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INTRODUCTION

The objective of this research is to develop and validate mathematical models to
characterize the thermal performance of a radiative shielded furnace, the University of Alabama
in Huntsville (UAH) Isothermal Diffusion Oven. The mathematical models are validated against
experimental data obtained from testing the breadboard oven in a terrestrial laboratory
environment. It is anticipated that the validation will produce math models capable of predicting
the thermal performance of the furnace over a wide range of operating conditions, including
those for which no experimental data is available. Of particular interest is the furnace core
temperature versus heater power parametric and the transient thermal response of the furnace.
Application to a microgravity environment is not considered, although it is conjectured that the
removal of any gravity dependent terms from the math models developed for the terrestrial
application should yield adequate results in a microgravity environment.

The UAH Isothermal Diffusion Oven is designed to provide a thermal environment that
is conducive to measuring the diffusion of high temperature liquid metals. In addition to
achieving the temperatures required to melt a sample placed within the furnace, reducing or
eliminating convective motions within the melt is an important design consideration [1]. Both of
these influences are reflected in the design of the furnace. Reducing unwanted heat losses from

the furnace is achieved through the use of low conductivity materials and reflective shielding. As



evidenced by the highly conductive copper core used to house the sample within the furnace,
convective motions can be greatly suppressed by providing an essentially uniform thermal
environment. An oven of this design could ultimately be utilized in a microgravity environment,
presumably as a experiment payload. Such an application precipitates other design requirements
that limit the resources available to the furnace such as power, mass, volume, and possibly even
time. Through the experimental and numerical results obtained, the power requirements and
thermal response time of the breadboard furnace are quantified.

A series of laboratory tests are conducted to measure the steady state and transient
behavior of the furnace. To aid in the model correlation, the test conditions are chosen to isolate
or enhance specific aspects of the thermal behavior of the furnace. Under vacuum, radiative
exchange is the dominant heat transfer mechanism. At very low pressure, natural convection is
suppressed and, along with radiation, gaseous conduction significantly influences the thermal
performance of the furnace. Near atmospheric pressure, all three heat transfer modes, convection,
conduction, and radiation, must be considered to adequately characterize the thermal behavior of
the furmace. The test conditions are also chosen to parameterize the furnace core temperature
versus heater power and to observe the influence of natural convection over a range of pressures.
Actual testing of a sample within the furnace is excluded since the heat capacity of the sample is
considered negligible relative to that of the core.

Development of math models to characterize the thermal behavior of the furnace is a
challenging task due to the complexity of the interacting heat transfer modes as well as other
factors related to the design of the furnace. Important considerations in the analysis of the furnace
include heat losses through power and instrumentation cables, buoyancy driven flows through
and around exposed surfaces of the furnace, and specular radiation effects within the furnace. In
the model, a network representation of the furnace is developed where individual nodes represent
discretized portions of the furnace or the boundary and the heat transfer is proportional to the

temperature difference between nodes. Empirical relations are used to model free convection



from the exposed surfaces of the furnace while a one-dimensional compressible flow model is
developed to quantify the losses resulting from a buoyancy driven flow through the furnace.
Specialized models to account for the fin effect heat losses from exposed cables and
instrumentation are also developed as well as models to quantify the impact of specularly

reflecting surfaces within the furnace.

FURNACE DESIGN

A cross-sectional view of the oven is presented in Figure | with major components noted
[2). A cylindrical copper core and a quartz glass tube are used to house the test sample. The
quartz glass tube and sample are absent in the breadboard furnace that is considered in this
research. It is assumed that the thermal behavior of the furnace can be adequately characterized
without the tube and sample since the heat capacities of these components are negligible
compared to that of the copper core. The copper core is surrounded by a cylindrical boron nitride

sleeve containing a graphite heater element [3,4]. A thin layer of Fiberfrax™ insulation is used to
enhance the heat transfer between the core and the concentric heater element. Two stainless steel
end hubs, denoted long and short in the figure, are attached to opposite ends of the copper core
[5,6]. The top and bottom hubs contain four and six pins, respectively, that mate with matching
penetrations in each end of the copper core. Fiberfrax™ gaskets are introduced between the hubs
and the core to minimize heat losses and, thus, reduce axial temperature gradients through the
core. The inner assembly (including core, sample, heater, and insulation) is suspended inside of
the oven by stainless steel wires fastened between the two hubs and the top and bottom support
rings. The stainless steel wires penetrate each of the interior end rings. Conduction from the core
to the end rings is minimized by wrapping the stainless steel wire with Fiberfrax™ insulation
within the penetrations. The overall design goal is to provide a stable and secure mount for the

inner assembly while minimizing heat losses to the outside.
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Figure 1 UAH Isothermal Diffusion Oven

Three cylindrical radial shields (inner, middle, and outer) form a radiation barrier to
reduce heat losses from the oven (although gaseous conduction is also present if the furnace is not
placed in a vacuum) [7,8,9]. The inner surface of each radial shield has a vacuum deposited low
emittance gold coating. The shields are constructed from Pyrex™ and the outer surfaces are
uncoated. Visual inspection of the radial shields reveals that the inner surfaces are highly
specular. The spacings between the three shields and the core are minimized to suppress
convective exchange between the shields and to reduce specular losses from reflected energy
escaping out the ends of the furnace. Each radial shield is supported by a matching pair of end

rings on the opposite ends (top and bottom). At each end, Fiberfrax™ spacers are used to create a



gap between the radial shield and the end ring. Similarly, Fiberfrax™ washers are used to create a
gap between the end rings and the end shields. The gaps reduce the direct contact area between
the shields and the end rings and effectively limit the heat exchange to the energy that can be
radiated and conducted (through the gaseous medium) across the gap. Like the radial shields, the
three shields on each end of the oven form a radiation barrier to reduce heat leakage although the
end shields on top of the furnace have a circular penetration to permit loading of the test sample
(not used in the experiments) [10,11,12]. The lower end shields are made of stainless steel while
the upper shields are aluminum and are polished as needed to remove accumulated oxidation (to
create surfaces with as low an infrared emittance as possible). Three support rods hold the entire
assembly together and are used to mount the oven onto a bronze baseplate containing a matching
hole pattern. The oven and bronze baseplate are placed within a bell jar vacuum chamber for the
experiments.

Photographs of the disassembled furnace are contained in Figures 2 and 3. The first
figure shows the bare copper core mounted atop the long hub on the bottom end ring assembly.
The inner and middle radial shields are removed as well as the top end ring assembly containing
the short hub, top support rings, and top end rings. The short hub and stainless steel support
wires are visible within the top end ring assembly. The compact design of the oven is evidenced
from a six inch scale included in the photograph.

The second figure shows the inner assembly (core and heater sleeve) mounted within the
disassembled furnace. The long hub is obscured by the boron nitride heater sleeve which
surrounds the core. Penetrations within the heater sleeve that are used to attach power cables are
visible in the photograph. Although not visible, the power cables are routed through penetrations
underneath the furnace. The support rods, which hold the entire assembly together, are shown in
the figure. The end shields, which attach directly to the end rings, are omitted from both

photographs.
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TESTING

Eight tests are conducted under vacuum and varying pressures of argon gas to measure
the steady state and transient thermal performance of the furnace. Results from the tests are used
to validate mathematical models of the furnace. To aid in the model correlation, the test
conditions are chosen to isolate or enhance specific aspects of the thermal behavior of the
furnace. Under vacuum, radiative exchange between the furnace core and radial shields is the

dominant heat transfer mechanism. At very low pressure, natural convection is suppressed and,



along with radiation, gaseous conduction between the core and radial shields significantly
influences the thermal performance of the furnace. Near atmospheric pressure, all three heat
transfer modes, convection, conduction, and radiation, must be considered to adequately
characterize the thermal behavior of the furnace. The results from the eight tests are summarized
in Table 1. The first three tests are conducted under vacuum at power levels ranging between 5
and 20 watts. The final five tests are conducted under absolute pressures of argon gas ranging
from 0.03 to 0.932 atmospheres at power levels between 11.6 and 12.0 watts.

Table 1 Steady State Test Results

Test Date Core | Radial #1| Radial #3 End Chamber| Room Voltage | Cument Power Pressure
0) ) (0) ) (C) (C) | (wits) | amps) | (watts) torr/atm)

1 12/13/95 390.6 268.7 43.2 113.0 25.3 24.7 122 0.92 11.2 3.90E-05 torr

2| 12/15/95 262.9 170.9 34.6 721 27.2 271 8.6 0.60 52 8.60E-06 torr

3| 12730195 506.5 368.1 56.2 153.2, 228 22.7 19.0 1.06] 20.1 3.60E-05 torr

4] 1/20/96 2015 121.3 45.9 53.7 235 23.0 11.6 1.00 11.6 0.667 atm

5| 2/10/96 219.4 135.1 52.0 63.5 23.6) 23.5 11.9 1.00 1.9 0.310 atm

6] 2/12/96 228.0 143.4 60.1 721 284 28.3 12.0 1.00 12.0 0.146 atm

71 2/19/96 203.1 118.0 45.5 51.2 25.0 251 12.0] 1.00) 12.0 0.932 atm

8] 2/21/96 230.5 145.4] 61.8 73.6) 28.0 28.0 12.0 1.00 12.0 0.030 atm

Experimental Configuration

The tests are conducted inside of a stainless steel bell jar as shown in Figure 4. The bell
jar measures approximately three feet ( 0.91 meter) in diameter by four feet (1.22 meter) in height
and includes a small viewing port. An eyelet is welded to the top for raising and lowering the bell
jar onto a stainless steel baseplate via an overhead crane located in the laboratory. The stainless
steel baseplate is mounted atop a support stand as shown. A close-up view of the bell jar
baseplate and support stand is provided in Figure 5. The chamber turbomolecular pump, which
mates with a circular feed through in the center of the baseplate, is also visible in the figure.
Together, the turbomolecular pump and a roughing pump provide operating pressures down to 1
x 10 torr. Regulated argon gas is available to back fill the chamber to conduct tests at varying

pressures from just above vacuum to ambient.



A schematic of the test configuration, with the furnace mounted inside of the bell jar
vacuum chamber on a circular brass adapter plate, is shown in Figure 6. The circular adapter
plate is 0.25”" thick and is slightly larger than the outside diameter of the furnace support rings.
In order to secure the furnace, the adapter plate has indentations matching the foot-print of the
three furnace support rods. A sheet of Fiberfrax™ insulation is placed underneath the adapter
plate to improve the thermal coupling between the furnace adapter plate and the vacuum chamber
baseplate as well as to protect the surface finish on the chamber baseplate. Pass-through
connectors are available inside the chamber to an external power supply and a thermocouple
meter. A Hewlett Packard power supply is used to drive the furnace through two power leads
attached to the heater core. The power supply has analog current and voltage gauges and is
operated manually. Typically, the power supply voltage and current are set once at the beginning
of a test although it is possible to override the settings to compensate for changes in the resistance
of the heater as the furnace warms to operating temperature or to compensate for voltage and
current instabilities in the furnace heater core. Four thermocouples are attached to the test article
to measure the temperature of the furnace core, inner and outer radial shields, and the bottom end
shield. Additional thermocouples are placed externally to measure the temperature of the bell jar
and the ambient temperature inside the laboratory. A six channel Omega thermocouple meter is
used to measure the temperature at the six thermocouple locations. The thermocouple channel is
manually selected on the meter and the six temperature measurements, as well as power supply
voltage and current, are recorded every quarter hour during the experiments.

Two identical power cables are attached to the furnace heater core as shown in Figure 7.
Due to the high temperature of the furnace, each power cable is divided into two segments with
the first, relatively short, segment attached directly to the furnace heater element. The second
segment spans the distance from the end of the first segment to the pass through connector to the
power supply that is located outside of the chamber. A stainless steel connector with a circular

eyelet is crimped onto the end of the high temperature segment of the power cable that is attached



directly to the furnace core. A screw, through the eyelet and a graphite washer, is used to attach
the power cables to threaded holes in the heater. The high temperature segment of the power
cable is 20 gage stranded zinc-copper alloy wire. The power cables exit through two penetrations
in the bottom end shields of the furnace. A ceramic sleeve and a high temperature resistant
braided fabric are utilized to electrically insulate the power cable from exposed metallic surfaces
on the furnace and adapter plate. The two power cable segments are joined by a hollow brass
connector. The two wires are fed into opposite ends of the connector and secured by screws
located at each end. The second segment is standard 22 gauge Teflon coated copper wire. The
distance between brass connector to the power cable pass-throughs located in the center of the

baseplate is approximately 16 inches.

Figure 4 Stainless Steel Bell Jar
The primary thermocouple connection to measure the temperature of the furnace is
through a penetration in the core. The 0.005 inch (0.127 mm) diameter thermocouple type K
(chromel-alumel) leads are twisted together and inserted into the sample port of the furnace. The
type K thermocouples are rated for temperatures up to 1260°C with an accuracy of +/- 0.75%
between 277°C and 1260°C and +/- 4% below 277°C [13]. The thermocouple leads are
electrically insulated by a ceramic sleeve that is also inserted into the sample port. The ceramic

sleeve extends approximately one inch (25.4 mm) above the outer top end shield of the furnace.
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After the ceramic sleeve, each lead is isolated from any electrically conducting surfaces with a

braided high temperature resistant fabric insulator.

Figure 5 Close-up of the Bell Jar Baseplate and Support Stand

Two thermocouples are attached to the inner and outer radial shields of the furnace. A
copper wire, utilized in conjunction with a stainless steel spring, is used to hold the
thermocouples onto the outer surface of each radial shield. The spring is used to maintain tension
as the copper wire expands at elevated furnace temperatures. The ends of the thermocouple wires
are twisted together and looped several times between the copper wire and the radial shield.
Braided fabric sleeves are used as an e.lectrical insulator to prevent shorts between the

thermocouples and metallic components of the furnace.
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The final thermocouple connection is made to the outer end shield on the bottom of the
furnace. The thermocouple leads are wrapped around a screw that is used to attach the bottom

outer end shield to the bottom outer end ring of the furnace. As in the other connections, braided
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THERMAL MODEL

A cut-away view of the TRASYS furnace model is presented in Figure 8. Since
TRASYS is only used to model planar surfaces, many of the solid elements present in the
furnace, such as the core and radial shields, are constructed by defining a volume with the
available planar surface primitives. Thin solid elements, such as the end shields, are modeled
directly using the planar surface primitives. By using planar surfaces to model opaque solid
elements, only the exterior of each planar surface is declared active within TRASYS. Inactive
surfaces, such as the interior of the radial shields and end rings, are shown shaded yellow in the
figure. Many of the surfaces are subdivided at common junctions with other surfaces (good
practice to avoid view factor problems) or as necessary to support proper nodalization under

SINDA.
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The core (green) and attached long and short hubs (orange) are shown in the figure. The
core is modeled using a cylindrical surface subdivided into twelve rings axially with disk surfaces
to close out each end. The disks are subdivided into three rings radially to match the footprint of
the attached hubs and the thickness of the boron nitride heater element. The outer envelope of

each hub is modeled using a combination of cylinders and cones.

End Shields

Support Ring Short Hub

Heater Core

Radial Shields

Long Hub

End Rings
Mounting Plate

Figure 8 Cut-Away View of TRASYS Furnace Model

Like the core, the end rings (magenta) are modeled with a combination of TRASYS disk
and cylinder surface primitives. The primitives are used to form the rectangular cross section
shown in the figure. The disk surfaces on top of the end rings are subdivided to match the
footprint of the radial shields. Cylindrical surfaces define the radial faces of the end rings. The
inactive surfaces (on the inside of the end rings) are shown in yellow. The end shields (blue) are
modeled using disk surfaces (that are active on both sides) and are subdivided to match the
footprint of the end rings. The support rings (magenta) and radial shields (red) are modeled

using cylinders for the exterior faces and disk surfaces for the top and bottom close-outs. The
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radial shields, end rings, and end shields are positioned to maintain proper clearance as
determined by the Fiberfrax™ washers and spacers. As shown in the figure, the inside surfaces
of the cylinders and disks forming the support rings and radial shields are not active in the
TRASYS model.

The support rods are not assumed to be significant contributors to the radiation exchange
between the outer radial shield and the environment and are not included in the TRASYS model.
The three support rods have a very small surface area relative to the area of the outer radial shield
and, thus, provide little blockage between the shield and the environment. The stainless steel
support rods also have a much lower emittance than the uncoated surface of the Pyrex™ outer
radial shield and will absorb little of the energy exchange between the outer radial shield and the
environment.

Figure 9 contains a representation of the network for the thermal model. The network,
containing nodes and conductors, is overlaid upon a cut-away view of the furnace in the r-z plane.
Since tangential symmetry is assumed, no conductors exist in the 6 direction. Diffusion and
arithmetic nodes are represented as filled and open circles, respectively. Arithmetic nodes are
used primarily to model exposed surfaces that participate radiatively and correspond one-to-one
with the surfaces in the radiation model. Radiation couplings are not shown, but nodes with
exposed surfaces that participate radiatively are indicated with two arrows. Linear conductors are
represented with an electrical resistance symbol and imposed heat sources are represented with a

large arrow placed directly upon the node.
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The furnace core is discretized into a mesh of twelve diffusion nodes axially by two
diffusion nodes in the radial direction. Diffusion nodes are shown as shaded blocks, arithmetic
nodes are unfilled rectangles, and the geometric couplings through the core are shown italicized.
In general, radial couplings between nodes in the core are computed from 2nL/In(r/r;), where T,
and r, are the radii to the adjacent inner and outer nodes and L is the height of the node. Axial

couplings are computed by n(ry-1,7)/L, where 1, and 1, represent the average radii between
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adjacent nodes (i.e., for node “j”, r,=(rj,;+1;)/2 and r;=(r;.,+1;)/2) and L is the distance between
nodes. The core is surrounded by Fiberfrax™ insulation and a boron nitride heater sleeve. Linear
conductors are included to account for the resistance through the insulation. The heater sleeve is
discretized axially to match the nodalization of the furnace core and into three nodes radially to
provide surface nodes that participate radiatively with the innermost radial shield. Imposed heat
sources are placed upon the heater nodes and are varied to match test conditions. Linear
conductors are also included to account for the heat flow from the ends of the core into the long
(bottom) and short (top) hubs. The long and short hubs exchange heat radiatively with the
surroundings. Although not shown in the figure, linear conductors are included to model the
support wire connections between the end hubs and the outer support rings.

The inner, middle, and outer radial shields are axially discretized into nodes that are
aligned to permit conductive couplings between the shields through the gas contained in the
furnace. Diffusion nodes are shown as shaded blocks, arithmetic nodes are unfilled rectangles
and the geometric couplings through the Pyrex™ shields and argon gas are italicized. Gaseous
conduction between the inner radial shield and the heater element is also included. To model the
furnace under vacuum conditions, the gaseous conduction couplings are removed. Each shield is
radially discretized into three nodes with an interior diffusion node to account for the thermal
capacitance of the shield and two arithmetic nodes for the exposed inner and outer surfaces. The
radial couplings are given by 2nL/In{[(r,+r;)/2)/r;} and 2nL/In{r/[(ro+1)/2]}, where r; and r, are
inner and outer radii of the radial shield and L is the height of the node. The axial couplings
between adjacent nodes are computed by n(ry>-r;’)/L. Each radial shield is also conductively
coupled to end rings on the top and bottom of the furnace. Since Fiberfrax™ spacers are placed

between the shields and the end rings, multiple conductors are included to model the resistance of

the insulation as well as gaseous conduction through the gap formed by the spacers.
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A single diffusion node is used to model each end ring with arithmetic nodes on all
exposed surfaces. Conductors internal to the end ring include radial and axial couplings between
the diffusion node and the arithmetic nodes on the exposed surfaces. The inner and outer radial
geometric couplings are computed from 2nL/In{[(ro+1;)/2)/r} and 2nL/In{ry/[(r,+r;)/2]}, where r;
and 1, are inner and outer radii of the end ring and L is the height. The axial couplings are
computed by m(r,>-r;)/(L/2). The coupling between the radial shield and the end ring includes
conductive paths through the Fiberfrax™ spacers and through the vapor gap formed between the
end ring and radial shield. The geometric couplings for the spacer and the vapor gap are based
upon the cross-sectional area of the radial shield and are computed by om(R >R/ and (1-
OL)TC(ROZ-RiZ)/d, where o is the area fraction obstructed by the spacer, d is the thickness of the
spacer, and R; and R, are the inner and outer radii of the radial shield. The radiation coupling
between the radial shield and the end ring is computed within TRASYS. Separate conductors are
included to account for mounting screws that attach the end shields to the end rings, for gaseous
conduction through the gap formed by the washers positioned between the end rings and the end
shields, and for conduction directly through the washers. Since the screw does not contact the
end shield directly, the conductive path includes radial conduction through the washer. The total
coupling (washer + screw) is given by 2[2nd/In{[(Dw+D)/2})/ Ds}]+ (nD52/4)/d, where the
conductive path through both washers is included. The coupling for gaseous conduction between
the end ring and end shield is given by n(ri-r;2)/d. The coupling for conduction between the end
ring and the end shield through the washers is given by [(D,*- D.)/4)/d, where n(D.>- D)4
represents the cross-sectional area of a single washer. Gaseous conduction between the end rings

(in the radial direction) is also included in the model.
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SPECULAR RADIATIVE EXCHANGE BETWEEN CYLINDRICAL SURFACES

Heat transfer analyses of the furnace are performed assuming diffuse radiative exchange
between the surfaces of the core, the inner radial shield, and the inner end shields. The inner
surface of the innermost radial shield has a low emissivity, highly specular, vacuum deposited
gold coating while the end shields and the highly emissive core are non-specular. Because of the
large aspect ratio (H/Ar) of the vertical annulus formed by the furnace heater core, inner radial
shield, and end shields, it is assumed (in the overall TRASYS model) that the specular
interchange can be approximated with a diffuse model. It is expected that only if a significant
fraction of the energy radiated by the core is directly reflected onto the end shields (from the
inner radial shield) is the assumption compromised.

To validate the diffuse assumption, two simplified models of the vertical annulus (formed
by the core, inner radial shield, and end shields), one diffuse and one specular, are developed for
comparison. The models are based upon diffuse and specular radiosity analysis methods as
described by Sparrow [14]. The conclusions presented are also applicable to the vertical annuli
formed by the inner and middle radial shields and the middle and outer radial shields of the
furnace. These annuli differ only in geometry since the outer surfaces of the radial shields are
highly emissive and non-specular like the furnace heater core.

Model Geometry

The subsequent analyses are based upon the radiative exchange between two cylinders of
height, H, and inner and outer radii, r; and r,, respectively as shown in Figure 10. An
axisymmetric coordinate system is assumed. A single ray, at height of z, is emitted from the

inner cylindrical surface as shown. The emitted ray exits at angle, o, relative to the surface
normal of the inner cylinder and is intercepted by the outer cylinder at an angle, B, relative to the

surface normal of the outer cylinder. Since the inner and outer surface normals have no
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component in the axial direction, the angles o and P are equivalent to the angle between the
surface normal and the component of the ray in the r-8 plane. The elevation angle above the r-8
plane for the emitted ray is denoted ¢. The elevation angle is an important parameter as the ray is

specularly reflected between the surfaces of the cylinders; this angle (as well as the intercept
angles o and P) is preserved on each successive specular bounce relative to the local surface

normal. The end shields that close out the top and bottom ends of the vertical annulus are also

shown.
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The relationship between the intercept angles ocand P is shown in Figure 11. The
relationship is mathematically expressed as B=sin” ((ri/ro)sina). An important characteristic for
axisymmetric cylinders is that a ray emitted from the inner cylinder is always reflected back to
the inner cylinder by a specular outer cylinder unless it escapes out of the annulus. The
maximum intercept angle, B, for a ray emitted by the inner cylinder corresponds to a=m/2 as
shown in Figure 12. If a ray originating from the outer cylinder leaves at angle vy that is greater
than the maximum intercept angle, the ray will bounce along the surface of the outer cylinder
indefinitely, essentially orbiting the inner cylinder until it escapes from the annulus. If the

elevation angle, ¢, is exactly zero, the ray will never escape.

Surface 2

Surface 1

Figure 11 Relationship between Emitted and Reflected Ray

Diffuse Interchange Model

The theory behind the radiosity method [15] and its application to diffuse and specular
models of a cylindrical vertical annulus are presented. An energy balance per unit area for a
surface, denoted i, is provided in Figure 13. H; is the incident flux upon the surface, pH; is the
reflected incident flux, €0T;" is the heat flux emitted by the surface, and q; (=Qy/A,) is the net heat

gained by the surface.
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Figure 12 Emitted Ray Reflection to Inner Cylinder
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Figure 13 Energy Balance per Unit Area for a Diffusely Reflecting Surface

The radiosity of the surface, B,, is defined as the total flux leaving the surface and is

equal to the flux emitted by the surface plus the fraction of the incident flux that is reflected from

the surface as shown in Equation 1.

B =¢,0T' +p.H, (1)
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In Equation 2, an energy balance is constructed where the net flux, g,, is equal to the

incident flux absorbed by the surface, €, H,, minus the flux emitted by the surface, €,0T". The

net flux is equal to the rate of heat gained by the surface. Linear couplings (via conduction or
convection) to other surfaces, imposed heat loads, and changes in the thermal mass of the surface

are related to the net heat flux as shown in Equation 3.
g9, = §H, _Eiafl:“ (2)

dT, ,
(me,), = 2.Gy(T,~T) =,
4, = A

(3)

Substituting H, from the definition of radiosity and simplifying yields an energy balance

in terms of the radiosity (see Equation 4).

- (Bi - 0.7:4) “4)

4, =77\
(1 - )
The definition of radiosity can be simplified to yield a set of equations in network form.

[t}

Dividing both sides of the definition through by (l - 8,.) and then subtracting (l ) from
—_ Ei
both sides yields Equation 5.
Ei 4
B =—"—(oT'-B)+H, (5
(1-¢)

Since the radiosity, B, , represents the heat flux leaving a surface, the incident flux upon
a surface, H,, can be found by summing the contributions from all the surfaces within the
enclosure as shown in Equation 6.
n
Z} Fji Aj Bj n
i

H, = =Y F,B, ©)

i A p §ej
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Since the summation of form factors from a surface is equal to 1 (Equation 7), the
relation can be simplified to express the radiosity in network form (numerical differences) as

shown in Equations 8 and 9.

2 F, =1 7
j=1

n ~ £ . n

;EJB,'*(I_E[)(OT:' Bt)*'Z;Ey‘B;‘ @)

0= (07;4—Bi)+iFU.(Bj—Bi) ©

Jj=1

—_
p—
|
M,
N

Equations 10 and 11 are generated by multiplying through by the surface area, A, to

express the balances in terms of rate of heat transfer rather than flux.

£ A,
1—5,.)

0 = ( (Bi _07;4) (10)

£ A, C
O:(l—e,. (o1*-B)+Y AF,(B,-B) (11)

j=1

S

The application of Equations 10 and 11 to a three surface vertical annulus is provided in
Figure 14. Because of symmetry, the end shields are combined and represented by one surface.
It should be noted that the single surface representing the two end shields views itself. The form
factors between the surfaces within enclosure are available from the angle factor catalog in
Sparrow [16].
Specular Interchange Model

A slightly different formulation is used to account for specularly reflecting surfaces
within an enclosure. In the diffuse model, the energy exchange between two surfaces is directly
proportional to the diffuse form factor between the surfaces. In an enclosure with one or more
specular surfaces, an exchange factor is introduced to include reflected energy from specular

surfaces. The exchange factor between two surfaces i and j is defined in Equation 12 where f, is
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the fraction of energy originating at surface i that arrives at surface j after n intervening specular

reflections. The reflectance of an intervening specular surface, &, is given by 0, (which is equal
to 1— &, for a opaque surface). With each successive reflection, a fraction of the incident energy

is absorbed by the specular surface. The fraction of energy for n=0 is the energy originating at
surface i that is directly incident upon surface j and corresponds to the diffuse form factor
between surfaces i and j. The energy fractions for higher order reflections can be found by the
diffuse form factor between the originating surface and a reflected image of the destination
surface. Determining the exchange factors in this manner becomes complex for large numbers of

specular surfaces or if the specular surfaces are curved.

E; = fo + fiPi + [P+ (12)
With the definition of the exchange factor, the radiative heat transfer between surfaces is
defined as shown in Equation 13, where Nj, is the number of diffusely reflecting surfaces and N is

the total number of surfaces (the specular surfaces are numbered Np+1 through N).

4

N

EA 2]

0= il (o’fi4—B,-)+ AEG(B;-B)+ Y, AE;e;(oT} - B) (13)
j Jj=N,+1
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The net heat transfer rate from any of the diffusely reflecting surfaces is the same as in
the diffuse formulation. Since the exchange factors already include reflections from specular

surfaces, the net heat transfer from a specular surface, i, is defined as shown in Equation 14.

Np N
OZEiAl' O‘Ti4—ZEUBj+ 2 ElngO‘Tj‘ (14)
Jj=1

J=N,+
The application of Equations 13 and 14 to a three surface vertical annulus with the outer

cylinder specularly reflecting surface is provided in Figure 15. Because of symmetry, the top and

bottom end shields are combined and represented by one surface that views itself.
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Figure 14 Radiosity Formulation for the Diffuse Model

Specular Exchange Factors

The diffuse network is easily solvable after determining the diffuse form factors from
available angle factor correlations. The determination of the exchange factors contained within
the specular model is more complex. For the exchange factor between surfaces 1 and 2, a ray
originating from surface 2 may either be reflected back to surface 2 or reflected to surface 1. The
ray may not sustain more than one intervening specular reflection before reaching surface 1 as
shown in Equation 15. In Equation 16, the exchange factor E,, is identical to the form factor
between the two surfaces since a ray emitted by surface 2 is either reflected back to surface 2 or
reflected to surface 1. It is not possible for a ray originating at surface 2 to be reflected by surface
3 onto surface 3. As shown in Equation 17, it is possible for a ray emitted by surface 3 to be
specularly reflected many times by surface 3 before reaching surface 1.

Ey = Fy +p3f) (15)

E23 = F23 (16)
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E3 = Fy+ Y, p3" f, (17)

n=1

End Shields
(Diffuse)

1/(AEy2)
B, oT,*
Q, o& Q,
1/(e3A5E3) (1-e2)/exA,
Outer Shield Inner Shieid
(Specular) (Diffuse)

Figure 15 Radiosity Formulation for the Specular Model

The exchange factor between the surfaces 1 and 2 (the inner cylinder and end shields) is
determined by subdividing the inner cylinder into axial segments and computing diffuse form
factors from each segment to the outer cylinder. Radiation emitted by the inner cylinder may
follow one of three paths as shown in Figure 16. In the first path, the radiation is directly incident
upon the end shields. In the second path, radiation incident upon the outer shield is reflected to
one of the end shields on a single bounce. In the third path, the remaining radiation incident upon
the outer shield is reflected back to the inner cylinder. This simplification is possible since no ray
that is both emitted by the inner cylinder and incident upon the outer cylinder can be reflected
back to the outer cylinder; the ray must return to the inner cylinder or be reflected to one of the

end shields. The form factors from the inner cylinder to the outer cylinder and end shields are
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either computed directly from available correlations or derived from angle factor algebra (see

Sparrow [17]).

Path 2

(H-2)2

Z2/2

Path 2

Figure 16 Destination of Radiation Emitted by the Inner Cylinder

The angle factor algebra necessary to determine the diffuse form factors corresponding to
ray paths 1, 2, and 3 originating from a point on the inner cylinder is shown in Figure 17. Surface
A is the originating surface and form factors to surfaces C, D, and E are desired (the form factor
to surface F is known analytically). The process is illustrated for the upper region only and can
be repeated to determine the form factors to corresponding surfaces in the lower region.
Imaginary surfaces G and H are used to facilitate the calculation. Form factors Fac, Fap, and
Fag+Far correspond to ray paths 1, 2, and 3 respectively. From analytical correlations it is
possible to determine all possible form factors within a vertical annulus formed by concentric

cylinders of equal height. The form factors known analytically are indicated with an apostrophe.
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Figure 17 Angle Factor Algebra

The form factors between surface C and surfaces B and A+B are analytically known.
The form factor from surface C to A is determined as shown in Equation 18. The form factor
from surface A to C can be determined through reciprocity as shown in Equation 19. The form
factor from surface A to C represents the fraction of energy emitted by A that is directly incident

upon C (Path 1).

FC—)A =F'C—>A+B“F'C—>B (18)
A , , A
Faoe =Fcsa A—C = (F cAa+B—F coB )A—C (19)
A A

The form factor from surface A to the imaginary surface H can be determined in a similar

manner as shown in Equations 20 and 21.

Fiusa = F tioasl — F 12 (20)
Ay ( . B_ B] Ac

F =F —=|F Z-F = |— 21

Ao H H—A AA H—->A+2 C—)z AH ( )

Using the imaginary surface G, the form factor between surface A and surface E can be

determined from the relationship in Equation 22. This is one of three form factors required to
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compute the fraction of energy emitted by surface A that is directly incident upon the outer
cylinder along path 3.
F a6 = Fap +Fasy (22)
The combined view from surface A to surfaces D and E can be determined from the
relationship in Equation 23 using imaginary surface G. The form factor from surface A to surface
D is determined by subtracting the form factor to surface E determined previously from the
combined view (Equation 24). The form factor from A to D represents the fraction of energy

emitted by surface A that is reflected onto surface C from the specular outer cylinder (path 2).
F 4G = Fasspir + Fasse (23)

Fasp=Faspie —Fase (24)

To determine the total diffuse form factors corresponding to the energy fractions
transmitted to the outer and end shields, the inner cylinder is axially subdivided into a number of
segments as shown in Figure 18. The number of axial segments is incremented until the results
returned by the computation vary by less than 1x10™* with 2500 and 3000 segments typical of the
number of divisions used. The diffuse form factors are determined at the vertical midpoint of
each segment and are then numerically integrated over the height of the cylinder to find the total
diffuse form factor from the inner surface. A trapezoidal approximation is used for the

integration scheme.
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Figure 0.18 Determination of the Total Form Factors from the Inner Cylinder

The results from the computation for the geometry corresponding to the vertical annulus
between the furnace heater core and inner radial shield are presented in Table 4.2. The total form
factor between the core and end shields is almost doubled due to specular reflections from the
inner radial shield. The results are checked by summing the form factors from the core to the end
shield via reflection from the inner radial shield and to the inner radial shield. The sum should
equal the analytically calculated diffuse form factor of 0.96187 between concentric cylinders

which it does as shown.

Table 4.2 Results of the Form Factor Calculations

From To Mode Form Factor
Surface Surface

Core End Shields Direct 0.03813

Core End Shields Reflection 0.03762

Core Inner Radial Shield Direct 0.92425

Sum 1.00000
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Determining the exchange factor between surfaces 3 and I (the outer radial shield and the
end shield) is complicated by the curvature of surface 3. Since surface 3 has a nonzero view of
itself (F3; ~ 0.25), rays originating from surface 3 can be reflected many times before reaching
the end shield (surface 1). This phenomenon is shown in Figure 19 for two different rays

originating from surface 3.
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Figure 19 Anatomy of a Specular Reflection

Fortunately, no ray originating from surface 3 can be reflected by surface 3 onto surface
2. The indirect portion of the exchange factor between surfaces 3 and 1 is determined by
numerically integrating the product of the diffuse form factor from surface 3 to itself multiplied

by the reflectance raised to the integer number of bounces before reaching surface 1. Equation 25
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represents the exchange factor between an infinitesimal area on surface 3 to surface 1. To obtain
the total exchange factor between surface 3 and surface 1, the infinitesimal exchange factor is

integrated over the entire area of surface 3 as shown in Equation 26. Definitions for the angles

[, and f ; and the segment I connecting the two areas are illustrated in Figure 20.

03 cos B cos B idA
O fdaa, = [ Sl sl (25)
ar
Ai
- 1
305" f == [ (08 £ an oo, 4 (26)
n=1 PA

1

Bi dA

Figure 20 Form Factor Calculation Parameters

The exchange factor equations are simplified with the following definitions (in Equations

27, 28, and 29) for r;, cos f3,, and cosfi,, where 7, and 7, are the surface normals for the

j b

infinitesimal surfaces.
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1y =G =X Oy =) (=2

= \/r;'(cosﬁj —cosf}‘,v)2 +r,)2(sin9j —siné’l)2 +(z, —z,)z

= \/r02(2—20089j cosd, —2sin@,sin0,) +(z, ~z,-)2 27N

= \/2r02(l—(cost9j cosf, —sinf,sin6,)) +(z; —z,-)2

= \/er(l—cos(Hj —H,.))+(z,. —z,.)2

|

((cosHj —cosH[)f+(sin61« —sinBi)f+(zj —z,-)lz)

r.A — -
cos fB; =n; L= (— cos@;i —sin Bij)- > -
] J2rd-cos(8; -6,) +(z; - 2,) o)
_ r(,(cos(6’j —6,»)—1)
\/2r(,2(1—cos(9j —0,-))+(zj —z,-)z
7 (cosB-—cost)iA+(sin9»—sin9~)}+(z»—z-)l€
i - 5 J i J i jT
cosﬂj=ﬁj-——-=(—cos6ji—sin0jj)~ 5 -
] J2r2(-cos(8; 6,0 +(z; - 1) 29

r, (cos(é’j -0;)- l)

) J2rd(=cos(8; -0, +(z; ~ )

The final form of the integral over surface A, is given in Equation 30. The exponent n,
which is the integer number of reflections before a ray originating at A; reaches the upper or
lower end shield, is determined by dividing the distance from z, to the upper or lower end shield
by the difference in height between A, and A;. Which end shield is the final destination of the
ray is determined by height of A, relative A, (e.g.,if A; is below A, the ray will be reflected to

-

the lower end shield).

ri(cos(8, - 6,)-1 :
(O3 ) anon, = Jpé‘ - (eos®, ) —dA, (30)
" ﬂ(2r0‘(1—cos(l9] —0))+(z,-2)")

7

The infinitesimal surface area dA; is equal to r,d6dz. The limits for integration in the

axial direction are from O to the height of the cylinder. The integration limits in the

circumferential direction correspond to the unobstructed view that an infinitesimal area on the
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surface of the outer cylinder has of the outer cylinder. The half angle is illustrated in Figure 21

by a ray that just misses the inner cylinder. If the origin of the ray is set to =0, the limits of

integration are +/- (m—2f3). The angle P of the grazing ray is equal to sin”(ry/ro).

Surface 1 s

Surface 2

Figure 21 Integration Limits for Form Factor Integration

The final form of the integral to determine the exchange factor from dA, to A, is

provided in Equation 31.

H  +x=2p) r, (cos(ej ~0)- 1)2

O3 anon, = 93 2 ,
0 e (2 (1-cos(0, - 6)+(z; ~ 2,)*)

> r,d6dz (31)

Since the view of dA, to A, is dependent upon height only, the final form of the total

integral can be expressed as shown in Equation 32.

o H

1 n 1 n
2'03"fn =— J-(p3fn)dA,.—>A‘dAi =—_[(P3fn)d¢eA,dZ (32)
e A’. A J H 0 i

1

The formulation is checked by substituting a reflectance of 1.0 for surface 3. If surface 3
is ideally reflective, the fraction of energy emitted by surface 3 that is incident upon the end

shield (surface 1) should be identical to the diffuse form factor between surface 3 and itself.
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From analytical correlations, the diffuse form factor F3;=0.24132. Evaluating the expression
above with a reflectance of 1 yields an energy fraction of 0.23944, a difference of less than 1%.
The actual fraction of energy emitted by surface 3 that is specularly reflected onto the end shield
is 0.21121.

The exchange factors for the specularly reflecting model are calculated as shown in

Equations 33, 34, and 35.

Eap = Fyy + p3fy =003813+097 x0.03762 = 0.074621 (33)
Ey3 = Fy; =096187 (34)
Es = Fy +2p3"f,, = 005692 +021121= 026813 (35)

n=1

Solution and Results
The governing equations for the diffuse and specularly reflecting models are written in
matrix form and solved. The governing equations for the diffusely reflecting three surface model

are provided in Equations 36 and 37.

£14 0
— 1 4
O 1-& £ A B | |1 (36)
0, |=0] © ]—2——2— o |18 |-|1}
—& 4
& o o £345 | B3] |1z
1—53
E1A
]I—l 0 0 _—
0 ~a £ A T B, —A(Fiz + F3) AFp Afy3 B (37)
ol=a] 0 1_25_2 o [|n*l-|B, ||+ AyFy —Ay (Fyy + Fp3) Ay Fpy B,
— & :
0 £343 5| |8 A3F3 A3y, —A3(F31 + F32) | By
0 0
|—£3

It is possible to solve for the radiosity in terms of temperature as shown in Equations 38

and 39.
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[e,A £A
=L 0 0 . =L+ A (Fp + Fi3) —Afp ~AFy3
1-¢; T I-¢ B, (38)
£24; 4 £24
0 Toey 724 = Ay E* Ay (Fy + F3) ~AyFp By
T B
£4A 3 £1A 2
0 0 =373 —A3F3l —A';F32 373 +A1(F3| +F32)
L 1-£4 ; 1-&; .
1-¢ I-¢ I-¢
coaq 1Ht L(Fip + Fi3) _s LFs R L Fi3
n - gy - B (39)
nt|= = L Py 1+ (Fy + F3) _s LFn By
4 2 2
L5 1“6 LEN 14128 (B 4 Py &
S 5 PR

Substituting for the radiosity yields the final matrix form for the diffuse model as shown

in Equation 40.
-1
1y o ([1+125F, + Ay L Eag
- 12t Fi3 12 13 s
o) o ! & g Lt | (40)
£ - £ & 4
o |= 0 12:2 0 - L F, 1+ - (Fy1 + Fy3) —2 Fay -1
- 2 4
& £4A 1-£ 1-¢ 1- 3
0 o 23 — 3 Fy, -3y, 1+ (F31 + F3)
1-¢; £3 £3

The governing equations for the specularly reflecting three surface model are provided in

Equations 41 and 42.

E£1A £1A
11 1 0 11 1 0 .
- & - Ti
& e [B 4 i (41)
ol=| o 24 _d o 24 0 74
I-&, |8 I-¢&, 7_24
Gl |eamEsy e3Ey 0 0 £3A3(E3 +Eg) |3
£14; £14 4
+ AE|; + E3AE -AE —— 0 g5AER|T
- ¢, 1£12 T €3A1813 1812 Bl]z 1- e 341813 T;“ 42)
£24 B £24
—Ar By 224 MEy +e3AEp |2 0 £342E93 | 1

1-£;

]—52

After defining the matrices O, P, R, and S, the specular relations are rewritten as shown

in Equations 43 and 44. The final matrix form for the solution of the specularly reflecting

problem is derived in Equation 45.

Q i
B, 4
o |=[P B -olo] 1
2
03 i’
T]4

(43)

(44)
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The diffuse and specular model results are shown parametrically in Table 4.3 for three
furnace power levels. The heat rate is applied to the surface representing the inner cylinder. The
outer cylinder and end shield are radiatively coupled to a boundary node representing the
environment. The geometry and emissivities of the surfaces are chosen to be representative of the
vertical annulus formed by the furnace heater core and inner radial shield. These results are based

upon simplified models and are intended for comparison only.

Table 4.3 Results from the Diffuse and Specular Analyses

Q:=8.0 Watts Q.=4.0 Watts Q.=1.0 Watt
Diffuse | Specular| Delta Diffuse | Specular| Delta Diffuse | Specular| Deita
OC OC DC OC OC OC OC OC OC
Core 626.4 639.5 -13.1 486.4 497.3 -10.9 276.1 283.3 7.2
End Shield 527.4 525.0 2.3 404.4 402.5 1.9 2229 2217 1.2
Inner Radial Shield 537.4 539.4 -2.0 412.7 414.3 -1.8 228.2 229.2 -1.0

CONCLUSIONS

The specular surface of the outer cylinder (inner radial shield) does not appear to
significantly influence the temperatures of either the end shield(s) or the inner radial shield
relative to a diffuse outer surface. However, a specular outer cylinder results in a significantly
warmer core. This result is not intuitively obvious since specular reflections from the inner radial
shield would seem to reflect more heat to the ends of the furnace, which are less resistant to
radiative heat leak to the environment (higher emissivity). However, the radial resistance to heat
flow is much greater with a specular shield as demonstrated in Figure 22. With a diffuse outer
surface, energy emitted by the core that is incident upon the inner radial shield is diffusely

reflected back to the core with a form factor of only 0.7. Approximately 65% of the heat emitted
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by the core is reflected back to the core on the first exchange with the remainder diffusely
reflected to the inner radial shield or to the end shield(s). With a specular shield, approximately
90% of the energy emitted by the core is returned to the core by specular reflections where it is
readily absorbed by the highly emissive surface. This is both an unexpected and important result
because it appears to be supported by the test data. Measured differences in temperature between
the core and inner radial shield are greater than what are predicted by the diffuse assumptions in
the overall furnace model.

Diffuse Reflection

Fy3F3503
Fy;3 1.0

F,3(F3,03)/1.0=0.96*(0.70*0.97)/1.0=65%

Specular Reflection
F’y3=F»3-Specular Reflection to Surface 1
F'23p3

1.0
F'x

F’3304/1.0=0.92%0.97/1.0=90%

Figure 22 Diffuse and Specular Reflections



