A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo
Langley Research Center, Hampton, Virginia

July 2000
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo
Langley Research Center, Hampton, Virginia

July 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at (301) 621-0134

- Phone the NASA STI Help Desk at (301) 621-0390

- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at (301) 621-0134

- Phone the NASA STI Help Desk at (301) 621-0390

- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo
Langley Research Center, Hampton, Virginia
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo
Langley Research Center, Hampton, Virginia

July 2000
A 3-D Coupled CFD-DSMC Solution Method With Application To The Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo

Aerothermodynamics Branch, NASA LaRC, Hampton, VA, USA, 23681-2199

Abstract. A method to obtain coupled CFD-DSMC, 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.

INTRODUCTION

Different computational methods are needed to determine the aerodynamic and aerothermodynamic characteristics along the entire flight trajectory for aerospace vehicles ascending to orbit or descending through an atmosphere to a planet’s surface. Predictions at high altitudes corresponding to the rarefied flow regime are usually accomplished using probabilistic methods such as direct simulation Monte Carlo (DSMC) [1], and predictions at lower altitudes corresponding to the continuum regime use deterministic methods such as computational fluid dynamics (CFD) [2]. However, in a mixed transitional flow regime with rarefied and continuum conditions, such as blunt body wakes, sharp leading edges, and expanding reaction control system plumes, a combination of both techniques can provide a predictive method that exploits the advantages of each technique in its suitable flow domain.

This study presents an approach that is applied to a vehicle encountering mixed transitional and continuum flow, namely the Mars Sample Return Orbiter (MSRO), which is part of the Mars Sample Return project. The project’s mission is to return surface material from Mars back to Earth. The MSRO vehicle has as its payload the Earth Entry Vehicle (EEV) and the associated sample material transfer hardware. To be placed into Mars orbit, the MSRO vehicle is to perform a controlled, single-pass aerocapture maneuver in the Martian atmosphere; thus, the vehicle or portions of the vehicle are subjected to flow in the transitional regime at various times during the aerocapture portion of the trajectory. One MSRO vehicle concept consists of an Aeroassist Flight Experiment (AFE) [3] type aeroshell forebody with the payload located behind the aeroshell. Ideally, the payload is contained within the vehicle wake, which minimizes payload exposure to contamination and large aerodynamic and aerothermodynamic loads. However, numerical studies are needed to quantify the wake flow and confirm whether shear layer impingement occurs and adequate protection is provided.

To quantify blunt body wake flow, a recent report of the AGARD Fluid Dynamics Panel Working Group 18 (WG 18) activity of computational and experimental hypersonic blunt body flows was published [4], which outlines activities supported to both define the physics of such flows and provide the results to apply to the design of future planetary vehicles. The blunt body configuration employed was an axisymmetric, 70-deg blunted cone with a circular shoulder blended into an aft flat section normal to the flow direction (\(\alpha = 0^\circ \)). The flat aft section is attached to a sting section for tunnel support and to provide basic understanding of the wake closure location of the various test points. When subjected to a hypersonic flow, the configuration yields a flow field that is compressed by the forebody and expands rapidly about the shoulder forming a wake region, which closes on the sting.

Various comparisons for the blunted cone configuration have been made; for example, Navier-Stokes and DSMC results of Mach 20, low density wind tunnel condition are presented and compared in [5] and experimental and Navier-Stokes results of Mach 10, low density air are presented and compared in [6]. The primary goal of [6] was
A 3-D Coupled CFD-DSMC Solution Method With Application To The Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnooffo

Aerothermodynamics Branch, NASA LaRC, Hampton, VA, USA, 23681-2199

Abstract. A method to obtain coupled CFD-DSMC, 3-D flow field solutions for highly blunt bodies at low incidence is
presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique.
CFD is used to solve the high density blunt forebody flow defining an inflow boundary condition for a DSMC solution of
the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow
field is modeled in an appropriate manner.

INTRODUCTION

Different computational methods are needed to determine the aerodynamic and aerothermodynamic
characteristics along the entire flight trajectory for aerospace vehicles ascending to orbit or descending through an
atmosphere to a planet’s surface. Predictions at high altitudes corresponding to the rarefied flow regime are usually
accomplished using probabilistic methods such as direct simulation Monte Carlo (DSMC) [1], and predictions at
lower altitudes corresponding to the continuum regime use deterministic methods such as computational fluid
dynamics (CFD) [2]. However, in a mixed transitional flow regime with rarefied and continuum conditions, such as
blunt body wakes, sharp leading edges, and expanding reaction control system plumes, a combination of both
techniques can provide a predictive method that exploits the advantages of each technique in its suitable flow
domain.

This study presents an approach that is applied to a vehicle encountering mixed transitional and continuum flow,
namely the Mars Sample Return Orbiter (MSRO), which is part of the Mars Sample Return project. The project’s
mission is to return surface material from Mars back to Earth. The MSRO vehicle has as its payload the Earth Entry
Vehicle (EEV) and the associated sample material transfer hardware. To be placed into Mars orbit, the MSRO
vehicle is to perform a controlled, single-pass aerocapture maneuver in the Martian atmosphere; thus, the vehicle or
portions of the vehicle are subjected to flow in the transitional regime at various times during the aerocapture
portion of the trajectory. One MSRO vehicle concept consists of an Aeroassist Flight Experiment (AFE) [3] type
aeroshell forebody with the payload located behind the aeroshell. Ideally, the payload is contained within the
vehicle wake, which minimizes payload exposure to contamination and large aerodynamic and aerothermodynamic
loads. However, numerical studies are needed to quantify the wake flow and confirm whether shear layer
impingement occurs and adequate protection is provided.

To quantify blunt body wake flow, a recent report of the AGARD Fluid Dynamics Panel Working Group 18
(WG 18) activity of computational and experimental hypersonic blunt body flows was published [4], which outlines
activities supported to both define the physics of such flows and provide the results to apply to the design of future
planetary vehicles. The blunt body configuration employed was an axisymmetric, 70-deg blunted cone with a
circular shoulder blended into an aft flat section normal to the flow direction ($\alpha = 0^\circ$). The flat aft section is
attached to a sting section for tunnel support and to provide basic understanding of the wake closure location of the
various test points. When subjected to a hypersonic flow, the configuration yields a flow field that is compressed by
the forebody and expands rapidly about the shoulder forming a wake region, which closes on the sting.

Various comparisons for the blunted cone configuration have been made; for example, Navier-Stokes and DSMC
results of Mach 20, low density wind tunnel condition are presented and compared in [5] and experimental and
Navier-Stokes results of Mach 10, low density air are presented and compared in [6]. The primary goal of [6] was
an axisymmetric study, but during the Mach 10 experiment angle-of-attack, \(\alpha \), of the blunt body was varied \(\pm 20^\circ \) to yield forebody and afterbody (sting) heating. As the angle of attack was changed, windside sting heating increased by over a factor of 2 and the location of maximum heating moved upstream towards the blunt body base [6]. Several other important conclusions of the WG 18 activity [4] are that the Navier-Stokes solutions of the wake region match those of the DSMC for Knudsen number based on the free stream conditions and appropriate body length (forebody diameter), \(K_n \), less than a value of about 0.001; that functional relationships exist between the flow rarefaction (\(K_n \)) and the strength of the wake vortical flow; and the locations on the afterbody (sting) of free shear layer impingement and of maximum heating are not the same (These results are also shown in [5]).

The basic features of the flow field and surface produced by the axisymmetric configuration (i.e., blunt body flow compression, rapid expansion of a thermally excited, non-equilibrium flow to a rarefied condition, closure of the wake by shear layer convergence, and differences on the afterbody in shear layer impingement and maximum) should be qualitatively similar to those of the MRSO during its Mars aerocapture trajectory. However, to provide quantitative flight results for a three-dimensional configuration such as the MSRO, a numerical computation using the most reliable predictive methods is needed. The flow field and corresponding surface pressure and heating distributions for the axisymmetric case can then be employed to provide a qualitative comparison or a so called “sanity check” of features of the full three-dimensional configuration.

SOLUTION METHODOLOGY

A combination of rarefied and continuum methods is needed to properly analyze flow fields having continuum, transitional, and rarefied regions. The physical nature of the flow field dictates the proper treatment of the boundary between the continuum and rarefied portions. For example, solution methods for unsteady flow containing both continuum and rarefied regions must strongly couple the two so that information can be transferred between them [7]. The boundary for this case must track temporal and spatial fluctuations between the regions. However, for an assumed steady flow field solution with a region of continuum fluid expanding into a rarefied region, such as shown in the studies presented in [8-10], the continuum region is obtained with CFD, which in turn provides an inflow boundary for a DSMC solution domain. By combining the continuum and non-continuum solutions, flow fields with order of magnitude changes in density from continuum to rarefied flow can be obtained without the complexity of strong coupling, but with the advantage of using the best method in each region.

Comparisons between fully coupled and zonally decoupled solutions of forebody and afterbody flow about an axisymmetric blunt body are presented in [10]. The fully coupled solution consisted of an overlap region between the CFD and DSMC portions of the flow to account for the non-equilibrium condition of the flow as it expands about the forebody to the wake region. The zonally decoupled solution used the equilibrium temperature of the CFD as the inflow DSMC overall temperature. Results from [10] show that the zonally decoupled solutions adequately defined the wake flow when compared to the coupled solutions. In addition, for the conditions of [10], no significant difference in the mean-flow wake properties were produced by not including the non-equilibrium effects at the CFD-DSMC interface. Therefore, an approach similar to the zonally decoupled method of [10] is employed for the present study.

The current approach for 3-D flow field modeling of the MSRO is to apply the continuum analysis of CFD using the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code [11] to the high-density blunt forebody flow field region of the aeroshell and the molecular analysis of DSMC using the DSMC analysis code (DAC) [12] to the afterbody wake flow field. Shown in Fig. 1 is a side view of the MSRO configuration with the interface between the CFD and DSMC portions of the flow field shown as the solid line dividing the regions at the aeroshell lip. The cavity behind the forebody aeroshell shown in the figure, which forms a bowl-like shape with flow reversing direction if it follows the inner shell geometry, is contained in the DSMC portion of the solution domain. The planar CFD flow field variables at the interface provide an inflow boundary condition for the DSMC wake flow field simulation. A planar surface was chosen to divide the two computational regions to primarily capture the expanding flow about the aeroshell lip as the sharp-edged lip between the forebody and afterbody provides a natural transition between continuum and rarefied treated regions, and secondarily because of ease of setup and implementation of the scheme.

In addition, to model the wake flow field about a 3-D configuration with a near continuum free stream condition (\(K_n \approx 0.001 \)), a DSMC computation that includes a fully adapted grid behind the plane at the aeroshell lip would require an exorbitant number of simulated molecules and be too costly in both computational resources
an axisymmetric study, but during the Mach 10 experiment angle-of-attack, α, of the blunt body was varied ±20° to yield forebody and afterbody (sting) heating. As the angle of attack was changed, windside sting heating increased by over a factor of 2 and the location of maximum heating moved upstream towards the blunt body base [6]. Several other important conclusions of the WG 18 activity [4] are that the Navier-Stokes solutions of the wake region match those of the DSMC for Knudsen number based on the free stream conditions and appropriate body length (forebody diameter), Kn_L, less than a value of about 0.001; that functional relationships exist between the flow rarefaction (Kn_L) and the strength of the wake vortical flow; and the locations on the afterbody (sting) of free shear layer impingement and of maximum heating are not the same (These results are also shown in [5].).

The basic features of the flow field and surface produced by the axisymmetric configuration (i.e., blunt body flow compression, rapid expansion of a thermally excited, non-equilibrium flow to a rarefied condition, closure of the wake by shear layer convergence, and differences on the afterbody in shear layer impingement and maximum) should be qualitatively similar to those of the MRSO during its Mars aerocapture trajectory. However, to provide quantitative flight results for a three-dimensional configuration such as the MSRO, a numerical computation using the most reliable predictive methods is needed. The flow field and corresponding surface pressure and heating distributions for the axisymmetric case can then be employed to provide a qualitative comparison or a so called “sanity check” of features of the full three-dimensional configuration.

SOLUTION METHODOLOGY

A combination of rarefied and continuum methods is needed to properly analyze flow fields having continuum, transitional, and rarefied regions. The physical nature of the flow field dictates the proper treatment of the boundary between the continuum and rarefied portions. For example, solution methods for unsteady flow containing both continuum and rarefied regions must strongly couple the two so that information can be transferred between them [7]. The boundary for this case must track temporal and spatial fluctuations between the regions. However, for an assumed steady flow field solution with a region of continuum fluid expanding into a rarefied region, such as shown in the studies presented in [8-10], the continuum region is obtained with CFD, which in turn provides an inflow boundary for a DSMC solution domain. By combining the continuum and non-continuum solutions, flow fields with order of magnitude changes in density from continuum to rarefied flow can be obtained without the complexity of strong coupling, but with the advantage of using the best method in each region.

Comparisons between fully coupled and zonally decoupled solutions of forebody and afterbody flow about an axisymmetric blunt body are presented in [10]. The fully coupled solution consisted of an overlap region between the CFD and DSMC portions of the flow to account for the non-equilibrium condition of the flow as it expands about the forebody to the wake region. The zonally decoupled solution used the equilibrium temperature of the CFD as the inflow DSMC overall temperature. Results from [10] show that the zonally decoupled solutions adequately defined the wake flow when compared to the coupled solutions. In addition, for the conditions of [10], no significant difference in the mean-flow wake properties were produced by not including the non-equilibrium effects at the CFD-DSMC interface. Therefore, an approach similar to the zonally decoupled method of [10] is employed for the present study.

The current approach for 3-D flow field modeling of the MSRO is to apply the continuum analysis of CFD using the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code [11] to the high-density blunt forebody flow field region of the aeroshell and the molecular analysis of DSMC using the DSMC analysis code (DAC) [12] to the afterbody wake flow field. Shown in Fig. 1 is a side view of the MSRO configuration with the interface between the CFD and DSMC portions of the flow field shown as the solid line dividing the regions at the aeroshell lip. The cavity behind the forebody aeroshell shown in the figure, which forms a bowl-like shape with flow reversing direction if it follows the inner shell geometry, is contained in the DSMC portion of the solution domain. The planar CFD flow field variables at the interface provide an inflow boundary condition for the DSMC wake flow field simulation. A planar surface was chosen to divide the two computational regions to primarily capture the expanding flow about the aeroshell lip as the sharp-edged lip between the forebody and afterbody provides a natural transition between continuum and rarefied treated regions, and secondarily because of ease of setup and implementation of the scheme.

In addition, to model the wake flow field about a 3-D configuration with a near continuum free stream condition (Kn_L = 0.001), a DSMC computation that includes a fully adapted grid behind the plane at the aeroshell lip would require an exorbitant number of simulated molecules and be too costly in both computational resources
memory, cpu's, etc.) and wall time to produce with today’s computational resources. Therefore, the concept of a near body adapted grid is presented and employed for the near continuum DSMC cases presented below. To incorporate the near body adapted grid into a solution, a modification was made to the DAC [12] preprocessor. Because the preprocessor adapts level II cells into a level I uniformly distributed grid, the near body adaptation routine was easily implemented by limiting level I cell adaptation to those closest to the body.

As discussed above, CFD for the forebody was performed by the LAURA code. The Mars atmosphere was modeled as an eight species, non-equilibrium gas. The forebody temperature was held constant at 1500K and the wall was assumed fully catalytic. All DSMC simulations performed by the DAC code include translational, rotational, and vibrational contributions employing a nine species model of the Mars atmosphere for which argon was ignored to match LAURA chemistry. The MSRO surface is assumed fully diffuse, non-catalytic, and constant temperature. For the two higher KnL cases the wall temperature was fixed at 300K; for the two lower KnL cases, the wall temperature was 500K. Additionally, the nearest neighbor collision algorithm of DAC, which selects closest molecules that are normal to the surface as most probable collision partners and provides virtual cell enhancement, was employed. The algorithm reduces the need for wall cells to be sized on the order of the local mean free path.

RESULTS AND DISCUSSION

Given in this section are simulation results that correspond to various altitudes in the CO2-N2 Mars atmosphere at times near the start of the aerocapture maneuver of a proposed MSRO mission. Cases at four altitudes are considered with KnL = 0.2, 0.02, 0.002, 0.0004. (Note that the free stream mean free path, \(\lambda_\infty \), calculated using the hard sphere model, and the maximum body length of the aeroshell, \(L_\in \), of 3.65m, shown in Fig. 2, are used to determine KnL.) Emphasis will be placed on two cases: KnL = 0.02 and KnL = 0.002, which are in the transitional regime between continuum and rarefied. The two most rarefied cases are computed with DSMC only. For KnL = 0.02, solutions from a near body adapted grid and a fully adapted grid solution are presented to assess the viability of only employing finely spaced grid near the body. Then, DSMC is applied to the body adapted grid to produce solutions for the KnL = 0.002 and 0.0004 cases, which use the CFD forebody inflow boundary solution. Finally, some noteworthy surface results on the afterbody as a function of KnL are presented and discussed to summarize the study.

A side view of the MSRO configuration is shown in Fig. 1. All results given in the present study are for the configuration at angle-of-attack, \(\alpha \), of -4°. All solutions are presented so that the free stream velocity vector is horizontal as shown in Fig. 1. Note that the negative angle-of-attack rotates the flow toward the upper cylindrical afterbody portion of the configuration. Surface pressure and heating along the upper cylindrical surface, which are given subsequently, are presented as a function of s/l as shown in Fig. 2. In addition, when presented, wake flow properties are taken at either one of the two downstream stations (X = 3m and X = 6m) from the MSRO (See Fig. 2).

The computational size of a 3-D simulation of a blunt body wake flow with KnL = 0.001 can be reasonably reduced if fine grid adaptation is confined to the region near the configuration surface. It is supposed that by capturing only near body gradients with sufficient grid resolution the simulation will not be sufficiently degraded. To this end, two simulations were performed at the KnL = 0.02 flight condition for DSMC only. The KnL = 0.02 flow condition simulations were on a configuration with the only difference being the grid. Therefore, a fully adapted and a near body adapted grid were obtained from the same initial grid; The symmetry plane from each is shown in Figs. 3 and 4, respectively. DSMC using the DAC code was applied to the two grids and the number of simulated molecules was reduced by over one-third with the near body grid. Although forebody region grid reduction is included, a comparison of the two grids does show that by not finely gridding the bow shock wave past the 3-D configuration, a reduction of the number of cells is still realized.

Results of the DSMC computations on the upper cylinder surface are shown in Fig. 5. The \(C_p \) and \(C_H \) values rise from the root region to the cylinder end at s/l = 1 with the same general shape. (The pressure coefficient is \(C_p = \frac{p-p_\infty}{\frac{1}{2}p_\infty V_\infty^2} \) and the heat transfer coefficient is \(C_H = \frac{q}{\frac{1}{2}p_\infty V_\infty^3} \).) For both \(C_p \) and \(C_H \), the near body adapted grid yields values that are lower than the fully adapted grid. However, the maximum difference is small: 5% difference in \(C_{p,\text{max}} \) and 3.5% difference in \(C_{H,\text{max}} \). Presented in Fig. 6 are the overall temperature profiles at the two X stations shown in Fig. 2. Generally, the temperature difference between the two simulations at 3m and 6m stations follow the same trends. At the maximum temperature, the difference is less than 50K (about 1%). Based on
memory, cpu’s, etc.) and wall time to produce with today’s computational resources. Therefore, the concept of a near body adapted grid is presented and employed for the near continuum DSMC cases presented below. To incorporate the near body adapted grid into a solution, a modification was made to the DAC [12] preprocessor. Because the preprocessor adapts level II cells into a level I uniformly distributed grid, the near body adaptation routine was easily implemented by limiting level I cell adaptation to those closest to the body.

As discussed above, CFD for the forebody was performed by the LAURA code. The Mars atmosphere was modeled as an eight specie, non-equilibrium gas. The forebody temperature was held constant at 1500K and the wall was assumed fully catalytic. All DSMC simulations performed by the DAC code include translational, rotational, and vibrational contributions employing a nine specie model of the Mars atmosphere for which argon was ignored to match LAURA chemistry. The MSRO surface is assumed fully diffuse, non-catalytic, and constant temperature. For the two higher KnL cases the wall temperature was fixed at 300K; for the two lower KnL cases, the wall temperature was 500K. Additionally, the nearest neighbor collision algorithm of DAC, which selects closest molecules that are normal to the surface as most probable collision partners and provides virtual cell enhancement, was employed. The algorithm reduces the need for wall cells to be sized on the order of the local mean free path.

RESULTS AND DISCUSSION

Given in this section are simulation results that correspond to various altitudes in the CO2-N2 Mars atmosphere at times near the start of the aerocapture maneuver of a proposed MSRO mission. Cases at four altitudes are considered with KnL = 0.2, 0.02, 0.002, 0.0004. (Note that the free stream mean free path, \(\lambda\), calculated using the hard sphere model, and the maximum body length of the aeroshell, \(L\), of 3.65m, shown in Fig. 2, are used to determine KnL.) Emphasis will be placed on two cases: KnL = 0.02 and KnL = 0.002, which are in the transitional regime between continuum and rarefied. The two most rarefied cases are computed with DSMC only. For KnL = 0.02, solutions from a near body adapted grid and a fully adapted grid solution are presented to assess the viability of only employing finely spaced grid near the body. Then, DSMC is applied to the body adapted grid to produce solutions for the KnL = 0.002 and 0.0004 cases, which use the CFD forebody inflow boundary solution. Finally, some noteworthy surface results on the afterbody as a function of KnL are presented and discussed to summarize the study.

A side view of the MSRO configuration is shown in Fig. 1. All results given in the present study are for the configuration at angle-of-attack, \(\alpha\), of -4\(^\circ\). All solutions are presented so that the free stream velocity vector is horizontal as shown in Fig. 1. Note that the negative angle-of-attack rotates the flow toward the upper cylindrical afterbody portion of the configuration. Surface pressure and heating along the upper cylindrical surface, which are given subsequently, are presented as a function of \(s/l\) as shown in Fig. 2. In addition, when presented, wake flow properties are taken at either one of the two downstream stations (X = 3m and X = 6m) from the MSRO (See Fig. 2.).

The computational size of a 3-D simulation of a blunt body wake flow with KnL = 0.001 can be reasonably reduced if fine grid adaptation is confined to the region near the configuration surface. It is supposed that by capturing only near body gradients with sufficient grid resolution the simulation will not be sufficiently degraded. To this end, two simulations were performed at the KnL = 0.02 fight condition for DSMC only. The KnL = 0.02 flow condition simulations were on a configuration with the only difference being the grid. Therefore, a fully adapted and a near body adapted grid were obtained from the same initial grid; The symmetry plane from each is shown in Figs. 3 and 4, respectively. DSMC using the DAC code was applied to the two grids and the number of simulated molecules was reduced by over one-third with the near body grid. Although forebody region grid reduction is included, a comparison of the two grids does show that by not finely gridding the bow shock wave past the 3-D configuration, a reduction of the number of cells is still realized.

Results of the DSMC computations on the upper cylinder surface are shown in Fig. 5. The \(C_p\) and \(C_H\) values rise from the root region to the cylinder end at \(s/l = 1\) with the same general shape. (The pressure coefficient is \(C_p = (\rho - \rho_\infty)/\rho_\infty V_w^2\) and the heat transfer coefficient is \(C_H = q/\rho_\infty V_w^3\).) For both \(C_p\) and \(C_H\), the near body adapted grid yields values that are lower than the fully adapted grid. However, the maximum difference is small: 5% difference in \(C_{p,max}\) and 3.5% difference in \(C_{H,max}\). Presented in Fig. 6 are the overall temperature profiles at the two X stations shown in Fig. 2. Generally, the temperature difference between the two simulations at 3m and 6m stations follow the same trends. At the maximum temperature, the difference is less than 50K (about 1%). Based on
the results given in Figs. 5 and 6, it is concluded that for this case, the near body adapted grid solution is sufficiently accurate to define the surface and near wake flow field with considerable reduction in computational resources.

Although the near body grid adaptation scheme is validated for a wake, which is more rarefied, the results give promise that the technique may allow reasonable predictions of flow simulations of less rarefied wake flows. Therefore, the near body grid method is applied to a lower KnL condition. Fig. 7 shows the near body adapted grid at the symmetry plane for the KnL = 0.002 condition. The fine grid about the body is shown as a gray shading because the cells are so small. The wake density profile given in Fig. 8 shows the variation from the free stream value below the lower bow shock, increasing and decreasing across the shock wave moving upward, then through the low density wake downstream of the MSRO and upper portion of the bow wake, which is captured by the DSMC computation. The combination of the streamlines in the density field and velocity vectors at the X = 3m and 6m locations show that the flow close to the upper lip travels downward close to the configuration before being swept into the wake. The vectors show a deficit in the velocity below the center of the configuration at the 3m station, which persists to the 6m station, as a result of the flow about the forebody. Note that there is flow impingement on the upper cylinder surface with a primary and secondary vortex structure produced in the recessed region behind the aeroshell just below and to the left of the flow impingement point.

On the cylinder surface, as shown in Fig. 9, the C_p value initially falls slightly from the root value (s/l = 0), recovers, and then rises before reaching a maximum prior to the end of the cylinder. However, C_H monotonically rises from a minimum value at the cylinder root to a maximum at the cylinder end (s/l = 1). Flow field translational, rotational, and vibrational temperatures in the wake at the X = 6m station are given in Fig. 10 for this condition. The temperatures show that all three energy modes modeled by the DSMC are energized; thus, the wake is in a non-equilibrium state. Hence, it is important to properly define the wake flow chemistry for this condition.

Figs. 11 and 12 summarize the flow field effects on the MSRO afterbody cylinder from all cases computed. Surface shear stress was analyzed to define the location of the primary vortex attachment and separation and the location of the secondary vortex near the cylinder root. The analysis of shear stress showed that the flow attachment and separation were at zero valued shear stress with the sign of shear stress defining the local flow direction elsewhere. Although the use of the body grid adaptation scheme for KnL = 0.0004 has not been established, it was employed, and the results are presented in Fig. 11 to help establish trends.

The triangles shown in Fig. 11 represent the attachment of the primary vortex and of flow expanding about the upper aeroshell lip onto the cylinder as a function of KnL. The gradient symbols represent the separation of the primary and secondary (if present) vortices from the surface. Note that the secondary vortex for the KnL = 0.002 condition is shown in Fig. 8 close to the cylinder root (s/l = 0) by the small rolled streamline trace. As KnL increases, the attachment moves down the cylinder, the extent of the primary vortex tends to remain the same, but the secondary vortex becomes smaller (Note the location and distance between the flow attachment and separation.) until the secondary vortex disappears for KnL > 0.02 and the primary vortex size decreases further. As shown on the figure, the effect of increasing KnL on the maximum C_p and C_H location is to move that point toward the cylinder end, opposite the direction of flow attachment location. For KnL > 0.002, C_H,max is at the cylinder end and for KnL = 0.02, C_p,max is located at the end. These results are similar to those presented for an axisymmetric blunt body [4]; i.e., the size of the wake vortex region increases as KnL decreases and flow attachment does not coincide with maximum C_p and C_H. The values of C_p,max and C_H,max as a function of KnL are given in Fig. 12. (Note the value for the KnL = 0.0004 condition is not included in the figure because the level II cells near the maxima were not spaced closely enough to provide adequate flow resolution.) The trend of the C_p,max data is that it decreases with increasing KnL; Conversely, the trend shown for C_H,max is that it increases with increasing KnL.

CONCLUSIONS

Two methods have been developed to reduce the computational demand of producing 3-D DSMC blunt body wake solutions for configurations with flow conditions of KnL = 0.001 or greater. It has been previously shown that DSMC is required to provide adequate simulation in the wake region for this flow condition. The present study introduces, for the 3-D MSRO configuration, a method that uses a CFD forebody solution as an inflow condition to the DSMC at a planar boundary at the aeroshell lip. In addition, fine grid adaptation is limited to the near body region only to capture with fine grid flow details near the body. Although the results from this study are given as a “work in progress,” the methods employed are encouraging in reducing the grid and, hence, the total computational effort to produce these near continuum solutions. Trends presented for the vortical flow near the afterbody cylinder.
the results given in Figs. 5 and 6, it is concluded that for this case, the near body adapted grid solution is sufficiently accurate to define the surface and near wake flow field with considerable reduction in computational resources.

Although the near body grid adaptation scheme is validated for a wake, which is more rarefied, the results give promise that the technique may allow reasonable predictions of flow simulations of less rarefied wake flows. Therefore, the near body grid method is applied to a lower Kn\textsubscript{L} condition. Fig. 7 shows the near body adapted grid at the symmetry plane for the Kn\textsubscript{L} = 0.002 condition. The fine grid about the body is shown as a gray shading because the cells are so small. The wake density profile given in Fig. 8 shows the variation from the free stream value below the lower bow shock, increasing and decreasing across the shock wave moving upward, then through the low density wake downstream of the MSRO and upper portion of the bow wake, which is captured by the DSMC computation. The combination of the streamlines in the density field and velocity vectors at the X = 3m and 6m locations show that the flow close to the upper lip travels downward close to the configuration before being swept into the wake. The vectors show a deficit in the velocity below the center of the configuration at the 3m station, which persists to the 6m station, as a result of the flow about the forebody. Note that there is flow impingement on the upper cylinder surface with a primary and secondary vortex structure produced in the recessed region behind the aeroshell just below and to the left of the flow impingement point.

On the cylinder surface, as shown in Fig. 9, the C\textsubscript{p} value initially falls slightly from the root value (s/l = 0), recovers, and then rises before reaching a maximum prior to the end of the cylinder. However, C\textsubscript{H} monotonically rises from a minimum value at the cylinder root to a maximum at the cylinder end (s/l = 1). Flow field translational, rotational, and vibrational temperatures in the wake at the X = 6m station are given in Fig. 10 for this condition. The temperatures show that all three energy modes modeled by the DSMC are energized; thus, the wake is in a non-equilibrium state. Hence, it is important to properly define the wake flow chemistry for this condition.

Figs. 11 and 12 summarize the flow field effects on the MSRO afterbody cylinder from all cases computed. Surface shear stress was analyzed to define the location of the primary vortex attachment and separation and the location of the secondary vortex near the cylinder root. The analysis of shear stress showed that the flow attachment and separation were at zero valued shear stress with the sign of shear stress defining the local flow direction elsewhere. Although the use of the body grid adaptation scheme for Kn\textsubscript{L} = 0.0004 has not been established, it was employed, and the results are presented in Fig. 11 to help establish trends.

The triangles shown in Fig. 11 represent the attachment of the primary vortex and of flow expanding about the upper aeroshell lip onto the cylinder as a function of Kn\textsubscript{L}. The gradient symbols represent the separation of the primary and secondary (if present) vortices from the surface. Note that the secondary vortex for the Kn\textsubscript{L} = 0.002 condition is shown in Fig. 8 close to the cylinder root (s/l = 0) by the small rolled streamline trace. As Kn\textsubscript{L} increases, the attachment moves down the cylinder, the extent of the primary vortex tends to remain the same, but the secondary vortex becomes smaller (Note the location and distance between the flow attachment and separation.) until the secondary vortex disappears for Kn\textsubscript{L} > 0.02 and the primary vortex size decreases further. As shown on the figure, the effect of increasing Kn\textsubscript{L} on the maximum C\textsubscript{p} and C\textsubscript{H} location is to move that point toward the cylinder end, opposite the direction of flow attachment location. For Kn\textsubscript{L} > 0.002, C\textsubscript{H, max} is at the cylinder end and for Kn\textsubscript{L} = 0.02, C\textsubscript{p, max} is located at the end. These results are similar to those presented for an axisymmetric blunt body [4]; i.e., the size of the wake vortex region increases as Kn\textsubscript{L} decreases and flow attachment does not coincide with maximum C\textsubscript{p} and C\textsubscript{H}. The values of C\textsubscript{p, max} and C\textsubscript{H, max} as a function of Kn\textsubscript{L} are given in Fig. 12. (Note the value for the Kn\textsubscript{L} = 0.0004 condition is not included in the figure because the level II cells near the maxima were not spaced closely enough to provide adequate flow resolution.) The trend of the C\textsubscript{H, max} data is that it decreases with increasing Kn\textsubscript{L}; Conversely, the trend shown for C\textsubscript{p, max} is that it increases with increasing Kn\textsubscript{L}.

CONCLUSIONS

Two methods have been developed to reduce the computational demand of producing 3-D DSMC blunt body wake solutions for configurations with flow conditions of Kn\textsubscript{L} = 0.001 or greater. It has been previously shown that DSMC is required to provide adequate simulation in the wake region for this flow condition. The present study introduces, for the 3-D MSRO configuration, a method that uses a CFD forebody solution as an inflow condition to the DSMC at a planar boundary at the aeroshell lip. In addition, fine grid adaptation is limited to the near body region only to capture with fine grid flow details near the body. Although the results from this study are given as a "work in progress," the methods employed are encouraging in reducing the grid and, hence, the total computational effort to produce these near continuum solutions. Trends presented for the vortical flow near the afterbody cylinder
are similar to those given previously [4], i.e., the size of the wake vortex region increases as Kn decreases and flow attachment does not coincide with maximum Cp and Ch, thus giving some credence to the present method. In addition, the results show that in the wake region for the flow conditions of this study, non-equilibrium chemistry is present in the wake behind the blunt body and should be accounted for in the simulation.

ACKNOWLEDGMENTS

The help provided by Gerald LeBeau of NASA JSC and Richard Wilmoth of NASA LaRC in resolving DAC code issues is acknowledged. James Moss of NASA LaRC provided helpful insight into wake flows of blunt body configurations. Jean Oswald of O.N.E.R.A. is acknowledged for providing the volume grid for CFD and the IGES surface definition of the MSRO. Ramadus Prabhu of Lockheed Martin was instrumental in creating a triangulated surface grid from the IGES format using the GridTool software.

REFERENCES

are similar to those given previously [4], i.e., the size of the wake vortex region increases as Kn_L decreases and flow attachment does not coincide with maximum C_p and C_{th}, thus giving some credence to the present method. In addition, the results show that in the wake region for the flow conditions of this study, non-equilibrium chemistry is present in the wake behind the blunt body and should be accounted for in the simulation.

ACKNOWLEDGMENTS

The help provided by Gerald LeBeau of NASA JSC and Richard Wilmoth of NASA LaRC in resolving DAC code issues is acknowledged. James Moss of NASA LaRC provided helpful insight into wake flows of blunt body configurations. Jean Oswald of O.N.E.R.A. is acknowledged for providing the volume grid for CFD and the IGES surface definition of the MSRO. Ramadus Prabhu of Lockheed Martin was instrumental in creating a triangulated surface grid from the IGES format using the GridTool software.

REFERENCES

FIGURE 1. Side view of MSRO showing interface between CFD and DSMC domains.

FIGURE 2. Key dimensions and locations where surface and flow field information are extracted from the symmetry plane.

FIGURE 3. Fully adapted grid at symmetry plane for KnL = 0.02.

FIGURE 4. Near body adapted grid at symmetry plane for KnL = 0.02.

FIGURE 5. Comparison of C_p and C_H between fully and near body adapted grid solutions for KnL = 0.02.

FIGURE 6. Temperature comparison between fully and near body adapted solutions for KnL = 0.02.
FIGURE 1. Side view of MSRO showing interface between CFD and DSMC domains.

FIGURE 2. Key dimensions and locations where surface and flow field information are extracted from the symmetry plane.

FIGURE 3. Fully adapted grid at symmetry plane for Kn = 0.02.

FIGURE 4. Near body adapted grid at symmetry plane for Kn = 0.02.

FIGURE 5. Comparison of C_p and C_H between fully and near body adapted grid solutions for Kn = 0.02.

FIGURE 6. Temperature comparison between fully and near body adapted solutions for Kn = 0.02.
FIGURE 7. Adapted near body grid at symmetry plane for Kn_l = 0.002.

FIGURE 8. Wake density profile, streamlines, and various velocity vectors on the symmetry plane for Kn_l = 0.002.

FIGURE 9. C_p and C_H on MSRO afterbody surface at symmetry plane for Kn_l = 0.002.

FIGURE 10. Comparison of MSRO flow field wake temperatures at X = 6m for Kn_l = 0.002.

FIGURE 11. Location of attachment and separation, C_{p,max} and C_{H,max} on afterbody as a function of Kn_l.

FIGURE 12. Magnitude of C_{p,max} and C_{H,max} as a function of Kn_l.
FIGURE 7. Adapted near body grid at symmetry plane for Kn_l = 0.002.

FIGURE 8. Wake density profile, streamlines, and various velocity vectors on the symmetry plane for Kn_l = 0.002.

FIGURE 9. C_p and C_H on MSRO afterbody surface at symmetry plane for Kn_l = 0.002.

FIGURE 10. Comparison of MSRO flow field wake temperatures at X = 6m for Kn_l = 0.002.

FIGURE 11. Location of attachment and separation, C_p,max and C_H,max on afterbody as a function of Kn_l.

FIGURE 12. Magnitude of C_p,max and C_H,max as a function of Kn_l.
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

Presented at the 22nd International Symposium on Rarefied Gas Dynamics, Sydney, Australia, July 2000.

A method to obtain coupled CFD-DSMC, 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoffo

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

Presented at the 22nd International Symposium on Rarefied Gas Dynamics, Sydney, Australia, July 2000.

A method to obtain coupled CFD-DSMC, 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.