
2/12/00

Title Page

lo

.

.

Title: On Fast Post-Processing of Global Positioning System Simulator Truth
Data and Receiver Measurements and Solutions Data

Place and Date of Presentation: If accepted the paper will be presented at the

Satellite Division of the American Institute of Navigation (ION) 13 th International

Technical Meeting on Global Positioning System (ION GPS 2000) in

September 19-22, 2000 in Salt Lake City, Utah

Name of the presenter:
Semion Kizhner

National Aeronautics and Space Administration,

Goddard Space Flight Center

Electrical Systems Center

Hardware Systems Branch

6/8/00

On Fast Post-Processing of Global Positioning

System Simulator Truth Data and Receiver
Measurements and Solutions Data

Semion Kizhner

National Aeronautics and Space Administration

Biography

Semion Kizhner, an aerospace engineer with the National

Aeronautics and Space Administration (NASA) at the
Goddard Space Flight Center (GSFC), participated in the

development of the Space Shuttle launched Hitchhiker
carrier and payloads such as the Robot Operated Materials

Processing System (ROMPS). He was responsible for
establishing the Global Positioning System (GPS) test

facility at GSFC and supported GPS simulations for
several space projects, such as the OrbView-2 and SAC-A
spacecraft. He is currently developing capabilities to

access spacecrafts as nodes on the Internet and to
accelerate generation of images derived from the EOS
Terra spacecraft MODIS instrument and GOES-8

spacecraft data. He graduated from Johns Hopkins
University with an MS degree in computer science.

Abstract

Post-processing of data, related to a GPS receiver test in a
GPS simulator and test facility, is an important step

towards qualifying a receiver for space flight. Although
the GPS simulator provides all the parameters needed to
analyze a simulation, as well as excellent analysis tools on

the simulator workstation, post-processing is not a GPS
simulator or receiver function alone, and it must be

planned as a separate pre-flight test program requirement.
A GPS simulator is a critical resource, and it is desirable

to move off the pertinent test data from the simulator as

soon as a test is completed. The receiver and simulator
databases are used to extract the test data files for post-

processing. These files are then usually moved from the
simulator and receiver systems to a personal computer

(PC) platform, where post-processing is done typically
using PC-based commercial software languages and tools.

Because of commercial software systems generality their
functions are notoriously slow and more than often are the
bottleneck even for short duration simulator-based tests.

There is a need to do post-processing faster and within an

hour after test completion, including all required

operations on the simulator and receiver to prepare and
move off the post-processing files. This is especially
significant in order to use the previous test feedback tbr

the next simulation setup or to run near back-to-back
simulation scenarios. Solving the post-processing timing

problem is critical for a pre-flight test program success.
Towards this goal an approach was developed that allows

to speed-up post-processing by an order of a magnitude. It
is based on improving the post-processing bottleneck
function algorithm using a priory information that is

specific to a GPS simulation application and using only
the necessary volume of truth data. The presented post-
processing scheme was used in support of a few

successful space flight missions carrying GPS receivers.

Introduction

For several engineering applications there is a need to

perform post-processing on an experiment completion as
part of test data analysis. The engineering application

considered in this paper is post-processing of data, related
to a GPS receiver test in a GPS simulator and test facility.

Although in principle the simulator can be used to analyze
the test data, the GPS receiver pre-flight test program

operations require that the GPS simulator data is moved
off from the simulator to a post-processing platform
immediately alter a test end. Moreover, before this move,

some preparatory time consuming work must be done on
the simulator to extract the required test parameters from
the simulator database to so called truth data file(s). Each

line in such a file contains a timestamp followed by a few

parameters, like position or attitude at that time, and

commas separate the values (*.csv files). Such file
structure is compatible with most commercial data

processing systems input, like Matlab (Trademark of
MathWorks, Inc.) or Microsoft Excel (Trademark of

Microsoft Corporation).

6/8/00

A few hours of simulation may result in megabyte

data files. Post-processing of such large volumes of data
becomes a problem.

The challenge for the GPS simulator system is to

generate these files in real time or allow fast generation
and extraction after a complete simulation. Also it must

have the option to write to these files for a specified node
on a secure Intranet.

Another challenge of a GPS receiver system is to

provide more efficient tools for its archive file parameters
extraction. These challenges even with the expensive GPS

simulators and space flight receiver systems are still
awaiting solution.

The challenge of a pre-flight test program team
is to design and implement a fast post-processing scheme.
Once the simulator and receiver data files are prepared

and moved off to the post-processing platform, post-

processing further involves certain computer operations
such as loading the test data files into arrays,
interpolation, computing residues and statistics, plotting

and printing results. It was learned from experience that
post-processing computations account for more than 90
percent of all post-processing time resources, and that

computations are needed to be accomplished faster by an
order of a magnitude in order to make the post-processing
scheme acceptable.

This paper describes a solution to the post-

processing computational problem and comprises post-
processing overview (1.0), interpolation algorithms and
time complexity overview (2.0), GPS engineering

application post-processing problem specifics (3.0),
problem formalization (4.0), direct lookup interpolation
algorithm applicability (5.0), solution algorithm (6.0), and

description of the timing results (7.0). The algorithm
rationale for GPS position data post-processing, using the

minimal and sufficient amount L of truth data, is provided
in (8.0), followed by conclusions and references.

1.0 Post-Processing Overview

This paper addresses the computational problem on the

precedent of interpolation computing. Interpolation is
related to tests where input (reference) values for some

time points are well known, while output may be
measured at a slightly different set of time points. It is

then necessary to perform interpolation within a subset of
reference values for the measurement time points if we

want to compare measurement results to input stimulus at
approximately the same instant of time.

Traditionally for small data volumes the

standard mathematical tables supplemented interpolation
needs. In research and development some cases of
experiments and tests will result in medium size data

volumes. In such cases post-processing using a computer

and general-purpose functions provided by commercial

software is sufficient. However, general-purpose

functions are notoriously slow. Applications involving
signal data processing, like GPS simulations and imaging

satellite operational telemetry processing, produce large
volumes of data. For example, a few hours of GPS

simulation may result in a 250 Megabyte volume of data

and post-processing time complexity then becomes a
problem. This problem must be addressed within a GPS

receiver pre-flight test program in order for the program
to become viable.

For example, consider the case of the pre-flight

testing program of the Tensor (Trademark of Loral) GPS
receiver for the SSTI/Lewis mission. The GPS receiver

under test was a 1 Hz receiver producing once per second
position and velocity solutions in the Earth Centered
Earth Fixed (ECEF) coordinate frame

{t, x, y, z, dotx, dory, dotz}.

The receiver also produced 1 Hz attitude azimuth,
elevation, height and attitude rate solutions in the

spacecraft centered local geographic frame

{t, az, el, h, dotaz dotel, doth }.

In pre-flight tests, a GPS attitude simulator STR2760

(Trademark of Global Simulation Systems Inc.) was used
to simulate the spacecraft's on-orbit dynamics and the
GPS signals expected to be observed by the receiver's

antennae in orbit. The simulator stored corresponding
truth data position and attitude parameters in its database.

The receiver telemetry was logged to a single archive file
on the receiver control PC. After a test the simulator truth

database parameters and their timestamps were extracted
and written to twelve files. The receiver archive (log) file
was used to extract the receiver solution parameters to 12

corresponding output files. An hour was required to
generate the data files on the simulator and receiver from
corresponding databases and then copy them to the post-

processing platform. The post-processing program dealt
with these 24 files. It was soon discovered that the post-

processing of data for a shift long test was slow and that it
required more than 8 hours to complete the post-

processing for a 6-hour simulation test. This quickly
became a significant problem in completing the test
program on schedule. The performance problem was

traced to the interpolation software algorithm and an
effort to improve it was undertaken. The new algorithm

described in this paper reduced the post-processing time
from 8 hours to 20 minutes and solved the problem.

The ultimate approach that may be taken is to

implement the post-processing bottleneck functions'
algorithms in hardware. This may turn out to be difficult

to do when the software code already exists and is large
or not well documented. Another difficulty will rise when

the software programming language is not conducive for
hardware implementation. In any case, pre-hardware

2

6/8/00

implementation on a Field Programmable Gate Array
(FPGA) platform or Digital Signal Processing (DSP)

board should be preceded, in our view, by the software
algorithm and code analysis with the goal of their

optimization first. This paper presents such analysis and

new algorithm design for a chosen bottleneck function of
interpolation. This paper also demonstrates that a fast

software linear interpolation algorithm is applicable to a

large class of engineering applications. This becomes
possible by using prior knowledge about applications, and

by trivializing the problem as far as possible which
simplifies problem solving. Such a class includes

applications that are using a GPS simulator and test
facility. A GPS simulation carries important a priory
information that allows to optimize the post-processing

bottleneck computations. The tbllowing describes how
this information was used to optimize the post-processing

bottleneck interpolation function.

2.0 Interpolation Algorithms and

Time Complexity Overview

2.1 General Interpolation Algorithm

Overview

There are two parts in any interpolation algorithm:

Part 1) Search for a particular time point t, at
which a measurement was made for the subset of a few

reference values around time t that will be used in the

interpolation at time t. For linear interpolation a subset of
two values is needed, and for a bilinear interpolation more

than two points are required.

Part 2) Compute the interpolate reference value
at time t using the subset of values found above in Part I.

For example, in an engineering experiment a linear

interpolation may involve a function of one variable y(t),
where t is time. Namely, given a vector of known y: y0,

y2...yN-i at increasing times tO, tl tN-1, linearly
interpolate y(t) for time t at which an output
measurement was obtained. The yj are also called input

reference values or just reference values. The times tj and
their corresponding yj may be stored in two one-
dimensional matrices of size N. Pairs (tj, yj) of input

reference times tj and their corresponding yj, where

j=0,1 N-I, may also be considered as points in a plain

rectangular coordinate frame (t, y(t)) as shown to the right
in Figure 1. Figure 3 in Section 8.0 depicts a two-

dimensional interpolation case for a spacecraft orbit. First,
for each measurement time t in a linear interpolation we
search for a subset pair of input reference times, such that

t is inside this pair. This search corresponds to Part I of

the interpolation algorithm, as described above. There are
different ways to implement a search, but they are usually

non-trivial. Then, the found reference points are used to

compute the interpolate value.

2.2 One-Dimensional Linear Interpolation

Overview

First, consider for this example of linear interpolation

that the pair is found and let it be [tl, t2] such that tl <= t
<= t2. The corresponding subset of given reference values

comprises yl = y(tl) and y2 = y(t2). They determine two

points P1 and P2 with coordinates (tl, yl) and (t2, y2) on

the plane (Figure 1). Second, we compute the interpolate
value y = y(t) such that point P(t, y(t)) is situated on the
straight line connecting the two points P1 and P2. This

computation corresponds to Part 2 of the interpolation

algorithm and is quite simple. Indeed, it is known from
plain analytic geometry [4] that the equation of a straight

line, given by two points (tl, yl) and (t2, y2), can be
expressed as

(t- tl)/(t2- tl) = (y- yl)/(y2 - yl) (t)

By multiplying both sides of the equation (1) by (y2 - y l)
we obtain

y- yl = (t- tl)*(y2-yl)/(t2- tl)

Whilst the solution to the linear interpolation for

measurement argument time t is

y= (((y2-yl)/(t2-tl)) * (t-tl))+yl (2)

It can be seen from (2) that computation of y requires 6

operations for a single point interpolation, y can also be

expressed in terms of a sum of scaled values yl and y2

y = ((t - tl)/(t2 - tl))*y2 - ((t- tl)/(t2 - tl))*yl +yl =
((t - t I)/(t2 - t l))*y2 +(-((t - t l)/(t2 - t l))) + !)*y I =

((t - tl)/(t2 - tl))*y2 + ((t2 - t)/(t2 - tl))*yl

or

y = ((t- t l)/(t2 - t l))*y2 + ((t2 - t)/(t2 - tl))*yl (3)

This distance-weighted form of interpolate y requires 9

operations.

0"
_t

6/8/00

Figure 1.1-Dimensional Linear Interpolation

2.3 Two-Dimensional Linear Interpolation
Overview

A function of two variables f(x, y), often encountered in

satellite image processing, may be considered as a real

function of a complex variable f(z), where z = x + iy and i
is the square root of-1. There are different algorithms for

interpolation at a measurement point (x, y). For example,
the known reference arguments (xk, yj) may be stored as

complex numbers (xk + iyj) in a two-dimensional array
[zkj]. The corresponding known real function reference

values fkj may be stored in a two-dimensional array [fkj].
First, the search finds, for example, four points of the

matrix [zkj] that are closest to measurement argument
point (x,y). Let this subset be described by the reference

argument matrix indices {(0, 0), (0, 1), (1, 0), (1, 1)}.
Then the "center" point is assigned the value of the four

points' average, namely value fc, where

fc=¼(f00+t01+fl0+fll)

Point (x, y) belongs to one of the four triangles

comprised by two of the four vertices and the center
point. Let this triangle be comprised by {(0, 0), (0, 1), (cx,

cy)}. The plane through the corresponding three points
{(0, 0, f00), (0, I, f01), (cx, cy, fc)} is used for the
interpolation. The interpolate is found as the point on the

plane that corresponds to argument (x, y). It is known
from solid analytic geometry [4J that a plane passing
through three points

{(x0, y0, z0), (xl, yl, zl), (x2, y2, z2)}

is given by the equation

I x-x0 y-y0 z-z0 I

I xl-x0 yl-y0 zl-z0 1 = 0

I x2-x0 y2-y0 z2-z0 I

(4)

Interpolation value z for argument (x,y) is then found

from this equation. As demonstrated by this example for a
two dimensional case, both Parts 1 and Part 2 of the

bilinear interpolation algorithm are contributing to
algorithm time complexity and the selection of an

interpolation algorithm for a specific application becomes
even more significant compared to one dimensional case.

In another simplified example of a bilinear
interpolation, four neighboring points may be used that

are forming a lxl square. The interpolate is a sum of
weighted distances where each addend is the area of one

of the four rectangles made by the argument point vertical

and horizontal lines inside the grid square and multiplied
by the value of the diagonally opposite point. This

involves near 24 computational operations in the
interpolation algorithm Part 2 for a single point

interpolation. In case when truth data arguments are

given by a well defined and even spaced (in both

dimensions) rectangular grid, the problem formulation is
trivialized. It is directly solved by an algorithm of time

complexity O(n) for both the one-dimensional and two-
dimensional case. However in general, such mitigating

grid constraints are not evident, even if they exist. It is

the challenge of the post-processing design to configure
the engineering problem at hand in a way that a direct

solution of time complexity O(n) becomes possible.

2.4 On One-Dimensional Linear

Interpolation Algorithm Time Complexity

Because computational Part 2 of the linear interpolation is

simple, the complexity of the interpolation algorithm is
attributed chiefly to the complexity of searching for the

subset of reference points as described in Part !. General-
purpose interpolation functions, like the Matlab function

interpl, also easily solve the computational Part 2 of the
interpolation. However, because of such functions natural

generality, their time complexity is attributed to the
complexity of Part 1 or that of a binary search and is of
order O(nlog2(N)) [I]. In other words, if we have N

reference points and n measurement points, the
computational time complexity of a linear interpolation

algorithm is C*n*log2(N), where C is some large
constant. This complexity is typical for an algorithm that
is using a binary search to find the set of reference points.

In takes a binary search in worst-case log2(N) operations
to find the pair of points needed for the interpolation

computing for a time instance t, and it becomes a
formidable problem to process data from even a medium
duration experiment. However, it is known that the lower

performance boundary for linear interpolation is O(n). It
can be achieved when instead of a binary search for the

set in Part 1, a direct table lookup is possible. The latter
improves interpl performance by an order of a magnitude
for a long-duration experiment. The development of the

algorithm for a GPS engineering application, that assures
O(n) time performance, follows. This algorithm is using

the GPS application specifics as a priori information
which allows to optimize the post-processing bottleneck
interpolation function.

3.0 GPS Engineering Application

Post-Processing Problem Specifics

Consider the class of engineering applications such as the
post-processing of data obtained from a terrestrial

laboratory experiment involving a GPS simulator and a

GPS space receiver. The GPS simulator generates a user
specified spacecraft orbit and GPS radio frequency (RF)

signals as would be observed by a GPS receiver on board
the spacecraft. A sketch of such an orbit is depicted in

Section 8, Figure 3. In such a test configuration, the GPS

6/8/00

receiversolutionYrcomponents(RFmeasurementbased
solutions)andthesimulatorinputreferencedata(also
calledtruthdata,thatis thedigitaldatasourceof RF
signalsto thereceiver)mustbecomparedfor identical
timestamps.Theprocessingthatisneededtoevaluatethe
receiverpre-flightperformanceinsimulatedorbitistime
consumingand presentsan operationalproblem.
However,tbraGPSsimulationapplication,theproblem
carriesa fewspecificsthatallowtheprocessspeedup.
Thesearedescribedin theremainderof thissection
primarilyas timingspecificsanda GPSsimulation
operationalconfiguration.

3.1 GPS simulation specifics

The GPS simulator script extracts truth data for post-

processing at times Ts = tO, tl tN-1 while the receiver

produces solutions Yr at time points Tr > 0, that are

generally different from Ts. In order to compare the
receiver solutions with simulator truth data, a linear

interpolation Z_ of the truth data for receiver solution
time points Tr must be determined.

It is specific to this GPS application that GPS

simulators use an operator specified constant interval

A=Ts+I - Ts

for time points Ts = 0, A, 2A...L/A (for an L second
duration simulation we have N time points, where N =

L/A + I). Once this is observed, the attempt to implement

a time complexity O(n) interpolation algorithm becomes

plausible. Nominally A is specified as I second, but can
also be chosen as 0.1 seconds in an attempt to get better

interpolation results for a receiver that produces
solutions at rates higher than 1 Hz. Evidently the

selection of A=0.1 will generate 10 times more data

compared to A= I.
We will demonstrate that tbr a GPS simulation,

which provides some a priori information, the lower
performance boundary O(n) for post-processing linear

interpolation can be achieved. This is mainly because the
GPS application generated truth time is of an atomic time

standard quality that permits interpolation direct lookup.
In addition we have proved that for post-processing of

GPS positional data a minimal size N=L+I seconds (A=I)
of simulation truth data is sufficient in linear interpolation

for any k > 1, k Hz receiver in a near circular low earth
orbit simulation. Following is the more detailed

description of the GPS simulation timing specifics and

problem formalization, as well as Figure 2, that represents
the block-diagram of a GPS simulation test confguration
and related data flow.

3.2 GPS Simulator timing specifics

It is assumed that a common time format, namely that of

the GPS time, is used by the GPS simulator and receiver
under test, and that for post-processing purposes the time
is further transformed to the number of seconds into a

simulation. Timing issues in GPS applications are subtle.
On the GPS simulator the test scenario start time in GPS

time format may be chosen as test time seconds count 0.
This allows continuing counting of seconds into test,

including a GPS week update case. This time count

parameter is stored in the simulator database and can be

requested as the post-processing truth files data
timestamp. On the GPS receiver side, the solution time is
also available in GPS timc format and can be converted to

seconds-into-the-test format by subtracting from it the
simulator test scenario start time. The post-processing

addressed in this paper deals with a complete test, starting
at seconds count 0. The matters become more complex
when a test scenario needs to be restarted at some time

offset ts into the scenario in order to investigate a receiver

problem that is partially attributed to orbit and GPS
constellation state at time ts. This can be handled by

requesting from the simulator database the spacecraft
state vector at time (TO + ts), where TO is the nominal test

scenario start time, and restarting the scenario with a new

start time specified as (T0+ts) and using the state vector at

(T0+ts) for spacecraft orbit initialization.

3.3 GPS receiver timing specifics

On the receiver side, the time complications are usually
attributed to the receiver performance issues. It is often

the case that a time based device performance problem
manifests itself as "a starry sky" phenomenon. For

example, space GPS receivers produce a one pulse per
second analog signal (I PPS) when a position solution
(fix) is attained by the receiver. This pulse is aligned with

the Greenwich Mean Time (GMT) second boundary (GPS
time is also aligned with GMT) within one microsecond

and this pulse may be used for spacecraft clock
synchronization to GMT time. However, if a position fix
is missed because of a performance glitch, even in a

terrestrial test using GPS sky signals, the I PPS output is
not assured. If the edge of the 1 PPS output from a

receiver is compared to an atomic time standard
corresponding edge that was independently aligned on a

GMT second boundary, a spike point (star) will
occasionally appear on the time difference graph. Under-

performance occurrences within a receiver in an orbit
simulation are more prominent and may result in a graph

resembling "a starry sky" or, in other words, "no fix no
time tics". In this paper we are more concerned with a

receiver and its control computer over-performance,

resulting in receiver timestamp duplicates. The duplicates
must be removed in the post-processing initial step,

mainly for computation of meaningful statistics. The
assumption is that the GPS simulator data timestamps and

receiver timestamps that are used as inputs to the post-

6/8/00

processingalgorithmareeachan increasingtimeseries
withoutduplicates,andallreceivertimestampsarewithin
thesimulationtimeinterval.Oncethetimingissuesare
resolved,thesubjectpost-processingconsistsof basic
operations:loadinputdatafilesintoarrays,interpolation,
computethe truth andsolutiondatadifferencesand
statistics,plotandprinttheplots.Theinterpolationin this
basicpost-processingistheonlybottleneckcomputational
operation.Thesolutionof thiscomputationalproblemis
describedintherestofthepaper.

3.4 GPS Application Hardware

Configuration Specifics

The setup for a test within the GPS simulation and test

facility may vary from mission to mission. However, for a
given mission, once the basic setup has been decided

upon, the configuration is frozen and any changes to it are
strictly controlled. Below is the picture of a typical GPS
simulation test program configuration. The truth data
resides on the simulator workstation disk system, and the

receiver telemetry is logged on the receiver control PC.
The receiver solution parameters and corresponding

timestamps may be passed in real-time to the simulator
workstation for recording in the simulator database. The

GPS simulation system configuration carries the specifics
of a closed loop system and this can be used in post-

processing optimization, namely for post-processing files
generation in real-time, and fast transfer to the post-

processing platform using an Ethernet based secure local
area network.

Ethernet Interface, *.csv files

Simulator GPS Simulator

Workstation Resource

Resource,

RF Interface

Generates truth database,

truth data text files {(T_. Y0}

at precise times Ts

Simulator aiding to receiver,

Receiver selective logging

parameters to simulator

Serial Real Time I/1_
lr

l H
,y

GPS Receiver Receiver's Post Processing
Control PC, PC Platform

Telemetry Log file

telemetry-based solution text files {(Tr. Yr)}

Figure 2. GPS Simulator/Receiver Test Setup

4.0 Problem Formalization

Let Y be a function of real variable t, Y=Y(t), and Ys be a

vector of Y(t) function values at argument t values given

by vector Ts or Y_ = Y(T0 for all s. Both vectors (one
dimension matrices) Ts and Y_ are of size N or

s=0,1,2 N-I. The problem is to find a fast linear

interpolation of Y(t) within matrices T_, Y_ at argument

points given by a matrix Tr of size n or r=-0,1,2 n-I.
Matrices T_ and Tr are a priori known to be each an

increasing monotonic time series and such that min(T0 <

Tr < max(TD for all r. The Matlab (Trademark of Matlab)
Version 4.2c.I function interpl(T_, Y_, Tr) easily solves

the interpolation Part 2 of the problem and returns the
solution as a size n matrix Z, = interpl(T_, Ys, Tr).

However, because of its natural generality, interpl Part I

computational time complexity is O(nlog2(N)) and it takes

hours to process not very large experimental test data
files. This is the problem and the solution it to construct a

linear search algorithm that allows direct lookup in the
search for the interpolation set of points. Although N is
not a computational performance factor in a direct lookup

algorithm, any reduction in size N of data, sufficient to
accomplish interpolation within required accuracy, is also

of significant value. It allows running longer duration
tests by using less memory and disc space on a system
where disc space is a critical resource. It also requires less

time in test data file migration off the simulator to a post-

processing PC platform.

5.0 Direct Lookup Interpolation

Algorithm Applicability

Following is the description of the a priori information
used to prove the direct lookup interpolation algorithm

applicability for the class of GPS simulation applications.

5.1 Simulator timestamps as lookup indices

It is a priori known from the GPS application that in an L
second duration GPS simulation Ts is a consecutive count

T_ = 0, ,5, 2A...L/,5 of seconds into the GPS simulation

starting at 0. Although this is a dynamic application, the
time is of an atomic time standard quality and is precise.
This is one of the main reasons that make the direct

lookup possible in this dynamic application because these

timestamps may serve as direct lookup indices.

5.2 1 Hz receiver timestamps as lookup

indices

It is also a priori known that the elements T_ are accurate
times at which the receiver found solutions. These times

6

6/8/00

canbeexpressedasafractionaldecimalnumberK.mmm
whereK issecondsandmmmaremillisecondsrelativeto
theGPSsimulationstarttime.Indeed,K.mmmcanbe
obtainedbysubtractingthereceiverGPStimefromthe
simulatorstartGPStimeinseconds.Thisallowsusingthe
receivertimestamp'snon-zerointegerpartK asadirect
lookupindexintothesimulationtruthdatamatrixYs.It is
knownthatTr(i) isgreaterthan 0 because it takes some
time for a receiver to find the first solution. It is known

that T_(n) is smaller than Ts(N) because the receiver test is

operationally stopped before the simulator test scenario

end. This ensures that K is always within the Ts bounds
and is always a legitimate direct lookup index.

5.3 10 Hz receiver timestamps as indices

For a l0 Hz receiver (a high performance receiver
provides l0 solutions in a second) the matrix T, must be
transtbrmed into a new matrix 10*T_ that is then used in

the algorithm instead of Tr. This expands the algorithm

applicability for high performance GPS receivers.

5.4 Minimum and sufficient volume of

simulation data

It is proved below that for a near circular low earth orbit
the largest positional error of the linear interpolation

within a second of simulation time points pair [T_, T_+_],

where T_ < Tr < Ts+b is far smaller than the required
receiver accuracy for position solutions Y_(T0. This
allows for a k Hz receiver with k > I to restrict the

necessary size of the position truth data matrix Y_ to the
minimum, namely to the use of data for time counts of

seconds Ts = 0, I, 2...(N-I). As a consequence 10 times
less disc space is required for storage of truth position

data files on the simulator, faster downloading of the files
from the simulator to a post-processing PC platform is
possible, and less computer memory is needed to store the
data matrices, compared with unnecessary truth position

data generation at A= 0.1 seconds resolution in a post-
processing script.

6.0 Solution Algorithm

6.1 Direct Lookup Linear Interpolation

Algorithm

n = size(Tr, 2)
% returns number of columns in Tr,

% while size(Tr) gives #rows and #col
for J= l:l:n

K = fix(T_(J)); %returns integer part ofT_ > 0
Zr(J) = (Ys(K+I) - Y_(K)) * (Yr(J) - K) + Y_(K);

% T_=K.mmm for K seconds and mmm milliseconds
End

6.2 Algorithm Discussion

The apparent triviality of the algorithm is deceptive and
the proof of its applicability is more subtle than triviat as

can be seen from preceding Section 5.0. Note that symbol
% in the algorithm denotes a comment. In the above

algorithm the receiver T, timestamp's integer part K is

used trice as the index for a direct lookup of the truth data
matrix Ys. The algorithm expression

(Y_(K+I) - Y_(K)) * (Tr(J) - K)

describes the truth data difference (for a time interval A)

divided by 1000 milliseconds and multiplied by mmm
milliseconds. Matrix Ts is not even used in the new

algorithm because of a priori knowledge of the GPS
simulation integrity. The better than an order of

magnitude performance improvement is achieved in this
algorithm for any of the 12 data type files considered in
the GPS application. These data types were described

above in Section 1 and in [3]. This algorithm is imbedded
in the larger GPS post-processing application algorithm,

that generally comprises the steps described in the
following section.

6.3 GPS Simulation Data Post-Processing

Script

6.3.1 Start the simulation task for duration L seconds with

logging option on both the GPS simulator and receiver.

6.3.2 At time L - 300 seconds stop the receiver and save
the receiver telemetry log file.

6.3.3 At time L the simulator automatically completes the
simulation and saves the simulator truth database single
file.

6.3.4 Run a post-processing script on the simulator to
extract the required twelve parameters of the truth data
with their timestamps to twelve comma-separated files at

specified resolution ,5. This script is a small text file
created by operator in the GPS simulator output control

language, where operator specifies time resolution ,6,
desired for analysis time interval start and stop times,

parameter names and corresponding output file names. As
a result the truth data text files are produced from the

simulator database file, each file containing pairs of a
timestamp and truth parameter value within the specified

time interval. These text files are compatible with major
commercial software systems like Matlab. Move off the

files to the post-processing platform. The simulator
challenge is to further improve this process as outlined in
the Introduction.

6/8/00

6.3.5 Move off the receiver log file to the post-processing
platform and run a vendor provided receiver utility to

extract from the receiver telemetry log file the
corresponding telemetry parameters or solution data, for

example {Tr, Xr} to a comma-separated text file, where Tr
is time of the solution and Xr is the corresponding

solution position or velocity component X in ECEF

coordinate frame. The receiver challenge is to further
improve this process as outlined in the Introduction.

6.3.6 On the post-processing platform run a script (tbr
example a Matlab script) to transform Tr from {Tr. X_}

into form K.mmm by subtracting from it the GPS
simulator scenario start time, where K is seconds and
mmm are the milliseconds into the simulation test. For a k

Hz receiver, where k > 1, the resulting K.mmm must be

multiplied by A=I0. This operation is fully described in
Section 5.3.

6.3.7 Run the post-processing script that invokes the
direct lookup interpolation algorithm described above
in 6.1 for each pair of truth and measurement data

files. This script, when running on the post-processing
platform, will load the simulator truth and receiver

solution data files into arrays, perform the solution data
fast interpolation, compute the truth and solution data
differences (residues) and statistics, plot the results and

print the plots and the statistics.

6.3.8 Use the truth and the interpolate data plots and the

statistics to complete the receiver under test performance
analysis.

All above steps except step 6.3.7 interpolation are of
complexity C + O(n), where C is some time value

required to read in the files and print the plots. Achieving
complexity O(n) in the interpolation step 6.3.7 makes the

entire post-processing application algorithm one with
complexity O(n) and solves this GPS application class
time performance problem.

7.0 Description of Timing Results

Table 1 is summarizing the timing results from tests

performed using a commercial interpolation function and
the proposed algorithm.

N n interpl new speed up

(seconds) algorithm factor
(seconds)

05000 02500 3*60 60 03
10000 05000 5*60 75 04

20000 10000 18"60 67 16
40000 21600 85*60 85 60

Table 1. Algorithms Timing Results

N = 2*n was chosen to account for a twice better

performance of a 200 MHz PC that was used in original
utilization of interpl function. The timing results of
Table ! were obtained on a 100MHz PC for a ! Hz

receiver and truth data set. The interpl and this new

algorithm interpolation results were compared point-by-
point and proved to be identical for a representative test
case. Also note that in the above tests for N = 21600 the

1og2(21600) = 14.382, and thus performance of interpl is
of order larger than 14"C* n.

8.0 Minimum and Sufficient

Volume of Position Reference

Data

We are going to prove that for post-processing of position
data it is sufficient to use a matrix Ys of minimum size L

lbr time points T_ = 0,1...(L-I). L is the GPS simulation
duration in seconds and is the minimum data volume that

allows achieving the required processing accuracy for

position data. This also supports the approach of using
just linear interpolation in simulation data post-processing
of position and attitude data and data rates.

Let]t be the spacecraft orbit motion angle rate as
shown in the following Figure 3. The spacecraft orbit

period P for an orbit with a semi-major axis R, as
described in [2], is

P = 0.000 0165 87 * R -3/emin, where R is in km (5)

Y(K+I) Y(Tr) Y(K)

6R

Figure 3. 2-Dimensional Interpolation Sketch

It can then be observed that

'if2 = 360/(P'60) degrees/second (6)

It can also be shown using circle trigonometry that for the

radial position difference fiR between truth and a linear

interpolation data points, the maximum deviation within a

6/8/00

onesecondinterval(namelyata secondintervalmiddle
point),is

5R= R* (! - cos(7/2)) (7)

For example,for R = 7200 kin, we estimate
correspondentlyfrom(I), (2)and(3)that

P = 101.3366rain
7/2= 0.029deg/sec

_R=0.98m (8)

Since
8R2= (Sx2+_y2+_z2)

it canbeobservedthat

max(li_xl,I_yl,15zl)< 8R (9)

In other words, magnitudes I_xl, I_yl, I_zl of coordinate

component deviations are less or equal than I_RI obtained

in (8), that in turn is better than the required commercial

receiver performance for position accuracy of a few
meters. This proves that the GPS simulator truth position
data components (x, y, z) in ECEF frame, generated at a I

second resolution, are sufficient to perform linear

interpolation for a k Hz GPS receiver, where k > 1 or that

the minimum and sufficient volume of reference position
data is equal to L, the GPS simulation duration in
seconds.

minimum and sufficient volume of truth data required for

post-processing of position rates and attitude data, as well

as in hardware implementation of portions of the post-
processing task using DSP.

References

[I]. A. K. Dewdney
The Turing Omnibus

Computer Science Press, 1989

[2]. Wiley J. Larson and James R. Wertz (editors)

Space Mission Analysis and Design
Second Edition,
Microcosm, Inc and Kluwer Academic Publishers Inc.,
1995

[3]. S. Kizhner, E. Davis, R. Alonso

Pre-Flight Testing of Spaceborne GPS Receivers Using a
GPS Constellation Simulator,

Proceedings of ION G PS '99, 14-17 September ! 999,

Nashville, TN pages 2313-2323

[4]. CRC Standard Mathematical Tables, 26th Edition,

Editor W. H. Beyer, CRC Press, 1981

Conclusions

In a GPS simulation the computational time of post-
processing is a critical resource and is of important

considerations. It has been demonstrated that in the GPS

simulation data post-processing domain, the

computational performance of the considered algorithm is
better than that of general-purpose algorithms by an order
of a magnitude. This algorithm solved the post-processing

problem at the GSFC GPS test facility. It has also been
demonstrated that for a GPS simulation of a near circular

low earth orbit, and for any high performance receiver,
the sufficient size of truth position data files required for

post-processing is also the optimal size L, where L is the
duration of the GPS simulation in seconds. This further

reduced the time required for post-processing. The

algorithm was used in support of pre-flight qualifications
of GPS receivers for many missions including SAC-A [3],

SeaStar, AMSAT and others. It was also implemented in
programming systems, other than Matlab, for example, in

C++. Future work of interest may be in determining the

9

