII/KI

After
Precrack

200 0.04 fatigue + 0.5 static 43.83 ° 0.20

106 0.04 fati8ue + 0.5 static 43.83 ° 0.20
108 0.04 fatigue 43.83 ° 0.20

370 0.04 fatigue 43.83 ° 0.20

270 0.04 fatigue 0 0

200 0.04 fatigue + 0.5 static 43.83 ° 0.20

106 0.04 fatil_ue + 0.5 static 43.83 ° 0.20

168 0.04 fatigue 43.83 ° 0.20

360 0.04 fatigue 43.83 ° 0.20
300 0.04 fatigue 0 0
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Table 7.2 Average Material Properties for IAS Material Lots

Alloy

7050-T7451

1.5 inch Plate

7050-T74511

Extrusion

(skin, under

stiffener)

7475-T7351

1.5 inch Plate

Orientation

L

T

S

L-T

T-L

L

T

L

T

S

L-T

T-L

Ultimate

Tensile

Strength

(ksi)
77.5

76.2

73.0

77.9

75.2

76.5

75.4

75.7

Yield

Strength

(ksi)
68.3

66.3

62.0

68.4

64.7

66.6

65.4

63.1

Modulus

(ksi)
10.6

10.7

10.4

10.7

10.7

10.4

10.6

11.4

Maximum

R-curve

Fracture

Toughness

(ksi_/in)

108

83

145

141

Note: A modulus of 10.4 MSI was used for all analyses of plate alloys based on
MIL-HDBK-5 data.

Specimen set No. 1 was fabricated at Boeing Seattle from IAS lots of 1.5 inch

7050-T7451 plate, machined to nominal thickness of 0.090 inches, h=2.4, w= 12. The

plate specimen blanks were cut through the midplane before machining to obtain two

specimens per blank, and specimens were excised adjacent to the original exterior faces

of the plate. This set includes specimens in both L-T and T-L orientations of the

DCB configuration shown in Figure 7.2. Testing took place at the Boeing Long Beach

facility [1].

Specimen set No. 2 was fabricated at Boeing Long Beach. Specimens 0.090

inch thick, with h=2.4, w= 12, were taken from remnants of various materials, including

7050-T76511 extrusion, 7475-T7351 plate, and 2324-T39 plate. The specimen
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configuration was of DCB type, and equivalent to that of Figure 7.2, but with modified

grip geometry [ 1]. Tests were run in the T-L orientation only, in order to get a first

assessment as to whether the orthotropy of these alloys was sufficiently mild to allow

crack turning from the preferred fracture orientation (like a longitudinal fuselage crack

approaching an integral frame pad). Testing took place at the Boeing Long Beach

facility [1].

Specimen set No. 3 was fabricated at Boeing Seattle from 30 inch wide 7050-

T74511 extrusions from the IAS program. The panels were extruded by Alcoa in the

shape shown in Figure 7.4, and subsequently straightened in a rolling process.

Specimens excised from these panels were not tested under the IAS program, but were

provided to Cornell for testing. Those tested as DCB specimens retained the original

h=2.4, w=12 dimensions (Figure 7.2). Four of the specimens were modified to be

SDCB specimens by drilling additional holes, resulting in an effectively shorter

specimen ofw=10.9. Testing took place at the Comell Winter Lab.

Figure 7. 4 As-Extruded Shape of 7050-T74511 Material



132

Specimen set No. 4 was fabricated at Cornell from remnants of a 0.063 inch

thick R-curve panel machined from 1.5 inch thick 7475-T7351 plate (IAS lot). This

was the same lot of material used to fabricate a crown fuselage panel for a barrel test

under the LAS program. The specimens were made long enough to accommodate the

staggered load holes of the SDCB configuration and still retain the standard dimensions

h=2.4, w=12 (Figure 7.3). Testing took place at the Comell Winter Lab.

7.2 KI, Kll, and T for Initial (Straight) Cracks in DCB/SDCB Specimens

For most analyses, the stress intensity factors and T-stress are determined

numerically from FRANC2D. However, the following equations are useful for

specimen design and analyses when the crack is straight.

The SDCB specimen loads the specimen with both mode I and mode II

components

Pt = Pcos(tO)

Ptl = P sin(r_o)
(7.1)

The DCB represents the special case where o9 =0. The stress intensity factor for the

mode I component can be calculated based on results from Gross and Srawley [89].

P_. lf_-(a +.687) (7.2)

This equation was found to agree within one percent down to a/h=0.5 with a

full range expression given by Foote and Buchwald [90]. For real specimens, the grip

may have an effect at this extreme, but the specimens tested were of significantly larger

a/h and the effect of grip configuration was neglected. The mode II stress intensity

factor is derived using a beam theory approach in Appendix 3.0, and is given by
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K n = 2Pn
t-_ (7.3)

This equation was verified with FRANC2D to within less than 0.5 percent error down

to a/h=0.5. To avoid the influence of the opposite end of the current specimen,

Equations (7.2) and (7.3) should not be (and were not) used for crack lengths within 2h

of the far end of the specimen.

Ktt tan co

687)

Combining Equations (7. l) through (7.3) we obtain

(7.4)

Equation (7.4) was used to calculate the Ku/K1 ratios for the precracked SDCB

specimens in Table 7.1.

The T-stress can be evaluated in terms of ro (defined as in (5.5)) for the current

specimen aspect ratio (h/w=0.2) using an equation given in [9]

r° = .0114 1 + .7214 + .2879
h

(7.3)

for crack lengths ranging within 1 < a/h < 3. Thus the present specimen is capable of

achieving combinations of Ki and T corresponding to ro values ranging from 0.110

>- ro > .044 (note that this is more approximate for the reworked 7050-T74511 SDCB

specimens, which have h/w=0.22).

7.3 Test Procedure

Testing required use of a servohydraulic test machine, an anti-buckling guide,

and a data recording system. Red dye penetrant was used on pre-torn SDCB to mark
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theextentof thecrackafterpre-tearing.ThesetupattheCornellWinter Laboratoryis

shownin Figure7.5. Thetestprocedurefor DCB/SDCBspecimensis asfollows.

1. Wipespecimencleanasrequired.Solventpermissible,butavoidremoving

specimenID.

2. Measurespecimenthickness,w, 2h, and initial notch length, a. (specimens may

be lightly scribed as required to facilitate measurements).

. Mount specimen in test machine. Fill space between clevises and specimen

faying surface with shims to restrict out-of-plane movement of the specimen.

Make sure shim thickness is distributed symmetrically about the specimen, and

that the top and bottom clevises are shimmed to match.

. Fatigue precrack using hole pair D at load indicated in table, R--0.05, 3-5 Hz, for

at least 0.04 inches growth. A higher starting precrack load is permissible

subject to the precracking guidelines of ASTM E647-93. Total growth should

be at least 0.04 but not exceed 0.10 inches. Measure and record final crack

length on both sides of specimen.

° If static precracking is specified in the test matrix, load slowly to statically tear

specimen approximately 0.5 inches to final precrack length. Record the critical

load at the end of tearing, load vs. head deflection during tearing, and final crack

length measured on each side. Afterwards, apply red dye penetrant to crack

tip and let dry overnight before proceeding.
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Clevises

Specimen -]

a. DCB (Shown without Anti-Buckling Guide)

b. SDCB

Figure 7. 5 Test Setup
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. Remount specimen using hole pair P (for DCB specimens, this is the same hole

pair used for precracking). Mount antibuckling guide over specimen and gently

finger tighten screws to achieve sliding fit. Support antibuckling guide so that

its weight is not carried through the loading pins, leaving sufficient clearance at

the specimen lower edge to permit specimen deflection during testing.

7. Mount clip gage or extensometer at mouth of crack. Gage shall be calibrated to a

range of 0.5 inches or the maximum range available.

. Load specimen at 0.05 in/min or less (during final stages of failure atter crack

turning, higher rates may be used), recording load, clip gage, and stroke data at

1.0 samples/sec. Continue until specimen failure or until deflection is limited

by interference with the anti-buckling guide. NOTE: Continue testing even if

deflection exceeds clip gage range.

7.4 Results

A detailed summary of specimen data, including specimen measurements,

precrack measurements, and maximum loads, is given in Tables 7.3-7.6. Load/Crack

Opening Displacement (COD) plots for DCB/SDCB fracture specimens were

prepared for the range of validity for the clip gage or extensometer used. As illustrated

in Figure 7.6, the distance, S, between the effective point of load application and the

point at which the CTOD was measured, was not the same for all specimens. This

dimension is noted on each COD plot or corresponding caption, given in Figures 7.7-

7.13. Specimen photographs are presented in Figures 7.14-7.19, and crack paths for all

specimens are given in Figures 7.20-7.26. Selected data is also tabulated in

Appendix 4.
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P

1_- knife edges

Extensometer

Figure 7. 6 Schematic of COD Measurement Position, S

Table 7.3. Summ

Crack Front

Specimen Type After

ID Initiation

rc-LT-15-3 slant

rc-LT-1 5-4 slant
rc-LT-15-5 slant

rc-LT-15-6 V-shear
rc-LT-15-7 slant

rc-LT-15-8 V-shear

rc-LT-15-9 slant
rc-LT-15-10 slant

rc-TL-15-1 V-shear
rc-TL-15-4 slant

rc-TL-15-5 slant

rc-TL-1 5-6 slant
rc-TL-15-7 V-shear

rc-TL-15-8 slant

rc-TL-15-9 slant
rc-TL-15-10 slant

ro values calculated slightly

Static Crack Turnin No. 1)

an ai Max

Thickness w 2h (notch) (precrack), ro (ai) Load

(in) (in) (in) (in) (in) (in) (Ib)

0.0923 11.997 4.800 6.472 6.532 0.047 879

0.0922 11.997 4.797 2.006 2.048 3.137"2757

0.0924 11.996 4.799 2.989 3.031 0.084 1863
0.0917 11.996 4.799 6.961 7.002 0.045 896
0.0922 11.996 4.799 4.500 4.546 0.058 1467

0.0926 11.998 4.800 5.007 5.054 0.054 1200

0.0917 11.950 4.799 5.536 5.584 0.051 1178
0.0910 11.998 4.801 5.999 6.042 0.049 1122

0.0925 11.997 4.800 6.492 6.536 0.046 960
0.0931 12.000 4.800 2.006 2.050 0.137 1858

0.0919 11.994 4.798 3.000 3.047 0.083 1427

0.0935 12.000 4.800 3.998 4.050 0.064 1298
0.0922 11.996 4.799 4.502 4.557 0.058 1254

0.0910 11.997 4.805 4.997 5.047 0.054 1066

0.0924 11.985 4.799 5.512 5.557 0.051 1003
0.0920 11.997 4.799 6.002 6.047 0.049 943

out of bounds of validity of Equation (7.3)

Table 7.4.

2324-T39, 7475-T7351

Specimen

ID

rc-TL-2324-1
rc-TL-2324-2

rc-TL-7475- 1
rc-TL-7475-2
rc-TL-7050-1

Crack Front

Type After

Initiation

Summary of Static Crack Turning Tests of DCB Specimens of

and 7050-T76511.4llo _ (Set No.2)
an ai

Thickness w 2h (notch) (precrack) ro (ai)

(in) (in) (in) (in) (in) (in)

slant
slant

slant*
V-shear

slant

0.0858
0.0915

0.0906
0.0898
0.0985

Max
Load

(Ib)

The crack passed through a small region of V shear (about 0.08 inches) adjacent
to the precrack, but completed most of the turn as a slant crack.

12.001 4.800 4.988 5.053 0.054 1044
11.999 4.792 4.995 5.049 0.054 1169

12.003 4.792 4.992 5.049 0.054 1359
11.999 4.793 4.999 5.048 I0.054 1331
11.997 4.804 4.993 5.054 0.054 1306
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Table 7.5 Summary of DCB/SDCB Tests of 7050-T74511 Extrusion (Set No.3)

Crack Front

Specimen Type After
ID Initiation

rc-LT-EXT1-2
rc-LT-EXT1-3
rc-LT-EXT1-4

rc-LT-EXT1-6
rc-LT-EXT1-7

:rc-TL-EXT1-2
rc-TL-EXT1-3

rc-TL-EXT1-4

rc-TL-EXT1-5
rc-TL-EXT 1-7

an = Max

Thickness 2h (notch) (precrack*) _ (in) ro (ai) Precrack

/in) lin) lin) /in) /in) lin) Load {Ib),

slant 0.0880 4,800 3.00 3.05 0 0.083 200
V-shear 0.0911 4,804 4.99 5.03 0 0.054 106

slant 0.0915 4,809 5.01 5,05 0 0.054 109

slant 0.0913 4,801 4.40 4.54, 4.91 45.45 0.049 3633
V-shear 0.0923 4,803 4.91 4.98 45.09 0,055 270

slant 0.0925 4,799 3.00 3.11 0 0.082 200
slant 0.0954 4,802 5.01 5.06 0 0.054 106

V-shear 0.0913 4,808 4.50 5.00 0 0.055 168
slant 0.0909 4,804 4.41 4.45,5.01 45.03 0.0481 3017

slant 0.0910 4.804 4.91 5.09 45.21 0.054 300

Where applicable, both fatigue and static precrack lengths are given respectively.

ro is calculated based on the final precrack length, including both fatigue and static propagation.

Max
Load

(Ib)

2011
1489
1434

1518
1595
2035

1243
1 405
1701
1418

Table 7.6 Summary of DCB/SDCB Tests of 7475-T7351 Plate (Set No. 4)

Specimen

ID

$7475LT-1
S7475LT-2
$7475LT-3

S7475LT-4
$7475LT-5
S7475TL-1
$7475TL-2
$7475TL-3
$7475TL-4
S7475TL-5

Crack Front

Type After

Initiation

slant
slant

V-shear

slant
slant
slant
slant
slant

slight V-shr
slant

an _ Max Max

Thickness 2h (notch) (precrack*) _ (in) _ (ai) Precrack Load

(in I (in I (in I (in) (in I (in_ Load (Ib) (Ib)

0.0649 4.808 4.46 4.56,4.98 43.68 0.055 2194 1113
0.0654 4,800 4.45 4.53,4.96 43.88 0.055 2172 1222
0.0628 4.803 4.98 5.05 43.73 0.054i 270 1144

0.0631 4,800 4.95 5.01 43.78 0.049 270 1022
0.0631 4,799 4.95 5.02 0 0.054 91 874

0.0643 4,802 4.46 4.55,5.01 43.89 0.055 1999 1084
0.0650 4.802 4.46 4.50,5.05 43.80 0.054 2076 1049
0.0655 4,800 4.95 5.00 43.88 0.055 270 949
0.0636 4.799 4.96 5.00 43.97 0.048 270 967
0.0624 4,808 4.96 5.00 0 0.055 91 819

Where applicable, both fati! ue and static precrack

ro is calculated based on the final precrack length,

lengths are given respectively.

including both fatigue and static propagation.
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Figure 7.9 T-L Load�COD Curves for DCB Specimens of 2324-T39, 7475-T7351,

and 7050-T76511 Alloys
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Figure 7.14 7050-T7451 Static Crack Turning Specimens (Set No. 1),

L-T Orientation
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Figure 7.15 7050-T7451 Static Crack Turning Specimens (Set No. 1), T-L Orientation
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Figure 7.16 7050-T7451 Fatigue Crack Turning Specimens, Shown with Static

Specimens with Same Starting Crack Length (2 inches)

Figure 7.17 2324-T39, 7475-T7351, and 7050-T76511 Alloy Static Crack Turning
Specimens (Set No.,?), T-L Orientation
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Figure 7.18 7050-T74511 Static Crack Turning Specimens ('Set No. 3), L-Tand T-L
Orientation

Figure 7.19 7475-T7351 Static Crack Turning Specimens (Set No. 4), L-Tand T-L
Orientation
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Figure 7.26 Crack Paths, 7475-T7351 Crack Turning Specimens, T-L Orientation

7.5 Discussion

The results of the various specimen sets will now be discussed in greater detail.

From the first specimen set, which was made up of symmetric (DCB) specimens, a

great deal was learned about the effect of perturbations and orthotropy on the crack

path. This configuration was found to be less than optimal for the determination of rc,

but for the orthotropic material tested, was useful for developing the T-L R-curve

necessary for determination of K,,. The orthotropic elastic-plastic method showed

good correlation with both the crack path and the load-deflection curve.

The second specimen set, also of symmetric (DCB) configuration, was not

analyzed because lot material data was not available, but was intended to provide early

results on the likelihood of turning a crack from the favored (T-L) crack orientation in

various materials, and is included for completeness.

The third and fourth specimen sets included both DCB and SDCB specimen

configurations. The materials were chosen from the extremes observed in set No. 2; set

No. 3 was of the highly orthotropic extruded 7050-T74511, and set No. 4 was of the

more isotropic 7475-T7451 plate. Emphasis will be on the analysis of the SDCB

specimens in the 7475-T7451 material, since that material was found among the most
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promisingfor integralstructuresduringtheIAS program,andthusa morecomplete

materialdatasetis availablefor thatmaterial.

7.5.1 7050-T7451PlateDCBSpecimens(SetNo. 1)

7.5.1.1 StaticallyLoadedSpecimens

Whentestedin thestabletearingregime,the7050-T7451platespecimens

behavedverydifferently in theL-T andT-L orientations.TheL-T specimens

transitionedfrom thefiat notchto aslantcrack,andthenturnedquitesharplyto a

nearlyrightanglewithin lessthananinchof the initial notchtip. Mostof theT-L

specimenstransitionedfrom fiat to slant,but thentook severalinchesto turn, if they

turnedatall. Alsoafew of thespecimensfailed in a"V-shear"mode(seeFigure7.27

for adescriptionof thedifferentfailuremodes).The V-shear mode is a somewhat

- \ v

Flat Crack Slant Crack V-Shear

(Upward Turning)

Figure 7.27 Crack Failure Types for Thin Sheet Specimens
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randomly occurring asymmetric mode that nearly always results in tuming at a fairly

sharp angle or radius, and is beyond the scope of the theories developed under the

present program 18.

With the exception of the V-shear failures, since the specimens were otherwise

geometrically comparable except for the grain orientation, the difference in crack path

could only be attributed to the orthotropy of the fracture properties of the 7050-

T7451 plate material. Recalling the discussion of Chapter 4, the applicable fracture

resistance parameter for determining the orthotropy ratio must correspond to the

failure regime, which is stable tearing. Based on NASA 24 inch wide R-curve tests

[91] for the 1.5 inch plate material machined down to 0.06 inches thickness, the L-T

and T-L fracture toughnesses at a crack extension of about 0.4 inches are 99 and 76

ksix/in, giving a Km value for stable tearing of about 1.3. This was the highest

toughness value obtained for the T-L testing, but the NASA L-T data continued out to

a maximum value of 108 ksiqin. Because several of the T-L crack turning specimens

exhibited a significant amount of straight growth, it was possible to reduce R-curve

data from load/deflection data, as presented in Figure 7.28. Details regarding the data

reduction method for the DCB specimen are given in [1].

18Note however, that if tuming is desirable, the possibility of V-shear failure is not all bad, and in fact
it has been suggested that this mode be studied and exploited. V-shear appears to be a mestable state
associated with the initiation of stable tearing from a fatigue precrack, and when present, reverts to a
slant crack after a short segment of growth. It has been observed to reoccur briefly in structures when a
slant crack transitions to the opposite orientation.
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Figure 7.28 R-Curve Data Extracted from T-L 7050-T7451 Crack Turning

Specimens in the Straight Crack Growth Region

Since the R-curves were taken from load-deflection data, all the points were not

equally critical, as the specimen tore in small finite crack extensions, thus producing

somewhat rough curves as shown. The most quasi-static points were probably the

peaks, which if connected would be a better representation of the true KR curve. In

any case, it appears that the curves agree well with the NASA data at 0.4 inches

growth, and reach a maximum, relatively constant value after 1.5 inches of growth of

about 83 ksi_/in. Taking the ratio with the top of the R-curve L-T value (108 ksNin),

we again calculate K m=1.3. Apparently the ratio is fairly constant within this range.

Determination of the characteristic length, rc, for stable tearing has been

accomplished in a previous investigation [9] by plotting the average minimum turning

radius as a function ofro (calculated per Equation (5.5)). The turning radius is
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determined by laying a circle template over the specimen, finding the radius which best

matches the radius of curvature at the turning point (average of the radii on each side).

A value for rc can be estimated for isotropic materials by extrapolation to the ro value

at which crack turning occurs with zero radius.

The test matrix for Specimen set No. 1 was originally set up to evaluate rc in

the manner described above (thus including several starting notch dimensions,

corresponding to multiple ro values). However, as fracture orthotropy has become

better understood, it has become apparent that the test data cannot be meaningfully

reduced in this manner for highly orthotropic materials. This is because the expected

critical (bifurcation) value of ro is different in each direction, and falls out of the range

of ro values tested with the current specimen geometry. Also, turning from the

symmetric test configuration was observed to occur over a fairly smooth (albeit often

tight) curve, rather than the sharp kink predicted by the second-order linear-elastic

theory. Nevertheless, literature values (of unknown accuracy) for 2000 and 7000

series aluminum alloys [8, 9] are on the order of 0.05-0.06 inches, and Appendix A. 1

gives values in the 0.05-0.08 range depending on the orientation. It was thus desired

to perform a sensitivity study for rc values in this vicinity to see if the crack paths

could be correlated with the second-order orthotropic theory using the FRANC2D

implementation described in Chapter 5.

FRANC2D calculates K1, Km and T at for a given crack configuration,

calculates the new crack direction based on Equation (5.13), extends the crack a

specified increment, remeshes the region around the crack tip, and reruns the analysis

to calculate the new crack trajectory. An example of a mesh used for analysis of a

DCB specimen of L-T orientation is shown Figure 7.29.
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Figure 7.29 FRANC2D Mesh for Analysis of a DCB Specimen

7.5.1.1.1 Perturbation Effects

Unfortunately, the symmetric nature of the specimens is a drawback from a

crack-path correlation standpoint for T-L specimens. An analysis of a DCB specimen

of a hypothetical material with substantial fracture orthotropy (K,, =1.67) and various

angular perturbations applied at the first step is presented in Figure 7.30. In cases

where the crack turns gradually, such as T-L specimens with high orthotropy, the

perturbation sensitivity is most significant. Note that the sharply turning L-T curves

plot together (independent of perturbation).

Modeling a perfectly symmetric specimen will typically result in a (slightly)

non-zero KH, related to discretization error of the mesh, thus only a theoretical line is

given for this the unperturbed T-L case in Figure 7.30. In real specimens, perturbation
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could potentially result from manufacturing imperfections in the specimen geometry,

the effects of gravity on the specimen, and the natural meandering nature of the crack

tip due material inhomogeneity. Gravitational effects were largely ruled out as a major

contributor, since the specimens did not all turn the same direction (up or down) in the

test machine. Geometric irregularities in the specimens, while potentially significant,

were small enough that they were difficult to quantify in a meaningful way, though it

was evident that the precracks were sometimes observably out of alignment with the

starting notches (and this varied through the thickness). Nevertheless, visual

inspection of the specimens suggested that even in fairly nominally straight regions of

stable tearing, the natural meandering of the crack appeared to provide a potentially

significant source of perturbation.

In an attempt to quantify the inherent perturbation distribution of a meandering

(stably tearing) crack in 7050-T7451 plate, a high resolution scan of a 2.5 inch length

of substantially straight crack growth in specimen rc-TL-15-4 was sampled for angular

slope (point to point) at various increment lengths. The data and a curve fit to a
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logarithmic distribution is given in Figure 7.31, and shows that there is about an eighty

percent likelihood of an angular perturbation exceeding an angle of one degree over a

typical 0.010 inch length of crack propagation.

rincrement i
i

LI
10 15

Theta
5 20 25

Figure 7.31 Perturbation Distribution for 7050-T7451 Plate, Obtained from

Nominally Straight Stable Tearing Region of Specimen

7.5.1.1.2 Correlation with Second-Order Turning Theory,

Including Toughness Orthotropy

With substantial random perturbation due to material inhomogeneity, and the

potential for geometric imperfections, one would expect a noticeable amount of scatter

in the crack paths for nominally self-similar specimens such as the DCB. However, we

observe that after a finite amount of crack growth, including an amount of perturbation

induced turning, the specimen geometry is no longer symmetric. At this point its

future path should be more predictable, since the nominal asymmetry is then larger

compared to random perturbations 19.

Specimens rc-TL-15-5 and rc-TL-15-8 were analyzed in this manner with

t9By the same logic, real physical problems would not be expected to be highly perturbation sensitive
unless they are nearly symmetric.
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correlation of various analyses shown in Figures 7.32a and 7.32b. The models

included the actual crack path up until the vertical (asymmetric) growth component

was about 0.1 inches, and the crack path was predicted analytically from that point,

using an orthotropy ratio K,, =1.3, and a crack increment step size of 0.1 inches.

From Figures 7.32a and 7.32b, we observe that with the level of orthotropy

present, the choice of rc has a modest effect on the predicted (T-L) crack. An r_ value
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of approximately 0.10 inches gives the best results in an average sense, overestimating

the turning in one case and underestimating in the other. The remaining disparity in the

crack paths appears to result from perturbations observed along the crack path

presumably due to material inhomogeneity. Also, for 7475-T7451 the steady state

Irwin plastic zone is about 0.5 in (T-L) to 0.7 in (L-T), and the LEFM approximation

becomes increasingly poor as uncracked ligament decreases.

In the L-T orientation, all specimens turn fairly sharply to nearly 90 degrees, as

shown in Figure 7.20. The FRANC2D analysis in Figure 7.30 illustrates that this

result is predicted for an orthotropy ratio of 1.3 almost independent of the

perturbation magnitude. The results are re-plotted in Figure 7.33 with comparison to

the crack path of specimen rc-LT-15-5. Clearly, the correlation is favorable, and is in

this case enhanced by an rc value of at least 0.05 inches, but insensitive to higher

values. A value of re=0.1 gives the best correlation with both T-L and L-T results.
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Figure 7. 33 Correlation of Observed and Predicted Crack Paths for Selected 7050-

T7451 Specimens Using the Second Order Elastic Theory with Toughness Orthotropy

(L-T Orientation, Km= l.3, Step Size = 0.1 in)
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7.5.1.1.3 Correlation with Elastic-Plastic CTOD Method, Including Toughness

Orthotropy

The elastic plastic method first requires determination of the critical crack tip

opening displacement, Dc. For the isotropic case, this is accomplished [40] by running

simulations of a fracture test assuming various value of Do and choosing the value that

results in the best match of the observed load-deflection curve. With fracture

orthotropy, the same approach applies, with recognition that Dc is a function of

orientation. The approach that was taken was to determine De(0 °) from a straight-

growing specimen of T-L orientation. FRANC2D/L then uses Equation (5.42) to

estimate the critical CTOD for other orientations 2°.

Specimen rc-TL-15-9 grew quite straight, and was chosen for determination of

D_. Figure 7.34 shows good correlation of the observed response to that predicted by

a simulation using D_(0°)=0.0026 inches, thus this value was chosen for use in

subsequent analyses. There is also evidence of an initial, slightly higher critical CTOD

at the initiation of stable tearing, as has been observed by other authors [38], though

this was neglected for the present study.

Simulating a length of the actual crack path, as was done for the linear elastic

method, was not practical for the elastic-plastic method, because the path is history

dependent, and must be grown, not simply modeled geometrically, to obtain the

proper plastic history. The actual fatigue precrack angles for these specimens were

small, leaving the actual crack path subject to random perturbations as discussed

earlier. Thus specimens rc-TL-15-5 and rc-LT-15-5 were modeled from the nominal

initial precrack configuration (a=3.0 inches), but with a small angle kink in the last 0.1

20Note that the value of K m used herein is based on fracture toughness data, allowing a consistent

orthotropy ratio for both linear elastic and elastic-plastic studies. In practice, it may be advantageous to

determine both De(0 °) and De(90 °) directly from fracture specimens, then obtain K m from Equation

(5.40).
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inch of the precrack to provide an initial perturbation. Perturbation angles of 1.0 and

4.0 degrees were modeled for each specimen, and compared with actual measured paths

in Figures 7.35 and 7.36. Inasmuch as the average random perturbation angle for a 0.1

inch increment is about three degrees based on Figure 7.31, correlation between

predicted and observed trajectories is quite satisfactory. For the L-T specimen,

predicted curves are smooth, and resemble the observed path better than the linear-

elastic prediction.
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Figure 7.34 Correlation of Observed and Predicted Load vs. COD for Specimen

rc-TL-15-9 (T-L Orientation, Straight Crack Growth, Elastic-Plastic Method)
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7.5.1.2 Fatigue Loaded Specimens

Inasmuch as rc is expected to scale with the plastic zone size, it is expected to

be negligible for slow fatigue crack growth. The fracture orthotropy ratio can be

obtained from a comparison of L-T and T-L fatigue crack growth rate data, shown in

Figure 7.37, taken from the straight growth regions of specimens rc-LT-15-2 and rc-

TL- 15-2. Extrapolating the data into approximately parallel lines in this regime of

growth, it is apparent that to obtain the same crack growth rate in either orientation,

one would have to load the L-T crack about 10 percent more than the T-L crack, thus

the orthotropy ratio is about 1.1.

With re=0, and a nominally symmetric, gradually turning crack, a high degree of

perturbation sensitivity is expected. The FRANC2D analysis thus utilized the actual

crack path up to 0.1 inches of asymmetric growth in the same manner as was done in

Figure 7.32. The resulting correlation shown in Figure 7.38 is very favorable for the

L-T case. Correlation was somewhat worse for the T-L case, possibly because the

stress intensity for growth was getting high enough that the T-stress had an effect

which was not modeled since we assumed rc=O for fatigue crack growth.

Z

1 r-£_ A,_-v-,
rL

1 E-05

1E-06

Figure 7.37

L _

!

Comparison of T-L and L-T Fatigue Crack Growth Data Taken from

DCB Specimens, Stress Ratio = O.05
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7.5.2 2324-T39, 7475-T7351, and 7050-T76511 DCB Specimens (Set No. 2)

The primary purpose of these tests was to obtain information about the

orthotropy of these alloys, and the likelihood of turning a crack from the T-L

orientation. This information was needed to support a material selection decision for a

large panel test under the IAS program requiring a sufficiently isotropic material to

enable crack turning of a longitudinal fuselage crack (T-L). Only T-L specimens were

tested with the underlying assumption that K m > 1. Based on results reported in [9]

for 2024-T3 DCB tests, one would expect that fairly isotropic T-L specimens would

turn sharply due to the high T-stress environment. From the curves plotted in Figure

7.22, 2324-T9 plate clearly falls into this category, while 7050-T76511 does not. It

was also concluded that 7475-T7351 was sufficiently isotropic to tum a T-L crack,

though it was observed that both 7475-T7351 specimens exhibited a small amount of

V-shear behavior, which could have influenced the results.

Without performing further testing at the time, the project went on to build and

test a large fuselage barrel test panel out of 7475-T7351 plate for testing with a two-

bay crack. While the panel performed well in residual strength, the crack did not turn
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appreciably [92]. As will be discussed with regard to specimen set No. 4, an (L-T)

DCB specimen cut later from the same lot of material as the test panel did not turn

either (though also with a small amount of V-shear). Based on a rudimentary estimate

of the T-stress made for the fuselage panel during the IAS program, the panel had less

T-stress than the specimen, thus would not have been expected to turn the crack.

Further crack path analysis was not performed on these specimens.

7.5.3 7050-T74511 Extrusion DCB and SDCB Specimens (Set No. 3)

Large extrusions with integrated skin and stiffeners have been identified as a

potentially cost-effective approach for both wing and fuselage applications. However,

because of the directional nature of the processing, extrusions were expected to

manifest substantial toughness orthotropy, making cracks difficult to turn from the

preferred T-L orientation. For fuselage applications, it is preferable to turn both

longitudinal and transverse cracks, should they impinge upon either frame or longeron.

For wing applications, it may be sufficient to turn cracks from the L-T to the T-L

orientation as they impinge upon a longitudinal stiffener.

As shown in Figures 7.23 and 7.24, cracks in the L-T DCB specimens turned

immediately about a small radius to a near 90 degree angle, and cracks in the T-L DCB

specimens grew straight, as would be expected for a material with significant toughness

orthotropy 21. Due to the high toughness orthotropy, among other things, this material

was deselected from the IAS fuselage program before any R-curves were run, thus the

degree of orthotropy could not be determined in the usual manner. (While T-L R-

curves could be developed from the straight growing DCB specimens, there was

excessive turning for R-curve development in the L-T specimens).

2_V-shear specimens have been excluded from the crack path plots for this set, as well as the
discussion. To get an idea of the V-shear crack paths, see specimen photographs. V-shear failure was
always accompanied by severe turning, regardless of initial crack orientation.
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As analternative,it wasnotedthatspecimenrc-TL-EXT1-7,anSDCB

specimen,turnedsharplyat64.5degreesfrom theinitial cracklength,a_6.18 inches,

and grew nearly in a straight line crack extension for about 2.2 inches. Because the path

is straight, we should theoretically be able to assume that the Kzz/Kt ratio represents

the critical value given in Equation (5.15) with 0=64.5 degrees. For a given orthotropy

ratio and orientation, the critical KJKI ratio should be relatively constant. A

FRANC2D analysis of this problem reveals that the KIz/KI ratio varies along the

straight path described as shown in Figure 7.39. The variation is so dramatic that

(even changing sign), that it is difficult to imagine that the material properties are

constant along the crack, unless there were an unanticipated axis of minimum

toughness lying along the crack path. If that were the case, then a nearly identical

crack path would have been expected in specimen rc-TL-EXT 1-5, which did not occur.

0 0.5 1 1.5 2

Aa

Figure 7.39 K1JKI Values Predicted by FRANC2D Along a Straight Crack Extension

Following a 64. 5 ° Kink, Specimen rc- TL-EXT1- 7
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Various explanations might exist for the observed anomalies. It is well known

that the grain structure varies considerably within extruded shapes, potentially

resulting in heterogeneous fracture properties. Also, the specimens were not very fiat,

indicating potentially significant residual stresses, and potentially giving rise to

undesireable and potentially nonuniform frictional loading from the anti-buckling guide.

To further complicate matters, 30 percent of the specimens failed in V-shear mode.

As a result of these anomalies, and in the absence of R-curve data, it was not

possible to reduce meaningful values for K,, and rc for the 7050-T74511 extrusion

material from the specimens provided.

7.5.4 7475-T7351 Plate DCB and SDCB Specimens (Set No. 4)

7475-T7351 plate has an excellent combination of strength, fracture toughness,

and stress-corrosion resistance, and was the material of choice for the IAS fuselage test

program. It was desired to determine the values of K,,, and rc for this material.

Forty inch wide R-curve tests were run at NASA Langley Research Center [93]

on the same lot of material used for the IAS widebody barrel test, and are plotted in

Figure 7.40. For a given value of effective crack extension, Aae/f, the L-T fracture

resistance is about 10 percent higher than the T-L value, thus K m=1.1.
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7.5.4.1 Correlation with 2nd-Order Linear-Elastic Theory,

Including Toughness Orthotropy

For the SDCB specimen geometry of Figure 7.3, Equations (7.4) and (7.5) give

KI1/K_=0.20, and ro=0.0546 inches for the precracked starter notch configuration.

Based on these conditions, the initial kink angle predicted by the second-order, linear-

elastic, maximum circumferential stress theory is given in Figure 7.41 as a function of

initial crack orientation for various values of rc. Plotted for comparison are the actual

kink angles observed in each of the 7475-T7351 SDCB specimens, measured from

high-resolution optical scans of the specimens. The initial crack orientation plotted

along the ordinate is defined relative to the longitudinal (rolling) axis of the plate

material, and reflects the measured angle at the crack tip after precracking. Data is

shown for both T-L (0 °) and L-T (90 °) specimens, excluding specimen



168

0 ....

rc=l.O
8o_" O.i.

g 6o ----
50 o

40
A A

30
"_ 20 _ 0 _ i

10
A Fatigue Precrack i

-15 0 15 30 45 60 75 90 105

Initial Crack Orientation, 0 (Degrees)

Figure 7.41 Determination of rcfrom Crack Kinking Data, Kn/KI = 0.2

$7475-LT-3, which failed in V-shear. The kink angle is measured relative to the

precrack angle, and each data point represents an average of angles measured on each

side of the specimen.

From Figure 7.41 we observe that the measured angles for static precracked

specimens are higher then for specimens precracked with fatigue loading only. This

may reflect an increase in process zone size corresponding to the increased crack

growth resistance, KR, of the statically precracked specimens. However, the difference

is small in terms of re, particularly considering the rather large KR gradient evident in

the first 0.5 inches of stable tearing in Figure 7.40. Also, accurate measurement of the

kink angle is more difficult for the fatigue precracked specimens because the crack

transitions to a slant crack while it kinks, as shown in Figure 7.42. For this reason,

kink angles measured from the statically precracked specimens are considered to be

more reliable and representative, and correspond to rc values of approximately 0.08
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inchesin theT-L orientationand0.04inchesin theL-T orientation,or anaveragevalue

of 0.06inches.Clearly, first-ordertheory(re=0)is incapableof predictingthecorrect

turningangles.

a. $7475-TL-2 (Static Precrack)

0

b. $7475-TL-3 (Fatigue Precrack Only)

Figure 7.42 Measurement of Initial Crack Kink Angle in Specimens with and without

Static Precracking

Based on the values of K m and rc determined above, DCB specimens

$7475LT-5 and $7475TL-5 were analyzed the second-order linear elastic maximum

tangential stress theory with toughness orthotropy. The fatigue precracks developed

at the notch tips were at 29 ° and -9 ° to the notch orientation, respectively, and
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initiated slightly off-center (see first three points of each crack path given in Appendix

4.0). These details were included in FRANC2D models of the specimens, providing a

small initial asymmetry.

Predicted and observed crack paths are given in Figures 7.43 and 7.44,

respectively. Correlation is quite satisfactory in the L-T orientation, though the

observed crack path seems to show more severe turning as the crack orientation

"snaps" into the preferred, longitudinal grain orientation. Similar behavior was found

in other 7475-T7451 specimens, indicating that the fracture resistance function, K(0)

may have a more pronounced minimum than the simple function given by Equation

(4.6). This would also explain why the T-L specimen turned less than predicted by

the model. Nevertheless, based on the previous discussion with regard to Figure 7.30,

one would also expect that a slightly curving crack such as in the T-L case, the path is

>

2.5 -

2.0

1.5

1.0

0.5
i
I

o.o -;
!

I

I
I

-05. .....

4.0 4.5 5.0 5.5

" Crack path shown for

both sides of specimen i

.... $7475LT-5 (DCB)

_---FRANC2D, 2nd-Order LEFM,
Km= 1.1, rc=0.06

_FRANC2D/L Elastic-Plastic
CTOD, Km=l. 1

i t I J

6.0 6.5 7.0 7.5

Horizontal Crack Growth, a (in)

8.0

Figure 7. 43 Correlation of Observed and Predicted Crack Paths for Specimen

$7475LT-5 (L-T Orientation)



171

..=

¢,)

¢dl

t_

;>

2.0

1.5

1.0

0.5

.... $7475TL-5 (DCB)

------FRANC2D, 2nd-Order LEFM,
Km=l.1, rc=0.06 in

_FRANC2DL, Elastic-Plastic
CTOD, _d'n= 1.1

0.0-¢- ..... __

i

-0.5 !

-1.0 k

4.0

Crack paths
shown for both

sides of

specimen

.... _., m_ Im._ -m

t __ _ . l I _ i

5.0 6.0 7.0 8.0 9.0

Horizontal Crack Growth, a (in)

Figure 7. 44 Correlation of Observed and Predicted Crack Paths for Specimen

$7475LT-5 (L-T Orientation)

sensitive to the random perturbations due such as those described in Figure 7.31. It is

likely that if several additional specimens were tested, some would show gradual

turning as predicted 2z.

7.5.4.2 Correlation with the Elastic-Plastic CTOD Method, Including Toughness

Orthotropy

Specimen $7475TL-5 is of T-L (0 °) orientation, grew essentially straight, and

was used as a basis to determine De(0°). The results of FRANC2D/L simulations

based on various values of De(0 °) are compared with observed load/COD data for this

specimen in Figure 7.45. The simulations assumed the crack grew straight, neglecting

the small deviations from straightness observed in the actual specimen. For the most

part, the observed response fell between the simulated curves for Dc(0°)=0.0028 and

22 Note from Figures 7.15 and 7.21 that most of the T-L 7050-T7451 specimens turned, even though

that material was found to have higher toughness orthotropy than 7475-T7451.
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De(0°)=0.0030 inches, thus a critical value of 0.0029 inches was assumed for

subsequent analysis. There was also evidence of an initial, higher critical CTOD at the

initiation of stable tearing, as has been observed by other authors [38], though this was

neglected for the present study.

Assuming Dc(0°)=0.0029 inches, Km=l.1, DCB specimens $7475TL5 and

$7475LT5 were analyzed using the elastic-plastic implementation in FRANC2D/L.

For these analyses, the initial measured angles associated with the fatigue precrack

were included in the starting notch configurations as was done for the second-order

LEFM analyses performed in the preceding section, giving a small initial deviation

from symmetry. Predicted crack paths are included in Figures 7.43 and 7.44, and

load/COD plots are compared with observed response in Figures 7.46 and 7.47,

respectively.
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Figure 7. 45 Correlation of Observed and Predicted Load vs. COD for Specimen

$7475TL-5 (T-L Orientation, Straight Crack Growth Assumed)
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The predicted crack path for specimen $7475LT5 (90 °) compares well to the

measured response, and is very similar to the predicted behavior of the second-order

linear elastic theory. The predicted load/COD curve is somewhat conservative for this

specimen. This may be in part due to the use of the transverse tensile properties for

the analysis, even though the primary loading is in the longitudinal direction (which has

slightly higher strength per Table 7.2). Also of potential significance in this regard are

the effects of deviations in the crack path, and errors associated with the approximate

nature of Equation (5.40).

For specimen $7475TL5 (0°), the predicted response indicated crack turning

somewhat more severe than the second-order linear elastic analysis, compared to the

relatively straight growth observed in the specimen. As suggested earlier, there is

evidence from the L-T crack path that for this lot of material, the toughness function

has a more pronounced minimum at 0=0 ° than assumed, which would explain the

disparity between analysis and observation in the L-T orientation. The predicted

load/COD curve matches well with the observed behavior in the region where the

predicted path is relatively straight, as would be expected.

7.6 Summary

A test program has been described including test results from 31 DCB and 12

SDCB specimens, fabricated from four aluminum materials--7050-T7451 plate, 7050-

T74511 extrusion, 2324-T39 plate, and 7475-T7351 plate--and divided into four

specimen sets. These sets will be described in chronological order, with a review of the

highlights of their purpose and what was learned.

The first specimen set, comprised of DCB specimens cut from 7050-T7451

plate, was intended to provide data for determination of the characteristic length, rc,

using an extrapolation method used under a previous test program for 2024-T3 (a
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materialwith moreisotropictoughness).As it turnedout,the intendedmethodto

obtainrc was not applicable, and statically loaded specimen showed a very significant

effect of fracture toughness orthotropy. Toughness data from the same lot of material

indicated that K m =1.3 for this alloy in the stable tearing regime.

Analyses using the second-order linear-elastic maximum tangential stress

theory with Km=1.3 showed that in the regime of T-stress found in the DCB

specimens, crack trajectory was dominated by the toughness orthotropy, and

sensitivity of the crack path to rc was minor. For T-L cracks, the path was found to

curve gently, and was found to be heavily influenced by random perturbations, and the

perturbation distribution was quantified. For L-T cracks, some effect of rc was noted

up to rc=0.05 inches, beyond which the predicted crack path became insensitive to the

characteristic length. Use of re=0.05 did improve crack path prediction, and is

recommended for this alloy in the stable tearing regime.

Elastic-plastic fracture simulation of T-L and L-T specimens from Specimen

set #1 showed comparable predictions to the second-order linear elastic method,

though the smooth shape of the tightly turning crack in the L-T specimen was better

predicted by the elastic-plastic method, and is free of the zig-zag oscillation observed

in the linear elastic prediction.

Specimen set No. 1 also had two specimens for which the crack was

propagated in fatigue. There was a distinct difference in the nature of the crack path

compared to the stable tearing specimens, showing evidence that the effective fracture

resistance orthotropy was different for fatigue loading than for stable tearing. Based

on da/dN data from straight crack growth regions of the specimens, a fracture

resistance orthotropy ratio of K,,=I.1 was determined for the 7050-T7451 plate at a

crack growth rate of about 10 .5 inches/cycle. Use of this orthotropy value and rc-)0

resulted in satisfactory correlation of the analysis and test data, supporting the



176

hypothesisthat processzonesizeinteractswith T-stress(via rc) and fracture

orthotropy to influence the crack path. With regard to fracture orthotropy, this

confirmed the notion expressed in Chapter 4 that the fracture resistance orthotropy

ratio must be based on the material response in the appropriate fracture regime.

Presumably, the fracture resistance orthotropy varies with daMN to the degree that the

T-L and L-T da/dN vs A/£ curves differ, and approaches constant value in the stable

tearing regime.

Specimen set No. 2 was tested to provide early information during the IAS

program on the ability to turn cracks in various alloys from the preferred (T-L)

orientation, and is included for completeness. Specimen set No. 3 indicated that 7050-

T74511 extrusion was rather prone to spurious and unpredictable behavior, and is a

warning that it may be inherently difficult to reliably predict crack paths in materials

made by processes that result in nonuniform grain structure and/or residual stresses.

Specimens set No. 4 included both DCB and SDCB specimens machined from

7475-T7351 plate material--the material of choice for the IAS integral fuselage

program. Using a novel data reduction approach, rc for this material was estimated to

be 0.06 inches based on SDCB specimen kink data. A fracture toughness orthotropy

ratio, Km=l. 1, was determined for this material based on IAS wide panel R-curve data.

Using this information, simulations run with both elastic and elastic-plastic turning

methods showed good correlation with observed test results.



CHAPTER8.0

SUMMARY, CONCLUSIONS,AND
RECOMMENDATIONS FOR FUTURE WORK

8.1 Overview

This chapterpresentsa summaryof the contributions of the present work,

conclusions drawn, and recommendations for future work as appropriate. The overall

purpose of the work is to develop improved crack path prediction methods necessary

to aid in the design of damage tolerant aircrait structure where skin and stiffening

elements are integrated as one-piece. A discussion of the background to the problem is

given in the first chapter, describing how crack turning can provide a measure of fail

safety for integral structures, and identifying process zone interaction with T-stress

and fracture toughness anisotropy as potentially significant factors requiring further

study. Chapters 2-5 discuss various details with regard to crack turning theory,

starting with first-order (T-stress free) isotropic theories, and adding the effects of T-

stress and orthotropy along the way. Chapter 6 describes the software

implementation of selected elastic and elastic-plastic methods, including accurate T-

stress calculation methods, and Chapter 7 presents test results and crack path

correlation with numerical analyses. The contributions of each chapter beginning with

Chapter 2 will now be summarized in more detail.

8.2 Chapter 2: Isotropic Crack Turning Theory in Two Dimensions

This chapter is largely introductory in nature, providing a description of

various isotropic crack turning theories found in the literature, including both linear

elastic and elastic-plastic theories. The linear-elastic theories described are later

described as "first-order", because they include only the mode I and mode II
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components(KI, KII) of the leading term in the crack tip stress field expansion, but

neglect the T-stress and higher-order terms. The elastic-plastic theory of Shih also

neglects the far-field T-stress, and may thus also be described as first-order in this

sense. These theories give the kink angle as a function of Ko/Kz, and predict very

similar results, particularly as K_1 becomes small compared to K1. In the limit as K11

vanishes, the predicted kink angle is zero, as for a smoothly curving crack. Based on

the resulting assertion that a naturally curving crack follows the path that satisfies

K_r_0, all the first-order theories thus predict the same crack path--a path which tends

to diverge in a positive T-stress environment, as shown by Cotterell and Rice.

Following this discussion, test data are shown that indicate that process zone

size effects the rate of crack path divergence in a positive T-stress environment--a

phenomenon not possible to predict based on the first order theories--and the

question is asked: Why?

8.3 Chapter 3: Crack Path Instability in a Material with a Cohesive Process Zone

This chapter attempts to address the question posed in the preceding chapter

by an original study of the crack path instability of a slightly curvilinear crack in an

isotropic material with a cohesive process zone at the crack tip, propagating in a

positive T-stress environment. The cohesive zone is intended to represent a strain

localization region of smaller size than the total plastic zone would be in the usual

Dugdale sense (that is, the stress intensity factor at the tip of the cohesive crack is

non-zero). Further, it is assumed that the crack propagates under steady state

conditions (the cohesive zone is of constant length), and the tip of the cohesive crack

follows the path corresponding to zero mode II stress intensity, as suggested by

Cotterell and Rice. The solution neglects second and higher order terms involving the

deviation of the crack from a straight path.
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Becausethecrackis (initially) slightly curved,thereis afinite modeII stress

intensity,Klr,associated with the cohesive tractions at the crack tip. Therefore, for

the total mode II stress intensity at the crack tip to vanish, there must be a non-zero

far-field component, Km equal and opposite in sign to KIP. In order to enable

development of an estimate for KIP, expressions are developed for the crack flank

displacements in the vicinity of the slightly curved crack, due to both far-field loading

and local cohesive tractions. The normal traction is taken as a steady state function of

the flow stress and distance from the crack tip, and includes strain softening. The

tractions and displacements in the cohesive zone interact by way of a simple

constitutive relationship based on the strain localization concept. The constitutive

relationship is considered for both plane-stress Von Mises strain localization in a

cohesive crack surface normal to the plate, and a Tresca shear strain localization

surface at 45 degrees to the plane of the plate. A closed form expression involving

shear and normal tractions is integrated along the cohesive zone to obtain an estimate

of K_/_ in terms of the assumed steady-state normal traction function, flow stress, and

crack tip curvature.

A solution is then developed using Laplace transform techniques for the future

path of an initially curved semi-infinite crack with a cohesive process zone propagating

in an infinite elastic medium. The solution indicates that in a positive T-stress

environment, an increase in process zone size results in an increase in crack path

instability, agreeing at least qualitatively with experimental findings.

8.4 Chapter 4: Fracture Resistance Orthotropy and Modal Transition

This chapter serves initially as an introduction to the work of various authors

with regard to fracture resistance anisotropy (fracture resistance that is a function of

direction), fracture mode asymmetry (fracture resistance that varies with fracture
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mode),andmodaltransition(transitionbetweenmodeI andmodeII failure,depending

onmode-mixity). In addition,afew importantoriginalcontributionsarepresented,as

will now bedescribed.

Amongtheoriginalcontributionsis therecognitionthatthecrackgrowth

resistance,Kp(O), used to characterize the orthotropic fracture behavior, must be

determined in a regime consistent with the failure process. That is, the fracture

resistance may (and typically does) vary more as a function of orientation in the stable

tearing regime, than during slow fatigue crack growth. Thus, the orthotropy ratio, Kin,

is not a material constant, but a state variable, though it may be approximated as a

constant within a given fracture regime. This was supported by test data in Chapter 7

for thin sheet coupons propagated under static or fatigue loading. While the

mechanism behind the change in orthotropy ratio in the different fracture regimes is not

well understood (granted that stable tearing and fatigue fracture have inherent

phenomenalogical differences), it is hoped that current multi-scale studies of fracture

processes may shed light on this issue.

Two additional contributions relate to the interpolation function that estimates

the fracture resistance at an arbitrary crack orientation angle based on the principal

values of the fracture resistance. First, some motivation was given to the choice of the

exponent in the interpolation function of Equation (4.1), in view of the fact that in

prior work the exponent is arbitrarily selected, and the different authors are in

disagreement. Second, and most significant, is the extension of the fracture orthotropy

interpolation function to three dimensions, interpolating between the six principal

fracture resistance values corresponding to this case. While this contribution was not

carried on in the subsequent stages of the present work, it provides an important

building block for follow-on work in three-dimensional crack turning studies with

fracture resistance orthotropy.
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8.5 Chapter5: CrackTumingTheorieswith ProcessZoneEffectsandFracture
ResistanceOrthotropy

Thischapterbuildsuponthework of prior authorsto developtwo enhanced

approachesfor crackturningsimulation,a linearelasticapproachandanelastic-plastic

approach.Thesemethodsaretheproposedworkhorsemethodsfor implementationin

thefollowing chapter.

Thelinear-elasticapproachincludesboth the"secondorder" (processzone

related)effectof theT-stress,andtheeffectof fractureresistanceorthotropy. Bothof

theseinfluenceshadbeenstudiedindependentlyin prior work,but their unification

andfull developmentin thepresentwork, isbothoriginalandsignificant. The

inclusion of the T-stress into the orthotropic theory predicts more rapid turning in a

positive T-stress environment as the process zone related characteristic length, rc, is

increased, provide a linear elastic prediction for the point of modal transition based on

the concept of fracture mode asymmetry.

Several original variants of the second order linear elastic crack kinking theories

are also discussed, including fracture orthotropic maximum tangential and shear stress

criteria for mode I and mode II dominated propagation, and a modal transition

condition based on fracture mode asymmetry. Other variants include second-order

isotropic theories assuming pure modal growth both in stress (O'ro=0 for mode I), and

CTOD. It is shown that the various second-order mode I theories predict either

identical or very similar behavior, if one realizes that the corresponding process zone

size parameters differ in scale for the various theories.

The elastic-plastic crack turning approach described builds heavily on the work

of Sutton [40] with regard to using the mode I and mode II components of the CTOD

(DI and D11) to determine the crack path. The present contribution extends the method

to include fracture resistance orthotropy by way of an angular correction based on

linear elastic orthotropic theory. The enhancement is only valid for (nearly) smoothly
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curvingcracks,andwouldnotbeexpectedto correctlyaccountfor orthotropy for large

angle sharp kinking behavior.

Also, early in the chapter, the concept of modeling a smoothly curving crack

using a C ° continuous series of linear segments was discussed in light of the theoretical

convergence study Stone and Babuska. Their results are strictly valid only for first

order, linear-elastic crack turning (Klr=0), but infer that (1) for a convergent solution,

the kink angles should approach zero as the step size is reduced, and (2) the problem is

probably sufficiently converged for engineering purposes when the kink angles fall

below about 10 degrees. As is evident in the results of Chapter 7, the second-order

linear elastic theory does not tend to converge in this manner, but results in a sharply

zig-zagging path that does not become smooth as the step size is refined. Yet, the path

does converge in an average sense to a reasonable approximation of the actual behavior.

On the other hand, the elastic-plastic method converges to a smooth path, and is in this

respect more realistic.

8.6 Chapter 6: Software Implementation

The software implementation of second-order linear-elastic maximum tangential

stress theory and the elastic-plastic CTOD crack turning theories are described in this

chapter. The present effort builds on the framework of the FRANC2D fracture

simulation environment, adding various features necessary to utilize the enhanced crack

turning criteria. Two variants of the code were produced, a version of FRANC2D for

the second-order elastic-plastic method, and a version of FRANC2D/L for the elastic-

plastic method. FRANC2D/L was chosen for the elastic-plastic method to build on a

prior implementation of the isotropic CTOD method by a colleague.

A large portion of the chapter describes a domain integral T-stress calculation

method with a posteriori error correction. The domain integral approach, based on the
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Betti-Rayleighreciprocaltheorem,is includedfor completeness,but isentirely

attributableto colleaguesandprior authors.However,theerrorestimationand

correctionmethodsareoriginalto thepresentwork, andsignificantlyimprovethe

accuracyof theT-stresscalculationsin FRANC2D.

8.7 Chapter7: TestProgram

ThisChapterdescribestestresultsfrom 31DCB and12SDCBspecimens,

fabricatedfrom fouraluminummaterials--7050-T7451plate,7050-T74511extrusion,

2324-T39plate,and7475-T7351plate. While someof theseresultshavebeen

includedin prior publicationsrelatedto thecorrespondingcontractsfundingthework,

theyarecombinedherewith themostrecentresults,andcomparedwith analyses

basedon theforegoingmethodsasapplicable.Furtherdetailof thetestdatais givenin

theappendicesin tabulatedform to allow futureauthorsto studytheresultsin light of

newdevelopmentsandtheories.

Foradetailedreviewof theresultsof eachspecimenset,thereaderisreferred

to thechaptersummaryattheendof Chapter7. A summaryof overall findingsis as

follows:

• Symmetriccracksina highT-stressexhibitconsiderablecrackpath

instability (asexpectedfrom bothpresentandprior theories).

Both fractureresistanceorthotropyand("secondorder") processzonesize

effectsinfluencethecrackpathinstability. Increasedprocesszonesize

(higherloading)tendsto producemorerapidcrackturning in fairly

isotropicmaterials. However,theorthotropyratio itself is a functionof

processzonesize(failureregime),andmaychangesufficientlybetween

differentfailureregimesto offsetor overpowerthe"secondorder" process
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zonesizeeffectsassociatedwith includingthe process zone size directly in

the crack turning theory.

In order for the elastic and elastic-plastic theories to correctly account for

the fracture resistance orthotropy, an orthotropy ratio must be determined

appropriate to the regime of failure (do not use the fracture toughness ratio

to predict the fracture resistance ratio in the slow fatigue regime). For the

7050-T7451 plate material tested in 0.090 inch thick specimens, the

orthotropy ratio was far greater for stable tearing (1.3), than for fatigue

crack propagation (1.1).

The use of asymmetric specimens such as the SDCB is recommended for

determination of the characteristic length, rc, for the linear elastic theory as

explained in the text.

For slow fatigue crack propagation (less than about 10 4 for the 7050-

T7451 aluminum plate alloy tested), the process zone size was sufficiently

small to assume rc=0 for the level of T-stress in the specimens tested

(about ro=0.04 inches). This is probably a reasonable approach for fatigue

cracking in most structural applications. The elastic-plastic method is not

intended, nor is it necessary for crack path analysis of fatigue cracking.

Due to random "bumps" in the crack path apparently due to local material

inhomogeneity, the crack path is constantly under the influence of random

perturbations. This caused an apparent scatter in T-L DCB specimens,

which have only slight crack path instability because the crack starts out in

the favored crack orientation. This scatter, however was anticipated based

on analyses of specimens with slight initial angular perturbations. It is
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suggestedthataperturbationanalysesof asimilarsortcouldhelpthe

designeranticipatestructuralsituationswherethecrackpathishighly

sensitiveto randomperturbations.In general,whererathersharpcrack

turning is predictedby theanalysis,it appearsthatrandomeffectsareless

likely.

V-shearfailures(asopposed to the usual slant crack) were observed in

several specimens, typically resulting in sharper turning than would be

anticipated by analysis. For the most part, however, it appears that the

occurrence of V-shear is largely an artifact of the test method--starting a

stable tear from a fatigue precrack with minimal plastic zone. It was never

observed in a statically precracked specimen, and would thus appear to be

less probable in real structural situations where a fatigue crack grows at

gradually increasing AK until it becomes unstable. The propensity for V-

shear also appears to be material (and/or possibly thickness) dependant.

Crack turning analyses in prototype 7050-T74511 large extrusion appeared

to exhibit somewhat spurious behavior, and suggesting caution when

attempting to predict crack trajectories in materials processed in a manner

that might result in grain heterogeneity or residual stresses.

8.8 Recommendations for Future Work

Among a myriad of possibilities, there are at least two obvious tracks for future

work--application of either the linear elastic or elastic-plastic methods into shell

codes. Due to the work of a colleague [15], the second order elastic theory with

fracture resistance orthotropy has already been implemented into the shell capability
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of FRANC3D. However,theT-stresscalculationmethodis presentlylimited to a

rathercrudedisplacementcorrelationtechniquefor curvedshells. Thedevelopmentof

pathintegralsfor shellapplicationscouldenhancetheaccuracyof thesolution.

With regardto theelastic-plasticmethod,there-mappingtechniquefor plastic

statevariableshasyet to be implementedfor shells. Also, it hasbeenshown[94, 95]

thattheresidualstrengthpredictionusingtheelastic-plasticCTOD methodis

improvedby theuseof abandof planestrainor--better yet--solid elements

immediatelyadjacentto thecrack. Statevariablemappingfor suchconditionshasyet

to beworkedout. Meshsizealongthecrackpathis presentlylimited by themethod

itself to 0.020inches.If oneis analyzinga40 inchcrackin anairplane,theproblem

sizebecomesextremelylarge. In orderfor this to becomepracticalfor realapplications

wheresignificantstabletearingoccursbeforethecrackreachestheregionof interest,it

wouldbeextremelybeneficialif onecoulddirectly specifyafully meshedcracktip

with areasonableestimateof thesteady-stateplastichistorybuilt-in a priori in a

region just preceding the region of interest. The crack could then be grown a short

distance to fine tune the plastic history, and the analysis would be obtained in a more

painless way than developing the elastic-plastic history from scratch.



APPENDIX 1.0

THEORETICALAPPROXIMATIONOFTHE STRAINLOCALIZATION ZONE
SIZEPRECEDINGA CRACK TIP.

In Chapter3, astrainlocalizationconceptwasintroducedto motivatetheuse

of acohesivezoneaheadof thecracktip in acrackturningmodel. In thefollowing, an

attemptis madeto developatheoreticalexpressionto approximatethesizeof the

strainlocalizationzone.

A1.1 StrainLocalizationConcept

A simpletensiletestof a strainhardeningmaterialyieldsthefamiliar

engineeringandtruestress-strainplotsshownschematicallyin Figure3.1. In

accordancewith awell-knownplasticinstability theoryattributedto Considere,the

maximumload,F,occurswhenthespecimenrateof areareductionequalstherateof

strainhardening

dF = o-dA+ Ado"= 0

Rearranging,

do" dA
- = de

o" A

do"
--_o-

de

(Al.1)

(A1.2)

It is equally well established that the point of maximum load (zero stiffness)

also defines the onset of localized deformation or necking in the specimen compliance

becomes infinite, as is implied in Equation (A1. I). All along the specimen a stiffness

of zero is approached as large strains reduce the cross sectional area in an initially

uniform manner. At first this offset by strain hardening, but as the maximum load is
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approached, the stiffness vanishes. Due to some imperfection one segment reaches

that point first, and necking begins there.

Once localized deformation has begun, the location of the future failure of the

specimen has been determined. As fracture develops, the processes which occur after

the onset of localized deformation may differ from material to material, but the location

of fracture is set in a macroscopic sense at the onset of plastic instability.

Assuming strain hardening of the exponential form,

= k,_ m (A1.3)

and substituting this into Equation (A1.2), one obtains the true plastic strain at the

engineering ultimate stress

cut t = m (A1.4)

Noting that S = o'e -_ (where e is the base of the natural log) we obtain from (A1.3)

and (A1.4) the engineering ultimate stress of the material in terms ofk and m

S_,tt = km me -m (A 1.5)

Defining cro as the 0.2 percent offset yield strength, we have k=-Cro(.002)-" and

ooS-_tt (A1.6)

Swift [96] developed similar relationships for plastic instability and necking in

sheet material under tensile plane stress conditions. Necking is also observed in front

of the crack tip, and is believed to play a significant role in crack path formation in

sheet metal.
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A crackgrowingin a thinsheetis illustratedin Figure3.3,with thenecking

regionshownin thevicinity of thecracktip well within theboundsof theplasticzone,

sinceneckingmustoccuraftersomeplasticdeformationasin thetensiletest. It is

furtherassertedbasedonobservationthatthecrackwill eventuallydevelopalongthe

neckingline, andthatthefuturecrackpathis thereforeknownout to theonsetof

necking(barringsomeabruptchangein the loadenvironment).In orderto supportthis

notion,it is observedthatthesectionalload(load/in)distributionaheadof a

propagatingcrackandnormalto thefuturecrackpathmusthaveamaximumafinite

distanceawayfromthecracktip asshownschematicallyin FigureA 1.1.

. °

Sectional

Load

Normal to

Crack

Path, N,,

0

Distance Ahead of Crack Tip, r

Figure A 1.1 Schematic of Sectional Load Distribution ahead of Crack Tip

McMeeking [97], using nonlinear finite element computations, has shown this

to be true for the self-similar plane strain stationary crack due to crack blunting. The
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sectionalloaddistributionof FigureA 1.1is alsosupportedby theargumentthatall

realmaterialsmustexhibitstrainsofteningbehavioracrossanyrealfailure interface

downto zeroload. Strainsofteningisa resultof theadvancedstagesof deformation

localization,includingvoid growthandcoalescencefor metallicmaterials.Theinterface

hasfinite residualstrengthuntil the lasttwo atomsof agiveninterfaceseparate,(and

evenasthey separate,theydosowith a smoothload/displacementrelationship).

Giventhattheatomicbonds,evenin atensiletest,mustbreakin somesequence,and

cannotseparateatexactlythesamemoment,it follows thatin the limit of absolute

displacementcontrolthefailureof anyinterfacecouldbedefinedasaquasi-static

progressionof damageastheloaddropssmoothly(at somescale)to zero. Thefailure

interfaceof aslow stabletearinginterfaceapproachesthis limit of absolute

displacementcontrol[98]

It isnow suggestedthatin amannerequivalentto theConsiderecriterion

mentionedpreviously,theonsetof localizeddeformationcoincideswith the instability

point definedby

= 0 (A1.7)

where N n is the sectional load normal to the future crack path. It can be argued that for

elastic-plastic strain hardening materials, this point marks the local onset of plastic

instability, whether in plane strain or plane stress. Likewise, one would expect that

the path of localized deformation marks the future crack path just like necking in the

tensile specimen predetermines the eventual failure location. The instability point

marks the end of the known future crack path, and might well represent the point

where the material is "deciding" where it the crack will go next. Presumably as the

crack grows, the instability point would migrate to the location where Nn is maximized.

Thus, the distance from the physical crack tip to the instability point, rc, could be
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consideredasaphysicalrepresentationof thecharacteristiclengthassociatedwith

cracktuming.

A1.2 Theoretical Development

For the purposes of this study, the strain localization zone shall be assumed to

be straight, and of approximately constant length for a given material and thickness. In

order to obtain an estimate of the length, the simple case of a self-similar crack will

suffice. For the plane strain case, McMeeking and Parks [99] have shown using a large

deformation analysis that the maximum stress occurs for materials with moderate

strain hardening at a distance approximately given by

J
r_ = -- (al.8)

O"o

where for small scale yielding and mode I loading, the strain energy release rate J, is

related to the stress intensity factor by

j = K.____/2
E

Thus for plane strain we may write

rc_
tYoE

It should be cautioned, however, that while this expression is a reasonable estimate for

T=0, it has been shown [82] that for plane strain, the distance to the maximum stress

point varies with the T-stress, particularly if it is negative. Also, void growth was not

considered, and could result in a longer distance to the peak stress point if it takes

place prematurely.

For the plane stress case, thickness strain (necking) is possible. We can thus

rewrite (A1.7) as

(A1.9)

(AI.IO)
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dN n = dN o = tdcr o + crodt = 0 (Al.ll)

dcr.____o= _ dt = _aez (A 1.12)
(7 o t

Assuming incompressibility,

-aEz= aeo(1+ p) (Al.13)

_r
where p =

_0

Using the Von Mises yield condition, the differential equivalent strain can be expressed

as

)d_: = dr;o 1 + p + p2 (A1.14)

Combining (A1.12), (A 1.13), and (A 1.14) and noting that for a constant p, the

d_ dcr o
equivalent stress conforms to the equality -=-=- we obtain

G G o

(Al.15)

Employing an exponential strain hardening relationship for the equivalent stress and

strain similar to (A1.7), we obtain the critical strain and stress at the instability point.

- 2m(l+p+P2) (Al.16)

Ecrit = _/-3(1 + p)

[2m(l+p+ p2)] m

°'crit=k[ _---_p'_ J
(Al.17)
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Assumingtheneckingregionin planestressissomewhatlargerthanthecrack

bluntingeffectedzonein planestrain(whichwill beobservedhereafter),wecanobtain

anestimateofo basedon theHutchinsonRiceRosengren(HRR) asymptoticfield for

planestresscracksin strainhardeningmaterials[34, 35]. This inherentlyinvolvesthe

assumptionof proportionalflow, whichfor apropagatingcrackis lessthandesirable.

Directly aheadof astraightpropagatingcrack,theflow shouldbe fairly proportional,

but thedeviationfrom proportionalitywill haveanunknowneffectontheresults

forwardof thecrack. Also of concernis thefact thattheHRR field is derivedbasedon

the assumptionof smallstraintheory. Thevery existenceof plasticinstability is by

definitionalargestraineffect. Nevertheless,McMeekingandParksdid observein

their analysisthattheplanestrainHRR field wasvalid up to thepoint of maximum

stress.Notealsothattruestressandstrainandengineeringstressandstrainarefairly

closeup until plasticinstability for moststructuralmaterials.

Proceedingwith theabovecautionsin mind,theeffectivestressgivenby the

HRR solution,writtenherein termsof the far field stressintensityfactor,is

1

F K_ l.+,

OoL. j ae(n'O)
(Al.18)

case.

strain hardening parameters from Equation (A 1.7) by

For 0 = 0, Hutchinson normalized the ae term to unity for the plane stress

The Ramberg-Osgood material parameters o_and n are related to the exponential

: E \l/n
a 0-1/.)[ |

k= o kS) (A1.19)

m = lln (A1.20)
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Hutchinsongivesnumerical results for I, and p which are functions of the

exponent n. For the propagating crack, we may assume that Kt is equal to the

propagating value, which for stable tearing may be denoted Kc. We may thus

approximately equate (24) and (25) at r = re, and to obtain after some rearrangement

(n+i)

L,_<,o_: _l (A1.21)

Equation (A 1.21) can be combined with equations (A 1.5), (A 1.19), and

(A 1.20) to obtain an expression in terms of the engineering ultimate strength

"<= S.e""LS,,,tG
(A1.22)

For n < 7, p makes little contribution, and In is nearly linear at least up to the

maximum value of n = 13 given by Hutchinson, and probably well beyond. Thus, in

this range we can further approximate with no significant loss of accuracy

._ iF
r_ iT) t((3.38-.o39n)e'/"JLs, t,EJ

(A1.23)

If a suitable value for n is not available, one can obtain an approximation using

the ratio of yield and ultimate strength from the implicit equation

or<, = (.002ne)l/.
S, lt

(AI.24)

which was obtained by combining equations (A1.6) and (A1.20).
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A1.3 CalculatedValues

Calculatedrc values for 2024-T3 and 7050-T7451 aluminum alloys are

given in Tables A1.1 and A1.2 respectively, based on Equations (A1.23) and

(A1.24). For the 2024-T3 sheet, the mechanical properties are B basis values from

MIL-HDBK-5G [100] corresponding to the load orientation, and the fracture

toughness is the maximum R-curve value obtained based on 48 inch wide R-curve

panels reported by Gruber et al [101]. The 7050-T7451 data is from the IAS lot

of 1.5 inch plate, with the fracture toughness based on R-curves in 0.090 inch thick

specimens cut from the plate [93]. Despite many obvious shortcomings in the

preceding development, the calculated values appear to be fairly reasonable.

Table Al.1 Calculation of rcfor 2024-T3

0.063 inch, 2024-T3 clad sheet

Crack Sy

Orient. (ksi)

T-L 42

Sul t n g c

(ksi) (ksi_/in)

62 8.04 180

E

(ksi)

10500 0.050

r c

Plane Stress

(in)

0.098

Table A 1.2 Calculation of rcfor7050-T7451

7050-T7451 Plate machined to sheet

(IAS Lot release and R-curve data)

Crack Sy Sutt n Kc

Orient. (ksi) (ksi) (ksi_/in)

L-T 68.0 77.4 18 108

T-L 68.3 76.9 19.1 83

E Kc2/S,q,E
(ksi) (in 1/2)

10300 0.0146

10300 0.0087

rc

Plane Stress

(in)

0.080

0.051



APPENDIX 2.0

MIXED-MODE TRACTION RELATIONSHIP FORCOHESIVE SLANT CRACK

A crosssectionof thecohesivezonefor aslantcrackin a thinsheetloaded

globallyinmixedmodeII/I is illustratedin FigureA2.1wherethe s and n axes are

defined as in Figure 3.4a, The cohesive interface may be modeled as the q-s slip plane,

deforming in shear according to the Tresca yield criterion with a shear flow stress "to.

Local crack flank relative deflections are of mixed-mode IUIII character, and are related

to the global mode II/I relative deflections by

Au---L= Aus (A2.1)
Au n AUq sin a

The principal shear strain acts at a (small) angle

_, = tan_l Au__.__z_ -_ Au s sin o¢ (A2.2)

AUq AU n

measured from the q axis within the q-s plane. Assuming proportional loading, the

principal shear stress, %, also acts at this angle, thus the shear stress components must

satisfy

"rs= "ro sin (

Tq = _'o COS

(A2.3)

Hence for small

_'---L_-_ ( (A2.4)

I'q

whence we obtain from Figure A2.1 and Equations (A2.2) and (A2.4),
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_', "cssincz AULsin 2" = - a (A2.5)
_n _q Aun

Recognizing that Ts<<Tn, we observe that the maximum shear stress occurs at

_=rc/4. Thus the value of c defined by equation (3.36) for this case is

c= sin2(4) = 1-2 (A2.6)

Z

(s-axis runs normal to

plane of drawing)

Figure A2.1 Schematic of Tractions on Cross-Section of Slant Crack Cohesive Zone



APPENDIX 3.0

DERIVATION OF STRESS INTENSITY SOLUTION FOR MODE II LOADED

DCB SPECIMEN

Consider a linear elastic DCB specimen loaded in pure mode II as shown in

Figure A3.1

2h

1

Figure A.3.1 Mode H Loaded DCB Specimen

We define the energy release rate as given by Irwin [102, 103],

-dl-I
G - (A3.1)

dA

where dA is an increment of new crack area (half of the new free surface area of both

upper and lower surfaces) created by an incremental crack extension,

dA = tda (A3.2)

I-I is the potential energy supplied by the internal strain energy and external forces,

respectively

FI=U-F (A3.3)
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When applying a constant load, P, a crack opening displacement, A, occurs between

the points of load application, thus

F= PA

U = PdA = PA

Thus

H = -U = -_F
z (A3.4)

We now idealize the upper half of the specimen as a beam, and decompose the

loading into two components, statically equivalent to the actual loading, as shown in

Figure A3.2.

Case: 1 2

a _ M=Ph/2

Figure A.3.2 Statically Equivalent Load Components

Applying superposition of load cases 1 and 2, and multiplying by two to include

energy contributions from both upper and lower surfaces, we can combine (A.3. l) and

(A.3.4) to obtain

G- ev 2(ev, +dv )
dA - dA =t\-d-_a -d-a-a# (A3.5)

From beam theory, we can write

dU 1 _ ½ Peda p2

da da = 2Eht
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dU 2 _ ½MdO_ M 2 (Ph/2) z 3p 2

da da 2El 2E(th 3/12) 2Eh

Substituting these expressions back into (A3.5), we obtain

a_

4p 2

Eht z (A3.6)

from which the stress intensity factor is obtained as

Kt/= G_-__ 2P
(A3.7)



APPENDIX 4.0 TABULATED DCB/SDCBTEST DATA

Table A4.1 Tabulated Tensile Stress-Strain Curves

for Use in Elastic-Plastic Analyses

7050-T7451 7475-T7451

Plate Plate

Strain Stress Strain Stress

(in/in) (Ksi) (in/in) (Ksi)

0.00000 0.00 0.00000 0.00

0.00648 66.70 0.00635 65.40

0.01007 67.92 0.01007 66.32

0.01997 70.87 0.02011 69.35

0.03018 72.45 0.03021 71.03

0.04016 74.09 0.04013 72.80

0.05058 75.30 0.05052 74.10

0.06003 75.96 0.06001 74.85

0.07765 76.40 0.06982 75.28

0.20000 76.40 0.08009 75.40

0.20000 75.40

Notes: Curves were developed from median IAS tensile specimens. First segment of

each curve is defined by the MIL-HDBK-5 modulus up to the yield strength of the

specimen, after which the points follow the test data up to the maximum stress. An

additional segment indicates constant stress after the maximum stress is reached,

because FRANC2DL cannot handle strain softening. Engineering stresses and strains

specified.
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Table A4.2 Summary of 7050-T7451 Fatigue Crack Turning Tests (Set#l)

Crack Thickness w

Specimen rc-LT-15-2 Front Type (in) (in)
flat 0.0917 11.996

Load AN x ave y ave _urvilinea_ Aa/AN Durvilinem

(Ib} (in) (in) Aaavg (in/cycle) a (in)
(notch) 0 2,004 0.000 2.004 2.004

320 5000 2,031 0,000 0,027 5.40E-06 2,031

320 4000 2.059 0.000 0.027 6.87E-06 2.059
368 6000 2.126 0.003 0.068 1.13E-05 2,126

368 6000 2.197' 0.000 0,071 1.18E-05 2.197

368 8000 2.284-0.001 0.087 1.09E-05 2,284

368 15000 2.475 0.007 0.191 1.27E-05 2.475

331 4000 2.512 0.006 0.037 9.25E-06 2.512

350 10000 2.626 0.022 0.116 1.16E-05 2.627

350 10000 2.755 0.052 0.133 1.33E-05 2.760
350 5000 2.830 0.073 0.077 1.55E-05 2.837

350 5000 2,903 0,095 0,076 1.53E-05 2,914

350 5000 2.981 0.132 0.086 1.72E-05 3.000
350 5000 3.063 0.175 0.093 1.87E-05 3.093

350 5000 3.163' 0.230 0.114 2.28E-05 3.207
350 5000 3.2591 0.290 0.113 2.27E-05 3.320

350 5000 3.367 0,377 0.138 2.76E-05 3.458

350 3000 3.432 0,438 0.090 2.99E-05 3.548

350 3000 3.499 0.514 0.101 3.35E-05 3.649

350 3000 3.582 0.616 0.132 4.40E-05 3,781
350 2000 3,633 0,729 0.124 6,18E-05 3,904

331 1000 3.659 0.772 0.050 5.02E-05 3,954

265 4000 3.690 0.889 0.122 3.04E-05 4.076
212 4000 3.722 0.975 0.091 2.28E-05 4.167

212 2000 3.749 1.044 0.074 3.70E-05 4.241
212 2000 3.764 1.147 0.105 5.23E-05 4.346

212 2000 3,808 1.337 0.195 9.75E-05 4.541

212 500 3.853 1.471 0.141 2.82E-04 4.682

159 1000 3.855 1.507 0.037 3.65E-05 4.718

Failure 3.895 1.700 0.197 n/a 4.916
Failure 3.948 1,900 0.207 n/a 5.122

Failure 3,998 2,200 0,304 n/a 5,427

AK

_ksiqin)

6,99

7.04
8.20

8.36

8.53

8.83

Crack
Curves

_r

2h

(in)
4.799

Theta

(deg)

0.00

0.00
2.12

-2.02

-0.66

2.25

-0.77
7.71

13.30
15.39

17,13
25.08

27.80

28.59

32.22
38.82

43.20

48.63

51.00

65.61

58.84

74.99
69.48

68.99
81.75

76.96

71.18

87.65

78.15
75.29

80,54
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Table A4.2 Summary of TO50-T7451 Fatigue Crack Turning Tests (Set #1)

(Continued)

Crack Thickness w

Specimen rc-TL-15-2 ,Front Type (in) (in)
flat 0.0925 11 .,995

t_K

ksiqin

Load

(Ib)

(notch)
368

368

368

368

368

368

368

368

368

368

368

368

368

368

331

331

331

331

331

331

331

331

314

314

314
314

314

283

283

283

283

283

283
212

212

212

170

170

170

170

170

170

AN x ave y ave Curvilineal Aa/Z_N _,urvilinear

(in) (in) Aaava (in/cycle) a (in)
0 2.003 0,000 2,003 2,003

4000 2.035 0.000 0.032 8.00E-06 2.035

6000 2.115 0.000 0.080 1.33E-05 2.115

10000 2.254 0.000 0.140 1.40E-05 2,254

10000 2,403 0.000 0.149 1.49E-05 2.403

10000 2.570 0.000 0.167 1.67E-05 2.570

10000 2,756 0,000 0,186 1,86E-05 2,756

3000 2.813 -0.003 0.058 1.92E-05 2.813

7000 2,969 -0.003 0.156 2.23E-05 2.969

5000 3.082 -0.003 0.113 2.25E-05 3.082

6000 3.232-0.003 0.150 2.50E-05 3,232

6000 3.402-0.003 0.170 2.83E-05 3.402

4000 3,522 -0,003 0,121 3.01E-05 3,522

5000 3.682 0.019 0.161 3.22E-05 3.683

4000 3.820 0.019 0.138 3.45E-05 3.821

4000 3.916 0.019 0.096 2.40E-05 3.917

6000 4.086 0.019 0.171 2.84E-05 4.088

7000 4.319 0.035 0.234 3.34E-05 4.321

4000 4.457 0.053 0.139 3.47E-05 4.460

4000 4,604 0.065 0.147 3.69E-05 4.607

4000 4.753 0.085 0.150 3.76E-05 4.758

4000 4.915 0.126 0.167 4.18E-05 4.925

3000 5.049 0.162 0,139 4.62E-05 5.063

1000 5.084 0.175 0.038 3.78E-05 5.101

2000 5.170 0.198 0.089 4.43E-05 5.190

2000 5.255 0.231 0.092 4.59E-05 5.282

2000 5.339 0.268 0.092 4.59E-05 5.373

1000 5.383 0.295 0.051 5.09E-05 5.424
1000 5.404 0.308 0.025 2.51E-05 5.449

3000 5.501 0.372 0.116 3.88E-05 5.566

3000 5,623 0.466 0,154 5.12E-05 5,719

2000 5.730 0.558 0.141 7.06E-05 5.861

1000 5.775 0.627 0.083 8.27E-05 5.943

1000 5.829 0.730 0.116 1.16E-04 6.059

1000 5.844 0,745 0.021 2.12E-05 6.080
2000 5.883 0.830 0.094 4.68E-05 6,174

1000 5,894 0,903 0,074 7,44E-05 6,248

1000 5.913 0.919 0.025 2.45E-05 6.273

2000 5.949 1.011 0.099 4.93E-05 6.371

1500 5.977 1.124 0.117 7.80E-05 6.488

1000 6.008 1.280 0.158 1.58E-04 6.647

276 6.014 1.375 0.096 3.47E-04 6.742

121 6,025 1.468 0.093 7.70E-04 6,836

8.09

8.33

8.64

8.99

9,37

9.63

9.86

10.16

10.44

10.79

11,11

11.41

11.73

10.78

11.04

11.44

11.80

12.08

12.37

Crack

Curves

_r

2h

{in)
4.798

Theta

(de.q)

0.00

0.00

0.00

0.00

0.00

0,00

-2.99

0.00

0.00

0.00

0.00

0.00

7.68
0.00

0.00

0.00

3.93

7.66

4.67

7.65

14.20

14.84

20,11

15.06

21.40

23.77

31.35
31.16

33,62

37.73

40.69

56.60

62.44

45.00

65.35

81.11
39.21

68.90

75.90

78.90

86.40
82.91
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Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

r¢-TL- 15-1 rc-TL- 15-4 rc-TL- 15-5 rc-TL- 15-6

1

I Y
0.oo [ 0.00

6.481 0.00
_._41 O.O1

R.._7I O.Ol

6.6oi o.ol
5,541 0.02

8.671 0.04
(_.7ol 0.06

6.721 0.08
6.75z 0.11
8.761 0.14

6.801 O. 16
I

6.821 0.20
6.831 0.24
6.851 0.26

6.861 0.27
6.691 0.31

6.911 0.33

6.931 0.36
6.961 0.39

7.02] 0.46
.... 0.51

•., ,^1 0.54

2 1 2 1 2 1

X X X X X X

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0,0010.01

6.4710.00 0.00 5.3810.00 2.09 2.9910.00 I 3.0510.00 3.9910.0_

6.5010.00 0.03 5.781-0.021 2.10 3.041 0.011 3.061-0.01 4.041 0.0

'1 0.03 _1 6.451-0.041 2.30 3.25 41 3.141-0.04 4.321 0.0

6.621 0.05 0.081 6.591-0.041 2.63 3.341 0.051 3.181-0.05 4.561 0,0

6.661 0.06 0.111 6.751-0.041 2.96 3.871 0.051 3.241-0.05 4.691 0.1

6.71 0.09 0.131 6.881-0.041 3.14 4.131 0.091 3.301-0.04 4.971 0.1

6.741 0.13 0.141 7.07 4.401 0.091 3.421-0.03 5.211 0.1

6.801 0.18 0.131 7.371-0,051 4,56 4.51 0.101 3.911-0.03 5.451 0.1

6.861 0.21 0.191 7.721-0.051 5,44 5.061 0,091 4.261 0,00 5.721 0.1

6.881 0.21 0.221 7.851-0.041 5.55 5.31 0.091 4.541 0.01 5.871 0.1

._1 7.941-0.0; ii 0.111 4.801 0.01 6.041 0.2

6.991 0.31 0.231 7,981 0.001 6.34 5.821 0,121 5.081 0.01 6.181 0.2

7.071 0.41 0.261 8.101 0.011 6.61 6.091 0.121 5.311 0.01 6.401 0.2

7.181 0.51 0.301 8,21 0.061 6.84 6.341 0.141 5.581 0.00 6.551 0.2

7.301 0.67 0.391 8.551 0.081 7.12 6.561 0.161 6.111 0.02 6.631 0.3

7.341 0.70 0.411 8.651 0.081 7.42 6.71 0.171 6.191 0.03 6.991 0.3

7.381 0.75 0.471 8,751 0.101 7.64 6.741 0.191 6.391 0.04 7.141 0.4

7.431 0.82 0.521 8.831 0.141 7.92 6.851 0.211 6.511 0.05 7.281 0.4

2

x y
0.00 0.00

4.00 0.00

4.03 0.01

4.06 0.01

4.10 -0.01

4.13 -0.03

4.29 - ,0.03
4.35 -0.02

4.45 -0.01

4.55 0.00

4.76 -0.01

4,87 0.01

5.00 0.02

5.05 0.02

5.18 0.03

5.35 0.03

5.47 0.04

5.55 0.05

5.69 0.06

5.75 i 0.07

5.87 0.08
5.99 0.08
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Table A4. 3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

(Continued)

rc-TL-15-7 rc-TL-1 5-8 rc-TL-15-9 i rc-TL-15-10

2 1 2 Average I Average

y x y y x y x x y x }, x
0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.60 0.00 6.04 0.00
0.00 4.25 0.00 0.00 5.01 0.00 5.08 10.00 0.00 10.00 0.07
0.00 4.32 0.00 0.02 5.07 0.00 5.11

0.01 4.41 0.01 0.04 5.15 -0.02 5.13

0.03 4.50 0.01 0.06 5.20-0.03 5.63
0.05 4.55 0.00 0.06 5.31-0.02 5._16
0.06 4._9 0.01 0.05 5.47-0.01 5.92
0.08 4.63 0.02 0.07 5.68 -0.01 6.15
0.10 4.69 0.04 0.06 5.87-0.01 6.34

0.12 4.73 0.06 0.08 6.04 0.02 6.55
0,14 4.78 0,07 0.07 6,12 0.03 6.61
0.16 4.81 0.08 0,09 6.23 0.04 6.79

0.19 4.85 0.10 0.06 6.29 0.05 7.00
0.22 4.88 0.13 0.08 6.36 0.06 7.09
0.25 4.91 0.15 0.08 6.44 0.09 7.25
0.28 4.94 0.17 0.10 6.51 0.12 7.44
0.30 4.98 0.22 0.11 6.57 0.19 7.57
0.32 4.99 0.24 0.11 6.70 0.22 7.73
0.45 5.00 0.28 0.13 6.78 0.25 7.81
0.48 5.00 0.43 0.12 6.89 0.32 7.92
0.53 5.00 0.47 = 0.13 6.92 0.41 8.03

0.59 4.99 0.52 0.13 7.00 0.48 8.09
0.64 4.98 0.60 0.15 7.07 0.58 8.18
0.72 4.95 0.67 0.16 7.22 0.66 8.25
0.80 4.93 0.72 0.18 7.36 0.75 8.30
0.92 4.90 0.79 0.23 7.50 0.83 8.36
0.98 4.88 0.85 0.26 7.60 0.94 8.43
1.07 4.85 0.91 0.31 7.75 1.01_ 8.45

1.13 4.83 0.96 0.36 7.65 1.10 8.49
1.18 4,78 1.03 0.46 7.99 1,181 8,51

1.26 4.76 1.08 0.58 8.10 1.26 8.51
1.30 4.73 1.14 0.74 8.221 1.36 8.51

1.35 4.72 1.19 0.93 8.34 1,431 8.52
1.37 4,71 1.24 1.08 8.39 1.49 _ 8.51

1,43 4.74 1.29 1.17 8.43 1.56 8.50
4.74 1.44 1.26 8.431 1.64 8.481.47

1.51 4.74 1.51 1.37 8.43 1.71 8.47
1,60 4.74 1.611 1.46 8.431 1.80' 8.45

1.69 4.75 1.66 1.57 8.41 1,84 8.44
i

1.79 4.77 1.73 1.68 8.39 1.921 8.44

1.89 4,79 1.80 1.76 8.37
1.97 4.80 1.86 1,81 8,36'
2,06 4.81 1.90 1.83 8.36
2.09 4.83 1.93 1.84 8.37

4.84 1.97
4.86 2.03

4.88 2.10
4.90 2,14
4,91 2.17
4.91 2.20

(strait ht) (stra ! ht)
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Table A4.3 Summary of 7050-T7451 Specimen Crack Paths (Set #1)

(Continued)

rc-LT-15- 3 rc-LT- 15-4 rc-LT- 15-5 rc-LT-15-6 2Jl 2 1 2 1 2 11

x V x V Y x V x V x y x x y x y
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.24 0.00 5.46 0.03 0,00 2.12 0.00 2,03 0.00 3,01 0,00 3,00 4,06 0,00 4.10 0,00

4.30 0.01 6.41 0.03-0.02 2.12 0.02 2.06-0.02 3.03 0.01 3.03 4.11-0.02 4.33-0.01
4.70 0.03 6.47 0.05-0.03 2.13 0.04 2.08-0.02 3.08 0.03 3.05 4.62-0.02 4.59_-0.01

4.75 0.00 6.52 0.05-0.04 2.31 0.04 2.42 °0.04 3.17 0.03 3.10 4.70-0.01 4.65 0.00
5.02 0.00 6.58 0.06-0.04 2.41 0.05 2.50-0.02 3,22 0.03 3.18 4.88-0.01 4.89 O.00

5.12 0.02 6.63 0.09-0.04 2,49 0.07 2.59-0.01 3.27 0.05 3.23 5.10-0.02 4.95-0.01

5.41 0.00 6.65 0.13-0.03 2.57 0.12 2.68 0.01 3.31 0.07 3.28 5.53-0.01 5.35-0.01

6.40 0.00 6.67 0.18-0.01 2.65 0.20 2.72 0.04 3.35 0.12 3.31 6.51 0.00 5.50 0.00

6.44 0.01 6.68 0.31 0.02 2.73 0.26 2.76 0.09 3.38 0.21 3.33 6.94 0.00 5.53 0.02
6.51 0.05 6.70 0.49 0.08 2.81 0.34 2.76 0.15 3.41 0.27 3.37 6.96 0.01 6.21 0.03
6.57 0.14 6.72 0.66 0.15 2.85 0.35 2.78' 0.24 3.44 0.38 3.38 7.00 0.03 6.901 0.03

6.62 0.55 6.75 0.85 0.20 2.87 0.54 2.79 0.35 3.46 0.47 3.40 7.03 0.07 6.94 0.03

6.65 0.67 6.78 1.64 0.25 2.90 0.62 2.80 0.44 3.48 0.51 3.42 7.05 0.09 6.96 0.04

6.69 1.39 6.78 2.10 0.38 2.93 0.66 2.82 0.51 3.49 0.69 3.43 7.06 0.15 6.98 0.05

6.72 1.59 6.77 2.21 0.54 2.94 0.92 2.82 0.65 3.50 0.95 3.44 7.06 0.35 7.02i 0.09
6.72 2,10 6.74 2.34 0.65 2,95 1.13 2.831 0.79 3,511 1,01 3.46 7,05 0.37 7,04 0.11

6.72 2.31 6.73 2 35 0.68 2.97i 1.19 2.85 1.07 3.52 1.06 3.46 7,05 0.54 7.04 0.14
6.70 2.36 6.73 2.41 1.14 2.98 I 1.29 2.85 1.11 3.53 1.09 3.46 7.08 0.79 7.05 0.29

6,73 2.39 1.17 3.00 1.36 2.83 1,22 3.53 1.22 3.46 7.09 0,95 7.08 0.32

1.26 3.00 I 1.45 2,86 1.30 3.54 1.33 3.47 7.10 1.17 7.11 0.37

1,29 3.00 1.53 2.86 1.39 3.55 1,41 3,49 7.12 1.39 7.13 0.40

1.40 3.00 1.62 2.86 1.44 3.58 1.51 3.49 7.18 1.77 7.13 0.55

1.57 3.00 1.64 2.87 1.58 3.57 1.63 3.49 7.18 2.03 7,15 0.74

1.66 3.03 1,75 2.88 1,74 3.57 1,71 3.49 7.16 2.21 7,17 0.97

1,75 3,03 1.81 2.89 1.95 3.57 1,96 3.49 7.16 2.27 7.17 1.26

1.86 3,04 1.87 2.90 2.05 3.57 2.13 3.49 7.18 2.36 7.20 1.32

1.98 3.06 1.98 2.90 2.08 3.57 2.27 3.49 7.20 2.39 7.21 1,51

2.09 3.06 2.09 2.89 2.19 3.56 7.23 1.69

2.20 3.06 2.29 3.54 7.26 1.90

2.30 3,05 7.26 1.94
2,35 3.04 7.25 2,15

7.221 2.26
7.211 2.36

7.20i 2.39
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Table A4.3

0.00

0.00

0.03

0.05

0.06

0.10

0.18

0.22

0.50

0.70

1.24

Summary of 7050-T7451 Specimen Crack Paths (Set #1)

(Continued)

tc- rc-LT-15-9

1 1 2

x
0.00 0.00 0.00 0.00 0.0010.0010.001 0.00 0.0,

4.69

0.01

0.02

0.09

4.99 0.03 5.03 -0.02

5.10 0.11 5.10 0.00

0.17

0.25

0.46

0.59

0,74

0.90

1.03

1.13

1.19

1.28

1.51

1.55

5.12 0.24 5.14 0.09

5.12

5.15 0.79 6.18, 0.20

5.15' 1.00 5.26' 0.35

5.15i 1.25 5.271 0.40
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Table A4.4 Summary of 7475-T7351 Specimen Crack Paths (Set #4)

Note: Bold signifies end of static precrack.
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Table A4. 4 Summary of 7475-T7351 Specimen Crack Paths (Set #4)

ed)

|ek

2
2 0.72

3 ¸

3; 1.41
3: 1.56

1.78
1.92
2.09,

Y
0.00

-0.01
-0.0;

-0.01
O.OC

O.OC
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0.00
0.00

-0.00

-0.00

"0,00

0.00

o.oo
0.01

0,01
0.02

0.031
0.04!

0.06;
0.06'

0,06,
0.07(

0.07;
0.093

0.10(
0.11;
0.11f
0.117

0.112
0.12fl
0.129

0.125
Z).121

:).143
).141

).153

Note: Bold signifies end of static precrack.
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