A method of producing a controlled thermal expansion coat for thermal barrier coatings is disclosed herein. The method includes applying a first bond coat layer to a high temperature substrate, applying a second bond coat layer over the first bond coat layer, and dispersing particles throughout the second bond coat layer. The particles are preferably of a diameter less than the height of the peaks of the second bond coat layer, or a diameter of less than 5 μm. The method of producing the second bond coat layer may include mechanical alloying of particles throughout the second bond coat layer, attrition milling of the particles, or electrophoresis to disperse the particles. In a preferred embodiment of the invention, a ceramic insulating layer covers the second bond coat layer, and the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention, a ceramic insulating layer covers the second bond coat layer.
METHOD OF PRODUCING CONTROLLED THERMAL EXPANSION COAT FOR THERMAL BARRIER COATINGS

This is a divisional of application Ser. No. 08/960,309 filed on Oct. 29, 1997 now U.S. Pat. No. 5,863,668.

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the U.S. Government and may be manufactured or used by or for the U.S. Government for governmental purposes without the payment of any royalties thereon or therefore.

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention pertains to the art of methods and compounds for providing a thermal barrier coating, and more specifically to methods and compounds for providing a thermal barrier coating with enhanced thermal fatigue life through modification of the bond coat coefficient of thermal expansion in targeted regions of the bond coat microstructure.

2. Description of the Related Art

In the past, thermal barrier coatings included two layer coatings that consisted of a MCrAIX bond coat, wherein M=Co, Fe or Ni and where X= a reactive element such as Y, Zr, Hf, Yb, or any other reactive element, deposited onto the substrate, and a ceramic insulating layer deposited onto the bond coat. The ceramic insulating layer was typically a zirconia based oxide ceramic, most often a zirconia partially stabilized with 6-8 weight percent yttria. The bond coat was typically 0.005-0.020 inch thick and the top coat was typically 0.005-0.020 inch thick. For plasma sprayed thermal barrier coatings, which the present invention specifically addresses, the bond coat was prepared with a rough surface to facilitate adhesion of the outer ceramic layer. The bond coat was required to provide oxidation resistance for the underlying substrate, as well as be oxidation resistant to prevent oxidation failure of the thermal barrier coating. The rough surface enhanced adhesion. The roughness also increased the stresses in the region of the interface between the bond coat and top coat.

The thin, two-layer coating described above works well in current applications. However, these coatings lack the thermal fatigue resistance required for future applications that require longer thermal fatigue life. While numerous modifications have been proposed for new ceramic compositions and structures, few or no proposed approaches address the primary concern for higher durability.

Alternate structures for thermal barrier coatings included "thick" thermal barrier coatings that were developed for diesel engines and outer air seals in aircraft turbines. These thick thermal barrier coats were on the order of 0.050 inch to 0.14 inch thick. The constraint developed by the high thickness of these coatings tended to generate higher thermal stresses than in a thin two-layer coating, causing coating failure at thicknesses at short life times. In order to reduce the stress concentration between the thick ceramic and the metal bond coat, these coatings were modified to "grade" the coefficient of thermal expansion of the coating through the thickness of the ceramic layer. The first layer was 100 percent MCrAIX bond coat layer, while layers two through five contained increasing amounts of Yttrium-partially stabilized zirconia and decreasing amounts of MCrAIX. The coatings have also been configured in fewer discrete layers or graded continuously from the bond coat to the top layer. The effect was to gradually alter the coefficient of thermal expansion of the coating from that of the MCrAIX to that of the Yttria-partially stabilized zirconia, thereby avoiding a high stress concentration within the ceramic layer. The concept worked well for the coatings where there was sufficient distance between the bond coat and top coat to allow for strain isolation. However, such a sufficient distance was not always available.

The disadvantages of thick, graded thermal barrier coatings described above are two-fold. The first is simply that the coatings must be thick to achieve the strain isolation as required. While the added weight of a thick coating is not a serious penalty for all applications, added coating weight is clearly a penalty for applications in the rotating parts in gas turbines, specifically aircraft turbines. The added thickness is also detrimental to the aerodynamic nacelles of a turbine blade or vane, especially the trailing edge where a thin total cross section is required. The second disadvantage of thick thermal barriers as they are currently used is that the grading includes certain amounts of isolated MCrAIX within a ZrO₂-Y₂O₃ matrix at some point in the coating. If this layer of the coating is allowed to reach too high a temperature, the MCrAIX will oxidize. Oxidation of the MCrAIX can cause expansion of the ceramic-metallic (cement) layer to such a degree that the coating is destroyed. For a thin coating for high temperature applications, there is insufficient insulation to protect the graded layer from the high temperature and attendant oxidation that will cause failure. For this reason, thick thermal barriers in high temperature applications require the outer insulating layer to be thick enough to insulate the graded layers. However, this type of coating will then become too thick and too heavy to be used in many applications as described above.

The present invention contemplates a new and improved thermal barrier coating which is simple in design, effective in use, and overcomes the foregoing difficulties and others while providing better and more advantageous overall results.

SUMMARY OF THE INVENTION

In accordance with the present invention, a new and improved thermal barrier coating is provided which provides enhanced thermal fatigue life through modification of the bond coat coefficient of thermal expansion in targeted regions of the bond coat microstructure.

In accordance with the present invention, a thermal barrier coating is disclosed for use with a high temperature substrate. The coating comprises a first bond coat layer of MCrAIX wherein M is a material selected from a group consisting of nickel, cobalt, and iron and wherein X is a material selected from a group consisting of reactive elements such as yttrium, zirconium, hafnium, and ytterbium. A second bond coat layer comprises a MCrAIX matrix wherein particles of a particulate are dispersed throughout. The second bond coat is applied to the first bond coat layer. In the second bond coat layer, M is a material selected from the group consisting of nickel, cobalt, iron and mixtures thereof and wherein X is a material selected from a group consisting of reactive elements such as yttrium, zirconium, hafnium and ytterbium and mixtures thereof, the particulate being selected from the group consisting essentially of alumina, yttrium-aluminum-garnet, nickel-aluminum spinel, yttria, and mullite.

According to another aspect of the present invention, a method for producing a thermal barrier coating on a sub-
The thermal barrier coating includes a first bond coat layer and a second bond coat layer. The method includes the steps of applying the first bond coat to the substrate, providing a mixture comprising a ceramic-metallic matrix having particles of the particulate dispersed throughout the matrix for use as a second bond coat layer, and applying the second bond coat layer to the first bond coat layer.

One advantage of the present invention is that well dispersed particles assure uniform properties in the second bond coat layers.

Another advantage of the present invention is that the fine dispersion assures uniform properties of the bond coat within the critical bond coat peak region.

Another advantage of the present invention is that the fine dispersion of particles assures that properties are obtainable in a thin coating, therefore little or no weight penalty is created due to the coating.

Still other benefits and advantages of the invention will become apparent to those skilled in the art to which it pertains upon a reading and understanding of the following detailed specification.

BRIEF DESCRIPTION OF THE DRAWING

The invention may take physical form in certain parts and arrangement of parts, a preferred embodiment of which will be described in detail in this specification and illustrated in the accompanying drawing which forms a part hereof and wherein:

FIG. 1 is a schematic view of a controlled expansion bond coat for thermal barrier coatings according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawing wherein the showings is for purposes of illustrating a preferred embodiment of the invention only and not for purposes of limiting the same, FIG. 1 shows a schematic view of a controlled expansion bond coat for thermal barrier coatings 10 in a preferred embodiment of the invention. The controlled expansion bond coat for thermal barrier coatings 10 includes a high temperature substrate 16, a first bond coat layer 22, a second bond coat layer 28 and a ceramic insulating layer 34. Substrate 16 is typically a superalloy, however, other alloys requiring a thermal barrier coating system may also benefit from the present invention. The first bond coat layer 22 is preferably a layer of MCrAIX, where M is either nickel, cobalt, or iron and where X is a reactive element such as yttrium, zirconium, hafnium, ytterbium, or any other suitable reactive element. The second bond coat layer 28 is a MCrAIX matrix that includes particles 36 of a particulate dispersed throughout the MCrAIX matrix. The properties of the particulate are such that the particulate must have an expansion coefficient similar to the expansion coefficient of ZrO\textsubscript{2}—Y\textsubscript{2}O\textsubscript{3}, or preferably, lower. The particulate must be chemically inert relative to the MCrAIX up to the use temperature of the coating. The particulate must have a low oxidation diffusivity. The particulate must also have thermal stability up to the use temperature. Finally, the particles of the particulate should preferably be discreetly and uniformly distributed in the second bond coat layer 28. The second bond coat layer 28 preferably forms a rough coat having a roughness of 250 μm minimum, represented by peaks 40 in FIG. 1. The particles of the particulate are all uniformly distributed throughout the rough second bond coat layer 28, and therefore, must have diameters less than the size of the bond coat peaks 40, which is approximately 5 μm. The particulate is preferably selected from the group consisting essentially of alumina (Al\textsubscript{2}O\textsubscript{3}), Chromia (Cr\textsubscript{2}O\textsubscript{3}), Yttria (Y\textsubscript{2}O\textsubscript{3}), yttrium-aluminum-garnet, nickel-aluminum spinel, mullite, or any other mixture thereof which yields an oxidation resistant, inert phase with a low thermal expansion coefficient.

The volume fraction of the particulate dispersed in the metallic matrix affects the coefficient of thermal expansion of the second bond coat layer 28. Thus, the volume fraction required to achieve the effect desired in the present invention will vary depending on the actual coefficients of thermal expansion of the MCrAIX matrix, the particulate used in the mixture, and the ceramic insulating layer. The amount of particulate that can be tolerated in the metallic matrix before there is a decrease in other critical properties, such as ductility of the bond coat, also affects the volume fraction of particulate added to the matrix. The volume fraction of particulate required to achieve complete matching of the coefficient of thermal expansion can be easily calculated if the coefficient of thermal expansion of the mixture is assumed to follow a rule of mixtures.

Any method of creating a high volume fraction of finely dispersed particles 36 in the MCrAIX matrix of the second bond coat layer 28 should be capable of providing a thermal fatigue benefit. The method that has been used most often for the present invention to fabricate the particulate containing MCrAIX matrix has been thermal spray of a MCrAIX powder containing a finely dispersed alumina particulate. The powder was fabricated by attrition milling of the particulate material with an MCrAIX powder. Agglomerating processing or spray drying processing may also be used to fabricate powder suitable for thermal spraying.

Other means of introducing a second phase into the matrix are possible. In situ methods for introducing particulate to metal matrix powders may be appropriate as long as a large volume fraction of the particulate can be established.

Other means of applying a uniform deposit of powder to a substrate are possible, in addition to thermal spraying. Slurry deposition and electrophoresis are two examples of processes that may also prove capable of applying the bond coat layers 22, 28.

The following examples of the present invention are intended to be illustrative in nature only and not to be viewed as limiting or defining the scope of the invention.

EXAMPLE 1

Initial studies of the present invention of a controlled expansion bond coat for thermal barrier coatings 10 used Ni-16Cr-6Al-0.3Y as the MCrAIX, and the particulate used was Al\textsubscript{2}O\textsubscript{3}. The effect of attrition milling was to create a powder consisting of a dispersion of submicron Al\textsubscript{2}O\textsubscript{3} particles within a Ni-16Cr-6Al-0.3Y metal matrix. The powder was used for the starting material for low pressure plasma spraying of a second coat layer 28, having a micro structure similar to that for oxide dispersion strengthened alloys, but with a much high volume fraction of the particulate. In this particular example, use of a Al\textsubscript{2}O\textsubscript{3} for the particulate requires a volume fraction of approximately 0.71 with MCrAIX to achieve a near zero mismatch of coefficients of thermal expansion between the second bond coat layer 28 and ceramic insulating layer 34. However, a significant increase in thermal barrier coating 10 life can be achieved with a controlled expansion bond coat with the
and fine.

pox₂.der is a more highly processed powder than MCrAIX.

stitute the roughness of the bond coat. Since the cermet

interface and particulate bond coat, particularly in the bond coat peaks that con-

Howe'over, it is expected that a single layer particulate bond coat has less adherence than a two layer bond coat.

thermal barrier as compared to a coating without particulate. However, thermal barriers or other ceramic coating applied to smooth surfaces may also benefit from the addition of a coefficient of thermal expansion (CTE) matched layer in the bond coat.

The preferred embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods may incorporate changes and modifications without departing from the general scope of this invention. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.

Having thus described the invention, it is now claimed:

1. A method for producing a controlled expansion bond coat for thermal barrier coatings on an associated substrate, said thermal barrier coating consisting of a first bond coat layer of MCrAIX wherein M is a material selected from the group consisting of nickel, cobalt, iron, and mixtures thereof and wherein X is a material selected from the group consisting of yttrium, zirconium, hafnium, ytterbium, and mixtures thereof, and a second bond layer coat interfacing with said first bond coat layer consisting of a MCrAIX matrix and particles of a particulate dispersed throughout said MCrAIX matrix wherein M is a material selected from a group consisting of nickel, cobalt, iron, and mixtures thereof and wherein X is a material selected from the group consisting of yttrium, hafnium, ytterbium, and mixtures thereof, said particulate being selected from the group consisting of alumina (Al₂O₃), chromia (Cr₂O₃), yttria (Y₂O₃), yttrium-aluminum garnet, nickel-aluminum spinel, and mixtures thereof, said second bond layer coat having an associated coefficient of thermal expansion, and a ceramic insulating layer consisting of ZrO₂—Y₂O₃ interfacing with said second bond coat layer, said ceramic layer having an associated coefficient of thermal expansion being substantially matched to said associated coefficient of thermal expansion of said second bond coat layer, said method consisting of the steps of:

(a) providing a mixture comprising said matrix having particles of said particulate dispersed throughout said matrix for use as said second bond coat layer;

(b) applying said second bond coat layer to said first bond coat layer; and

(c) applying said ceramic insulating layer to said second bond coat.

2. The method of claim 1 wherein the step of providing a mixture comprising said matrix having particles of said particulate dispersed throughout said matrix for use as said second bond coat layer comprises the steps of:

(a) employing mechanical methods to disperse said particulate throughout a powder comprised of of MCrAIX matrix and applying the resulting powder to said associated substrate to form a coating.

3. The method of claim 2 wherein the mechanical methods includes:

(a) stirring the matrix with said particulate.

4. The method of claim 2 wherein the mechanical methods includes:

(a) attrition milling said matrix with said particulate.
5. The method of claim 2 wherein the mechanical methods includes:
spray dry processing said matrix with of said particulate.

6. The method of claim 1 wherein the steps of applying said first and second bond coat layers comprises:
using electrophoresis to deposit said first and second bond coat layers.

7. The method of claim 1 wherein the step of applying said first bond coat layer to said substrate comprises the step of:

8. The method of claim 1 wherein the step of applying said second bond coat layer to said first bond coat layer comprises the step of:
thermal spraying said second bond coat layer onto said first bond coat layer.