Transportation . . .

. . . The key to unlocking the final frontier.
For this future generations in this new millennium, only two new frontiers remain to be explored and developed by humans:

- Under the oceans, seas and lakes (about 80 percent of the Earth)
- The vast reaches of near and outer space

We are slowly running out of resources while this planet’s population is exploding.

- Rapidly/exponentially approaching 7 billion people while we started the 20th century at barely 1 billion
- Running out of food, water, sources of fossil energy, and maybe even the very air we must breath as the human race continues to pollute everything it touches

We must establish new, highly reliable and low-cost ways to colonize under the seas and to get people permanently off “Spaceship Planet Earth”!!
The Last Frontiers (cont’d)

♦ We are in similar position to the European continent in the 15th century when the people were dying from starvation, new terrible diseases (e.g., Bubonic Plague) and general overcrowding.

♦ We must establish new colonies permanently in space because it is vital to the ultimate survival of the human race.

♦ Reliable and affordable space transportation for routine human travel into space and the planets is once again the key to developing this last great frontier.

♦ This talk will now focus on what NASA is now doing to initiate the process in earnest.

♦ We may well be at another historical moment in NASA’s evolution with an opportunity to help humans in fundamental ways.
 - Similar to the Apollo program 40 years ago.
The Last Frontiers (cont'd)

- Space transportation is the key, and once again will only meet the needs with new generations of competent, talented, and innovated mechanical engineers.

- Now let us look at how we may begin this process.
Transportation . . . Opened Our Frontiers

International Commerce

The New World

The American West

Transcontinental Travel

The Dawn of Flight
6 1/2 Generations of Airliners in a Century

Wright Flyer (1903)

Boeing 777 (Today)

1st Generation Reusable Launch Vehicle (1981 – Today)
"Developing a Highway to Space"

Interstellar Propulsion Research

RLV Focused

In-Space Transportation

Space Shuttle Upgrades
A Balanced Space Transportation Program

Human Exploration & Development of Space
- Shuttle Upgrades
- X-38
- ISS Propulsion Module
- Exploration

Assured, Reliable, Safe, Affordable Space Transportation

Commercially Provided Expendable Launch Services
- Commercial / DoD Lead

Development of Future Improved Capabilities
- Future X (X-33, X-34, X-37)
- Pathfinder
- ASTP
Architecture Summary

<table>
<thead>
<tr>
<th>Architecture 1</th>
<th>Architecture 2</th>
<th>Architecture 3</th>
<th>Architecture 4</th>
<th>Architecture 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shuttle to 2020</td>
<td>Shuttle w/Phase III Upgrades to 2020 with a Reusable First Stage</td>
<td>Replace Shuttle</td>
<td>Replace Shuttle</td>
<td>Replace Shuttle</td>
</tr>
<tr>
<td>Phase III Upgrades</td>
<td></td>
<td>EELV Heavy Launch</td>
<td>New TSTO Launch</td>
<td>New SSTO Launch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Crew/Cargo Transfer Vehicle(s)</td>
<td>Crew Transfer Vehicle/Module</td>
<td>Crew Transfer Vehicle/Module</td>
</tr>
<tr>
<td>Key Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comm'l Shuttle</td>
<td>Comm'l Shuttle</td>
<td>Partial ISS Downmass</td>
<td>Comm'l TSTO</td>
<td>Comm'l SSTO</td>
</tr>
<tr>
<td>Exploration</td>
<td>Exploration</td>
<td>Exploration</td>
<td>Exploration</td>
<td>Exploration</td>
</tr>
<tr>
<td></td>
<td>RFS Derived Vehicles</td>
<td></td>
<td>Alternate Access on EELV</td>
<td>Alternate Access on EELV</td>
</tr>
<tr>
<td>Potential New Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Cost Upperstage</td>
<td>Low Cost Upperstage</td>
<td>Crew Transfer Vehicle</td>
<td>Low Cost Upperstage</td>
<td>Low Cost Upperstage</td>
</tr>
<tr>
<td>Magnum</td>
<td>Reusable First Stage</td>
<td>Cargo Transfer Vehicle</td>
<td>New TSTO</td>
<td>New SSTO</td>
</tr>
<tr>
<td>EELV</td>
<td>New Orbital Stage</td>
<td>Crew/Cargo Transfer Vehicle</td>
<td>Crew Transfer Vehicle</td>
<td>Crew Transfer Vehicle</td>
</tr>
<tr>
<td></td>
<td>Magnum</td>
<td>ATV</td>
<td>Magnum</td>
<td>Magnum</td>
</tr>
<tr>
<td></td>
<td>EELV</td>
<td></td>
<td>EELV</td>
<td>EELV (human rated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EELV (human rated)</td>
</tr>
</tbody>
</table>
Major Upgrades Under Evaluation

Five Segment Booster (FSB) Reusable First Stage (RFS) Booster
Space Transportation Definitions

Integrated Space Transportation Plan (ISTP)

- Shuttle Safety
- Crew Return Vehicle
- Space Launch Initiative
- Aero-Space Base

- Supportability and Safety upgrades
- X-38

- 2nd Gen RLV Program
 - Systems Eng. and Requirements Definition
 - Competition and Risk Reduction
 - NASA Unique Systems
 - Alternate Access

Use of on-going Flight Demonstrators (X-33, X-34, X-37 and Exp.) to meet 2nd Gen Objectives

- Information Technology
 - Vehicle Systems Technology
 - Propulsion and Power
 - Flight Research
 - Space Transfer and Launch Technology
The Challenge

- Safer, more Affordable, more Reliable Space Transportation is needed.
 - The U.S. is losing its market share of space launch to overseas competition (improving 40 year old U.S. technology)
 - NASA's space transportation expenditures consume nearly 25% of NASA's annual budget.
 - Systems have typically focused on EITHER performance or simplicity

- NASA's role: To lead the development and demonstration of the requisite technologies to meet the above goals
The way to safe, reliable, affordable access to space is blocked by technical and business risk

NASA and the Administration have developed an integrated approach to removing the risk barrier for a 2nd generation system:

Space Launch Initiative