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Notation

In this dissertation, we use the following notation:

R, C real numbers, complex numbers

R", C" n x 1 real column vectors, nx 1 complex column vectors

Rr>m C*™  nxm real matrices, n X m complex matrices

N, P" n x n nonnegative definite matrices, n xn positive definite matrices
S" E n X n symmetric matrices, expectation

I,.® n xn identity, Kronecker product

AT A*, A-'  transpose of A, complex conjugate transpose of A, inverse of A
tr 4, R(A)  trace of A, range space of A

He G Hermitian part of arbitrary complex matrix G
He G 2 1(G + G*)

Sh G Skew-Hermitian part of arbitrary complex matrix G
Sh G £ 1(G - G")

For convenience, we define the following terms:
S 2 BR;'BT, £2cTvyC
We also define the dimensions of the various signals below:

z(t) € R™ is the plant state vector

z.(t) € R is the controller state vector

u(t) € R™ is the control input signal

w(t) € R? is a unit-intensity, zero-mean, Gaussian white noise signal
d(t) € R* is the uncertainty input signal

y(t) € R' is the measurement output signal

z(t) € R? is the performance output signal

e(t) € R" is the uncertainty output signal

Furthermore, we define the order of the closed-loop system to be 7 Sy + n., where

xvii



n is the order of the plant and n. is the order of the compensator. We also define the

following closed-loop matrices:

oo oz(t) ol A BC, ~ o | By =a | D
‘T(”—[ J’A—[BCC AC+BCDCC]’B°—[ ]’D_[Bch}’

where 1 2 DD}, 1, = D,Dj, and W, 2 D, Dy = 0.
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Summary

The ability to develop an integrated control system design methodology for ro-
bust high performance controllers satisfying multiple design criteria and real world
hardware constraints constitutes a challenging task. The increasingly stringent per-
formance specifications required for controlling such systems necessitates a trade-off
between controller complexity and robustness. The principle challenge of the minimal
complexity robust control design is to arrive at a tractable control design formulation
in spite of the extreme complexity of such systems. Hence, design of minimal com-
plexity robust controllers for systems in the face of modeling errors has been a major
preoccupation of system and control theorists and practitioners for the past several
decades.

Although the theory for designing linear output feedback controllers is quite ma-
ture, the actual solution of the design equations can be a daunting task. This becomes
even more difficult if an optimal reduced-order controller is sought. In this disser-
tation, we develop a general fixed-structure control design framework that addresses
the following paradigm: Reduce control law complexity subject to the achievement
of a specified accuracy in the face of a specified level of uncertainty.

The control law complexity is reduced by developing a decentralized static out-
put feedback formulation for fixed-structure controller synthesis. The decentralized
static output feedback formulation captures a large class of controller architectures

within a common framework and allows a common numerical algorithm to be used

Xix



for computational purposes.

We first discuss this decentralized static output feedback framework and demon-
strate its applicability on the space-based ACTEX control testbed. Since the strict
architecture constraints of the ACTEX flight experiment preclude standard LQG and
H. techniques, we show that the decentralized static output feedback formulation
for fixed-structure controller synthesis can directly account for the controller archi-
tecture constraints and improve closed-loop performance by designing fixed-structure
‘H,-optimal controllers.

The next problem we consider is fixed-structure stable #,-optimal controller syn-
thesis using a multiobjective optimization technique. The problem is presented in the
decentralized static output feedback framework developed for fixed-structure dynamic
controller synthesis. A quasi-Newton/continuation algorithm is used to compute so-
lutions to the necessary conditions. To demonstrate the approach, two numerical
examples are considered. The first example is a second-order spring-mass-damper
svstem and the second example is a fourth-order two-mass system, both of which are
considered in the stable stabilization literature. The results are then compared with
other methods of stable compensator synthesis.

Next we use a similar approach to consider fixed-structure Hs-optimal relative
degree two controller synthesis. By considering dynamic controllers structured to
appear as the augmentation of two sttictly proper dynamic controllers in series, the
relative degree condition is guaranteed. Three examples are presented to demonstrate
the effectiveness of this design technique.

We then explore the applicability of the implicit small gain guaranteed cost bound
for controller synthesis. For flexibility in controller synthesis, we adopt the approach
of fixed-structure controller design which allows consideration of arbitrary controller

structures, including order, internal structure, and decentralization. Two numerical

XX
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examples that have been addressed by means of alternative guaranteed cost bounds
are presented to demonstrate the fixed-structure/implicit small gain approach to ro-
bust controller synthesis.

One of the fundamental problems in feedback control design is the ability of the
control system to maintain stability and performance in the face of system uncer-
tainties. To this end, elegant multivariable robust control design frameworks such as
H control, £; control, and u-synthesis have been developed to address the robust
stability and performance control problem. An implicit assumption inherent in these
design frameworks is that the controller will be implemented exactly. In a recent
paper by Keel and Bhattacharyya, it was shown that even though such frameworks
are robust with respect to system uncertainty, they are extremely sensitive, or frag-
ile, with respect to errors in the controller coefficients. Here we extend the robust
fixed-structure controller synthesis approach to develop controllers which are robust
to system uncertainties and non-fragile, or resilient, to controller gain variations.

Next, we develop linear, fixed-order pressure rise feedback dynamic compensators
for axial flow compressors. Unlike the nonlinear static controllers proposed in the
literature possessing gain at all frequencies, the proposed dynamic compensators ex-
plicitly account for compressor performance versus sensor accuracy, COmpressor per-
formance versus processor throughput, and compressor performance versus distur-
bance rejection. Furthermore, the proposed controller is predicated on only pressure
rise measurements, providing a considerable simplification in the sensing architecture
over the bifurcation-based and backstepping controllers proposed in the literature.

Finally, we use a unifying absolute stability result for mixed uncertainty to obtain
fixed-structure controllers and fixed-order stability multipliers which provide robust
stability and performance. The robust controller synthesis technique proposed here

permits the treatment of fully populated real uncertain blocks which may, in addition,

xxi



possess internal structure. The ability to address real uncertain blocks is based on the
use of an appropriate class of multipliers whose structure is compatible with the real
block uncertainty. Hence, tailoring the multipliers to the structure of the uncertainty
not only leads to the ability to address more general uncertainty characterizations but
can also lead to less conservative controllers than obtained from standard mixed-u

svnthesis.
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CHAPTER 1

Introduction

1.1. Robust Fixed-Structure Control Design:
Motivation and Overview

The growing complexity of dynamic systems results in unavoidable discrepan-
cies between real physical systems and the mathematical models used to describe
them. These uncertainties, in turn, result in severe degradation of control system
performance. Thus, one of the main objectives of feedback control system theory
is to design controllers that are robust with respect to system uncertainties as well
as guarantee specific performance objectives. The problem of robust control design
constitutes a significant challenge in mathematical system theory which, at the same
time, addresses a fundamental issue in the practical implementation of feedback con-
trol systems, namely, modeling uncertainty. Modeling uncertainty must be character-
ized and quantified so that it can be accounted for within the control design process.
For example, the dynamics of large flexible space structures are highly nonlinear (due
to geometric and material nonlinearities) but are commonly approximated by lin-
ear models. Furthermore, since flexible structures are inherently infinite dimensional
systems, any finite dimensional approximation model will exhibit significant error,

particularly as the modal frequency increases.



These uncertainties arising due to inexact modeling are referred to as plant uncer-
tainties and are broadly classified into parametric and nonparametric uncertainties.
Parametric uncertainty here describes errors that can be translated into uncertainty in
the physical elements of some time-invariant state-space representation of the design
model (i.e., perturbations or uncertainties in specific parameters of the physical sys-
tem). On the other hand, nonparametric uncertainty is best viewed in the frequency
domain and describes errors that have bounded gain but arbitrary phase (e.g., uncer-
tainties due to unmodeled system dynamics or system linearization). The distinction
of parametric versus nonparametric uncertainty in the plant model is of paramount
importance in robust control design. For example, in the problem of vibration control
of flexible space structures, if the stiffness matrix uncertainty is modeled as nonpara-
metric uncertainty, then perturbations to the damping matrix will inadvertently be
allowed. Consequently, stability and performance predictions for a given compensator
will be extremely conservative, which limits achievable performance.

Hence, robust control theory mainly deals with two issues; namely, the qualitative
issue of robust stability and the quantitative issue of robust performance. Robust
stability addresses the stability of a given system in the face of uncertainties while
robust performance addresses performance degradation due to system uncertainties
over the region of robust stability. Often worst case performance of the system in the
face of all possible uncertainties is addressed as a measure of robust performance.

Modern multivariable feedback control theory and application has been one of the
most rapidly growing areas in the scientific and engineering communities for the past
several decades. Some of the most fundamental advances in thls field can be traced
back to World War II. During the post-World War II era, the emergent superpowers
turned their research focus to aerospace technology in order to compete in the race to

space. One of the central achievements of this research effort was the development of
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state-space based methods introduced in the West by R. E. Kalman in the 1960’s [71,
72] which led to the Kalman filter [68,73]. Another pivotal achievement of the early
1960’s was the development of the Linear Quadratic Regulator (LQR) [4,67,80,101]
which, when combined with the Kalman filter, led to the formulation of the Linear
Quadratic Gaussian (LQG) controller design methodology [4,6, 67, 80,107]. These
revolutionary breakthroughs in optimal navigation and control led to the successful
launch of the Apollo mission which resulted in the first manned moon landing on July
20, 1969.

One of the most attractive features of the LQG controller design methodology
is the characterization of the optimal compensator gains via a system of two de-
coupled Riccati equations. A number of commercially available computational tools
offer efficient solutions to standard Riccati equations. Unfortunately, however, the
dimension of an LQG controller is always equal to the dimension of the design plant.
Since on-board processors have limited throughput and uncertainty is always present
in the system, this necessitates robust minimal complexity controllers which further
renders LQG controllers impractical for many applications. This has motivated the
study of optimal fixed-order controllers. Balanced truncation techniques [124] were
used to reduce the order of the plant or the designed full-order controller, however
these reduced-order controllers could not even guarantee closed-loop stability, let
alone performance. Another approach, developed to directly synthesize fixed-order
controllers, is the fixed-structure control framework developed in [62,63]. In this
approach, the compensator structure is fixed a priori and the optimization is per-
formed over the compensator parameters. The application of fixed-structure control
theory to the fixed-order controller design problem yields a characterization of the
optimal fixed-order controllers via a set of coupled Riccati and Lyapunov equations,

each containing a projection matrix which motivated the name “optimal projection

3



equations” in [62,63)].

At the same time as the development of the LQG controller, the work on absolute
stability theory which forms the basis of modern robust control theory was being pio-
neered by the Romanian mathematician V. M. Popov [102]. Absolute stability theory
addresses the stability of feedback systems whose forward path contains a dynamic
linear time-invariant system and whose feedback path contains a memoryless (pos-
sibly time-varying) nonlinearity (uncertainty). These stability criteria are generally
stated in terms of the linear system and apply to every element of a specified class
of nonlinearities. Research efforts in this direction were vigorously pursued in the
former Soviet Unjon by V. A. Yakubovich [116-120] and Y. Z. Tsypkin [109]. In the
United States, progress along the same direction was made by R. E. Kalman [69],
E. 1. Jury [65,66], R. W. Brockett [19,20], J. L. Willems [20}, and K. S. Naren-
dra [91-94]. The significant progress made towards resolving the absolute stability
problem is now well documented in research monographs, such as Aizerman and Gant-
macher [1], Lefschetz [82], and Popov [103]. A more modern treatment of the subject
is given by Safonov [104] while excellent book treatments are presented in Narendra
and Taylor [94] and Vidyasagar [111].

Since all real-world systems exhibit nonlinear behavior and possess numerous un-
certainties (due to such phenomena as exogenous disturbances, noise, mathemati-
cal modeling errors, unmodeled nonlinear dynamics, unmodeled high frequency dy-
namics, and unmodeled actuator and sensor dynamics), a viable controller synthesis
methodology must be able to account for system nonlinearities and uncertainties.
The problem of accurately controlling system performance variables whose dynam-
ics contain significant nonlinearities and uncertainties poses a challenging problem in
control system design. The critical issues of system uncertainty can be traced back

to H. S. Black’s 1927 patent where large loop gains were proposed for addressing

|
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the problem of uncertainty [17,28]). In classical single-input, single-output control
design techniques based on the Nyquist criterion and Bode gain and phase plots, the
question of robustness to system uncertainty was addressed by requiring that the
overall closed-loop system possess prespecified relative stability margins, i.e., gain
and phase margins. The issue of parametric plant uncertainty, however, was largely
neglected. Even though, as demonstrated by Kalman [70], optimal linear quadratic
state-feedback regulators possess guaranteed robustness properties, i.e., oo dB up-
ward and 6 dB downward gain margins and +60° phase margin, these robustness
properties are misleading since the guaranteed gain and phase margins are valid only
for uncertainty at the system input. Furthermore, it was shown in [55] that the ro-
bustness properties of LQR designs could diminish with increasing parametric system
uncertainty. Finally, these robustness guarantees are nonexistent in observer-based
LQG controllers [4,29].

In the late 1970’s and early 1980’s, a renewed research interest emerged in ad-
dressing plant uncertainty which led to an accelerated progress in the field of robust
control (see [28] for a representative collection of papers on this topic). A main mo-
tivation for this growing research effort appears to be the ever increasing complexity
of the modern systems within the engineering field (such as large flexible structures,
advanced tactical fighter aircraft, and variable-cycle gas turbine engines, to name a
few), as well as complex economic and biological systems. Thus the predominant con-
siderations in control law design for modern engineering systems have become control
law complexity and control law robustness, respectively. Indeed, with increasing sys-
tem complexity comes increasing (and usually overriding concern with) system cost,
reliability, and maintainability, whereas with increasing accuracy requirements come
increasingly complex control systems. Since, generally speaking, the more complex

the control system, the more it costs, the less reliable it is, and the harder it is



to maintain, it follows that high accuracy requirements conflict with control system
complexity requirements in highly complex systems. In fact, they are also in conflict
with each other through the specification of control law robustness. In an attempt to
capture robustness guarantees within observer based designs, Doyle and Stein [32,33]
proposed a two-stage analysis/synthesis recovery framework that led to the LQG/LTR
methodology [108] yielding dynamic compensators with recovered LQR-type margins.
However, the LQG/LTR methodology is limited to the recovery of LQR margins and
employs high-gain feedback. In addition, this design framework is not applicable to
plants with non-minimum phase zeros and involves inversion of the plant which leads
to controllers which are extremely sensitive to parametric uncertainty.

One approach to controller synthesis in the presence of unstructured uncertainty
is the well known H,, methodology. Several authors have shown that the #H,, prob-
lem can be solved via a pair of modified Riccati equations [11, 31,45,99]. However,
as is also well known, this methodology is highly conservative for parametric uncer-
tainty. Using a Lyapunov bounding framework, the authors in [12,13,88] addressed
the problem of robust analysis and synthesis in the face of parametric uncertainty.
Several bounding functions were considered in [12], while [10] extended the quadratic
bounding technique of [100] to robust fixed-order controller synthesis. Alternative
approaches to robust stability and performance in the presence of parametric uncer-
tainty are discussed in [28,77,100]. However, a major drawback of the conventional
Lyapunov bounding techniques [48] is their inability to restrict time-variation of the
parametric perturbations. In a recent series of papers [46,48-50, 52], a refined Lya-
punov function technique was developed to overcome some of the current limitations
of Lyapunov functioﬁ theory for the problem of robust stability and performance in
the presence of constant real parameter uncertainty. The authors in [46,48-50,52] ex-

tend the rich theory of absolute stability to develop parameter-dependent Lyapunov
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functions that guarantee robust stability and performance in the presence of constant
real parametric uncertainty. Finally, using frequency domain stability criteria, the
authors in [57,61] demonstrate that the seemingly remote modern robust stability
and performance tools based on the structured singular value [30, 123] can be directly
connected to absolute stability theory via selection of stability multipliers for various
classes of nonlinearities. Hence, [46,48-50,52,57] provide an alternative approach to
mixed- synthesis [122], while avoiding the standard D, N-K iteration and curve
fitting procedure.

Prior experience with the state-space techniques and the LQG controllers prompt-
ed many researchers to seek state-space-based robust controller synthesis methods
that essentially try to mimic the solution features of the LQG controller, i.e., controller
gains based on solutions to modified Riccati equations. Recent advances along these
lines are given in [10,11,13,31,45,46,52,57,76,88,99,100]. Furthermore, the optimal
projection equation approach of Hyland and Bernstein [62,63] has been extended to
the problem of robust controller synthesis in the presence of unstructured system
uncertainty [11,45,88], arbitrary time-varying parameter uncertainty {10,12,13,88],
and constant real parameter uncertainfy [46,48-50,52,57] via the quadratic Lyapunov

bounding framework developed in [44].

1.2. Brief Outline of the Report

In this research, we will build on the results of [14,95] in several directions. In
Chapter 2, we formulate the decentralized static output feedback problem for fixed-
structure controller synthesis. This formulation captures a large class of controller
architectures within a common framework and allows a common numerical algorithm

to be used for computational purposes. This framework will provide the basis for



much of the subsequent controller synthesis, such as the stable H,-optimal controller
synthesis discussed in Chapter 3. In this chapter, a multiobjective optimization tech-
nique is used to optimize the H, cost of the closed-loop system while maintaining
controller stability. The decentralized static output feedback framework is also ex-
ploited in Chapter 4 when we consider H;-optimal relative degree two controller
synthesis.

Next, in Chapter 5, we consider the applicability of the implicit small gain guaran-
teed cost bound for controller synthesis. In Chapter 6, the decentralized static output
feedback framework is used to develop controllers with the ability to maintain control
system stability and performance in the face of system uncertainties, which could
even include variations in the controller gains. Then, in Chapter 7, we use the fixed-
architecture control methodology to develop linear, fixed-order pressure rise feedback
dynamic compensators for axial flow compressors. Unlike the nonlinear static con-
trollers proposed in the literature possessing gain at all frequencies, the proposed
dynamic compensators explicitly account for compressor performance and is pred-
icated on only pressure rise measurements, providing a considerable simplification
in the sensing architecture over the bifurcation-based and backstepping controllers
proposed in the literature.

Finally, in Chapter 8, we use a unifying absolute stability result for mixed uncer-
tainty to obtain fixed-structure controllers and fixed-order stability multipliers which
provide robust stability and performance. The robust controller synthesis technique
proposed here permits the treatment of fully populated real uncertain blocks which
may, in addition, possess internal structure. The ability to address real uncertain
blocks is based on the use of an appropriate class of multipliers whose structure is
compatible with the real block uncertainty. Hence, tailoring the multipliers to the

structure of the uncertainty not only leads to the ability to address more general
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uncertainty characterizations but can also lead to less conservative controllers than
obtained from the standard mixed-x sythesis techniques.
Finally, in Chapter 9, conclusions and recommendations for future research are

discussed.
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CHAPTER 2

Fixed-Structure Control
Framework

2.1. Introduction

This chapter reviews the decentralized static output feedback problem formula-
tion for fixed-structure controller synthesis. As shown in {14, 95], the decentralized
static output feedback format captures a large class of controller architectures within
a common framework and allows a common numerical algorithm to be used for com-
putational purposes.

Consider the (m + g + 1)-vector-input, (m + g + 1)-vector-output decentralized
system shown in Figure 2.1, where w is the exogenous disturbance input, z is the per-
formance variable, the signals y; and u;, i = 1,...,m, are measurement and control
signals, respectively, and e; and d;, i = 1,...,q, are used to accéunt for model un-
certainty. The decentralized static output feedback multi vector-input, multi vector-

output system shown in Figure 2.1 is characterized by the dynamics

e BRI YT RIS

m q
B(t) = AZ(t)+D_ Bu,ui(t)+)_ Ba,dx(t)+Byw(t), t € [0,00), (2.1)
j=1 k=1
m q
yi(t) = Cy.-j(t)’*'z Dyu.'juj(t) +Z Dydikdk(t)+DyWiw(t)’ i=12,...,m, (2.2
i=1 k=1
11
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Figure 2.1: Decentralized Static Output Feedback Framework .
m q
ei(t) = Co@()+D_ Deuyti(t)+) Deayydi(t) + Dewyw(t), i=1,2,...,q, (2.3)
j=1 k=1
m q v
2(t) = CER)+D_ Doyt (1) +Y_ Dag,di(t)+ Doy (2). (2.4) |
j=1 k=1 . .
In the above formulation, model uncertainty is represented by the decentralized
static output feedback map .
d,(t) = Aie,-(t), 1= 1, ... 4, (25)
where the uncertain matrices A; are not necessarily distinct. To represent decentral- v
ized static output feedback control with possibly repeated gains, we consider
U,(t) = ’Ciyi(t), 1= 1, U (26) j
L 2

where the matrices K; are not necessarily distinct. Reordering the variables in (2.5)

12
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and (2.6) if necessary and defining

ui(t) yi(t) ) di (1) ex(t)
ﬁ(t) = ) Q(t) = ) d(t) = > é(t) = 3 (2 7)
U (1) ym(t) dq(1) eq(t)
A
Bu é [Bul e Bum]) Bd é [Bd1 e qu], Dzu = [Dzul e Dzum]a (28)
Cyl A Dyuu e Dyulm A Dydll et Dydlq
Cy=1 | D= : . : y Dya = : : , (2.9
Cym Dyum 1 Dyumm Dyd'm 1 Dyqu
Ce1 Deuu Deulm A Dedu Dedlq
Ce = ) Deu é ’ Ded = e ’ (210)
Ceq Deuql Deuqm 7 Dedql Dedqq
A Jay Dyw; AN Dew;
Dzd = [ Dzdl v Dqu ] y Dyw = ' s Dew = ' , (211)
Dywm Dewq

(2.5) and (2.6) can be rewritten

d(t) = Aé(t), (2.12)
a(t) = Kj(t), (2.13)
where A and K have the form
A 2 block-diag[ly, ® Ay, ..., Iy, ® Ay, (2.14)
£ block-diag [Ty, ® Ky, .-, I, ® Ky) (2.15)

where v is the number of distinct uncertainties A; € CP*/ or RP«*fi 4); is the number
of repetitions of uncertainty A;, g is the number of distinct gains K; € R"*% and
¢; is the number of repetltlons of gain IC Note that Ky,...,K, are not necessarily

square matrices, and Zd}, =g¢ and Z(ﬁ, = m. Furthermore, define the matrices
i=1 _i=1

13



QL;; and Qg,; to be

- - - - T
On o1 xr; 001 1 X¢;
0r2¢2 X T Ocz¢2 XCi
0Ta‘-1¢¢-1XT¢ 06:‘—1¢i—1><6i
a Oi f—1)xr; A Oi j—1)xc¢;
QLij = ri~hxr ) QR,']‘ = el -1)xe ) (216)
I, I,
Or.(gi—g)xrs Oc;(gi—s)xes
0Ti+1¢>i+1><f‘i Oci+1¢i+lxci
L 0Tu¢v XTy - L Ocv¢v Xci .

wherei=1,...,v,and j=1,...,¢;.
With the definitions in (2.7)-(2.11), the transfer function G(s) from [4T, dT, wT]T

to [§T, €T, 2T]T of the decentralized system has the realization

Al B, ' Bi' B,

Cg J_?y_u i?ui _IL Py.w_

™6, [P0 (D D | 1
C. | Daw , Daa |, Daw
which represents the linear, time-invariant dynamic system
E(t) = AZ(t) + Bua(t) + Bud(t) + Byw(t), t€[0,00), (2.18)
§(t) = Cyz(t) + Dyuu(t) + Dyd(f(t) + Dyw(t), (2.19)
&(t) = CoZ(t) + Deyii(t) + Dead(t) + Dewr(2), (2.20)
2(t) = C,E(t) + Dy ii(t) + Dugd(t) + Dopw(2), (2.21)

which is equivalent to (2.1)-(2.4). Furthermore, by rewriting the decentralized control
signals (2.6) in the compact form given by (2.13), the closed-loop system realization

from [dT, wT]T to [€T, 2T]" is given by

D
1_? (2.22)
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where

A2 A+ BKLC, Bo2Bs+B,KLg'Dys, D= B, +B.KL' Dy,
C-?’0 é Ce + Deu’CL)_chy, DO é Ded + Deu’CLEIDyd, Dl é Dew + 'Deu’CL;c-l'Dyw,

E2C, +D,uKLFC,, By 2 Dug+ DKL Dys, Eo 2 Dy + Dok L Dy,

and where L = I — D,.K. Note that we assume det(Lg) # 0 for all K given by

(2.15) to ensure the well-posedness of the feedback interconnection.

2.2. Performance Constraints

The decentralized static output feedback framework can be used to help synthesize
controllers that are optimal with respect to user-chosen performance criteria. A
performance criterion consists of a cost function and one or more constraints. The
cost function represents some characteristic of the controlled system which a desirable
controller will minimize, while the constraints represent properties that an acceptable
controller must have. An example of a cost function is an induced norm of the closed-
loop transfer function, while examples of constraints include asymptotic stability of
the nominal closed-loop system or robust stability with respect to uncertainties of a
certain size and/or structure.

As an example, consider the Hz-optimal centralized strictly proper dynamic con-
trol (Linear Quadratic Gaussian) problem. Here we will consider the ntP-order stabi-
lizable and detectable plant with noisy measurements, uncertainty signals, and per-

formance variables given by

i(t) = Ax(t) + Bu(t) + Bod(t) + Dyw(t), t € [0,00), (2.23)

y(t) = Cz(t) + Du(t) + Fid(t) + Dow(t), (2.24)

e(t) = Cox(t) + Fau(t), (2.25)
15



2(t) = Eiz(t) + Eyu(t). (2.26)

To recast this system into the decentralized static output feedback format, we first

define the decentralized control signals to be
Uy (t) = Acyl (t), 'U.g(t) = chg(t), U3(t) = Ccy3(t) (227)

Note that we can also write the control signals (2.27) in the compact form given by
(2.13), where, for the centralized strictly proper dynamic control problem, K takes
the form
A A. 0 0
K=]0 B. 0 (2.28)
0 0 C.
Further note that Qr,; and Qg,; are given by

Inc Onc XTic Onc xm
QLH = Onanc ) QLz] = Inc 3 QL31 = Oncxm y
Omxnc Omxnc Im

Qris = [Tne Onext Onexne |» Qror = [Oene &t Oixne |+ @Ry = [One Onext ILi].

With these definitions, the closed-loop system is given by

E(t) = AE(t) + > Buui(t) + Byw(t), € [0,00),

i=1

3
U(t) = Cud(t) + 3 Dyuyus(t) + Dywo(t), i =1,2,3,
i=1

3
Z(t) = Czi'(t) + ZDzuiui(t)i

where

[4o0 _Jo fo _[B _ [ b,
P S S A P |

Dyﬂu =0, Dyul'z =0, Dyﬂxs =0, Dyuzl =0, Dyuzz =0, Dyﬂza =D,

|



¢

d

q

q

M\

q

a

Dyuss =0, Dyug; =0, Dyugy =0, Dyu, =0, Dyy, = Dy, Dyw, =0,
C.= [ E, 0 ]1 D,u, =0, Dzm =0, Du, = Es.

The LQG problem can now be defined as

: A 2
min [[Guu(s)I3, (229)

where K, is the set of all K of the form (2.28) such that A is stable.
If X € K, then
|G.w(s)]I3 = tr QR, (2.30)

where Q is the unique, nonnegative definite solution to the Lyapunov equation
0=AQ + QAT +V. (2.31)

Necessary conditions for optimality involve a Lagrangian function that accounts for

the constraint (2.31). The Lagrangian for the #,-optimal control problem is given by
L(P,Q,Ac,B,C.) =tr QR+ tr P [AQ + QAT + f/] : (2.32)

where PeN" is a Lagrange multiplier, and the partial derivatives of ﬁ(f’,Q,AC,BC,C’C)

are given by

oL

—= = AQ+QAT+V, 2.33
op ~ A@TC | (2.33)
9L _ ivp 4 PA+R, 230
9Q

ac . N N

5% = 20L,7 [BIPQC] + BIPDD], + D, BGCY] LiTQR,,

i=1,23 j=1, (2.35)

where 7 = I + D, LTKT.
Finally, although the LQG problem does not account for model uncertainty, for

completeness we note that, for centralized strictly proper dynamic control problems

17



where the model uncertainty for the nominal system matrices (4, B, C',D) is modeled

as

AA = BoAC,, AB = ByAF,, AC=FAC,, AD=FAF,,

the matrices By, Ce, Dey, and Dy have the form

0
dell?)o]: Ce'_—[CO 0]) Deu=[0 0 F2l’ Dya=| I
0

2.3. Quasi-Newton Gradient Optimization

Once the problem has been posed in terms of the gradients of an associated La-
grangian, a general-purpose BFGS quasi-Newton algorithm is used to solve the non-
linear optimization problem. The line-search portions of the algorithm were modified
to include a constraint-checking subroutine which decreases the length of the search
direction vector until it lies entirely within the allowable set of parameters that yield
gistable closed-loop system. ThlS modification ensures that the cost function remains
defined at every point in the lin’e-'serarchrprocess. Numerical experience indicates that
this subroutine is usually invoked only during the first few iterations of a synthesis
problem. For details of the algorithm, see [35].

One requirement of gradient-based optimization algorithms is an initial stabilizing
desxgn Here, this was usually accomphshed by using elther the LQG controller for

full-order designs or a balanced truncation of the LQG controller to obtain a reduced-

order design.

18
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2.4. Structural Dynamics Modeling of the ACTEX
Flight Experiment

To demonstrate the applicability of the decentralized static output feedback for-
mat for controller design, we present the ACTEX flight experiment. This testbed
provides a unique opportunity for users to implement and test controllers on a space-
based platform. However, the hardware environment has several features that must
be accounted for when specifying control algorithms. First, the feedback control al-
gorithms that can be implemented on ACTEX are fixed gain, and thus adaptive con-
trollers cannot be used. Furthermore, these fixed-gain controllers are analog, which
avoids sampling effects. Finally, the implementable analog controllers have a prespec-
ified structure in which only the filter gains and natural frequencies can be modified.
Since this constraint does not permit implementation of dynamic compensators of
arbitrary structure, standard LQG and H, methods cannot be applied.

We thus show that the decentralized static output feedback formulation of fixed-
structure controller synthesis can directly account for the control-structure constraints
of the ACTEX flight experiment. Specifically, we show that the ACTEX controller
structure can be written as a decentralized static output feedback problem. Having
done this, we then proceed to apply our techniques to obtain H;-optimal feedback
controllers for suppressing broadband disturbances.

The ACTEX flight experiment consists of a plate connected to a satellite by three
struts, as shown in Figure 2.2. Each strut is equipped with its own control piezo-
actuator as well as a colocated and nearly colocated sensor. A disturbance can be
introduced to the experimental package through each of the three control actuators,
or through a disturbance actuator on the plate. In addition, each of the three control

actuators has an independent decentralized analog controller.

19



Figure 2.2: ACTEX flight experiment

Several experiments have been run on the ACTEX package, with telemetry re-
turned for identification purposes. Measurements were taken from onboard accelerom-
eters, sensor inputs, and actuator outputs, sampled at 4 kHz. Using this data, iden-
tification was performed on the plant from the strut 1 actuator to the strut 1 nearly-
colocated sensor. For frequencies below 200 Hz, these dynamics can be represented

by (2.23)-(2.24) where

-1.56 77.98 0 0 -1.10 -1.10 0
-77.98 -156 0 0 -0.21 ~0.21 0

A= 0 0 025 2499 |' BT | o1 " =] —o11 0 |
0 0 -2499 -025 0.03 0.03 0
C=[-015 070 1.83 6.88 ], D=1, D,=[0 01].

Finally, we define the performance signals (2.26) based on the output measurements
so that the closed-loop system reduces the vibrations seen by the sensors. Specifically,

we have

—0.15 0.70 1.83 6.88 0
Eb=1 "% 0o 0o o ] E2=a[1]'

20
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2.5. Fixed-Structure Synthesis for the ACTEX
Flight Experiment

Since continuous-time controllers are implemented on ACTEX, hardware con-
straints place a limit on the form that the controllers may take. Each of the three
struts on ACTEX has a decentralized controller, available in three fourth-order con-

figurations and a sixth-order configuration, as shown below

Gals) = 3 + Okngs + w? Ty ok:;:i +w?’ (2:36)
Geals) = s? + Ok;c(fs Fw? 2+ 0.(;:‘)313 +w?’ (2.37)
Geals) = s+ Ok?f:fs fu? s2+ 0.;:513 + w?’ (2:38)
Gule) = s N o (2.39)

s2 + 0.3w3s + w? " 52 + 0.3wz5 + w2 " 5%+ 0.3w;5 + w?’
where w;, wq, ws, k3, and k4 are subject to the constraints
0 < wy,wo,ws <1024,
—16 < k3 < 16, (2.40)
—8< ks L8
Now, we consider the controller associated with strut 1, and express the controller

in the decentralized static output feedback framework. Controller configuration 1,

given by (2.36), can be expressed in dynamic compensator form as

0 1 0 0 0
2
_ | ~wi —0.3w 0 0 11
Ae = 0 0 0 1 » Be= 0\’
0 0 —wg —0.3w, 1

Cc= [k;;w% 0 k4w§ 0]

Controller configurations 2 through 4, given by (2.37)-(2.39), can be expressed simi-

larly and are given in the Appendix.
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Having specified the form of the controller, we consider the H; synthesis problem.
The H, norm of the closed-loop transfer function G, (s) is given by (2.30). In order
to design H;-optimal controllers for the ACTEX experiment, we pose the following

optimization problem: Determine K that minimizes
J(K) =trQR, (2.41)

where Q € N* satisfies (2.31). The necessary conditions for optimality can be derived
by forming the Lagrangian (2.32). The partial derivatives with respect to Q and
P in (2.32) are given by (2.33) and (2.34). To obtain the partial derivative of the
Lagrangian with respect to the free parameters in the controller gains, we first specify
the controller configuration. As an example, we consider controller configuration 1,
given by (2.36). The settings for each of the other controller configurations are given
in the Appendix.

For controller configuration 1, the block-diagonal matrix K has the form (2.28).
Note that this controller has four free optimization parameters; namely, w;, wo, k3,

and k4. Thus, we construct the matrix

wp; 0 0 0

_ 0 (7)) 0 0
K= 0 0 k 0 |°

0 0 0 kg

and note that

]C = K0+L1KR1 +L2KKR2 +L3KKM3KR3,
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where

P b 3 0 y i

12 = diag{L

Now with K in terms of K, we can take the derivative of the Lagrangian with respect
3
7]

The derivative of the Lagrangian with respect to K is given by

to K. Define the following notation



+KILTDRTKMF + M{KKLTDRT + LTERT + LJER]K + KLTER]

+ILTERTKMTK + KLTERTKM] + M{ KKL]ER]}.
2.6. Simulation Results

As mentioned in Section 2.3, one requirement of gradient-based optimization al-
gorithms is an initial stabilizing design. Initial designs showed that for large values of
w;, 1 = 1,2, 3, the cost function depended very weakly upon these values. Therefore,
w;, © = 1,2,3, were initially chosen to be 48, 72, and 96, respectively. Furthermore,
since the open-loop system was stable, an initial stabilizing design could be obtained
by setting k3 = ks = 0. With these values set, the BFGS quasi-Newton algorithm
was applied to find the H,-optimal solution for a given fixed-structure controller
configuration.

The ACTEX experiment is a lightly damped flexible structure, as can be seen by
the impulse response shown in Figure 2.3, where z(0)=[0 0 0 1 ]T. For each of
the four different controller configurations, three different controllers were designed
by setting the control weighting matrix R, to 1, 0.01, and 0.0001. The #H; cost of
these controllers can be seen in Table 2.1. It is seen that the H, performance is best
for the first controller configuration. In fact, the fourth controller configuration ran
into paraﬁeter limits (2.40), as explained in Section 2.3. Therefore, the optimization
routine terminated due to a boundary constraint rather than a small gradient condi-
tion. It can also be seen from Table 2.1 that the #H, cost of the closed-loop system
decreases with increasing controller authority.

The optimal controller parameters for the first controller configuration are given
in Table 2.2. We can see from the output signals of the impulse response in Figure 2.4

that with Ry = 1 the controller does not attenuate the vibrations significantly. How-
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Figure 2.3: Open-loop impulse response

Config. 1 | Config. 2 I Config. 3 I Config. 4J
Ry=1 0.5825 0.6774 0.6774 0.6782
R, =0.01 0.2444 0.5601 | 0.5601 0.5613
R, =0.0001 | 0.1910 0.5495 0.5495 0.5507

Table 2.1: H, costs for various controller configurations and weightings

I [ oo | o [ & | & |
Ry=1 26.6460 | 80.0602 | 0.1352 | 0.0074
R, =0.01 36.4434 | 99.1179 | 0.3195 | 0.4025
Ry = 0.0001 || 37.3664 | 123.8404 | 0.2081 | 0.6314

Table 2.2: Optimal controller parameters for controller configuration 1
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ever, as the controller authority is increased, the attenuation becomes greater, as seen
in Figure 2.5 and Figure 2.6, though this does increase the control effort expended,
as shown in Figures 2.7-2.9, which could lead to actuator saturation. Finally, Fig-
ure 2.10 shows the Bode plots of the open-loop and closed-loop systems. It is seen
that the size of the first peak in the closed-loop response is decreased as the con-
troller authority is increased. Another important feature of the closed-loop frequency
response is the high-frequency roll-off. Since the ACTEX system model has a relative
degree of zero, designing a controller without high-frequency roll-off would result in
a closed-loop system which possesses gain at all frequencies, thus unmodeled high-
frequency dynamics could destabilize the closed-loop system, whereas these dynamics

would be attenuated with a strictly proper dynamic controller.

8 T T 7 T T T T T T
——  ClosedlLoop System
6! n P Openloop System ]
4 n ﬂ {\ AN .
2H (\ -
g
2
‘g o-
2 F i
‘T U u U G 1
6 _U U N - 4
8 1 1 1 1 i 1 i 1 1
0 0.5 1 15 2 2.5 3 35 4 45 5
Time

Figure 2.4: Closed-loop impulse response, Ry =1
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Figure 2.5: Closed-loop impulse response, Ry = 0.01
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Figure 2.6: Closed-loop impulse response, R; = 0.0001
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Figure 2.7: Closed-loop control effort, R, =1
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Figure 2.10: Bode plots for open-loop and closed-loop systems
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2.7. Conclusion

v
In this chapter we introduced the decentralized static output feedback format.
Specifically, we showed how dynamic output feedback control problems can be trans-
v
formed into a decentralized static output feedback form. By using this format, a
numerical optimization scheme can be used to optimize the controller gains with re-
spect to a given cost function and constraint equation. Furthermore, we demonstrated
, -
the effectiveness of this framework on the ACTEX flight experiment.
L 3
L B
.
:
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CHAPTER 3

Stable Hs-Optimal Controller
Synthesis

3.1. Introduction

It is well known that even though LQG synthesis will stabilize the nominal closed-
loop system, it can produce controllers with unstable dynamics, especially at high
authority levels. Of course, for certain plants, specifically those that do not satisfy
the parity interlacing property [121], only unstable controllers are stabilizing. How-
ever, even for stable plants, LQG synthesis often produces unstable controllers, thus
requiring Nyquist encirclements of the critical point. These encirclements and the
resulting multiple gain margins, which must be maintained by the input actuators,
can be jeopardized by actuator saturation and startup dynamics [87]. Therefore,
whenever possible, it is desirifyxﬁbliér;;irr;lblement only stable controllers.

Several modifications of LQG theory have been proposed to obtain stable com-
pensators. Several of these techniques involve either modified Riccati equations
[64,112,113] or constrained weights [69,60]. Thus the resulting controllers may sacri-
fice performance for controller stability. In [43,86,87], an augmented cost technique

was proposed to obtain stable controllers without unnecessarily sacrificing perfor-

mance. However, even though the authors in [87] give an excellent discussion on the
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implementation issues surrounding stable versus unstable controllers, they focus on
multiple-model control, and therefore the cost function to be optimized is a weighted
average of a number of system costs and does not give any insight into the trade-off
between system performance and controller stability margin.

The purpose of this paper is to provide a control-system design framework for H,-
optimal strong stabilization. To achieve this goal we formulate the H;-optimal stable
control problem within the context of decentralized static output feedback control
which provides a general framework for fixed-structure dynamic controller synthesis
[14,34]. In particular, in order to guarantee stable stabilization, a multiobjective
problem, reminiscent of scalarization techniques for Pareto optimization, is treated
by forming a convex combination of the H; norm of the closed-loop system and a
weighted H, norm of the controller. It is shown that as the trade-off parameter is
varied to obtain better Hy system performance, the controller eigenvalues approach
the imaginary axis. Thus the control enélneer can decide if additional performance
improrrements warrant the resulting reduction in the stability margin of the controller.

Two examplesr from the stable stabil’i'zation literature are considered here. The
Eﬁrst example is a second-order sprmg—mass damper system and the second example
is a fourth—order two-mass system mvolvmg two flexible modes The H, cost of the
stable controllers developed for the first example, though larger than that of the LQG
controller was comparable to the lov;zeet cost possxble by a stable controller For the

second example the difference between ‘the Ha cost of the stable controller and the

unstable LQG controller is negligible.
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3.2. Stable H,-Optimal Control

In this section we state the H,-optimal stable stabilization problem. Specifically,

given the n'M-order plant
i(t) = Az(t) + Bu(t) + Dyw(t), t € [0,00), (3.1)

with noisy measurements

y(t) = Cz(t) + Dyw(t), (3.2)

and performance variables
z(t) = Eyz(t) + Equ(t), (3.3)
determine an n'"-order strictly proper dynamic compensator

T(t) = Aczc(t) + ch(t)’ (3.4)

u(t) = Cez(t), (3.5)
such that the H, performance criterion
JAN. 1 t T
J(Ac, B.,C.) = lim =E [ 2% (s)z(s)ds, (3.6)
tooo t 0

is minimized and the compensator dynamics matrix A. is asymptotically stable.
The closed-loop system (3.1)-(3.5) is given by
i(t) = AZ(t) + Dw(t), t € [0,00), (3.7)
z(t) = Ex(t). (3.8)

The closed-loop transfer function from disturbances w to performance variables z is

given by .
Gou(s) & E(sI, — A)'D.
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Next, we define a weighted controller transfer function from plant output y to plant
input u by
Ge(s) & EyCe(sln, — Ac) ' BeDs.

Hence, the fixed-structure H,-optimal stable control problem is defined as:

. G 2
aTn, |G 2w (8)ll2

subject to

[Ge(s)]lz < oo.

3.3. Design Equations

The #H2 norm of G,,,(s) is given by
1Gou(8)ll3 = tr QR, (3.9)

where Q € N* is the unique nonnegative definite solution to the algebraic Lyapunov

equation

0=AQ + QAT+ V. (3.10)
Furthermore, if A, is stable, then the #, norm of the weighted transfer function of
the controller G.(s) = E;C.(sI,, — A.)"!B.D, is given by

[Ge(s)ll7 = tr QcCc RoC,, (3.11)

where Q. € N™ is the unique nonnegative definite solution to the algebraic Lyapunov
equation

0= A4.Q. + Q.AT + B.V,BT. (3.12)
To obtain (3.11) and (3.12) in terms of K, given by

Ac 0 0
0 B. 0|, (3.13)
0

0 C.

e

K
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we define the matrices Qy,; and Qr,;, 1 =1,2,3, j =1, as given by (2.16), so that

AC = Lu’CQRn’
BC = szlcQRzl’
CC = L:sl’CQRsn

Thus, (3.11) and (3.12) become

”G (S) ”2 =tr QCQRSI ICTQL:n R?QLM QRM, (314)

and

L” QR“QC + QCQRU K:TQLU + QL21 KQR,H ‘/QQRleTQLzl 3 (315)

respectively.
In order to design Hs-optimal stable controllers we pose the following multiobjec-

tive optimization problem: For p € [0, 1], determine K that minimizes
JK)=1-p)trQR+ptr QCQR3,KTQL31R2QL31 ICQRM, (3.16)

where Q € N*, Q. € N satisfy (3.10) and (3.15), respectively. Note that (3.16)
involves a convex combination of the #, norm of the closed-loop system and the
weighted 2 norm of the controller. By including the #, cost of the controller in
the objective function, we can guarantee that the controller is stable as long as the
objective function is finite. By varying p € [0,1], (3.16) can be viewed as the scalar
representation of a multiobjective cost. To achieve the best closed-loop performance
with a stable controller, we only want to use the H, cost of the controller as a con-
straint, and thus we set p > 0 to be small so that the contribution to the multiobjective
cost due to the H, cost of the controller is negligible compared to the contribution

due to the #, cost of the closed-loop system. Thus, the optimization routine will
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minimize the cost of the closed-loop system and not attempt to minimize the H,
cost of the compensator. However, increasing the trade-off parameter p will increase
the controller stability margin. Finally, note that by letting p — 0, we recover the
Hy-optimal control problem.

The necessary conditions for optimality can be derived by forming the Lagrangian
L(P,Q, P, Qc,K) = (1= p) tr QR + p tr QcQr,, KT Qyy R2Q, K QR

+tr P [AQ + QA~T + V] +tr PC[ LUICQRHQC

+QCQR111C QLu + QLm}CQ’}I{mVQQRmK;TQLm]’ (3'17)

where P € N* and P. € N* are Lagrange multipliers. The partial derivatives with

respect to the free parameters in (3.17) are given by

ac = ~ ~
= = ATP+ PA+(1-p)R,
0 +- (1—-p)
ac - = = ~
= = AQ+ QAT +V,
5P Q+Q
oL _ ATP.+ P.A.+ pCTR,C
an - cic c{1c¢ P c 42,
oLr _ T T
aPc - ACQC + QC‘AC + BC%BC 9
oL oL oL oL AT oL -
BA QL“@IC Ry 8B QL" BIC R”’ oC, N QL‘” oK YRa?
where
9L _ grpOcT + BTPVDT, + (1 — p)DLEOCT
a,c - Mu ] u yw PI oy Y

+PQL31 R?QLM QRMQCQR:” + QLnPCQCQRu + QL21 QEHK:Q’!E“ ‘/QQR'“ .
3.4. Optlmlgatlon Algorithm

As noted in Section 2.3, one requirement of gradient-based optimization algorithms

is an initial stabilizing design. For plants satisfying the parity interlacing property,
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initialization can be accomplished by using sufficiently low authority compensators
[24]. This was accomplished here by multiplying the control weight E, by a scalar
n > 1. At sufficiently low authority, the LQG controllers tended to be stable. These
low authority, stable, full-order controllers generally can then be truncated using
an appropriate model reduction technique without destroying closed-loop stability.
For decentralized control, this technique can be implemented in a sequential manner
for each channel to obtain initializing gains with the given structure. These low
authority LQG designs are used to initialize a low authority optimization algorithm.
The optimized controller gains are then used to sequentially initialize higher authority
problems until eventually the desired controller authority level is regained. At this
point, the trade-off parameter p is varied until the best H; performance is attained

in the face of a desired controller stability margin.

3.5. Spring-Mass-Damper Example

Consider the spring-mass-damper system given by the state space realization [42,

60]

w0 =] _§ _y|sw+[]]uo
y@) =[2 1]=z(@)

The matrices Dy, Dy, E,, and E, are chosen to be

35 0 52.9150 8.9443 0
Dl=[_61 0], D2=[0 1], E1=[ 0 0 ], E2=[1]

For the given data, the LQG controller is unstable. To initialize the H,-optimal stable
control problem, the control weighting was increased by multiplying E; by n = 16,
as described in Section 3.4. This stable LQG design was used as a starting point

for the quasi-Newton algorithm which found optimal stable compensators as 7 was
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decremented back to unity, returning the control authority to its original value.

LQG Stable H,

Magnitude (dB)
Magrnitude (d8)

{/ ABOTAKXS ‘\

’ ot

| fi
R
lll., ,"\‘g“ N

I,‘.,.:\\\
il
/15 /{/
iy
g -

Figure 3.1: Bode plots of LQG and stable #, controllers (p = 0.0288)

As can be seen in Figure 3.1, increasing the authority toward a critical level
(n = 8.58) causes the gain of the LQG controller to approach infinity, at which point
the low frequency phase jumps —180° and the gain begins to decrease, though the
controller must now be unstable to maintain closed-loop stability. At this point, it
can be seen that the gain of the H;-optimal stable controllers increase as well, though
not as drastically as the LQG design, and the H,-optimal stable controllers always
have a phase of 0° at low frequencies. The Nyquist plots of the LQG cornr&(r)ller aﬁd
the stablie controller at full control authority, as seen in Figure 3.2, show the poor
gain margins of the unstable LQG controller.

Since the loop gain with the H,-optimal stable controller in feedback is much
larger than that with the LQG controller at full authority, the impulse responses of

the LQG controller and the stable controller were simulated to compare the actual
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Figure 3.2: Nyquist plots of the loop gain for LQG (left) and stable #, (right)
controllers (7 =1, p = 0.0288)
control effort needed to bring the closed-loop system back to the equilibrium. These
comparisons are shown in Figure 3.3. As expected, the performance of the system
with the LQG controller is better than the performance of the system with the H,-
optimal stable controller. However, note that even though the loop gain of the stable
controller is much larger than that of the LQG controller, the control effort used by
the stable controller is significantly less than that used by the LQG controller and
hence is less likely to saturate the system actuators, which could cause closed-loop
instabilities to occur when an unstable controller is used.

Once the control authority was increased to the desired level, the value of the
parameter p was varied to study the trade-off between the #; cost of the system and
the stability level of the compensator. Figure 3.4 shows the position of the controller

(ne = 2) eigenvalues as a function of p as well as the H; cost of the closed-loop system
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Figure 3.3: Impulse response of closed-loop system with LQG and stable H, con-
trollers (np = 1, p = 2.88 x 107%)
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Figure 3.4: Location of controller eigenvalues and H, cost versus p

as a function of p. By studying the resulting trade-off, the control engineer can decide
if subsequent cost reductions justify bringing the controller eigenvalues closer to the
stability boundary.

For p = 0.5, the controller transfer function is given by

(s) = —274.21s — 4183.8
AT 2 4 38.324s + 43.539°

(3.18)

which has eigenvalues at A, = —37.152 and A; = —1.1719, while, for p = 5 X 1077,
the controller transfer function is given by

—504.93s — 9744.5

Ge(s) = 77605435 + 0.086523"

(3.19)

which has eigenvalues at A\; = —60.541 and A, = —0.0014292.
Since, as stated in [42], the lowest possible cost via stable stabilization for this
example is given by a 4"-order controller, we used the present framework to obtain

stable 4'"-) 6"~ and 8'"-order controllers to quantify the benefits of expanded-order
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control. Specifically, these expanded-order ‘Hs-optimal stable controllers were initial-
ized by adding one, two, and three stable modes to a full-order stable LQG controller,
at which point the optimization algorithm was applied. The corresponding closed-
loop costs, computed at various levels of control authority, are shown in Figure 3.5.
At lower levels of controller authority, the stable controllers have nearly identical costs
to the LQG controllers. As the authority is increased, the closed-loop cost associ-
ated with the stable controllers becomes noticeably worse than the LQG controllers,
however it is noticeably better than the best stable LQG design (i.e., the LQG de-
sign with = 8.58). At the specified control authority (n = 1), the dependence of

the augmented cost function on the controller cost was decreased by decreasing the

variable p.
800 i 1 T T T T ¥ T T
LQG
Stable
— 2nd-Order
750 \ — — 4th-Order
| - . . o . .|~ — - 6th-Order o
700F 0 o\ Y e 8th-Order .
g 6sor RS Stable Controllers
:: == EadiaEE e
-é 600 I .
<
550 J
500 - LQG Controller
450 1 1 _ i i 1 I N L 1
0.1 062 03 0.4 0.5 0.6 0.7 0.8 09 1

Figure 3.5: H, cost versus control weighting for various-order stable H; controllers
(p = 0.0288)

As seefl in Figﬁre 3.6, the full-order controller has the highest #; cost, followed
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by the controller with one extra mode. The other two controllers, however, have

nearly identical closed-loop costs, suggesting that arbitrarily high-order controllers

may not achieve significant performance improvements. Since decreasing p decreases

the dependence of the cost function J on the weighted #; cost of the controller, the

controller loop gain increases greatly as p becomes smaller, as shown in Figure 3.7.
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Figure 3.6: Stable H, controller cost versus p

I J[ 2nd-Order | 4th-Order ] 6th-Order I Sth-OrderJ
Fixed - Structure 627.11 622.20 621.73 621.67
Ganesh [42] (Optimal) N/A 622.73 N/A N/A
Ganesh (Sub-Optimal) N/A 628.40 N/A N/A
Halevi [60] (First Result) 678.97 N/A N/A N/A
Halevi (After Tuning) 637.18 N/A N/A N/A
Stable LQG (n = 8.58) 713.02 N/A N/A N/A

Table 3.1: H, costs for various stable stabilization techniques

As can be seen in Table 3.1, the H,-optimal stable controllers obtained here com-
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pare favorably to earlier results. In [60], the design weights were constrained in such a
way as to yield stable controllers. Even with a tuning procedure, however, those costs
are larger than what was obtained using the present framework. In [42], a nonlinear
programming approach was used to obtain H,-optimal controllers, but only for SISO
systems. However, as can be seen, the H; cost is slightly larger than the fourth-order
controllers designed here. In fact, the optimal controllers obtained in {42] had two
poles located at the origin, and thus the controller was merely conditionally stable.
The stability boundary was then pushed back to s = —0.5 to yield a stable controller.
Tt should be noted that the cost obtained by the second-order controller synthesized
using our method was 627.1, whereas in [60], it is stated that the minimum cost
possible by a second-order stable compensator is 628, though this may be simply a
numerical artifact. Also listed is the , cost of an LQG design with 1 chosen as low
as possible while still yielding a stgb_le controller, which is significantly larger than all

other methods considered.

3.6. Two-Mass Example

Consider the dynamic system [113] shown in Figure 3.8. The equations of motion

| xX1=)y |
y k
—» m AN m "

X2

Figure 3.8: Two-mass system
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for this system are given by

iy (t) + k (21(8) — 22(2)) = u(?),

mais(t) + k (z2(t) — z1(t)) = 0.

Here we consider the case of a colocated sensor and actuator pair, where the output
is given by y = x,. Letting m; = my = k =1 yields the plant state space realization
0

u(),

— O

() = z(t) +

OO

010
0 01
1 00
-1 00

o

y() =[1 0 0 0]=z().

As in [113], the matrices Dy, D,, Ey, and E, are chosen to be

00

0 1010 0
D=1 D=0 1], El‘[oooo]’ Ez_[o.m]'
8

o OO

6

For this example, a full-order and a reduced-order Hs-optimal stable controller
were designed. The control authority was chosen to be sufficiently low so that the
LQG controller was stable. This controller was then used to initialize the optimization
algorithm.

The same general trends can be observed here as in the first example, though in
this case, even when full authority is achieved, the H; cost of the full-order stable
controller rivals the performance of the unstable H,-optimal LQG controller, which
would be apparent in Figure 3.9 if the curves were not directly on each other. In fact,
the relative difference in the H, costs is merely 9.7114 x 10~ %. For this reason,
expanded-order controllers could not give further cost improvements to justify their
increased complexity, and thus were not designed for this example. Also, the initial

value of p was sufficiently small that further reductions did not improve the #; cost of
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Figure 3.9: H, cost versus control weighting (p = 0.04752)

the closed-loop system. Table 3.2 compares the performance of the #;-optimal stable
controller designs with the LQG controller, the best stable LQG controller (i.e., the
LQG controller with ) chosen as low as possible while still yielding a stable controller),
and the full-order controller designed in [113], which used an over-bounding approach

along with parameter tunings to obtain stable controllers.

I 2nd-Order ] 4th-Order |

LQG N/A 16.175703
Fixed - Structure 27.9340 | 16.175782
Wang [113] N/A 16.261138
Stable LQG (n = 12.21) N/A 34.334324

Table 3.2: H, costs for various stable stabilization techniques

The ability of this stable controller to achieve an #, performance nearly identical

to that of the LQG controller was then explored. After running numerous examples,

47



it appears that a minimum phase open-loop stable plant (such as the first example)
will yield a significant performance degradation when the controller is constrained to
be stable. However, a minimum phase, open-loop unstable plant does not seem to
exhibit this lack of performance, as demonstrated by this example. Further investi-
gation seems to show that Hy-optimal stable controllers designed for non-minimum
phase, open-loop unstable plants will also show performance degradation over an LQG
controller, whereas no appreciable loss of performance occurred when a H;-optimal

stable controller was designed for a non-minimum phase, open-loop stable plant.

3.7. Conclusion

In this chapter we investigated a scheme to synthesize Hj,-optimal controllers by
including the H, cost of the controller in the Lagrangian and using a multiobjective
optimization technique. The problem was formulated in a decentralized static out-
put feedback framework, which facilitated the use of a quasi-Newton optimization
algorithm. This technique was applied to two numerical examples. It was numeri-
cally shown that for some systems, namely minimum phase, open-loop unstable or
non-minimum phase, open-loop stable plants, a stable controller can rival the perfor-
mance of an unstable Hs-optimal LQG controller and yet not be constrained by the
loop margins of unstable controllers. For other systems, however, there could be a
significant degradation in performance by requiring the controller to remain stable,
although this technique provided controllers yielding the minimal #; closed-loop cost

for all stable linear controllers.
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CHAPTER 4

Ho-Optimal Synthesis of
Controllers with Relative
Degree Two

4.1. Introduction

It is well known that modern multivariable control design frameworks such as H;
and H control yield dynamic compensators with relative degree zero or one. Hence,
the structure of the dynamic feedback controller is such that the measured system
output appears explicitly in the control signal or in the control rate signal [85]. In
the single-input/single-output system case, the resulting controller transfer function
is non-strictly proper with relative degree zero or strictly proper with relative degree
one. In this case, the Bode plot of the controller transfer function at best rolls off at
20 dB per decade. Alternatively, for relative degree r controllers, the Bode plot of
the compensator has a high frequency roll-off of 207 dB per decade.

High frequency roll-off is particularly useful when the system under consideration
is a lightly damped flexible struértu;rre.r Since flexible structure models are by necessity
truncated to a finite number of modes, it is desirable for the frequency response to
roll off as quickly as possible after the gain crossover frequency so that unmodeled

high frequency system dynamics are not excited by the controller dynamics.
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For single-input/single-output systems, where the H; norm corresponds to the
area under the Bode plot and the H,, norm corresponds to the maximum magnitude
of the Bode plot, roll-off rates cannot be specified solely by minimization techniques on
these norms. Loop shaping weighting functions can be used in the controller design
process, but these specify the frequency where the roll-off starts, not the roll-off
rate. Furthermore, these techniques also tend to result in high-order controllers when
frequency weighting is included in the design process. In this section we extend the
fixed-structure controller design framework ofi [14,95] and [34] to dersign Ho-optimal
relative degree two controllers for multi-input/multi-output systems. Since we cast
the relative degree two design problem within the fixed-structure control framework,
fixed-order (i.e., full- and reduced-order) controllers can be designed with increased
roll-off rates at the gain crossover frequency. Even though the proposed framework
can be easily extended to include desired weighting functions for loop shaping, we do
not do so here to facilitate the presentation.

The proposed H-optimal relative degree two controller design technique is applied
to several structural control problems, showing that the resulting relative degree two
controller incurs minimal increase in H, performance over the optimal LQG controller

while enforcing a 20 dB per decade increase in the roll-off rate at the gain crossover

frequency.
4.2. H,-Optimal Relative Degree Two Control

In this section we state the H,-optimal relative degree two control problem. Specif-

ically, given the n'f-order stabilizable and detectable system

i(t) = Az(t) + Bu(t) + Dyw(t), t€[0,00), (4.1)
y(t) = Cz(t) + Dw(t), (4.2)
o0
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2(t) = Eya(t) + Eau(?), (4.3)

determine an n'*-order relative degree two dynamic compensator
(o

Fa(t) = Aqzalt) + Bay(t), (44)
Feo(t) = AeyTea(t) + Boyv(t), (4.5)
v(t) = Ce,Zai(t), (4.6)
u(t) = CeTea(t), (4.7)

where z.(t) € R™!, z.5(t) € R*?, and n, = N1 + N2, such that the H, performance

criterion

t

J(Aes, Ay, Beyy Beys Cory Cog) 2 lim 2E [ [67(s) Ruz(s) + uT(5) Ryu(s)) ds, (4.8)

tvoo t J
is minimized.
Note that the dynamic controller (4.4)-(4.7) corresponds to a cascade interconnec-
tion of the two controllers in the feedback loop (see Figure 4.1) so that the controller

transfer function realization is given by

A | Be
Gels) = GG ()~ |t 2. (4.9)
where
Acé[chcl,c AOC], Bc-é-[%‘], C.2[0 C]. (4.10)

Note that since B, is always multiplied with C¢,, B,C., can be considered a single
free parameter, thus leaving only five controller gains over which to optimize, instead
of six. Finally, we note that this framework can be easily extended to address the
design of (vector) relative degree r controllers by considering a cascade interconnection

of r dynamic controllers in the feedback loop.
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Figure 4.1: Relative degree two controller set-up
4.3. Relative Degree Two Controller Synthesis

In this section we use the decentralized static output feedback framework as de-
scribed in Section 2.1 to design H.-optimal relative degree two dynamic compensators.

Specifically, we define
K 2 block-diag [Ae,, Ac,, Be,, BeyCey, Cea]

Now, if A is asymptotically stable for a given feedback gain K € RZrctm)x(2nc+l) jg

follows that the H, performance criterion (4.8) is given by
J(K) =[|Gu(5)| = tr PV, (4.11)

where P € N* is the unique nonnegative definite solution to the algebraic Lyapunov
equation

0=ATP+PA+R (4.12)
Now, the necessary conditions for optimality can be derived by forming the La-
grangian

L(P,0,K) = tr {PV + Q[ATP+ PA+ R]} , (4.13)
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where Q € N* is a Lagrange multiplier. The gradient expressions with respect to the

free parameters in (4.13) are given by

0L  x  xap -~

— = AQ+ QAT +V, 4.14
Py Q+Q (4.14)
L _ iThiPA+h, (4.15)
o0Q

OL _ 2q7 r [BTROCT + BT PDDY, + DLEQCT| L™ QR

a_K:_i - QL,-J-T[ u Q ¥ + 5, yw+ zu Q y] X R;;?

i=1,2,3,45 Jj=1, (4.16)
where 7 = I + DI, LZTKT and

’Cl = Acly ’C2 = ACQ’ ’C3 = BCU IC4 - BCQCC17 ’CS = CCQ'

4.4. Control Design Process

The initial stabilizing design for the relative degree two controller was obtained
by computing the balanced truncation of the full-order LQG controller to obtain a
reduced-order LQG controller corresponding to the controller in the feedback loop
with the lower order. Note that since two controllers are being synthesized, it is not
necessary for this first truncated controller to stabilize the system. This first designed
controller was augmented to the plant. If G, is designed first, the augmented plant

realization is

A 0 B ; D,
. B..C A |B,D B,D,
| E, 0| E2 , E
whereas if G, is designed first, the augmented plant realization is
A BC,| 0 ; D,
- 0 A, |B,, 0

G(s) ~ 1 4.18
@~ e D, 0 Dy w19

E, EC,| 0 | E



Note that in the first case, the D, term is identically zero, whereas in the second
case, the E, term is zero. Thus these augmented matrices result in a singular control
problem. This was overcome by replacing these terms with nonzero matrices struc-
tured such that D;DT = 0 or ETE, = 0, as appropriate. Once an LQG controller
was designed on this “artificial” system, the dynamics of the original system were
tested, and if the closed-loop was asymptotically stable, these designed controllers
were used as the initial controllers for the gradient search algorithm. For details of

the algorithm, see [35].

4.5. Two-Mass Example

Consider a two-mass-spring-damper system with a colocated sensor/actuator pair

and state space realization in real normal coordinates given by

~0.0002 02208 0 0 014307
. —0.2208 —0.0002 0 0 0.2168
i(t) = 0 0 —00103 14320 | %O+ | _g.o426 | 2
0 0  —1.4320 —0.0103 1.1890

y(t) = [ —0.0545 0.0819 —0.0352 0.8181 | z(t).

The weighting matrices Dy, Do, E;, and E; were chosen so that LQG synthesis would
place a notch at the second mode. This is accomplished when [40]

0
D, =

OO = O

0
0 bl
0
For this system, the two controllers in the feedback loop (Ge, and G.,) were chosen
to be of order two. Initializing reduced-order LQG controllers were designed, and the
gradient search algorithm was initiated. The Bode plots of the loop gain of the full-

order LQG controller and of the relative degree two controller, along with dotted lines

representing the respective high frequency asymptotes, are shown in Figure 4.2. The
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Figure 4.2: Bode plots of LQG and relative degree two controllers

H-optimal LQG cost is 3.9734 and the H,-optimal relative degree two controller is
4.0743 which corresponds to only a 2.5% increase over the Hz-optimal LQG controller
cost. This marginal increase in the H, cost is not surprising since Hs-optimal relative
degree two controllers are sought.

The transfer function for the LQG controller is

oo (5) = 20005 = 0.1073s? — 1.8660s — 0.1817
«(LQG)\®) = F0 362053 + 1.24255% + 0.6170s + 0.1443’

which has natural frequencies at 0.345 rad/sec and 1.10 rad/sec. The relative degree

two controller transfer function is given by

o () = —99.9827s? — 2.0960s — 205.2481
¢(Rel- Deg- 1) = 4164 610353 + 46.1170s2 + 34.9138s + 77.6907°

at 0.862 rad/sec and 0.015 rad/sec. Thus it is seen in this case that constraining the
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controller to be of relative degree two does not push the controller poles out to such

high frequencies that the extra 20 dB/decade roll-off is not useful.

4.6. Three Mass Example

Consider the three-mass system given by the state-space realization ( [52])

[ 0 0 010 0] [0 ]
0 0 0010 0
. 0 0 0001 0
.’L'(t)— 1 1 0 0 0 0 .'E(t)+ 0 U’(t),
1 -2 1000 0
| 0 1 -100 0] 1]
y¢)=[1 10 0 0 0]=z()

, D;=[01], E

e B e BN = B e B
SO oo o

For this system, two different relative degree two controllers were designed. The first
was designed with the first controller in the feedback loop of order two and the second
of order four. The Bode plots of the loop gain of the full-order LQG controller and
of this relative degree teveieontrolierr ere shown lnFlgure 4.3. Again, the increase in
the H, cost is only 9% above the optimal value.

rThe trrexrlrsrfer functioe for the LQG conereller is

c (s) = —2.4070s5% — 0.1479s* — 10.1266s3 — 1.36165% — 8.3374s — 2.000
QG ™ 6 1312215 + 8. 873857 + 15814157 + 21.501257 + 17.85085 + 13.3444"

which has natural frequenaes at 1. 30 rad/sec 1.55 rad/sec and 1 82 rad/sec. The

relative degree two controller transfer function is given by

c (5) = —332.2810s* — 11569s% — 67977052 — 11869005 — 293090
C(RDTV ™ $8 1182.4514s° + 1269957 + 3926305 + 463410052 + 36067005 + 2212100

o6
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Figure 4.3: Bode plots of LQG and relative degree two controllers

This transfer function has natural frequencies at 0.715 rad/sec, 34.6 rad/sec, and
60.1 rad/sec. In this case, the relative degree two controller does have much higher
frequency poles, so that the extra 20 dB/decade roll-off does not occur until higher
frequencies are encountered, as seen in the figure.

The second relative degree two controller was designed with the first controller in
the feedback loop of order four and the second of order two. The Bode plots of the
loop gain of the full-order LQG controller and of this relative degree two controller are
shown in Figure 4.4. For this configuration, however, the H; cost of the relative degree
two controller is less than that of the first relative degree two controller designed. In
particular, the increase in the H, cost for this controller is only 2.9% above the
optimal value.

The transfer function of this relative degree two controller is

G () = —130.34385% — 582.6117s3 — 258.045152 — 679.4487s — 176.8302
¢(RDV) = 6 56.0271s5 + 811.7752s% + 1118.0s3 + 2196.9s2 + 1630.2s + 1186.4
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Figure 4.4: Bode plots of LQG and relative degree two controllers

which has natural frequencies at 0.975 rad/sec and 1.30 rad/sec, and break frequencies

at 0.0417 rad/sec and 0.0326 rad/sec. In this case, the relative degree two controller

does not have higher frequency poles, so that the roll-off is more pronounced than in

the first configuration.

4.7.

Coupled Rotating Disk Example

Consider the coupled rotating disk problem given in [22] with state space realiza-

tion in real normal coordinates given by

[ —0.1610
—6.0040
—0.5822
-0.9835
—0.4073
—3.9820

0
0

SO OO OO O

0

OO OO OO -

0

OO OO O MO

OO OO OO0

OO O OO OO

(<))
oo

OO R OO OC OO

O O OO O OO

z(t) +

p

0

0
0.00640
0.00235
0.07130
1.00020
0.10450

| 0.99550




¢

sc\

Ll

¢

<

y@)=[1 00000 0 0]z()

The weighting matrices D;, D,, E1, and E, are chosen to be
- 4T

0 0] 0 0
0 0 0 0
0.00640 0 0 0
0.00235 0 0 0 0
Di=|oomzo o |» P2=10 1] Br=1 0055 0| ° E2‘[1]
1.00020 0 0.01100 0
0.10450 0 0.00132 0
| 0.99550 0 | | 0.01800 0 |

For this system, two different relative degree two controllers were designed. The first
was designed with the first controller in the feedback loop of order two and the second
of order six. The Bode plots of the loop gain of the full-order LQG controller and of

this relative degree two controller are shown in Figure 4.5. Here, the increase in the
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Figure 4.5: Bode plots of LQG and relative degree two controllers

H, cost is a scant 0.0238% above the optimal value.

The transfer function for the LQG controller is
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c (5) = ~0.1102s7 — 0.0210s% — 0.6637s5 — 0.0843s* — 1.1105s% — 0.0793s2 — 0.4500s — 0.0152
SLQGNY = §11.318357 + 6.859656 + 7.3937s° + 14.1279s7 + 11.4920s% + 9.2199s2 + 4.5193s + 1.3859°

which has natural frequencies at 0.548 rad/sec, 0.820 rad/sec, 1.41 rad/sec, and 1.86

rad/sec. The relative degree two controller transfer function is given by

c (5) = —28.0400s% — 8051.555 — 1122.65% — 207973 — 1486.75% — 9550.1s — 321.8893
C(RD 2DV = 8 1569.3318s7 + 7530750 + 9345335 + 24492054 + 21541053 + 18661052 + 95718 + 29437

This transfer function has natural frequencies at 0.549 rad/sec, 0.819 rad/sec, and
1.40 rad/sec, and break frequencies at 0.00485 rad/sec and 0.00276 rad/sec.

The second relative degree two controller was designed with the first controller in
the feedback loop of order six and the second of order two. The Bode plots of the
loop gain of the full-order LQG controller and of this relative degree two controller are

shown in Figure 4.6. For this configuration, however, the H; cost of the relative degree

0 T T T

o | ....,::.‘:"::.' ]
1o .
\\'

150 F =~ J

\.\
—
200 F S~ .
--- LQG Controller S

250 F| ——  Rel. Deg. 2 Controller S~ ]
300 1 1 Lo =~

10' 16° 10' 10° 10’
200 T T T

Figure 4.6: Bode plots of LQG and relative degree two controllers

two controller is slightly more than that of the first relative degree two controller
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designed, but the increase in the #; cost for this controller is only 0.864% above the
optimal value.

The transfer function of this relative degree two controller is

G (s) = —0.2916s® — 0.1042s° — 0.7773s% — 0.1187s — 0.3535s — 0.0118s — 2.9883 x 10~
SRD DY) = B 1 3.163557 + 7.361035 + 10.894855 + 11.42365% + 8.2630s3 + 3.903852 + 1.0973s + 2.0906 x 10-°’

which has natural frequencies at 0.548 rad/sec, 0.820 rad/sec, 1.41 rad/sec, and 1.86

rad/sec.

4.8. Conclusion

In this chapter we proposed a scheme to synthesize H;-optimal relative degree two
controllers by cascading two controllers in the feedback loop and optimizing over the
five free controller parameters. The problem was formulated in a decentralized static
output feedback framework, which facilitated the use of a quasi-Newton optimization
algorithm. This technique was applied to three numerical examples. It was shown that
constraining the controller to have a relative degree of at least two only marginally
increased the H, cost of the closed-loop system, though it was noted that the order
of the separate controllers in the feedback loop does significantly affect the H, cost
of the closed-loop system and the natural frequencies and break frequencies of the

controller dynamics.
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CHAPTER 5

Robust Fixed-Structure Controller
Synthesis using the Implicit Small
Gain Bound

5.1. Introduction

One of the principal objectives of robust control theory is to synthesize feed-
back controllers with a priori guarantees of robust stability and performance. In
p-synthesis [37,97] these guarantees are achieved by means of bounds involving
frequency-dependent scales and multipliers which account for the structure of the
uncertainty as well as its real or complex nature. An alternative robustness approach
involves bounding the effect of real or complex uncertain parameters on the H, per-
formance of the closed-loop system. These guaranteed cost bounds take the form of
modifications to the usual Lyapunov equation to provide bounds for robust st‘ability
and H, performance.

A diverse collection of guaranteed cost bounds have been developed. An overview
of many of the early guaranteed cost bounds can be found in [12], while positive-
real-type guaranteed cost bounds are discussed in [47]. More recently, Popov-type
guaranteed cost bounds have provided links with frequency-dependent scales and

multipliers while providing reliable bounds for the peak real structured singular value
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[15,52,106). Finally, the introduction of shift terms has been shown to reduce the
conservatism of guaranteed cost bounds [38, 54, 74] for structured real uncertainty
without requiring frequency-dependent scales and multipliers.

The goal of this research is to explore the applicability of the implicit small gain
guaranteed cost bound of [54] to controller synthesis. As shown in [54], unlike the
quadratic stability bounded-real type bound of [76,100], the implicit small gain bound
can distinguish between real and complex uncertainty and is particularly effective in
capturing internal uncertainty structure. For ﬂexibility in controller synthesis, we
adopt the approach of fixed-structure controller synthesis [62] which allows consid-
eration of arbitrary controller structures, including order, internal structure, and
decentralization [34].

To demonstrate the fixed-structure/implicit small gain approach to robust con-
troller synthesis, we consider two examples that have been addressed by means of
alternative guaranteed cost bounds. The first example, which involves two flexible
modes, was used in [40] to illustrate the Maximum Entropy technique, while the
second example, which involves three flexible modes, was considered in [52,106] to

illustrate fixed-structure Popov synthesis.

5.2. Robust Stability and Performance Problem

In this section we state the robust stability and performance problem. This prob-
lem involves a set &f C R™ " of uncertain perturbations da of the nominal system
matrix A. The objective of this problem is to determine a fixed-order, strictly proper
dynamic compensator (A, B., C.) that stabilizes the plant for all variations in ¢/ and
minimizes the worst-case H, norm of the closed-loop system. In this section and the

following section no explicit structure is assumed for the elements of . In Section 5.4
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the structure of ¢ will be specified.

Robust Stability and Performance Problem. Given the n‘"-order stabiliz-

able and detectable system

#(t) = (A+ AA)z(t) + Bu(t) + Diw(t), t€ [0,00), (5.1)

y(t) = Cz(t) + Dyuw(?), (5.2)
determine an n!P-order dynamic compensator

&e(t) = Aczc(t) + Bey(t), (5.3)

u(t) = Coze(t), (5.4)

such that the closed-loop system (5.1)—(5.4) is asymptotically stable for all AA € U

and the performance criterion

J(A., B, C¢) £ sup limsup %E/t[xT(s)Rlx(s) + u(s) Ryu(s)] ds, (5.5)
0

AAEU t—o00
is minimized.

For each uncertain variation AA € U, the closed-loop system (5.1)-(5.4) can be

written as
i(t) = (A + AA)Z(t) + Dw(t), t€][0,00), (5.6)
Al AA O
where AA = [ 0 0 ]

5.3. Sufficient Conditions for Robust Stability and
Performance

In practice, steady-state performance is only of interest when the undisturbed

closed-loop system is robustly stable over #/. The following result is immediate.

Lemma 5.1. Let (4., B, C.) be given and assume that A+AA is asymptotically
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stable for all AA € U. Then
J(Ac, B, C.) = sup tr A/ﬂ'/, (5.7)
AAeU
where P, ; € N* is the unique nonnegative definite solution to

0=(A+AA)TP, ;+ P ;(A+AA) + R (5.8)

The key step in guaranteeing robust stability and performance is to replace the

uncertain terms in the Lyapunov equation (57.8) by a bounding function Q.
Theorem 5.1 [12]. Let (A, B, C.) be given, let Q : N* — §" be such that
AATP+ PAA<Q(P), AAclU, PcN, (5.9)
and suppose there exists P € N* satisfying
0=ATP+PA+Q(P)+R (5.10)

Then (A+AA, E) is detectable for all AA € U if and only if A+ AA is asymptotically
stable for all AA € U. In this case,

Pui<P Adeu, (5.11)
where P, ; is given by (5.8), and
J(Ag, B, C.) < tr PV, (5.12)

5.4. Uncertainty Structure and the Implicit Small
Gain Guaranteed Cost Bound

We now assign explicit structure to the set & and bounding function Q(P). Specif-

ically, the uncertainty set U is defined by

U= {AA ER™": AA = iéiAi, Bl<yti=1,... ,r}, (5.13)

i=1
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where 1 is a positive number and, fori = 1,...,7, A; € R**" is a fixed matrix denoting
the structure of the parametric uncertainty and §; is an uncertain real parameter. Note
that U given by (5.13) includes repeated parameters without loss of generality. For
example, if §; = J, then replace A, with 4, + A4, and discard é, and A,. Furthermore,
U includes real full block uncertainty. For example, if AA = [ g; gz ], then AA =

Z?=15,~A,~, where A; = [ (1) g

1,...,r, letting A; = B;C;, where B; € R**%, C; € R%*", and ¢; < n, and defining

] and likewise for A, Az, and A4. Finally, for ¢ =

Boé [Bl B,] and Cp £ [C;r e CT ]T,L{can be written as the real

parameter uncertainty set considered in [37]
UL {AAeR™ : AA=BACy, A€ A}, (5.14)
where
A, & {A € R”%: A = block-diag [61 ]y, .., &L, ], 16| < v li=1,...,r}, (5.15)

and where ¢ = > i1 ¢ Since an uncertainty set of the form (5.14) can always
be written in the form of (5.13) by partitioning By and Cy as above and defining
A; £ B;C;, i =1,...,r, robust stability of A+ AA for all AA € U is equivalent to
the robust stability of the feedback interconnection of G(s) £ Co(slz — A)~' B, and
A, where By 2 [ BT 0]7,Co2[Co 0],and A€ A,

With the uncertainty set & given by (5.13), the closed-loop system (5.6) has

structured uncertainty of the form
AA=S" 64, (5.16)
i=1
where

*__A_ A,‘ 0 .
A,—[O 0], i=1,...,r
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We now introduce a specific choice of the bound Q(P) satisfying (5.9) for the
structure of I as specified by (5.13). Fori=1,...,7, let §; € R*** and define

Z; 2 (S + Shs.

Note that —Z; < a(S; + SF) < Z; for all a € [-1, 1] If S; is skew symmetric
then Z; = 0. Furthermore, for i = 1,...,r, define [; £ [S; AT)[S; AT]!, where
()t denotes the Moore-Penrose generalized inverse. Note that I; is symmetric and
idempotent, that is, J; = IT = I2. Furthermore, since I;[S; AT] = [S; AT), it
follows that I,5; = §; and A;J; = A;. If S; = A, and A, is an EP matrix [21], that is,
R(A;) = R(AT), then I, = A!A;. Recall that normal matrices (and thus symmetric

and skew-symmetric matrices) are EP.

Proposition 5.1 [54]. For i = 1,...,r, let a; € R, B; > 0, and let 5; € R**%,
Then (5.9) is satisfied with Q(P) given by

Q(pP) = Z [7—2(aigi'*'ﬁi/i;rﬁ)T(aigi+Bi‘£i;rij)+7—16i_1’ai‘Zi+ﬁi_2iij| . (5.17)
i=1

Remark 5.1. As discussed in [54], if ; is assumed to be complex for some ¢, then

it can be shown that (P) given by (5.17) does not satisfy (5.9). Hence, unlike the

quadratic stability bound of [76,100], the bound (5.17) can distinguish between real

and complex uncertainty.
Cdmbining Theorem 5.1 withwﬁfo’posit?ion 5.1 yields ﬁherfoliorwi:ngwres;ultr. For
convenience define the shifted dynamics matrix ;1’377 E A+ 2 E;zl aiﬁiﬁii.

Theorem 5.2. Fori=1,...,r, let a; € R, B; > 0, and let S; € R**%. Further-

more, suppose there exists a matrix P € N* satisfying

0=AT P+PA,,+) [7_2(a35’? Si+BEPAATPy+~18! |a,-|Z"',-+6;2I~,-]+R. (5.18)

i=1
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Then (A+AA, E) is detectable for all AA € U if and only if A+ AA is asymptotically

stable for all AA € Y. In this case,

P,;<P, AA€l, (5.19)
where P, ; satisfies (5.8), and

J(Ac, B, C.) < tr PV, (5.20)

Remark 5.2. If /is., is asymptotically stable then the existence of a matrix Pe
N* satisfying (5.18) is equivalent to the existence of a frequency-domain condition
guaranteeing robust stability of A+ AA, AA € U, in terms of an implicit small
gain condition involving the shifted dynamics matrix As., which is a function of the

uncertainty set bound «y. For details see [54].

To apply Theorem 5.2 to controller synthesis, we use the Riccati equation (5.18) to
guarantee that the closed-loop system is robustly stable. This leads to the following
optimization problem. ]

Optimization Problem. Determine (A, B, C.) that rninirnizgs J (Ae, Be, Ce) =
tr PV, where P € N* satisfies (5.18) and such that (A, B, Cc) is controllable and
observable.

The relationship between the Optimization Problem and the Robust Stability and

Performance Problem is straightforward, as shown by the following proposition.

Proposition 5.2. Let (A, B, C;) be given. If P € N* satisfies (5.18) and (fi +
AA, E) is detectable for all AA € U, then A + AA is asymptotically stable for all
AA €U, and J(A., B, C.) < J(A., B, Ce)-

Proof. Since (5.18) has a solution P € N* and (A + AA,E) is detectable for

all AA € U, the hypotheses of Theorem 5.2 are satisfied so that robust stability and
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robust performance are guaranteed. Now, J(Ac, Be, Cc) < J(Ac, B, Cc) is merely a
restatement of (5.20). O

It follows from Proposition 5.2 that the satisfaction of (5.18) along with the generic
detectability condition leads to robust stability along with an upper bound for the H,
performance. Hence, by deriving necessary conditions for the Optimization Problem
we obtain sufficient conditions for characterizing dynamic output feedback controllers

guaranteeing robust stability and performance.

5.5. Robust Controller Synthesis via the Implicit
Small Gain Guaranteed Cost Bound

In this section we state constructive sufficient conditions for characterizing fixed-
order (i.e., full- and reduced-order) robust controllers. These results are obtained
by minimizing the worst-case H, cost bound (5.20) subject to (5.18). The following

result is required for the statement of the main theorem. -

Lemma 5.2 [62]. Let Q, P € N* and suppose that rank QP = n.. Then there
exist n. X n matrices G,I" and an invertible matrix M € ]R”;""c, unique except for a

change of basis in R", such that
QP =G™™T, TG =1,. (5.21)

L A . e
Furthermore, the n x n matrices 7 = G'T and 7, 2 I, — 7 are idempotent and have

rank n. and n — n, respectively.

To apply Theorem 5.2 to robust controller synthesis, let S;,i=1,...,r, have the

form

Si - l: OS: Onxnc ] , (522)

neXn Oncxnc

70



C!

¢

<

where S; € R™*. With S;, i =1,...,r, given by (5.22) it can be shown that

T — ii Onxnc 7 Zi Onxnc
- [ . ] 2= [ . ,

Ne XN Oncxnc neXn OncxnC
where ; = [S; AT|[S; A7)t and Z; = [(S; + ST)?]?. Furthermore, for convenience
in stating the main theorem, define the notation
T
Aq=A+772) aiBiAS:.
i=1
Theorem 5.3. Let n, < n and suppose there exist matrices P, @, P, Q e N

satisfying

0 = A;P+PAS.,+R1+Z[ (a2STS;+B2P A AT P) ++71 87 ol Zi+ B; 21]
—PSP+7fPTPT,, (5.23)

0 = [An+ > 1 2BAAT(P+P)Q+Q[Asy+ )Y v B AAT (P+P)T+ V1

i=1 i=1

_QEQ+TLQEQT_L, (5.24)
0 = (Asy— QZ+Z’y 2B2AATP)T P+ P(Ag,— QE+Z v2B2 A, AT P)

i=1 i=1

+Y v 2BEPA;A] P+ PLP—7] PLPTy, (5.25)
=1

0 = (A —SP+Y 7 2B AATP)Q+Q(Ay—SP+) v B AATP)T
i=1 i=1
1QEQ-T.QSQrT, (5.26)
rank O = rank P = rank QP = n,, (6.27)

and let A, B., and C. be given by

Ac = T(Agy — QL —ZP + 772 Z BEAATP)GT, (5.28)

B. =TrQC™v;t, a (5.29)

C. = —R;'BTPG". (5.30)
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Then (fi—f—A/i, E’) is detectable for all A4 € U if and only if A+AA is asymptotically
stable for all AA € Y. In this case, the worst-case H, performance criterion (5.7)
satisfies the bound

J(Ac, B.,Ce) < tr[PVi + Q(PSP — rIPEPr. —472) "PAATP)]  (5.31)

=1

= tr [QR1 + P(QEQ — 7. QLQrT)

-Q (Er: v 2SI S+ B el Zi + 51—2.f,)] (5.32)
i=1

Proof. The proof is constructive in nature. We first obtain necessary conditions
for the Optimization Problem and show by construction that these conditions serve as
sufficient conditions for closed-loop stability. Specifically, it can be shown (see [13] for
a similar construction) that the existence of P, @, P, Q € N satisfying (5.23)-(5.26)
implies the existence of P € N satisfying (5.18) where Pis given by

p_|P+P —EGT
-GP GPGT
Now, the proof of robust stability and the upper bound on H; performance (5.5) for
all uncertain perturbations AA € U follows from Theorem 5.2.
Next, to optimize (5.20) subject to constraint (5.18) over the open set

§ £ {(P, A, B.,C.): PeP*, Ay +7 2y ABTBATP

=1

is asymptotically stable and (A, B, C¢) is minimal}
form the Lagrangian
£(Ac Be,Ce, G, P,2) & tr APV + Q{ALP + PA, + R

* Z [v72(a2575: + BPAATP) + 47 67 el 2+ B7°E) )], (5:39)
=1
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where the Lagrange multipliers A > 0 and Q € R**" are not both zero. We thus

obtain

g}% = (A +772 Y BAATPYQ + Q(Asey + 772 ) _BIAATPT +2V. (5.39)
i=1 =1
Setting g—f; = ( yields
0= (Agy +772 > BAATP)Q + Q(Asy + 772 ) _BIAATP)T +2V.  (5.35)

i=1 - =1
Since Ay, + 7237, B2A; AT P is assumed to be asymptotically stable, setting A = 0
implies Q = 0. Hence, it can be assumed without loss of generality that A = 1.
Furthermore, Q) is nonnegative definite. The remainder of the proof follows as in [13].
Briefly, the principal steps are as follows.
Step 1. Compute 25, P&, and 2.
Step 2. Partition (5.18) and (5.35) into six equations (a)-(f) corresponding to the
- nXxXn,nXne, and ne X ne sub-blocks of P and @, respectively. Next, since

the compensator triple (A, Bc, C;) is controllable and observable, using a

that the lower-right n. x n. block of P is positive definite. Using similar
arguments we can show that the lower-right nc x n block of Q is positive

definite. See [13] for details.

Step 3. Form (b) times the n x n. sub-block of Q plus the n. x n. sub-block of Q
times (c) to define the projection matrix 7 and the new variables P, @, P,

0, G, and T.
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Step 4. Use the result of Step 1 and Step 3 to solve for the compensator gains

(5.28)(5.30).
Step 5. Manipulate (a), (b), (d), and (e) to yield (5.23)-(5.26).

Step 6. Use the results of Step 3 to show that (5.20) is equivalent to (5.31).

For a detailed exposition of a similar proof, see [13]. O

Remark 5.3. In the full-order case, set n. = nsothat G =T =7 = I, and
7. = 0. In this case the last term in each of (5.23)-(5.26) is zero and (5.26) is

superfluous.

Theorem 5.3 provides constructive sufficient conditions that yield dynamic feed-
back gains A., B, and C, for robust stability and performance. When solving (5.23)-
(5.26) numerically, the values of v, a;, 8;, and S;, ¢ = 1,...,r, can be adjusted to
examine trade-offs between H, performance and robustness. As discussed in [54], to
further reduce conservatism, one can view the scalars o; and 3; as free parameters
and optimize the worst-case H, performance bound J = tr PV with respect to o;
and B;. The simplest case to consider is the case where S, is skew-symmetric or,

equivalently, Z; = 0. In this case

g-g- = 28y %tr PA;S:Q + 2007 2tr STS5,Q = (5.36)
and
g‘g = 20y7~2tr PA;S:Q + 2Biv%tr PA,ATPQ — 2873tr [,Q = 0, (5.37)

where Q satisfies
0= (A + v 2BAATP) O+ QA+ v BAATP) + 7. (539
i=1 =1
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Furthermore, in this case,

2 - ~ -
-ga—‘z =272t SiQS! 20, (5.39)
°J -2, ATPADA —4,. T A
g7 = 2 A PQPA+ 65 I.Q >0, (5.40)
and
2 2 2 2 L
Sai Zﬂ‘i - ( 32,‘37[3,) = 167726, "tr L;Qtr S;,QST 2 0, (5.41)

which imply that (5.36) and (5.37) provide necessary conditions for a local minimum.
In the case Z; # 0 we need to consider the cases a; = 0 and o; # 0 since J is not
differentiable at a; = 0. First, let o; = 0. In this case

0T
0B

where Q satisfies (5.38) with o; = 0. Next, consider the case where a; # 0. In this

= 2,5,")’—2121‘ i)/i,/i;rpé - 25i_3t1‘ T,Q = 0, (542)

case

%; = 287" 2r PA;5:0 + 20y 2tr STSQ + 477 'sgn aitr ZiQ =0 (5.43)

and

g_g = 2a;772tr PA;S:Q + 28y 4r PA,ATPQ — v7' 872 |ailtr Z0-28r Q=0
where Q satisfies (5.38) and sgn o; = l%:l By using (5.36) and (5.37) (or (5.43) and
(5.44) for non-skew-symmetric S;) within a numerical optimization algorithm, the

optimal robust reduced-order controllers and scaling parameters o, Bi,i=1,...,7,

can be determined simultaneously.

5.6. Two-Mass Example

Consider the dynamic system shown in Figure 5.1, which represents a flexible

structure with uncertain high-frequency dynamics [40]. The equations of motion for
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this system are

m1£1 + Clii'l - Cg(jfg — .’El) + k'll'l - kz(.’L‘Q — 1'1) = u,

maia + CQ(i‘g - IL'1) + kz((L‘z - IL‘1) = 0.

X7

T T
AN

¢/=0.01 . c;~0.01 — P
I._>y col =jl

Figure 5.1: Two-mass system

’"1:] m2=1 0

>

AVAVANAVANANAN

We first consider the case of a colocated sensor and actuator pair, where the output
is given by yeo = 1. Letting my =1, my =10, k) = k2 = 1, and ¢; = ¢ = 0.01 and

transforming to real normal coordinates yields the plant state space realization

~0.0002  0.2208 0 0 —0.1439
~0.2208 —0.0002 0 0 0.2168
0 0  —00103 14320 | %7 | —0.0426 | ™
0 0 14320 —0.0103 1.1890

Yo = [ —0.0545 0.0819 —0.0352 0.8181 | z.

As in [40], the matrices Dy, D,, E;, and E; are chosen to be

Dl= ’ ‘D2=[01]’ Elz[oooo]) D1=[1]7

OO~ O
OO O O

so that the LQG compensator places a notch at the second modal frequency. Uncer-

tainty in the damped natural frequency of the second mode wqp = 1.432 is modeled
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by choosing

00 0 O
00 0 O
A1"0001
00 -10

The quasi-Newton optimization algorithm discussed in Section 2.3 was used to
compute full-order controllers (n. = n) that minimize the cost bound J for several
values of 7. The actual H, cost was computed for a range of values of the damped
natural frequency of the second mode for the LQG controller and for the implicit
small gain (with S; = 4, and «; and B; obtained by (5.36) and (5.37)) and scaled
Popov controllers [106] corresponding to v = 15, 7, and 2. The cost dependence is
shown in Figure 5.2. As v decreases, the H, cost of the nominal closed-loop system
increases while the H, cost of the perturbed closed-loop system remains near the
nominal value for a larger range of perturbations. The LQG controller stabilizes the
closed-loop system for only small perturbations in the damped natural frequency of
the second mode, while the implicit small gain controllers stabilize the closed-loop sys-
tem and provide performance close to the optimal level even for large perturbations.
Hence, robust performance over a large range of the uncertain parameter is achieved
for only a small increase in the H; cost above the optimal. Also note that the robust-
ness/performance tradeoffs of the implicit small gain controllers are comparable to
those of the scaled Popov controllers which are obtained using frequency-dependent
multipliers [106]. |

The frequency responses of the LQG controller and the implicit small gain con-
trollers with v = 15, 7, and 2 are shown in Figure 5.3. The LQG controller is unstable
and achieves closed-loop stability and nominal performance by placing a notch at the
nominal damped natural frequency wg, of the uncertain second mode. Hence, closed-
loop performance degrades considerably with the damped natural frequency of the

second mode is perturbed. The implicit small gain controller with ¥ = 7 has only
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Figure 5.2: Dependence of the M, cost on the damped natural frequency of the
second mode: Colocated case

a shallow notch near the damped natural frequency of the second mode, while the
controller with v = 2 has no notch near that frequency. Hence, these controllers sacri-
fice nominal performance for improved robust performance over a larger range of the
uncertain damped natural frequency. As 'y' decreases, the controllers guarantee robust
performance over a larger range of §. Note that the controller obtained with v = 2
is positive real. Since the plant is a model of a flexible structure with a colocated
sensor and actuator pair, it is also positive real, and thus the closed-loop system is
asymptotically stable for all values of the uncertain damped natural frequency.

Next we c'oﬁsi(ri;e;rh;t;hé’:twwo-'mass system of Figure 5.1 with a noncolocated sensor
and actuator pair by choosing

Ynoncot = | —0.1063 0.1597 0.0018 —0.0419 | z.

As in [40], we increase the matrix E; by a factor of ten to enhance the notching

characteristics of the LQG controller.
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Figure 5.3: Frequency responses of implicit small gain controllers: Colocated case

The implicit small gain synthesis Vtechnique was used as before to compute full-
order controllers (n. = n) that minimize [J for a range of . The actual H, cost was
computed for a range of the damped natural frequency for the LQG controller and
for the implicit small gain and scaled Popov controllers [106] corresponding to y = 15
and 4. The cost dependence is shown in Figure 5.4. In the noncolocated case, the
LQG controller stabilizes the closed-loop system for a smaller range of the uncertain
parameter than the unstable LQG controller for the colocated plant.

The frequency responses of the LQG controller and the implicit small gain con-
trollers with v = 15 and y = 4 were computed and are shown in Figure 5.5. Since the
plant is not positive real, robust performance cannot be achieved simply by obtaining
positive real controllers, as in the colocated case. Instead, as seen in Figure 5.5, the
controllers widen the notch at the nominal frequency of the uncertain mode, and the

controller with v = 15 deepens the notch as well.
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Figure 5.5: Frequency responses of implicit small gain controllers:
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5.7. Three-Mass Example

Consider the three-mass, two-spring system shown in Figure 5.6 with m; = my =
m3 = 1 and an uncertain spring stiffness k, [52,106]. A control force acts on mass
3 while the position and velocity of mass 1 are measured resulting in a noncolocated
control problem. The nominal dynamics, with state variables defined in Figure 5.6,
are given by

X Xz 1'3

T = T =
— M=l EAN/ N ML AN/ M1 e

Figure 5.6: Three-mass system

C 0 0 0 100 0 00
0 0 0 010 0 00
0 0 0 00 1 0 00

A=1 _g ky o oool B=lo|l P =10
ki —(k1+k2nom) koyrom 0 0 O 0 00

0 Kanom  —koom 0 0 0 | 1| 0 0

C=[110000], D;=[0 1],

and k; = kanom = 1. The actual spring stiffness of the second spring can be written

as kz = Kanom + 0 so that the actual dynamics are given by AA = A+ d0A,, where

[0 0 000 0]

0 0 0000

4|0 0 0000

10 0 0000

0 -1 1000

(0 1 -100 0

Furthermore, let

110000 0
b= 000000]’ EQ_[I]
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Figure 5.8: Frequency response of the implicit small gain controller
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A full-order (n, = n) implicit small gain (with S; = A; and a; and §; obtained by
(5.43) and (5.44)) compensator was designed with a value of v = 20. The actual H,
cost was computed for the LQG controller and for the implicit small gain and scaled
Popov controllers corresponding to v = 20 for a range of the uncertain parameter 4.
The cost dependence is shown in Figure 5.7. Though a value of v = 20 corresponds to
a parameter uncertainty of § = 0.05, it is seen that the implicit small gain controller
is robust over a much larger range. Finally, the frequency responses of the LQG

controller and the implicit small gain controller are shown in Figure 5.8.

5.8. Conclusion

This research extended the implicit small gain guaranteed cost bound [54] to con-
troller synthesis. Specifically, the implicit small gain guaranteed cost bound was used
to address the problem of robust stability and H, performance via fixed-order dy-
namic compensation. A quasi-Newton optimization algorithm was used to obtain
robust controllers for several illustrative examples. The design examples considered
demonstrated the effectiveness of the implicit small gain guaranteed cost bound. Fi-
nally, we note that the conservatism of the proposed implicit small gain guaranteed
cost bound is difficult to predict and will depend upon the actual value of P deter-

mined by solving (5.18).
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CHAPTER 6

Robust Resilient Dynamic
Controllers for Systems with
Parametric Uncertainty and
Controller Gain Variations

6.1. Introduction

It is well known that unavoidable discrepancies between mathematical models
and real-world systems can result in the degradation of control-system performance
including instability. Thus it is not surprising that a considerable amount of re-
search over the past two decades has concentrated on analysis and synthesis of feed-
back controllers that guarantee robustness with respect to system uncertainties in
the design model (see [27] and the numerous references therein). These robust con-
troller synthesis frameworks include the Youla parameterization of all stabilizing con-
trollers [110], H; and Ho (including desired weighting functions for loop shaping)
synthesis [5,39,126], £, control design [25], u-synthesis for structured real and com-
plex uncertainty [126], and robust fixed-structure controller synthesis [16]. Almost all
of these techniques yield very high order controllers in relation to the original system

order. A notable exception is the fixed-structure controller design methodology [16]
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which directly accounts for controller complexity constraints, including controller or-
der, within the control-system design process. However, an implicit assumption in-
herent in all of the above mentioned design frameworks is that the resulting robust
controller will be implemented ezactly. But in most applications (and, in particular,
aerospace applications), reduction in size and cost of digital control hardware results
in limitations in available computer memory and wordlength capabilities of the digital
processor and the A/D and D/A converters. This further results in roundoff errors
in numerical computations leading to controller implementation imprecision. Hence,
any controller that is part of a feedback system must be insensitive to some amount
of error with respect to its gains.

Within the context of robust controller synthesis, the above issues were first
pointed out in the enlightening and very interesting paper entitled, “Robust, Fragile,
or Optimal?” [75]. Specifically, the authors in [75] very elegantly point out that the
powerful (weighted) H,, (weighted) Mo, £1, and g controller design approaches, even
though quite robust with respect to system uncertainty, are surprisingly very sensi-
tive with respect to errors in the controller coefficients resulting in vanishingly small
stability margins. Of course, since the control system is part of the overall closed-loop
system, the authors of [75] show through a series of examples fhat most of the elegant
multivariable robust control frameworks discussed above destabilize the closed-loop
system for extremely small perturbations in the controller coefficients. Hence, even
though these controllers are robust (with respect to plant uncertainty) and in some
cases optimal, they are extremely fragile! This further implies_that the resulting con-
trollers preclude the control-system designer from tuning the controller gains around
a designed nominal controller which has been the creed of practicing control engi-
neers to capture performance requirements which are not directly addressed within

the original design problem. Finally, it is interesting to note that numerical experi-
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ments seem to indicate that the fragility or brittleness of the controller is exacerbated
with increasing controller order.

In this chapter, the robust fixed-structure guaranteed cost controller synthesis
framework of [10, 13, 52] for systems with structured parametric uncertainty is ex-
tended to address the design of non-fragile or robust resilient fixed-order (i.e., full-
and reduced-order) dynamic compensation. For flexibility in controller synthesis, we
adopt the approach of fixed-structure controller design which allows consideration
of arbitrary controller structure, including order, internal structure, and decentral-
ization. Specifically, using quadratic Lyapunov bounds, a rigorous development of
sufficient conditions for robust stability and worst-case ‘H, performance via fixed-
order dynamic compensation is presented for uncertain feedback systems wherein the
controller can tolerate multiplicative or additive gain variations with respect to its
nominal coefficients. These sufficient conditions are in the form of a coupled system
of algebraic Riccati equations that characterize robust resilient reduced-order con-
trollers. Hence, the proposed robust resilient controllers guarantee robust stability
and robust performance in the face of both system uncertainty and controller er-
rors. The proposed approach is applied on several numerical examples which clearly

demonstrate the need for robust resilient control.

6.2. Robust Stability and Performance

In this section we state the robust stability and performance problem. This prob-
lem involves a set i C R™*" of uncertain plant perturbations AA of the nominal dy-
namics A and a set U, C IR"C’;"‘ >7<77]R7";’7"7 X Rm;‘"c of uncertain controller perturbations
(AA., AB., AC.) of the nominal controller gain matrices (A, B, Cc). The objective

of this problem is to determine a fixed-order, strictly proper dynamic compensator

(A, B, C.) that stabilizes the plant for all variations in & x U, and minimizes the
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worst-case H, norm of the closed-loop system. In this section and the following sec-

tion no explicit structure is assumed for the elements of & x U.. In Section 6.4 and

Section 6.7, two specific structures of the variations in U x U, will be introduced.
Robust Stability and Performance Problem. Given the n'"-order stabiliz-

able and detectable uncertain system
i(t) = (A+ AA)z(t) + Bu(t) + Diw(t), te€[0,00), (6.1)
y(t) = Cx(t) + Daw(t), (6.2)

determine an n'"-order robust resilient dynamic compensator (A., Bc, C;) such that

the closed-loop system consisting of (6.1), (6.2), and controller dynamics
Ee(t) = (Ac + DAc)zc(t) + (Be + AB:)y(t), (6.3)
u(t) = (Cc+ AC)ae(t), (6.4

is asymptotically stable for all allowable plant uncertainties and controller gain vari-

ations (AA,AA,, AB., AC.) € U x U, and the performance criterion

1 t
J(A., B, C¢) = sup lim sup —IE/ [T (s)Ryz(s) + uT(s) Rou(s)] ds,
(AA,AA,AB,AC)eUxU, tooo U Jg
(6.5)
is minimized.
For each uncertain plant and controller variation (A4, AA,, AB; AC,) € U x U,

the closed-loop system (6.1)-(6.4) can be written as

#(t) = (A + AA)z(t) + (D + AD)w(t), t€[0,00), (6.6)
where
~a | AA BAC, ~ A 0
Ad= {ABCC’ AA, ] AD = [ABch]’
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and where the closed-loop disturbance (D + AD)w(t) has nonnegative definite inten-
sity

Va2 (D+AD)(D+AD)T=| 1

0
0 B.V,BT + ABJV3BY + B.V,ABT + AB.V,ABT |

6.3. Sufficient Conditions for Robust Stability and
Performance

In practice, steady-state performance is only of interest when the undisturbed

closed-loop system is robustly stable over i x U.. The following result is immediate.
For convenience, define

B2 (E+AB)(E+AE)=|T

0
0 C;I‘RQCC + AC;FR2CC + C;TRQACC + AC;FRQACC !
where

AEL[0 EAC.

Then

Lemma 6.1. Let (A, B., C.) be given and assume that A+ AA is asymptotically
stable for all plant and controller gain variations (AA,AA.,AB.,AC;) € U x U..

'](Ac, BC) CC) = sup tr Q-ARAa (67)
(AA,A A, ABc,AC) €U xUe
where Q, € N, is the unique nonnegative definite solution to

0=(A+24)Qs + Qa(A+ AA)T +V,. (6.8)
The key step in guaranteeing robust stability and performance is to bound the

uncertain terms Ra in the cost function (6.7) and AAQs + QaAAT and Vi, in the

Lyapunov equation (6.8) by smooth bounding functions ;(-), ¢ = 1,2,3. For the
statement of the next result, define the notation

Bo_po|0 0
A7 7710 ACTR,C. + CTRAC. + ACTR,AC, |
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N 0
= = | 0 AB.V,BT + BV,ABT + ABV,ABT |

Theorem 6.1. Let A, € R**" B, € R**! and C, € R™*" be given and let
0, : Nb x Ricxne x RPext x R™X% — §% ), : R xl 5 8% and Q3 : R™*"% — 8% be
such that, for (A4, AA., AB., AC.) € U x U, and Q € N*,

AAQ + QAAT < 0,(Q, A, B, Co), (6.9)
AV < Qy(B.), (6.10)
AR < Q3(C.), (6.11)

and suppose there exists Q € N satisfying
0=A0 + QAT + 0,(Q, A, B:,C.) + V + Qy(B.)- (6.12)
Then
(A+ AA, D+ AD) is stabilizable for all (A4, AA,, AB;,AC.) € U x U, (6.13)

if and only if A+ AA is asymptotically stable for all (AA, AA;, AB., AC) € U x UL.
In this case,

Qa £Q, (LA AA,AB,AC) €U x U, (6.14)
where Q4 is given by (6.8), and
J(Ae, Be,Co) < T (Aes Bey Ce) £ 1 Q [R+95(Co)| (6.15)

Proof. We stress that in (6.9), Q denotes an arbitrary element of N*, whereas
in (6.12), Q denotes a specific solution of the modified Lyapunov equation (6.12).
This minor abuse of notation considerably simplifies the presentation. Now, for

(AA,AA.,AB,, AC.) € U x U, (6.12) is equivalent to
0= (A+A4)Q+QA+A4)T
+(Q, A, B, C.) — (AAQ + QAAT) + Va + Q(B.) — AV.  (6.16)
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Hence, by assumption, (6.16) has a solution Q € N* for all (AA,AA., AB,,AC,) €
U x U, and, by (6.9) and (6.10), (0, Ac, B, Ce) —(AAQ+QAAT) and Qy(B.) - AV
are nonnegative definite. Now, if the stabilizability condition (6.13) holds for all plant
uncertainties and controller gain variations (AA, AA;, AB., AC;) € U x U, it follows

from Theorem 3.6 of [115] that
- . o~ ~ : ~ = ~ - -1
(A + AA Vs + (0, Ac, Be, Ce) — (AAQ + QAAT) + 0u(Bc) — AV]z)

is stabilizable for all (AA, AA., AB,, AC.) €U x U.. It now follows from (6.16) and
Lemma 12.2 of [115] that A + AA is asymptotically stable for all plant uncertainties
and controller gain variations (AA, AA;, AB., AC.) € U x U.. Conversely, if A+AA
is asymptotically stable for all (AA, AA., AB., AC.) € U x U, then (6.13) holds.
Next, subtracting (6.8) from (6.16) yields

0= (A+A4)(Q-Qn)+(Q-Qa)A+AA)T
+0 (0, A, B., Ce) — (AAQ + QAAT) + Q(B.) — AV,

or, equivalently, since A+ AA is asymptotically stable for all (AA, AA, AB., AC.) €
Ux U,

Q— - QA :/ e(/h’A/i)t[Ql (Qa ACa Bc; Cc) - (AAQ'*' QAA-'T) +Q2(Bc) - AV]E(A+AA)Tt dt
0

20,

which implies (6.14). The performance bound (6.15) is now an immediate consequence

of (6.14) and (6.11) by noting that

J(Ac, B, C:) = sup trQaRa < sup trQRa = sup trQ(R+AR) < trQ(R+03(C)).
AAeUxUe AAeUxUe AAeUXU.

O
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Remark 6.1. In applying Theorem 6.1 it may be convenient to replace Condition

(6.13) with the stronger condition

~

. . . e . . 1/2
(A +AA, [VA + (G, Ac, Be, Co) — (AAQ + QAAT) + Qy(B.) — AV] )

is stabilizable for all (AA, AA,, AB,, AC,) € U x Ue, (6.17)

which is easier to verify in practice. Clearly, (6.17) is satisfied if [VM—QI (@, A, B, C)
—(AAQ + QAAT) + Qy(B,) — AV] is positive definite for all plant uncertainties and
controller gain variations (AA, AA;, AB.,AC,) € U x U,. This will be the case, for

example, if either V is positive definite or strict inequalities hold in (6.9) or (6.10).

6.4. Multiplicative Controller Uncertainty Struc-
ture and Guaranteed Cost Bound

Having established the theoretical basis for our approach, we now assign an explicit
structure to the sets & and U, and the bounding functions QI(Q, Ac, B, C.), Q2(B.),
and Q3(C,). Specifically, the uncertainty set i capturing parametric plant uncertainty

“and the uncertainty set I, capturing multiplicative (relative) controller gain variations

are defined by

U L {AA: AA = B)FCy, FTF < y721}, (6.18)
U, & {(AAc, AB., AC,) : AA; = A, AB; = §B., AC, = 6C., [8] < 77'},(6.19)
where By € R**#, C’ole R™" are fixed matrices deﬁoging the structure of the plant
uncertainty, F' € R**" is an uncertain matrix, ¢ is an uncertain real parameter, and %,

7. are given positive numbers. With this uncertainty characterization, the closed-loop

system (6.6) has structured uncertainty of the form
AA = BFC, + 6§B,Cs, (6.20)
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0 A
Blé[BO],(}lé[co 0],322[10 10 }'g],é'gé[BcC 0 ] (6.21)
¢ n O Cc

For the structure of & and U, as specified by (6.18) and (6.19), the bounding functions
QI(Q,AC, B, C.), Q(B.), and Q3(C.) can now be given a concrete form. For the

~ A -~ -~ ~ A —~ o~
statement of the next result, define R, = EL E, and V, = D, D, where

e

E.,

= A 0
[0 EC. ], Dcx:[BcDg]'

Proposition 6.1. Let «, o, > 0. Furthermore, let I and U, be defined by (6.18)
and (6.19), respectively, and define (), Q(-), and Q3(-) by

Ql(é, Ac, Bc, Cc) = aBléf -+ QCBQB;F + Q(a‘l'y_zé’;ré’l + 0517;2égég)Q~, (622)
Q(B:) = (v 2+ 297 WVay, (6.23)

0(C) = (72 + 297 )R, (6.24)
Then (6.9)-(6.11) are satisfied.
Proof. Note that

1. 1. 1 1 T

0 < [az B, — a‘zQCFFT] [azBl - a‘2Q01TFT]
1 Lo 1 .

+ [04332 —ac 26Q ;f] [a?Bz — ac 26QC;F]
T

which proves (6.9) with & and I/, given by (6.18) and (6.19), respectively. Next, note

that

AV = 0 (6%+26)B.V,BY ] < [ 0 (v2+ 27(;_1)Bc‘/2B;F = Qy(B.),
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which proves (6.10) with U, given by (6.19). Finally, a similar construction proves
(6.11). O
Next, using Theorem 6.1 and Proposition 6.1 we have the following immediate

result.

Theorem 6.2. Let , a. > 0, and suppose there exists a matrix Q € N* satisfy-
ing
0= A0+ QAT + Qe 'y 2CTC, + a7 \N2CTCQ + V

+aB1 B} + acBy By + (772 + 297 Ve, (6.25)

Then (A + A4, D+ AD) is stabilizable for all (AA, AAc, AB., AC,) € U x U, if and
only if A + AA is asymptotically stable for all (A4, A4, AB,,AC.) € U x U,. In

this case,

Oa <@, (AA AA,AB,AC,) €U x U, (6.26)

where Q, satisfies (6.8), and

J(Ae, Be, Co) < tr QR+ (372 + 290 ) ey | (6.27)

6.5. Decentralized Static Output Feedback Formu-
lation

In this section we use the fixed-structure control framework discussed in Chapter 2
to transform the Robust Stability and Performance Problem to a decentralized static
output feedback setting. Specifically, note that for every dynamic controller (6.3),
(6.4) with gain variations (A A, AB., AC;) € U, given by (6.19), the uncertain closed-

loop system (6.1)-(6.4) can be written as

[i ((tt))] - [(1A++5)%3/30 (%ﬁ_%i?] [i((tt))] +[(1+ f5))1BcD2] w(t). (6.28)
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Furthermore, by treating A, B., and C. as decentralized static output feedback

gains with multiplicative (relative) uncertainty as shown in Figure 6.1, we can pull

the uncertainty into the plant model obtaining

=
~ =
E‘YV A
Q
2 !
>
o
A

=l
O+ C. |«

L]

Y3

Figure 6.1: Decentralized static output feedback: Multiplicative controller uncer-

tainty

3

3(t) = (A+ BiFC)E(t) + (1+68) ) Buui(t) + Byw(t), te€[0,00), (6.29)

=1

yi(t) = Cui(t) + Dyw,w(t), 1=1,2,3,
3

2(t) = Ci(t) + (1+8) Y Do us(t),

i=1

where u;(t), 1 = 1,2, 3, are given by

u(t) = Acyl‘(’t)v u2(t) = B.ya(t),

(6.30)

(6.31)

ug(t) = Ceys (). (6.32)

Finally, by rewriting the decentralized control signals in the compact form

a(t) = Kg(t),

(6.33)



where N ,
v 2 y1(t)
= g=l |, (6.34)
| ya(t)
and K is given by _
A A. 0 0
K=| 0 B, 0|, (6.35)
0 0 C.|

the uncertain closed-loop system is given by
i(t) = (A+a4) 20 + (B +aD)w(e),

2(t) = (D +AE) &),

(6.36)
(6.37)

where
< A o x ~ A - A
AA = B\ FC, +6B,KC;, AD=6B,KDy,, AE= 0D, KCy.

Note that B, = B, and C’2 Kc,.
We can now recast the Robust Stability and Performance Problem as the following

Auxiliary Optimization Problem.
Auxiliary Optimization Problem. For given «, o > 0, determine the block-

diagonal controller matrix K € RZre+m)x@netl) that minimizes

T(K) = w Q[R+ (7" + 27 ), (6.38)

where Q € N* satisfies (6.25).
It follows from Theorem 6.2 that the satisfaction of (6.25) for @ € N* along with

the generic stabilizability condition (A+ AA, D + AD) leads to closed-loop robust

stability along with robust H, performance.
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6.6. Sufficient Conditions for Fixed-Order Resil-
ient Compensation with Multiplicative Un-
certainty

In this section we state sufficient conditions for characterizing dynamic output
feedback controllers guaranteeing robust stability and robust H, performance with

respect to system plant uncertainty and multiplicative controller gain variations.
Theorem 6.3. Let ¢, a. > 0. Supbosé there exist matrices Q, Pe N satisfying
0 = AQ+QA™+Q (v 2CTC +a7 91 Cr) @4V
+aB BT +a By B + (1. 2+ 29 Ve, (6.39)
- o x e = \1T =
0= [A+Q (a-17-2cﬁcl+a;17;20;1‘02)] P
+P [fi+c} (a7 2CTC+a7 2 2CF (52)] +R+ (72 +297") Ry (6.40)
and let (A, B, C.) satisfy

0 = B}, PQC;, + a7 17 AL,QPQCy,, (6.41)
0 = BY PDD] , + BL, PQC), + o7 ' *B.C,QPQC,,
+ (7% +2v7") BL,PB.KDy. Dy, (6.42)

Yw2?

0 = BLPQCT + DLLEQCE + a7'v;*C.L,QPQC),

3 3

+ (127 + 247 1) D13 D2 KC,QC - (6.43)

Then (A + AA, D + AD) is stabilizable for all (A4, AA., AB.,AC.) € U x U if and
only if A + AA is asymptotically stable for all (AA, AA,, AB.,AC.) € U x U,. In
this case, the worst-case H, performance of the closed-loop system (6.7) satisfies the

bound
J(Ac, B, C.) < tr Q"[R + (72 + 27 Rc,] . (6.44)
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Proof. First we obtain necessary conditions for the Auxiliary Optimization Prob-
lem and then show, by construction, that these conditions serve as sufficient conditions
for closed-loop stability and robust H, performance. Thus, to optimize (6.38) subject

to (6.25), form the Lagrangian
LK, P,)) £ tr {A [QR + (772 + 2900 QRCI]
+P[AQ + QAT +§ (a7 2CT G, + a7 "0 *CFCr) @
7 +aB BT + acBoBY + (172 + 205 V|
where the Lagrange multipliers A > 0 and P € R**? are not both zero. By viewing

K and @ as independent variables, we obtain

L s s o= \1T =

g—g— = [A+Q (a'lfy'zC;rCl+ac'1'yc'20;ng)} P
+P [A+Q(a‘17‘20?él+a;17;26‘3 éz)] +A [R+ (v +2v7Y) Rcl]. (6.45)
IfA+Q (a‘17‘2C~'IFC’1 + aglyc‘?é;réz) is Hurwitz, then A = 0 implies P = 0. Hence,

it can be assumed without loss of generality that A = 1. Furthermore, note that Pis

nonnegative definite. Thus the stationary conditions with A =1 are given by

Z_ccé = [A+Q (o720 + o700 )] P
+P [A +Q (a-17~2é}‘él + a;l,yc-zé;réz)] F R+ (24 20 A0
gi = BI,PQCT + o7 17 2 AL,QPQCT = 0,
g ;c = BT PDDT , + BY PQCT. + o7 'y 2B.C,QPQC,
+ (va2+2;") BL, PBKD,, DL, = 0,
oo = BLPQCE + DLLyBACK + a1 *C:C,0PAC],

+ (72 + 297Y) DLD.uKC,QC; =0,

which are equivalent to (6.40)—(6.43). Equation (6.39) is a restatement of (6.25). It

now follows from Theorem 6.2 that the stabilizability condition (A + A4, D+ AD)
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for all (AA,AA., AB.,AC,) € U x U, is equivalent to the asymptotic stability of
A+ AA for all (A4, AA., AB,, AC.) € U x U.. Finally, the H, performance bound
(6.44) is a restatement of (6.38). O

Equations (6.39)-(6.43) provide constructive sufficient conditions that yield dy-
namic controllers for robust resilient fixed-order (i.e., full- and reduced-order) output
feedback compensation. In the design equations (6.40)-(6.42), one can view a and
a. as free parameters and optimize the performance criterion (6.38) with respect to
a and oa. In particular, setting %% =0 and gc% = 0 yields

1 1
2 2

1

Ye

i PGETGO
“wPBET

tr PQCTCHQ

= 6.46
tr PB2B’21‘ ( )

o= ) c =

1
Y

It is important to note that o and a. given by (6.46) are implicit since Q and P are
functions of o and a.. However, the optimal robust reduced-order controller gains
and the scaling parameters a and a. can be determined simultaneously within a
numerical optimization algorithm using %(% = 0 and g;lc = 0. For details of this fact,

see Section 6.10.

6.7. Additive Controller Uncertainty and Guaran-
teed Cost Bound

In this section we assign a different structure to the uncertainty set I/ and conse-
quently the bounding functions Q;(-),7 = 1,2,3. Specifically, the uncertainty set U,

is assumed to be of the form
U, 2 {(AA.,AB.,AC,) : AA, = 6Z4,, AB, = 61, AC, = I, |6] < 'yc‘l}, (6.47)

where T4_,Zp_, and I, are ones matrices of dimension R *"c, Rrex! and R™*", re-
spectively, d is an uncertain real parameter, and 7. is a given positive number. Note

that, unlike the multiplicative uncertainty characterization addressed in Section 6.4,
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the uncertainty characterization given by (6.47) can capture controller gain varia-
tions with zero entries in the nominal gain matrices (A¢, B, C:). With this additive
(absolute) uncertainty characterization, the closed-loop system (6.6) has structured

uncertainty of the form

AA = ByFCy, (6.48)

where
F 0 0 0 Cy O
- a[Bo 0 0 Bl 2|0 8, 0 0 5 a0 Ig
B"‘[o I.. Ip 0]’ F=1g 0 s, 0| Go=|c o (6.49)
0 0 0 I, 0 Ze

For the structure of U x U, as specified by (6.18) and (6.47), the bounding functions
0,(Q), Q2(B.), and £3(C.) can now be given a concrete form. For the statement of

the next result, define R, = ETE., and V, = DY D.,, where

B,2[0 BEIc ], D”é[IBODz]'

Furthermore, to enforce the block-structure of the uncertainty matrix F, define the

set of compatible scaling matrices D by
Dé{D0>OIFDO=EOF, FTFSN},

where

2
- a [ Y21, 0 ]
N = .
0 7c21(ﬂc+l+m) )

The condition FDy, = DoF in D is analogous to the commuting assumption
between the D-scales and A blocks in p-analysis and synthesis which accounts for the
structure in the uncertainty F. It is easy to see that there always ezists such a matrix
D, even if F is neither diagonal nor symmetric. For example, if F = fI,, where f is a
scalar uncertainty, then Dg can be an arbitrary positive definite matrix. Alternatively,

if F € R™" is nondiagonal, then one can always choose Dy = block-diag[dI;, D],
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where d is a scalar and D, € R(++m)x(nc++m) is an arbitrary matrix. Of course, £
and Dy may have more intricate structure, for example, they may be block-diagonal

with commuting blocks situated on the diagonal.

Proposition 6.2. Let a; > 0, a; > 0, and let Dy € D. Furthermore, let U and

U, be defined by (6.18) and (6.47), respectively, and define Q,(-), Qa(-), and Q3(-) by

0(0) = OCTDoN DoCo + BoDy2BY, (6.50)
0(Be) = a7 '3 2V, + (a1 + 97V, (6.51)
Q3(Ce) = o3 ' *Re, + (02 + 710°) Res.- (6.52)

Then (6.9)-(6.11) are satisfied.
Proof. Note that with Dy € D
. - . = e T
0< [1901)0-1 - Qc;,fDOFT] [ QCOTDOFT]
< ByDy?BY + QCT Dy N DyC Q (AAQ + QAAT),
which proves (6.9) with If and U, given by (6.18) and (6.47), respectively. Next, note
that
AV = D¢, DY, + 8D DT + 62 Doy D

Now, since 62D, DT < v72D.,DT and

T

1. I S 1. 1
0< |a2D, - 12ADC,] [ 2D, —a; 2AD,,
+

S albczbg+al_lfy(:_2DC1Dg; —6(DC1D(':I; D(:?D;I;),

it follows that

AV < (ay + 77V + a7 172V,

which proves (6.10) with U, given by (6.47). Finally, a similar construction proves
(6.11). O
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Next, using Theorem 6.1 and Proposition 6.2 we have the following immediate

result.

Theorem 6.4. Let oy, ap > 0, Dy € D, and suppose there exists a matrix QeN

satisfying
0= AQ+QAT+QCT DyNDoyCoQ+ By Dy 2 BE +V+a7 ' Ve + (1 +97 )V, (6.53)

Then (A + AA, D + AD) is stabilizable for all (AA, AA,, AB,, AC.) € U x U, if and
only if A + A4 is asymptotically stable for all (A4, AA.,AB,AC,) € U x . In

this case,

QA < Qs (AA: AAca ABC: ACC) €U X uc: (654)

where Q) satisfies (6.8), and

J(A, B, C.) < tr Q [R + o7 2R, + (0 + 7;2)112] : (6.55)

6.8. Decentralized Static Output Feedback Formu-
lation

As in Section 6.5, note that for every dynamic controller (6.3), (6.4) with gain
variations (AA., AB., AC.) € U, given by (6.47), the closed-loop system (6.1)—(6.4)

can be written as

i(t)] _[ A+ BoFCy BC.+6BIc,| [ «(t) D
{.’Ec(t):l - [BCC + 5IBCC A+ JIAC ] [:Bc(t) + B.D, + 5IBCD2 'LU(t). (656)

Furthermore, by treating A., B., and C, as decentralized static output feedback gains
with additive uncertainty as shown in Figure 6.2, we can pull the uncertainty into

the plant model obtaining

1) = (A+AA)Z Zsu,u, B, + ABL)w(t), te€[0,00), (6.57)
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Figure 6.2: Decentralized static output feedback: Additive controller uncertainty

wilt) = CuE(t) + Dyw(t), i=1,23, (6.58)

3
i=1
where u;(t), i = 1,2, 3, are given by (6.32) and

_A_ B()FCO (SBICC é 0 _é
aA= [ 0Ip.C 0Ia, ] + A5 = [ 0Zp Dy :l » AG = [ 0 dEIc. ]

The uncertain closed-loop system is now given by

i(e) = (A+a4) ) + (D+ AD)w(t), te€0,00), (6.60)
2(t) = (E + AE) 3(2), (6.61)

where AA £ AA, AD £ AB,, and AE = AC,.
Now, as in the multiplicative controller uncertainty case, we introduce an Auxiliary

Optimization Problem by considering

T() = e Q[R+ 79 Ry + (e + %R (6.62)
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with @ € N* satisfying (6.53), and proceed by determining controller gains that

minimize J(K).

6.9. Sufficient Conditions for Fixed-Order Resil-
ient Compensation with Additive Uncertainty

In this section we state sufficient conditions for characterizing dynamic output
feedback controllers guaranteeing robust stability and robust H, performance with

respect to system plant uncertainty and additive controller gain variations.

Theorem 6.5. Let ay, ap > 0, and let Dy € D. Suppose there exist matrices Q,
P € N satisfying
0 = AQ+QA™+QCTDyNDyCoQ+ Bo Dy Bi+V +ai 7 2Ve, +(ar +7. ) Ve,, (6.63)
i omama omm 2T & /e aas s s
0 = (A+QCTDNDoCo) P+ P (A +@QCTDNDCo)
+R+ a7 Re, + (02 + 77 Rey, , (6.64)

and let (A, Be, C.) satisfy

0 = B PQCT, (6.65)
0 = B PDD] , + BL, PQC;, + o7 "7’ By, PB,KDyu D, 5, (6.66)
0 = BLPQCT + DL LEQCT + a7 v *DL,3D..KC,QCy,. (6.67)

Then (A+ AA, D+ AD) is stabilizable for all (AA, AA;, ABc, AC.) € U x U, if and
only if A + AA is asymptotically stable for all (AA, AAC, ABC,ACC) €UxU. In

this case, the worst-case H, performance of the closed-loop system (6.7) satisfies the

bound
J(Ae, B;,Cc) < tr @ [Fi + 0 "V 2Ry + (02 + 7{2)1%] - (6.68)
Proof. The proof is similar to the proof of Theorem 6.1. O
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As in Section 6.6, one can view o, i = 1,2, and Dy as free parameters and optimize
the performance criterion J(K) given by (6.62) with respect to a;, ¢ = 1,2, and Dq.

In particular, setting go% =0,7=1,2, and aﬁl)lo = (0 yields, respectively,

1 1
517 12 T RE
1 = —1— ﬂ Qg = '1— tr Q.}?CI y (669)
Ye | tr P‘/c2 Yo | tr QR02
0 = NDoCoOPOET — Dy BY PByD;?. (6.70)

6.10. Quasi-Newton Optimization Algorithm

As mentioned in Section 2.3, the optimization algorithm was initialized with an
LQG controller for full-order controllervdesigns, while for reduced-order control, the
algorithm was initialized with a balanced truncated LQG controller. A large value
was chosen for v and then a feasible value of 7. was calculated. The quasi-Newton
optimization algorithm was used to find the controller gains A, B, and C.. After each
iteration, . was decreased and the current values of the controller gains (A, B, C)
were then used as the starting point for the next iteration. When +. could not be
decreased any further, v was decreased and a feasible 7. was calculated for the new

value of y and the process was repeated.

6.11. Second-Order Unstable System

To demonstrate the design of robust resilient controllers, consider the second-order

unstable system originally presented in [29] to illustrate the lack of guaranteed gain

margins for LQG controllers. Specifically, the state space system is given by

() = [(1) ”x(tn[?]u(t), t € [0,00)
y(t) = [1 0]=z().
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The matrices D,, D,, E;, and F, are chosen to be

Dl=[\/‘/g__gg], Dy=[0 1], EI:[\/(?_O ‘/é%} Egz[(l)].

Here we consider uncertainty in the (2,1) component of the dynamics matrix. Using
the uncertainty structure given by (6.18), the actual dynamics are given by A+ By fCy,
where By=[1 0]Tand Co=[0 1]

The quasi-Newton optimization algorithm discussed in Section 6.10 was used to
compute full-order controllers (n. = 2) that minimize the cost bound J for several
values of v and 7, for both the multiplicative and additive uncertainty characteriza-
tions. The actual H, cost was computed for a range of values of the controller error
parameter § and the plant uncertainty f. The cost dependence for the multiplicative
(relative) uncertainty characterization (6.19) is shown in Figure 6.4. As . decreases,
the M, cost of the nominal closed-loop system increases while the H, cost of the
perturbed closed-loop system remains near the nominal value for a larger range of
perturbations. The LQG controller stabilizes the closed-loop system for only small
perturbations in the controller error parameter, while the resilient controllers stabilize
the closed-loop system and provide performance close to the optimal level for much
larger perturbations in the controller error parameter. Hence, robust performance
over a large range of the uncertain parameter is achieved for some increase in the #;
cost above the optimal.

The effects of both plant uncertainty and controller uncertainty can be seen in
the parameter plot shown in Figure 6.5. In this case, the stability of the closed-loop
system was checked over a grid of the uncertain parameters for both the LQG and a
robust resilient controller. The dashed line shows the region of asymptotic stability of
the LQG controller, the solid line corresponds to the robust resilient controller, and

‘x’ marks the point corresponding to the nominal conditions. It is evident from the
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figure that the robust resilient controller renders the closed-loop system more robust
to perturbations in both the plant and controller.

Next, Figure 6.6 shows the Nyquist plots of the loop gain of the system for the
LQG controller and three different robust resilient controller designs. These plots
clearly demonstrate the resiliency of the non-fragile controllers over the LQG con-
troller in terms of their increased gain and phase margins. Figures 6.7-6.9 give the
same plots for the case of additive (absolute) controller uncertainty. Once again, the
achieved robustness of the robust resilient controllers over the LQG controller is ob-
vious. Figure 6.7 also shows the cost dependence of an Ho robust controller which
shows that although the #, controller is robust against plant variations, it is highly
fragile with respect to controller gain variations. The Nyquist plots of the loop gain of
the Ho, robust controller and the robust resilient controller corresponding to identi-
cal plant uncertainty levels are shown in Figure 6.10, which clearly shows the relative

stability superiority of the robust resilient controller over the robust H, controller.

6.12. Two-Mass Benchmark Problem

Consider the two-mass system shown in Figure 6.3 with m; = my = 1 and an

X2

= >
k

u——» m —/\/\/\— my ——-Pw

Figure 6.3: Two mass oscillator

uncertain spring stiffness k [114]. A control force acts on mass 1 and the position of

mass 2 is measured, resulting in a noncolocated control problem. The nominal system
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dynamics with k,m = 1 and states defined in the figure are given by

0 0 10 0 0 0
. 0 0 01 0 0 0
MW=1_1 1 00 [+ ] g o | 2O
1 100 0 10
y(&) = [0 1 0 0]z()+[0 1]uw(

Using the uncertainty structure given by (6.18), the actual dynamics are given by
A+ BofCy, where By=[0 0 -1 1]Tand Co=[1 -1 0 0] The matrices

E,; and FE, are chosen to be

El=[0 10 0] E2=[ 0 ]
0000} v/0.001

As in Section 6.11, the quasi-Newton optimization algorithm was used to com-
pute full-order controllers (n. = 4) that minimize the cost bound J. The cost depen-
dence for the multiplicative uncertainty characterization is shown in Figure 6.11. The
Nyquist plots of the LQG controller and three robust resilient controllers are shown
in Figure 6.12. For the additive uncertainty characterization, the cost dependence is
compared to the LQG controller and an H,, robust controller in Figure 6.13. The
asymptotic stability regions of the LQG controller and the robust resilient controller
are shown in Figure 6.14. Finally, the Nyquist plots of the LQG controller and three
robust resilient controllers are shown in Figure 6.15, while the Nyquist plots of the
‘Ho, robust controller and the robust resilient controller corresponding to identical
plant uncertainty levels are shown in Figure 6.16. In all cases, the robust resilient
controllers are superior in their ability to tolerate plant and controller uncertainty as
compared to the LQG and robust H, controllers. Furthermore, the robust resilient

controllers possess far superior gain and phase margins.
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6.13. Conclusion

In this chapter, we extended the robust fixed-structure guaranteed cost controller
synthesis framework to synthesize robust resilient controllers for controller gain vari-
ations and system parametric uncertainty. Specifically, the guaranteed cost approach
of [10] and [13] was used to develop sufficient conditions for robust stability and H.
performance via fixed-order dynamic compensation. A quasi-Newton optimization
algorithm was used to obtain robust controllers for two illustrative examples.
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Figure 6.4: Dependence of the H; cost on the controller error parameter
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Figure 6.7: Dependence of the H; cost on the controller error parameter
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CHAPTER 7

Fixed-Structure Controller Design
for Axial Flow Compression
Systems

7.1. Introduction

The desire to develop an integrated control system-design methodology for ad-
vanced propulsion systems has led to significant activity in modeling and control of
flow compression systems in recent years (see, for example, [7,79,83,90,98] and the
references therein). Two of the main design constraints limiting jet engine compres-
sion system performance are the compressor aerodynamic instabilities of rotating stall
and surge. Rotating stall is an inherently three-dimensional® fluid dynamic instability
which is characterized by regions of flow that rotate at a fraction of the compressor
rotor speed while surge is a one-dimensional axisymmetric global compression system
oscillation which involves axial flow oscillations, and in some cases even axial flow
reversal, which can damage engirng_gqmponents and cause flameout to occur.

A fundamental development in compression system modeling for low speed axial

compressors is the Moore-Greitzer model given in [90]. Specifically, utilizing a one-

When analyzing high hub—t(;-it'irl;ff;ﬁo éompressors, rotating stall can be approximated as a
two-dimensional local compression system oscillation.
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mode expansion of the disturbance velocity potential in the compression system and
assuming a cubic characteristic for the compressor pressure-flow performance map,
the authors in [90] develop a low-order three-state nonlinear model involving the
mean flow in the compressor, the pressure rise, and the amplitude of the rotating
stall. Starting from infinitesimal perturbations in the flow field, the model captures
the development of rotating stall and surge. In particular, the model predicts the
experimentally vgriﬁed 7pitchfork hard subcritical bifurcation at the onset of rotating
stall [89].

Using the Moore-Greitzer model, a bifurcation-based controller for rotating stall
and surge was developed by Liaw and Abed [84]. In particular, the Liaw and Abed
static nonlinear controller is given by

’Ythrot(A) =Y + kAz, (7-1)

where 7ot (A4) is the control throttle, A is the amplitude of the rotating stall, and o
and k are constants. The locally stabilizing bifurcation-based controller given by (7.1)
essentially changes the bifurcation structure of the controlled system at the onset of
rotating stall from a hard subcritical bifurcation to a soft supercritical bifurcation to
soften the transition into rotating stall. However, as noted by Eveker et al. [36], even
though the Liaw and Abed controller reduces the abrupt transition into rotating stall,

it is ineffective for surge. Modifying the static nonlinear controller given by (7.1) to
Yinrot (A4, ‘I)) =y + k1 A® — k2®, (7.2)

where $ is the time rate of change of the mean flow in the compressor? and k; and

2Even though a patented differentiation scheme for sensing the time rate of change of the mean
flow in the compressor is given in [36], the calculation of ® can be simply obtained by the most
elementary equations of fluid dynamics. For example, under the assumption of one-dimensional
flow, the unsteady axial momentum equation as applied to the bulk of the fluid in the inlet duct
yields & = —pTIU-AP, where p is the fluid density, L is the duct length, U is the rotor wheel speed,
and AP is the change in static pressure.
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ko are constants, Badmus et al. [8] considerably extended the domain of attraction
of the Liaw and Abed controller. A fundamental shortcoming of the aforementioned
controllers is the demanding two-dimensional sensing requirements for implementing
these controllers. Specifically, measuring rotating stall amplitude is quite challenging,
requiring pressure sensor arrays distributed circumferentially around the compressor
annulus, along with discrete Fourier transform software for spatial and temporal fil-
tering for computing the first circumferential spatial harmonic of rotating stall. As
an alternative to the locally stabilizing nonlinear controllers developed in [8, 36, 84],
the authors in [56, 78, 79] develop globally stabilizing controllers for controlling ro-
tating stall and surge in axial flow compression systems. In particular, Lyapunov-
based recursive backstepping globally stabilizing static full-state feedback nonlinear
controllers requiring rotating stall amplitude measurements are constructed in [56),
while a globally stabilizing static output feedback nonlinear controller is given in [79].
Specifically, the Krsti¢ et al. [79] static output feedback controller is given by

I'+cV—cd
'Ythrot(cb, ‘Il) = 1\/@ 2 y

(7.3)

where ¥ is the pressure rise in the éd;rhj;féssdr:, ® is the circumferencially averaged
flow in the compressor,® and T, c;, and ¢, are constants. Even though (7.3) provides
a simplified sensing architecture over (7.1) and (7.2), the controller is static, pos-
sessing gain at all frequencies. Furthermore, none of the above controllers have any
disturbance rejection guarantees.

In this chapter we develop linear, time-invariant, pressure rise feedback reduced-
order dynamic compensators for the nonliﬁear Moore-Greitzer axial flow compressor
model. Specifically, we construct a modified Riccati equation whose solution guaran-

tees that the nonlinear closed-loop axial flow compression system is locally asymptot-

3Mean flow is relatively simple to measure and is usually measured using pitot probes located in
the bell mouth of an engine. '
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ically stable and the closed-loop output system energy is less than the net weighted
input energy at any time 7' in the face of £, exogenous disturbances. Using the
modified Riccati equation, constructive sufficient conditions for fixed-order (i.e., full-
and reduced-order) pressure rise feedback dynamic compensators guaranteeing local
asymptotic stability and disturbance rejection are developed. These sufficient con-
ditions are in the form of a coupled system of algebraic Riccati equations providing
explicit design equations for characterizing pressure rise feedback dynamic compen-
sators that account for compression system nonlinearities and exogenous disturbances
with a guaranteed domain of attraction. Unlike the nonlinear static and relative de-
gree zero controllers possessing gain at all frequencies discussed above, the proposed
linear dynamic compensators explicitly account for compressor performance versus
sensor accuracy, compressor performance versus processor throughput, and compres-
sor performance versus disturbance rejection. Furthermore, the proposed controller
is predicated on only pressure rise measurements, providing a considerable simplifi-

cation in the sensing architecture.

7.2. Output Feedback Disturbance Rejection Con-
trol for Axial Flow Compression Systems

In this section we introduce the output feedback disturbance rejection control
problem for axial flow compression systems. The goal of the problem is to deter-
mine a linear, time-invariant, fixed-order dynamic output feedback compensator that
stabilizes a given parameterization of the nonlinear Moore-Greitzer axial flow com-
pressor model using only pressure rise measurements while guaranteeing closed-loop
disturbance rejection and optimality of a quadratic performance criterion involving
weighted state and control variables.

To capture post-stall transients in axial flow compression systems, we use the
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one-mode Galerkin approximation model for the partial differential equation charac-
terizing the disturbance velocity potential at the compressor inlét proposed by Moore
and Greitzer [90]. Specifically, we consider the basic compression system shown in
Figure 7.1, consisting of an inlet duct, a compressor, an outlet duct, a plenum, and a
control throttle. We assume that the plenum dimensions are large compared to the
compressor-duct dimensions so that the fluid velocity and acceleration in the plenum
are negligible. In this case, the pressure in the plenum is spatially uniform. Further-
more, we assume that the flow is controlled by a throttle at the plenum exit. Finally,
we assume a low speed compression system with oscillation frequencies much lower
than the acoustic resonance frequencies so that the flow can be considered incom-
pressible. However, we do assume that the gas in the plenum is compressible, and

therefore acts as a gas spring.

K Throttle
1

PT——’G Ac (/:;\/

z

Pr

Compressor

Figure 7.1: Compressor system geometry

Now, invoking a momentum balance across the compression system, conservation
of mass in the plenum, and using a Galerkin projection based on a one-mode circum-
ferential spatial harmonic approximation for the non-axisymmetric flow disturbances

yields [90]

Alt) = 507? /% U (®(t) + A(t) sin(8)) sin(f) dF, ¢t € [0, 00), (7.4)
d(t) = —V(t) + %/o ' Ue(D(t) + A(t) sin()) d6, (7.5)
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U(t) = () — 2r(t)]; (7.6)

32
where @ is the circumferentially averaged axial mass flow in the compressor, ¥ is
the total-to-static pressure rise, A is the normalized stall cell amplitude of angular
variation capturing a measure of nonuniformity in the flow, ®r is the mass flow
through the throttle, o and f are positive constant parameters, and Ue(+) is a given
compressor pressure-flow map. The compliance coefficient S is a function of the
compressor rotor speed and plenum size. For large values of 8, a surge limit cycle
can occur, while rotating stall can occur for any value of 8. Now, assuming that the
compressor pressure-flow map ¥c(-) is analytic, the integral terms in (7.4) and (7.5)
can be expressed in terms of an infinite Taylor expansion about the circumferentially

averaged flow to give

o d2k—1\I/C
= Egk!(k — 1) de-!

e=a(t) (ézL) , te0,00), (7.7)

o X1 d%Fe(¢) AR\
) = VO 2 Gy e g:cp(t)( 2) ! (7:8)
(1) %{@(t)—%(tn. (7.9)

The specific compressor pressure-flow map, ¥¢(-), which was considered in [90] is
Te(P) = U, + 1+ 30 — 58, (7.10)

where U¢, is a constant parameter. In this case, (7.7)-(7.9) become

At) = %A(t)[l — B(t) — LAP(D)] + Buwn(t), ¢ € [0,00), (7.11)
o(t) = -‘I’(t) + U (B(1) — §2(1)A%(1) + Bawa(t), (7.12)
B(0) = @) - Pr()] + Brwa(®), (7.13)

to which we have added the £, external disturbance signals w(t), w,(t), and wjs(t),

€ [0, 00), with scaling factors Si, B2, f3 € R. The proposed additive disturbance
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model can be used to capture combustion noise and turbine speed fluctuations. For
example, w3(t), t € [0, 00), might reflect back-pressure disturbances to the compressor

from the combustor.
Next, note that for fixed values of flow through the throttle, ®r(t) = &, (7.11)-

(7.13) have an equilibrium point given by
(Aeqs Peq, Peq) = (0, Doy Yo Peq))- (7.14)

. . : A A A
Defining the shifted state variables z; = A, £ = ® — $eq, and x3 = ¥ — Wy, S0
that for a given equilibrium point on the axisymmetric branch of the compressor
characteristic pressure-flow map the system equilibrium is translated to the origin, it

follows that the translated nonlinear system is given by

£1(t) = 2(1 - Mai() - 5[40 + 0 (O23(0) + 220 ()a2(0)]
+ By (t), t € [0, 00), (7.15)
Ea(t) = —za(t) + $(1 - M)za(t) — 3a3(t) — 3A3(2) — Prad(t) — S (D) (1)
+B2ws (1), (7.16)
() = Z5loa(t) = u(t)] + Brus(t), (7.17)

where \ £ ®rp,, and u £ &1 — A. Decomposing (7.15)-(7.17) into a linear and a

nonlinear part, we obtain the state space model

l'l(t) %(1—/\2) 0 0 l‘l(t) —% 0
[iz(t) } = [ 0 s1=-2) -1 :I [ z2(t) j| + [ 0 - j| d(yo(?))
3(t) 0 7 0 z3(t) 0 0
[ 0 B 0 0 wy (1)
+ 0 ] U(t) + [ 0 ﬂg 0 jl [ lUQ(t) ] 3 (718)
| — 5 0 0 fs | [ ws)
where
[, () 3 2
bo(t)= [o 1 o] zzgg]  wlt) = [3Ax§”(t) + 322(t)za(t) + 6AZ3(2) +2xg(t)]'
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Now, it can be shown that the linear part of (7.18) is linearly stabilizable for A > 1,
while for A = 1, corresponding tb the maximum pressure rise equilibrium point,
the linear part of (7.18) is linearly unstabilizable. With the system written in this
form, we can now state the dynamic output feedback control problem for axial flow
compression systems. Here, for generality of exposition, we present the formulation
for an n-dimensional dynamical compression system.

Dynamic Output Feedback Control for Axial Flow Compression Sys-

tems. Given the nth-order stabilizable and detectable* nonlinear dynamical system

#(t) = Az(t) + Bod(wo(t) + Bu(t) + Dyw(t), t€ [0,00), (7.19)

(t) = Coz(t), (7.20)
with output measurements
y(t) = Cz(t) + Dyw(t), (7.21)

where u(t) € R™, y(t) € R, y(t) € R°, ¢t € [0,00), ¢ : Rl —» R™, and where

w(t) € RY, t € [0,00), is an exogenous L, signal, each of whose components has norm

less than one, determine an n"-order linear, time-invariant dynamic compensator
t.(t) = Aczc(t) + Bey(t), te€ [0,00), (7.22)

u(t) = Cezc(t), (7.23)
that satisfies the following design criteria:

1. the undisturbed (w(t) = 0) closed-loop nonlinear system (7.19)—(7.23) is asymp-

totically stable;

1Here, stabilizability and detectability are defined with respect to the linear part of the dynamical
system (7.19)-(7.21).
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2. the disturbed closed-loop system (7.19)~(7.23) from L, disturbances w(-) to

performance variables
z(t) = E1z(t) + Epu(t), (7.24)
satisfies the disturbance rejection constraint
T T
/ 2T (s)z(s)ds < 73/ wT(s)w(s)ds+ V(%(0)), T >0, w(-)€ Ly,
0 0

(7.25)

where z(t) € RP, t € [0,00), 74 > 0 is a given constant, Z(t) £ [zT(t) zT(@®)]T,

and V() is a Lyapunov function for the closed-loop system (7.19)-(7.23); and

3. the quadratic performance functional
J(Ac, B, Co) & / T(0)2(8) dt, (7.26)
0
with w(t) = 0 is minimized.

For the three-state parameterized Moore-Greitzer model given by (7.18), the sys-

tem matrices in (7.19) and (7.20) are given by

21— A?) 0 0 -2 0
A=[ 0 1-N) -1], B0=[08 -%], 00=[(1)‘1)g],
0 ;}; 0 0 O
(7.27)
0 B 0 0
B=|: 0 , Dlz[o B2 O}. (7.28)
—g 0 0 B
Furthermore, for pressure rise sensor measurements,
c=[001]. (7.29)

7.3. Sufficient Conditions for Closed-Loop Stabil-
ity and Disturbance Rejection

In this section we provide a Riccati equation that guarantees asymptotic stability

of the undisturbed (w(t) = 0) closed-loop system (7.19)-(7.23) as well as disturbance
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rejection of the disturbed closed-loop system in the face of £, exogenous disturbances.
First, however, note that the closed-loop system (7.19)-(7.23) has a state-space rep-

resentation given by

#(t) = Az(t) + Bod(wo(t)) + Dw(t), t € [0,00), (7.30)
vo(t) = Coi(t), (7.31)
2(t) = Ei(t), (7.32)

where

Boé[ Bo ], C’oé[co Oloxne | -

Onc X1mo

Furthermore, we assume that the nonlinear part of (7.19), or, equivalently, (7.30), is

such that ¢(-) € &p, where
®p £ {¢: D= R™: $(0) =0, 6012 < %2 lvol3, vo € D}, (7.33)

where D C RY is a closed set and 7, > 0 is given. For the statement of the main

£ ETE and V 2 DDT and

. . . LA ~
result of this section, define the notation 7 = n + n., R

set D = Rl.

Theorem 7.1. Let (A, B, C.) be given and suppose there exists a matrix Pept
and scalars €, 74, 7a > 0 satisfying
0= ATP + PA+ 2PV + 42 PBBTP + GGy + P+ R. (7.34)
Then the function
V(z) = iT Pz, (7.35)

is a Lyapunov function that guarantees that the undisturbed (w(t) = 0) closed-loop
system (7.30)—(7.32) is globally asymptotically stable for all ¢(-) € Pge. Further-

more, the solution Z(t), t € [0, 00), of the nonlinear system (7.30)—(7.32) satisfies the
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disturbance rejection constraint
T T
/ 2T(5)2(s) ds < 72 / W (s)w(s)ds + V(3o), T3>0, w()eLy (7.36)
0 0

Finally, in the case where w(t) = 0, the performance functional (7.26) satisfies the
bound
J(&o, Ac, Be, C) = / ()7 2(t) dt < V(Zo). (7.37)
0

Proof. First note that since P € P?, it follows that the Lyapunov function
candidate V (%), Z € R* \ {0}, given by (7.35), is positive definite. The corresponding
Lyapunov derivative along the trajectories Z(t), t € [0, 00), of the undisturbed (w(t) =

0) closed-loop system (7.30)—(7.32) is given by

V(&) £ V'(#(2))[AZ(t) + Bog(uo(t))]
= zT(t)(ATP + PA)z(t) + 24" (wo(t)) By Pi(t), te€[0,00), (7.38)

or, equivalently, using (7.34)
V(E®) = -3T() [JD + 2PV P + R] #(t) — 4227 (t) PBo BT Pi(t)
~&T(t)CFCox () + ¢ (vo(t)) By PE(t) +ZT(t) PBod(3o(1)), t € [0,00). (7.39)

Now, adding and subtracting ¥2¢T (yo(t))¢(vo(t)), t € [0, 00), to and from (7.39) and
grouping terms yields
V(@) = —2T(0)[eP + 97 PV P + RJE(t) + 720" (1o(1))$(%0(1)) — 5 (£)30(2)
~p . T —~
~ b B ()~ two(t))] P BIPEE) —mewo(®)) ¢ € [0,00). (7.40)
Since €P is positive definite, v7 2PV P+ R is nonnegative definite, and v2¢Té—1g yo <

0, it follows that V(&(t)) < 0, ¢ € [0,00), and hence the undisturbed (w(t) = 0)

nonlinear closed-loop system (7.30)—(7.32) is globally asymptotically stable.
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Next, to show that the disturbance rejection constraint (7.36) holds, note that for

all w € R?,
0< (fyd‘lfDTIE’:E — qw)T(Y7! DT P% — vqw)
= ;% PV Pz + v3wTw — 25T PDuw
= v; 22T PV P + £ RE + v3uwTw — 27z — 2T PDuw. (7.41)
Now, let w(-) € L, and let Z(t), t € [0,00), denote the solution of the nonlinear

closed-loop system (7.30)-(7.32). Then

V(E(t) = T()(ATP + PA)YZ(t) — 20 (%o(t)) By Pi(t) + 22T (t) PDw(t), t € [0,00),

(7.42)
which, using (7.34) and (7.41), implies
V(z(t)) < 25T (1) PDw(t) — 7227 (t) PV Pi(t) — 27 (t) Ri(t)
< YwT(t)w(t) — 27 (t)z(t), te€[0,00). (7.43)

Now, integrating (7.43) over [0, T} yields
T
V(ET)) < fo 2w (s)w(s) — 27 (s)z(s)]ds + V(EO)), T 2 0, w() € Lz, (7:44)

which, by noting that V(Z(T)) > 0, T > 0, yields (7.36).
Finally, to show that the performance functional (7.26) satisfies the bound (7.37),

note that (7.40) implies
V(%(t)) < £T(t)RZ(t). (7.45)

Now, integrating (7.45) over [0, 00) yields

/ " T (t)2(t) dt < ~ / “ V) dt (7.46)
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Next, since #(t) — 0 as t — oo, where E(t), t € [0, 00), satisfies (7.30) with w(t) =0,

we obtain

Ido, Acy Bey Ce) < V(E0)) = Jim V(2(2)
= V(z0)

= %, Piy. 0

Theorem 7.1 guarantees global asymptotic stability if ¢(-) € ®p with D = R,
However, for the three-state axial compressor model given by (7.18), ¢(-) € ®p is not
satisfied for D = R%. Hence, to obtain a local stability result for the parameterized
compressor model given by (7.18), we restrict D to the set D, where D, is the smallest

compact set given by

A _
D. = {yo € R®: |6(y0)113 < %2 llwoll }, (7.47)
where ¢(yo), yo € R, is the nonlinear part of (7.18).

Proposition 7.1. For the axial flow compression system given by (7.18), D, is

not empty.

Proof. Defining

f (o) = Yoty o — ¢ (30)d(%o), (7.48)

it follows that

Flwo) = 77%(ad +23) — aifef + 422X+ 22))° — 32T (A + 22) + 233X + 25)]°. (7.49)

Now, since f'(0) = 0, where f'(0) denotes the Frechét derivative of f(-) at the origin,

and
mey _ | 2% 0
ro=|"5 k> (7.50)
129



where f”(0) denotes the Hessian at the origin, it follows that the origin is a local
minimum of f(-). Thus, since f(-) is continuous, there exists a neighborhood of the
origin where f(yo) > 0, yo € R\ {0}, and hence D, is not empty. a

The size and shape of the set D, for various values of the parameter -, with

A = 1.1 are shown in Figure 7.2.

04 T T T T T T T

0.3 B

0.2

01

-0.6 -04 -0.2 0 0.2 0.4 08
Figure 7.2: Regions, D, satisfying the sector bound (7.47)

Next, note that J(&o, Ac, Be, Cc) < f P#y = tr PZyZ{, which has the same form
as the standard H, cost appearing in standard LQG theory. Hence, we replace FoZg
by

VAN Vl 0
V= - 7.51
[0 B.V,BT ] (7:51)

where V; € R™™ and V; € R are arbitrary design weights such that ¥; > 0 and
Vg > 0, and proceed by determining controller gains that minimize tr PV. Before

. . . A ~
proceeding, however, we shall require for technical reasons that V, = D,DY = o?V,,
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where the positive scalar o is a design variable such that o = 0 if and only if D; = 0.
Next, in the spirit of [11], J(P, Ac, Be, Cc) £ tr PV can be interpreted as an auxiliary
cost which leads to the following optimization problem.

Optimization Problem. Determiqe Spntroller gains (A, B, Cc) that minimizes
J(ﬁ, A, B, C.) £ tr PV with P € P* subject to (7.34) and such that ('Ac, B.,C.) is
minimal.

It follows from Theorem 7.1 that by deriving necessary conditions for the Opti-
mization Problem, we obtain sufﬁcieht Conditions for characterizing dynamic output
feedback controllers guaranteeing closed-loop system stability and disturbance rejec-

tion to £, exogenous disturbances.

7.4. Reduced-Order Dynamic Control for Axial
Flow Compressors

In this section we present our main theorem characterizing fixed-order disturbance
rejection controllers for axial flow compression systems. For design flexibility, the
compensator order, n., may be less than the plant order, n. For convenience in
stating this result, define the notation S 2 (In + a®v] 26215)‘1 for arbitrary matrices
Q, P € N*, and A, 2 A + %eI,,. Note that since @, P € N" are nonnegative
definite and the eigenvalues of QP coincide with the eigenvalues of the nonnegative
definite matrix QY/2PQ/?, rit forll;)%;s tlrla;tr AQIA’ has nonnegative eigenvalues. Thus the
eigenvalues of I, + a®y] 2QP are all greater than one, so that S exists. Furthermore,
define

| Dy 2 {2 € R* Cof € D, and TP < B}, (7.52)

where P € N satisfies (7.34) for a given compensator (A, B, C;) and 8 > 0.

Theorem 7.2. Let n. < n and let € Ya, Vd, @ > 0. Furthermore, using the

131



results of Lemma 5.2, suppose there exist matrices P, Q, P, QeN satisfying

0 = ATP+PA+P[y2ByBy +7;*Vi]P+ R +Cy Co— PSP+7] PLPr), (7.53)
0 = (Ac+[7;2BoBy +77VAllP+P)Q+Q(Ac+ (17 2 Bo By +73 VAl [P+ P))T
+Vi—SQEQST+7,.5QEQSTrT, (7.54)
0 = (Ac—SQE+[772BoBy +73Vi]P)T P+ P(A.— SQE+[7;* Bo By +75 VAl P)
+P(v72ByBY +472 Vi +a2SQEQST)) P+ PEP—1T PEPr,, (7.55)
0 = (Ac+[7;2BoB] +77 Vi —ZIP)Q+Q(Ac+ [  BoBy +73 Vi —E|P)T
+5QEQST -7,5QEQS™ T, (7.56)
rank Q = rank P = rank QP = n,, (7.57)

and let (A, B, C.) be given by

A = [[A - SQE + (v7?ByBY + 7;°Vi — £)P|GT, (7.58)
B, = T'SQC™V; !, (7.59)
C. = —R;'BTPG™. (7.60)
Then ) )
P=|"EF Ghar (7.1

satisfies (7.34) and (A, B., C.) is an extremal of J (P, A, B;, C.). Furthermore, the

‘undisturbed (w(t) = 70) éldsed-loop System (7.30)—(7.32) is globally é.symptotically
stable for all ¢(-) € ®gi,. In addition, if ¢(-) € ®p,, then the undisturbed (w(t) = 0)
closed-loop system (7.30)-(7.32) is locally asymptotically stable, and D, defined by

Da 2 {7 € R*: Coi € D, and TPz < vg}, (7.62)

where vg = max{ > 0 : Dg C R*} is a subset of the domain of attraction of the
closed-loop system. Moreover, the solution Z(t), t € [0, 00), of the disturbed closed-

loop system (7.30)-(7.32) satisfies the disturbance rejection constraint (7.36). Finally,
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the cost j(13, A, B, C,) is given by
J(P, A, B, C.) = tr[(P + P)Vi + PSQEQS™). (7.63)

Proof. The proof is constructive in nature. Specifically, we first obtain necessary
conditions for the Optimizatioﬁ Plr";)blrém and then show by construction that these
conditions serve as sufficient conditions for closed-loop stability and disturbance re-
jection. For ¢(-) € ®p, and w(t) = 0, the estimate of the domain of attraction
D, is immediate using maximal closed sublevel sets. For details of a similar proof,
see [11,58]. O

Since our design methodology yields reduced-order controllers, we are reducing
control system complexity by assuring the implementation of a simpler controller for
achieving disturbance rejection than the full-order controller. By “simple”, we are
referring to a reduction in control system complexity measured by computer memory.
In the full-order case, nc = n, set G = I' = 7 = I,;, so that 7, = 0. Now the last
term in each of (7.53)—(7.56) can be deleted and G and I' in (7.58)-(7.60) can be
taken to be the identity. Furthermore, Q plays no role, so (7.56) is superfluous. If,
alternatively, the reduced-order constraint is retained and the disturbance rejection
constraint is sufficiently relaxed, i.e., 74 — 00, then considerable simplification arises
in (7.53)—(7.56).

To solve the design equations (7.53)—(7.56), we employed the homotopic continu-
ation method presented in [58). Homotopy algorithms operate by first replacing the
original problem with a simpler problem having a known solution. The desired solu-
tion is then reached by integrating along the homotopy path that connects the starting
problem to the original problem. The algorithm was initialized with v, = v4 = o0,
and the LQG gains designed for the linear part of (7.18). For given values of the

parameters 7, and 7g4, the algorithm was used to find (A, B, C.). After each iter-
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ation, -y, and 4 were decreased and the current values of (A, B, C,) were used to
find feasible values for 7, and 4 which were then used as the starting point for the

next iteration. Complete details of the algorithm are provided in [58].

7.5.  Active Dynamic”Conti'ol of an Axial Flow
Compressor

In this section we use the design equations (7.53)—(7.56) to design a full-order
(nc=3) disturbance rejection, pressure rise feedback, dynamic controller for the non-
linear Moore-Greitzer axial flow compressor model given in Section 7.2. Specifically,
we chose the data parameter values of 0 = 3.6, 8 = 0.356, and ¥¢, = 0.72, and set
X = 1.1 in the parameterization given by (7.18). Note that with A = 1.1, the lin-
ear part of (7.18) is linearly stabilizable, with (7.18) providing an equilibrium point
close to the desired (A = 1.0) maximum pressure rise compressor operating point.

Furthermore, we set 7, = 12.59 and -y4 = 2.3, and chose design weights

‘/l=f/1=BBT, ‘/2-:"\/2=1, E1=[10 ]. 1], Ezz[?]

Using the initial conditions Aq = 1.0, &y = 1.866, and ¥y = 3.22 to capture
system transients in the compressor, simulations of the Moore-Greitzer model were
run in both the open-loop (Yret(t) = 70 = 0.6689) configuration and with the de-
signed controller given by (7.58)—(7.60) in the feedback loop. Figure 7.3 shows the
phase portrait of pressure rise versus flow in the compresssor for the case where no
external disturbances are included in the simulation. It is seen from this plot that the
controlled system converges to an equilibrium point close to the maximum pressure
rise equilibrium point, whereas the constant throttle opening drives the system to a
stalled equilibrium point. Figure 7.4 shows the phase portrait of pressure rise versus

flow for a set of initial conditions chosen with various radii at angular intervals of
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7/6 about the maximum pressure rise operating point. Figure 7.5 shows the phase
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Figure 7.5: Phase portrait of pressure versus flow with exogenous disturbances

portrait of pressure rise versus flow in the compressor when the exogenous £, signal

given by
0.9¢~4/5sin(t + 2)
1.2¢"Vsin(t/2+1) |’

is included in the simulations. Once again, the closed-loop system converges to a

w(t) =

point near the maximum pressure rise equilibrium point while the constant throttle
opening drives the system to a stalled equilibrium point.

Figures 7.6-7.9 show the time histories of the stall cell amplitude A(t), the com-
pressor flow ®(t), the pressure rise in the compressor ¥(t), and the control throttle
opening Yot (t), with the exogenous £, disturbance included in the simulations for
the constant throttle opening, the closed-loop system with the disturbance rejection
controller (7.58)-(7.60), the Liaw and Abed [83] controller given by (7.1) with £ =1,

and the Badmus et al. [8] controller given by (7.2) with k; = 1 and ko = 1. Asseen in
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Figure 7.6, the disturbance rejection controller rejects the exogenous disturbance and
drives the stall cell amplitude to zero, while the constant throttle opening is unable
to reject the exogenous disturbance, driving the system to a stalled equilibrium. The
Liaw and Abed [83] controller does stabilize the maximum pressure rise point but
has poor disturbance rejection properties. Alternatively, even though, for the given
disturbance, the Badmus et al. [8] controller has comparable disturbance rejection
properties to the proposed controller, it requires a considerably more complex sens-
ing architecture in practice. Figure 7.9 shows a comparison of the throttle opening
for the three controllers considered as well as the constant throttle opening. It should
be noted that the maximum throttle opening amplitude of the disturbance rejection
controller is 1.1286, whereas the maximum throttle opening amplitude for the Liaw

and Abed [83] controller is 1.669, and the Badmus et al. [8] controller is 5.018. The
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Figure 7.10: Integral squared performance versus time

Badmus et al. [8] controller has a significantly larger throttle opening amplitude than
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the other two controllers and therefore can violate actuator limitation constraints
in practice. Finally, Figure 7.10 shows the integral squared performance response

foT 2T (t)z(t) dt versus time for the three designs.

7.6. Conclusion

A linear, fixed-order (i.e., full- and reduced-order) pressure rise feedback dynamic
compensation framework for axial flow compression systems was developed. Unlike
the nonlinear bifurcation-based and backstepping controllers proposed in the litera-
ture, the proposed dynamic compensator framework explicitly accounts for compres-
sor performance versus sensor noise, compressor performance versus controller order,
and compressor performance versus disturbance rejection. Furthermore, the proposed
pressure rise feedback controllers provide a considerable simplification in the sensing
architecture required for controlling rotating stall and surge. Finally, we note that
bifurcation-based controllers discussed in the Introduction are dependent only upon
measured quantities as opposed to the proposed controller which requires a model for
the performance characteristic map. However, it is important to recognize that since
the proposed controller guarantees robust stability for all ¢(-) € ®p,, an accurate

representation of the performance characteristic map is not required.
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CHAPTER 8

Fixed-Structure Controller
Synthesis for Real and Complex
Multiple Block-Structured

Uncertainty

8.1. Introduction

The ability of the structured singular value to account for complex, real, and
mixed uncertainty provides a powerful framework for robust stability and performance
problems in both analysis and synthesis (see [30,37,97,105,123] and the numerous
references therein). Since exact computation of the structured singular value is, in
general, an intractable problem, the development of practically implementable bounds
remains a high priority in robust control research. Recent work in this area includes
upper and lower bounds for mixed uncertainty [37,81,123] as well as LMI-based
computational techniques [18,41].

An alternative approach to developing bounds for the structured singular value is
to specialize absolute stability criteria for sector-bounded nonlinearities to the case of
linear uncertainty [53]. This approach, which has been explored in [23,46,48,49,51,52,

57,61], demonstrates the direct applicability of the classical theory of absolute stability
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to the modern structured singular value framework. In particular, the rich theory of
multiplier-based absolute stability criteria due to Luré and Postnikov [1,82,94,103],
Popov [102], Yakubovitch [119,120], Zames and Falb [125], and numerous others
can be seen to have a close and fundamental relationship with recently developed
structured singular value bounds.

The objective of this chapter is to use the absolute stability results of [53], which
unify and extend existing structured singular value bounds for mixed uncertainty,
to obtain fixed-structure controllers and fixed-order stability multipliers which pro-
vide robust stability and performance. Using the results of [53], the robust controller
synthesis technique proposed here permits the treatment of fully populated real un-
certain blocks which may, in addition, possess internal structure. Such problems
arise in a variety of applications, such as the study of modal dynamics, in which
transformation to ‘standard’ diagonal form may introduce additional conservatism,
computational complexity, as well as destroying the parameter space of the original
uncertainty characterization [53]. The ability to address real uncertain blocks is based
on the use of an appropriate class of multipliers whose structure is compatible with
the real block uncertainty. Hence, tailoring the multipliers to the structure of the
uncertainty not only leads to the ability to address more general uncertainty charac-
terizations but can also lead to less conservative controllers than obtained from the
standard mixed-yx synthesis techniques. This more general class of multipliers has no

counterpart in standard mixed-u theory [37,105,123].

8.2. Absolute Stability Criterion with Generalized
N Positive Real Stability Multipliers

In this section we review the absolute stability criterion for multivariable systems

with generalized positive real stability multipliers given in [53]. This criterion involves
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a square nominal (open-loop or feedback) transfer function G(s) in a negative feedback
interconnection with a complex, square, uncertain matrix A as shown in Figure 8.1.

Here, we consider the set of block-diagonal matrices with possibly repeated blocks

A(S) |t——

S Gs) p————

Figure 8.1: Standard feedback uncertainty representation

defined by
Aps 2 {A € CPP: A = block-diag[Iy, ® AT,..., I, ® AT,
Ly oy ® ALy Ty @ AL AT €RPP i =1,...,7;
Al e CPPig=r+1,...,71+c},

where the dimension p; of each block and the number of repetitions ; of each block
v

are given such that Zzp,-pi = p, where v = r + ¢ is the number of distinct uncer-
=1

tain blocks. Furthermore, define the subset A C Ay consisting of sector-bounded

matrices
A * e *
A= {AEAbs:Z(A—Ml) (M2—M1) I(A—Ml) S (A—M1)+(A—M1) },
where M;, M, € A, are Hermitian matrices such that M 2 M, — M, is positive
definite. Note that M; and M, are elements of A. Alternate characterizations of A
are given in [53].
To draw connections with the structured singular value for real and complex block-

structured uncertainty, we specialize the set A to the case of norm-bounded, internally
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block-structured uncertainty. Specifically, by letting M; = —y~!I and My = 71,

where 7 > 0, it follows that M = 2y~!I so that M~! = %7]. In this case, A becomes
A, ={A €Ay : YA+ ) (A+y S (A+yTD)+ (A+77M)')
Now, A € A, if and only if omax (B) 5 4~1. Therefore, A, is given by
A, ={A€ Aps: Omax (A) < v 1.

Next we give the multivariable absolute stability criterion for sector-bounded un-
certain matrices. To state this criterion, we define the sets D and N of Hermitian

rational scaling matrix functions by

D2 (D:C > D(jw) >0, D(jw)A = AD(jw), w € R, A € Ay},

N 2 [N:Co O N(jw) = N*(jw), N(jw)A = A*N(jw), w € R, A € Ay}
Furthermore, define the set Z of rational multiplier functions by
Z2{Z:C - C™: Z(jw) = D(jw) - jwN(jw), D(-) € D, N(-) € N'}.

Note that if Z(-) € Z, D(-) € D, and N(-) € N, then Z(jw) = D(jw) — jwN(jw)
if and only if D(jw) = He Z(jw) and N(jw) = %Sh Z(jw), w # 0. Hence, since

D(jw) >0, w € RU oo, Z(-) € Z consists of generalized positive real functions [3].

Remark 8.1. Although the condition D(jw)A = AD(jw) in D arises in complex
and mixed-y analysis [37], the condition N (jw)A = A*N(jw) in A has no counterpart
in [37] As shown in [53], this Condition generalizes mixed-x analysis to address
nondiagonal real matrices which are not considered in standard mixed-u theory. The
condition N(jw)A = A*N(jw) is an extension of the condition used in [46] for Popov

controller synthesis with constant real matrix uncertainty.
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We now state our main robust stability result.

Theorem 8.1 [53]. Suppose (I + G(s)M1)"'G(s) is asymptotically stable. If

there exists Z(-) € Z such that
He [Z(s)(M™' + (I + G(s)M))"'G(s))] > 0, (8.1)

for all s = jw, w € RUoo, then the negative feedback interconnection of G(s) and A

is asymptotically stable for all A € A.

8.3. Stability Multiplier Structure

To ensure the commutabiiity of the rational scaling matrix funcﬁons D(s) and
N(s) with the uncertainty set A, we must structure Z(s) = Cry(s]—Apn) ™' By+Dp, s0
that Z(s) € Z. To assure this, we construct the multiplier Z(s) from the constituent
multipliers D(s) and N(s). Furthermore, instead of obtaining a realization for N(s),
we obtain a realization for sN(s) directly since Z(s) = D(s) — sN(s). We therefore

choose multiplier realizations

-], o~ (/%]

where A4 € SAd, A, € SA,,, By € SBd, B, € SB,,, Cy € Scd, C, € Scn, and Dy € SDd-
The sets Sa,, Sa,, Sé 4 SBa)s SCd,’, Sén, and Sp, are chosen to enforce the diagonal

structure of D(s) and N(s) given by

D(s) = Cy(sI — Aq)"'Bq + Dy = block-diag[D;(s) ® Ip,,. .., Dy(s) ® I,,],

N(s) = Cu(sI — Ag)"'B, = block-diag [N,(5) ® I, ..., Ny(s) @ I,,] ,

where

0< Di(s) e C¥>¥ i=1,...,v,
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N,-(s) = N:(S) € Cwixw",Ni(S)Ai = Ni(S)A:, i1=1,...,v.

The structure chosen for the rational functions representing D(s) and N(s) in this
chapter is similar to the one for the curve-fitting operation in standard y-synthesis [9].

In particular, we define Sy, Sa., Sy, SB.» Scy» Sc,, and Sp, as follows:

Sa, 2 {Aq = block-diag [Iy,p, ® Ad,- - Tpp, ® Aa,] 1 Ag, € R4,
Agq, is in controllable canonical companion form with the 1%
row = [0 ag;, 0 ag;q -+ 0 adi’ndi] ,SgN ag, ; = (_1)(1'/2)+1’
i=1,...,v,7=1,...,n4} (8.2)

Sa. 2 {A, = block-diag[Iy,p, ® Any, - - -s Lyp, ® An,] : An, € R™ X,

A,, is in controllable canonical companion form with the 1%
row = [o Gy 0 Gny - O a,,i,,,ni] i=1,...,0}, (8.3)
Sp, & {Ba = block-diag[Iy,p, ® Buy, - - Tyup, ® Ba,] : By, € K™Y,
Bf=[10 .- 0],i=1,...,v} (8.4)
£ (B, = block-diag[Iy,p, ® Bay,- - - Iysp, ® Bay) : Ba; € R¥ 2,
Bf=[10 - 0],i=1,...,v}, (8.5)
Sc, £ {Cy = block-diag[Iy,p, ® Cayy - - Iyup, ® Ca, ] : Cy, € R,
Cy, = [ 0 caz 0 Cae 0 0 Capny ], sgn cq,, = (—1)7,
i=1,...,0,j=1,...,n4}, (8.6)

Sc

n

2 {C, = [block-diag [Iy,p, ® Cuys - -y Lpup, ® Ch,]] : Cu; € RIXnni
Cni = [ Coa O Cog o 0 Chinn;_y 0 ] i=1,...,v} (8.7)

Sp, £ {D4 = block-diag [da, Ly.ps - - - » day Lyup.] : da, € Rodg, >0,
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where ng, and n,, are the a priori fixed even orders of the rational functions repre-
senting the i*" diagonal element of the multipliers D(s) and N(s), respectively. Thus

we see that ngq and n,, defined as
A o A
na = nath, M= > i, (8.9)
i=1 i=1

are the total number of states describing D(s) and N(s), respectively.

To construct Z(s) = D(s) — sN(s), we obtain the augmented realizations

An, = block-diag[A4, A4, (8.10)
_ | Bud

e[ 2], o

Cn=[Cs -Cu], (8.12)

D = Dq, (8.13)

where Ay € Sa,, An € Sa,, B4 € Sg,, By € Sg,,, C4 € S¢,, Cn € Sc,, and Dy € Sp,.
Note that A, € R*»*"m where n, = ng + n,. Furthermore note that there is no
contribution to D, from the sN(s) term. This is due to the fact that the rational
function N(s) is strictly proper and has only even powers of s. Thus N(s) necessarily

has a relative degree of two and hence sN(s) is strictly proper.

as defined in (8.10)—(8.13), we obtain the necessary commutability properties, as well

Next, we note that with

as ensuring that D(s) > 0 and N(s) = N*(s). However, to satisfy the condition
N(s)A = A*N(s), we require that the " block of N (s) be zero whenever the it
uncertainty block A; is complex. Thus, in the case where A; € CP*P:, we require

that the realization of N;(s) be given by

Ani = [ ]0)(07 Bn,' = [ ]Oxla C‘n,' =[ ]IXOa
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where [ Jox; is the 0 x j empty matrix [96]. Thus, in this case, the i*" block of N(s)
is given by

Ni(s) = Ca,(sI = Ap,)"' By, = 0.

Finally, we note that the stability multipliers cannot have arbitrary realizations
and still be elements of their appropriate sets Say, Sa,, Sa,» Spay Scyr Sca, and Sp,.
Thus we recast the stability multiplier matrices so that the free parameters appear
along the diagonal of a separate matrix, Kp. The stability multipliers can then be

constructed as

Am = AmC + AmL}CmAmRa Bm = BmC,

Cm = mL’CmCmRy Drn - DmLICmDmR,

where the matrices Amc, AmL, Amr; Bmc, CuLy CmRs Dmr, and Dyg are structured
" appropriately. To illustrate the structure of these matrices, consider the scalar mul-
tiplier

Cd; o Cny s S

Z(S):dd1+52_ad < _a, .
1,2 1,2

The gain and structure matrices for the stability multiplier with n, = nq = 2 are

then given by

@G, 0 0 0 0

0 Cdl,2 0 0 0
Km=| 0 0 dsy 0 0 [,

0 0 0 ap, O
0 0 0 0 cayy

0000 10000 g (1) 8 g

1000 00000

AmC— 0 0 0 O ) AmL— O 0 0 1 0 3 AmR“ g g 8 i) 3
0010 000O0TO 000 of
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1 0 00 0] 0]
0 0100 0
Buc = 1l CmR'_— 0 00 0], Duyr= |1},
0 0000 0
0 01 0] [ 0]
Co=[0 100 —-1], Du=[0 0 1 0 0]
With these definitions, we see that
0 adm 0 0 1
1 0 0 0 0
Am = 0 0 0 an, |’ B = 1|’
0 0 1 O 0

Cm - [ 0 Cdl'z _Cnm 0 ] ) Dm = [ ddl ] y

and thus

Cd, » Cnya S

s — Qd, s — Qny g

Z(s) = Cu(sI — Ap) 'Bm + Dy = dy, +

8.4. Decentralized Static Output Feedback Formu-
lation

In this section we review the decentralized static output feedback problem for-
mulation for fixed-structure controller synthesis [14,34]. Consider the (m + ¢ + 1)-
vector-input, (m + g + 1)-vector-output decentralized system shown in Figure 8.2,
where e; and d;, i = 1,...,q, are used to account for model uncertainty, w is the
exogenous disturbance input, z is the performance variable, and the signals y; and
u;, 1 = 1,...,m, are measurement and control signals, respectively. The decentral-
ized static output feedback multi vector-input, multi vector-output system shown in

Figure 8.2 is characterized by the dynamics

i(t) = Aﬁ(t)+zm: Buju,-(t)+zq: By di(t)+Byw(t), te€[0,00), (8.14)
j=1 k=1

m q
Vi(t) = CpE®)+Y_ Dy () +)  Dyayodi(t) + Dyw(t), 1=1,2,...,m, (8.15)

j=1 k=1
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Figure 8.2: Decentralized static output feedback framework

m q
ei(t) = CeZ(t)+Y _ Deuyti(t)+Y  Deaydi() +Deww(t), i=1,2,...,q, (8.16)

j=1 k=1
Z(t) = Czj(t)+i Dzujuj(t)+z Dzdkdk(t)+D2ww(t)' (817)
j=1 k=1

In the above formulation, model uncertainty is represented by the decentralized

static output feedback map
d,(t) = Aiei(t), i= 1,...,q, (818)

where the uncertain matrices A; are not necessarily distinct. To represent decentral-

ized static output feedback control with possibly repeated gains, we consider
’U,,'(t) = }Ciyi(t), 1= 1, oM, (819)

where the matrices K; are not necessarily distinct. Reordering the variables in (8.18)
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and (8.19) if necessary and defining

uy (t) y1(t) di(t) e1(t)
at)y=| : [, =] :+ |[,dt)y=1| : [, e@®)=] i |, (8:20)
Upn () ym(t) dg(?) eq(t)
A Ary g A
B, = [Bm T Bum]) By = [Bdl Tt qu]; D,. = [Dzul T Dzum], (8-21)
A Cyl A Dy“n Dyulm A Dydu Dydlq
Cy = ) Dyu = - 3 Dyd = . ’ (822)
cym Dyumx = YUmm Dydml Dyqu
C61 Deun Deulm Dedu Dedlq
Ce 2 ‘| Deu 2 : y Deg = : ) (8.23)
Ce., Deuq 1 Deuqm Dedq 1 Dedqq
A A DyWI A Dewl
D,y= [Dzd1 e Dqu], Dyw = y Dew = ) (824)
Dyw,, Dew,

(8.18) and (8.19) can be rewritten

d(t) = Aé(t), (8.25)
a(t) = Ky(t), (8.26)
where A and K have the form
= block-diag Iy, ® Ay,..., Iy, ® A,), (8.27)
K £ block-diag [I5, ® K1, ..., Is, ® K] , (8.28)

where v is the number of distinct uncertainties A; € CP:*Pi or RPi *Pi | ), is the number
of repetitions of uncertainty A;, g is the number of distinct gains K; € R%*% and

¢; is the number of repetltlons of gam K;. Note that X,,...,K, are not necessarily

square matrices, and Z Y; = q and Z o; = m.
i=1 i=1
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With the definitions in (8.20)~(8.24), the transfer function G(s) from (1T, dT, w™]|T

to [§7,€T, 2T]T of the decentralized system has the realization

A | B, ' B, B,

J_Dyu ’Dyd D
G(S) ~ Ce J_Deu-:—Ded—]LPe_w— ) (8.29)

| Diu ) Dzd D,w

which represents the linear, time-invariant dynamic system

F(t) = AZ(E) + Bua(t) + Bud(t) + B,w(t), t € [0,00), (8.30)
9(t) = Cy&(t) + Dyii(t) + Dyad(t) + Dyw(t), (8.31)
é(t) = Coii(t) + Deni(t) + Dead(t) + Dewu(t), (8.32)
2(t) = C.E(t) + Danil(t) + Ded(t) + Doww(t), (8.33)

which is equivalent to (8.14)-(8.17). Furthermore, by rewriting the decentralized

control signals (8.19) in the compact form given by (8.26), the closed-loop system

realization from [dT,wT]T to [€T, 2T|T is given by
A|B!
G(s)~ | Co ]_Do D1 , (8.34)
E|E | E

where
A2 A+B.KLIC, Bo2By+BKLg'Dy, D2 B,+B.KL Dy,

é’o é Ce + DeuICLEICy, DO é Ded + Deu}CnglDyd, Dl é Dew + DeuICLEIDyw;
E2¢ +DWKLC,, By 2D+ DuKLi'Dys, Eo = Doy + Dok L' Dy,
and where L;c 27— D, K. Note that we assume det(Lx) # 0 for all K given by

(8 28) to ensure the well-posedness of the feedback interconnection.

Finally, given the closed-loop system realization given by (8.34) with Dy = 0,

D=0, E; =0, and E, =0, and the multiplier realization given by
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the realization of G(s) £ Z(s) (M~ + (I + Goa(s) M) "' Gea(s)), where Geq(s) is the

closed-loop transfer function from uncertainty inputs d(t) to uncertainty signals é(t),

is given by o
o~ e
where i
ae[A-pine 0 pel B,
Co2 [ DuCo Cm], Do=[ DaM]

8.5. Specialization to Centralized Strictly Proper
Dynamic Compensation

In order to give a more concrete illustration of the decentralized static output
feedback framework, in this section we provide an example with a single uncertain
block using a centralized, strictly proper dynamic controller. Specifically, consider

the uncertain dynamical system

(t) = Az(t) + Bu(t) + Bod(t) + Dyw(t), t € [0,00), (8.35)
y(t) = Cz(t) + Du(t) + Fid(t) + Dyw(?), (8.36)
e(t) = Cox(t) + Fpu(t), (8.37)
2(t) = Eiz(t) + Eyu(t), (8.38)

with uncertain plant perturbations AA = ByACy, AB = ByAF,, AC = F,AC,,
AD = F{AF;, of the nominal system matrices (4, B,C, D).
The dynamics of the centralized, strictly proper controller are given by
T(t) = Acz(t) + Bey(t), te€[0,00), (8.39)

u(t) = Cozolt), | (8.40)
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so that the closed-loop system can be written as

#(t) = AZ(t) + Bod(t) + Duw(t), t € [0,00), (8.41)
e(t) = Coi(t), (8.42)
z(t) = Ez(t), (8.43)

b lz®)] sl A BC, = a| By | 2| Dy
o 28] 42 e o ) 22 ] 053]

& [Co RC, EL B EC).

Writing this system in the decentralized static output feedback framework, we

obtain
3
B(t) = AZ(t) + D Buu;(t) + Bad(t) + Byw(t), t€[0,00), (8.44)
3
yi(t) = Cui(t) + D Dyuyti(t) + Dya,d(t) + Dyuw(t), i=1,2,3, (8.45)
e(t) = Coi(t) + D _ Dewyu;(t), (8.46)
j=1
2(t) = CE(t) + ) Dawyuy(t), (8.47)
and
w(t) = Ayi(t), u2(t) = Beya(t), us(t) = Ceys(?),
where

alA O alo0 a0 a|B A | By a | Dy
A—[O 0]7Bul—[lnc]13u2_{Inc]33u3—[O]aBd—[O}’Bw_[O}a

A A A A A A
cﬂl =A [0 Inc]’ Dyuy, z 0, Dyuy z 0, Dyuyy A= 0, Dyd1A‘_‘ 0, DymA: 0,
Cyp = [C’ 0], Dyuy; =0, Dyugy =0, Dyuyy = D, Dy, = F1, Dyuwy = D,,

A A A Ja A fay
Cy3 A= [0 Inc], Dyu31 ;_‘ 0, Dyu32 /_\: 0, Dyu33 =0, Dyd3 =0, Dng =0,
C.2[C 0], Dewr=0, Dews=0, Deus=F,

A Jay A JAN

C.= [El 0]» D.u, =0, Dz =0, Du3z= E,.
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Next, defining

o [u® N0

at) = |ut) |, 9() = |%() |,
us(t) ys(t)

Bu é [Bul Bu2 BuS] ’ Deu é [Deul DeuZ Deu3]1 Dzu é [Dzul Dzu2 Dzu3]1

A Cyy A Dyuy; Dyuyy Dyuys A Dya, A Dy,
Cy={Cy2|» Dyu= | Dyuzy Dyuzp Dyugs | Dya= | Dydz |» Dyw = | Dyuy |,
Cya Dyuax Dyuzy Dyugg Dya, Dyuy
and rewriting the decentralized control signals in the compact form
a(t) = Kj(t),
where ,
A Ac 0 O
K=|0 B, 0],
0 0 C.
the system matrices /i, Bo, D, Co, and E in the closed-loop dynamics
i(t) = AZ(t) + Bod(t) + Dw(t), t € [0,00), (8.48)
e(t) = Coi(t), (8.49)
z(t) = Ez(t), (8.50)

can now be written as

A BC, ]

A= A+ BKLLC, = [ B.C A+ B.DC.

A 1y _ | Da

D = B, +BKL'Dy, = { B.D, ] :
Co = C, +D,,KLg'C, = [ Co FCc ],
E=C +D,.KL'C,=[ E1 EC.].

Furthermore, closing the uncertainty loop from d(t) to e(t) yields the closed-loop

realization
5 A+
Ga(s) ~

AGy | D
o]’

tof &



8.6. Robust Stability and Performance

In this section we present sufficient conditions for robust stability of the feedback
system given in Figure 8.1 and a robust #H, performance bound for |Gw(s) |12 .
Specifically, the following theorem p;bvides a sufficient condition for ensuring that
Z()[M~Y+[I + Goa(s)M1]*Gea(s)] is strongly positive real [48], as well as providing
a robust performance bound for ||G,,(s)||? . For the statement of the next theorem
define the notation

EL[E 0], Dé[lg],

and recall the definition for a strongly positive real transfer function [48].

Theorem 8.2. Suppose there exists P € Nitnm satisfying

IS A A ~ A ~

0=ATP + PA+ (BTP - Co) (Do + DY) {(BIP - Co)" + ETE. (8.51)

Then Z(s)[M~! + [I + Ga(s)Mi]"'Gea(s)] is strongly positive real. Consequently,
the feedback interconnection of G(s) and A is asymptotically stable for all A € A.

Furthermore,

G2 (5)]3 < tr PDDT, (8.52)

To apply Theorem 8.2 to controller synthesis, we use the modified Riccati equation
(8.51) to guarantee that the closed-loop system is robustly stable. This leads to the
following optimization problem.

Optimization Problem. Determine gain matrices K € REi-7*Zi=1% and

K., € Rrmtv)x(nm+v) that minimize

J(K,Km) & tr PDDT, (8.53)
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Sufficient Conditions for Fixed-Order Robust

8.7.
Compensation with Dynamic Multipliers

In this section we state sufficient conditions for characterizing dynamic output

feedback controllers and dynamic stability multipliers guaranteeing robust stability

and robust H, performance. For the statement of the next theorem, partition the

matrices P and Q as
. P, P .
P=|:P1T1 Pw], Qz[QlTl le],
12 22 12 Q22
where Pi1, Q11 € N® and Py, Qo2 € N*», and define
_ - _ - T
01‘1¢1><T.' 001¢1><Ci
Of2¢2><ri 002¢2XC¢
0Ti—l¢i—lxri Oci-ld’i-—lxci
I B T I (8:54)
Ir,' Ic,-
Ori(¢i‘j)xri OC-‘(¢-'—J')><C-'
07'i+l¢i+lxri OC:‘+1¢"+1XC|'
L 07‘v¢v X7y B - Ocv¢u Xcq B
where r; and c; are the dimensions of the i*! controller gain, K; € R*% i=1,...,v,

and j=1,...,¢;.
Theorem 8.3. Suppose there exists i x 7. nonnegative definite matrices P and
Q satisfying
0=ATP + PA + (BT P — Co)(Dy + DY) Y(BIP - Co)T + ETE, (8.55)
0= (A—BO(DO+D;F)—1(B§P—CO))Q+Q(A—BO(EO+D§)-1(B;FP—OO))1D1"J“,‘ (8.56)

and let K; satisfy
&

0 =23 QF, (I+DLLIKT) [BE(PiQi+PuQl)(¢] —CF MiD}) + B P.B,Dy,
j=1
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+DT C’lec;f + DI [BY(PLQ, + P.QT,) — MiB] (P.Q: + PuQB)IC;

u

+BT[(PiQ1 + PiaQL)(PiBy + PyBuM ™' — C7 D)

H(PiQ12 + PaQ2)(PLBy + PoBuM ™ — CH) (DM ™' + M~ D) ™' D

DT Do(DiM ™ + M~ D) Y(P.Bg + PiaBuM ™' — CT D) TQ4

+(PLBy+ PoBuM™ — CITQEICT] LXTQE, .
Furthermore, let K, satisfy
0 = diag{24T, (PLQ12 + P.Q2)Amg
—2CT (DM~ + M7'Dp) " H(TTQuz + T3 Q2)Crir

—2DT (DM ™' + M™'Dp) N (TT Q1 + T7 QL)CTI Dy

DI (DM~ + M7'Dy)™ (MTIT QT + TrQ M

+MTIQT, + TF QM ™ + 2M ' TF Q1 T, + 2T QL,TYM ™)

(DM + M 'Dy) ' D},

where

T, £ PBy+ PuBaM™ — C Dy, Ty = PLBy+ PyBuM™' —CL.

(8.57)

(8.58)

Then Z(s)[M~ + [I + Gea(s)M1]71G a(s)] is strongly positive real. Thus the closed-

loop system from w(t) to z(t) is asymptotically stable for all A € A. Furthermore,

the worst-case H, performance of the closed-loop system satisfies the bound

1G.w(s)|2 < tr PDDT.

(8.59)

Proof. First we obtain necessary conditions for the Optimization Problem and

then show, by construction, that these conditions serve as sufficient conditions for

closed-loop stability and robust #, performance. Thus, to optimize (8.53) subject to
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(8.51), form the Lagrangian
LK, Km, O, 2) 2 tr [)\PDET + Q(ATP + PA
HETP — (Do + DY) (B - Co)T + B7E) |
where the Lagrange multipliers A > 0 and Q € R**" are not both zero. By viewing

K, Kn, and P as independent variables, we obtain

0L _ (i hib  DOYUETE - &) 6
55 = (A= Bo(Do+ D) (B P - 1)) Q

" f A " a R P n T " n
+0 (A — Bo(Dy + DT Y(BTP - 00)) + ADDT. (8.60)
If (A—BO(DO+1§;F)—1(B;FP—C'O)) is Hurwitz, then A = 0 implies = 0. Hence, it

can be assumed without loss of generality that A = 1. Furthermore, note that Q is

nonnegative definite. Thus the stationary conditions with A = 1 are given by

8['_ A _ DT AT\-1( AT H _ A A
55 = (A= Bo(Do+ DY) N(BTP - C0)) @

~ n R " o P " T " a
+Q (A - Bo(Dy + DE) ™ (BYP - Cv)) +DDT =0,

=2 fj QT, (7 + DLLTKT) [BT(AQ: + Pu@B)(CF — CTMDE)
i
+BIP,B, D}, + D},C.Q:\C; + Dy [Ba(PhQ1 + PaQy)
—M1B}(PlQ1+P12Q1T2)]C;+BI[(P1Q1+P12QT2)(PIBJ{—PmBmM“—C”;FDm)
+(PiQu2 + Pi2Q2) (P By + P BuM ™ = CD(DmM ™' + M™' D) ™' D
—DL Dn(DM ™' + M~ D) [(P By + PieBuM ™! — CT D) Q,
+(P§Ba+ PBuM ™" - COTQLICT| LZ™QE, =0,
e = diag {245, (P5Qu + PuQs) AL

—2CT (DM + M7'D,) " HTT Q12 + T Q2)Cing

~2D5 (DM~ + M~ D) (T Q1 + T3 Q1)CC Diw
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DT (DpM~' + M7'D,) " (M T QT + TV QM
FMTIQT, + TR QT M~ 4+ 2M ' TT Q1o Ty + 2T QL,TIM ™)

(DM ™'+ M™'Dy)'Dir} =0,

which are equivalent to (8.56)-(8.58). Equation (8.55) is a restatement of (8.51). It
now follows from Theorem 8.2 that if Z(s)[M~! + [I 4+ Goa(s)M1) 'Gea(s)] is posi-
tive real then A + ByAC, is asymptotically stable for all A € A. Finally, the Hs
performance bound (8.59) is a restatement of (8.53). O

Equations (8.55)-(8.58) provide constructive sufficient conditions that yield dy-
namic controllers for robust fixed-order (i.e., full- and reduced-order) output feedback
compensation. By using these equations within a numerical optimization algorithm,
the optimal robust fixed-order controllers and stability multipliers can be determined

simultaneously, thus avoiding D, N — K iterations.

8.8. Quasi-Newton Optimization Algorithm

A general-purpose BFGS quasi-Newton algorithm [26] can be used to calculate the
controller gains and the stability matrices, as described in Section 2.3. One require-
ment of gradient-based optimization algorithms is an initial stabilizing design. For
full-order controller design, the algorithm can be initialized with an LQG controller,
while for reduced-order control, the algorithm can be initialized with a balanced trun-
cation of an LQG controller. Small values should be chosen for M, and M, so that
the design equations (8.55) and (8.56) can be solved. The quasi-Newton optimiza-
tion algorithm can then be used to find the controller gains A, B, and C, and
the multiplier gains Ay, Bm, Cm and Dy,. After each iteration, M, and M, are in-
creased and the current values of the controller gains (A, B, Cc) and multiplier gains

(Am> Bm, C, Dr) are then used as the starting point for the next iteration.
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8.9. Conclusion

This chapter used the absolute stability results of [53] to obtain fixed-structure
controllers and fixed-order stability multipliers which provide robust stability and
performance. By satisfying certain commutability properties with the uncertainty
set, the stability multipliers designed by the robust controller synthesis technique
proposed here permit the treatment of fully populated real and complex uncertain
blocks which may, in addition, possess internal structure. Hence, tailoring the mul-
tipliers to the structure of the uncertainty not only leads to the ability to address
more general uncertainty characterizations but can also lead to less conservative con-
trollers than obtained from the standard mixed-u synthesis techniques. Furthermore,
since the numerical optimization routine optimizes over the free parameters in the
controller and the stability multipliers simultaneously, this methodology avoids the

D, N — K iterations of standard mixed-u synthesis techniques.
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CHAPTER 9

Concluding Remarks and
Recommendations for Future

Research

9.1. Conclusions
In this report, we introduced a decentralized static output feedback framework

for fixed-structure dynamic controller synthesis. As a special case of this framework,

we showed how a centralized dynamic output feedback control problem can be trans-

formed to a decentralized static output feedback form. By using this format, a nu-
merical optimization scheme can be used to optimize the controller gains with respect

to a given cost function and constraint equation. Furthermore, we demonstrated its

effectiveness on the ACTEX flight experiment.
Next, we used the decentralized static output feedback framework to synthesize
stable #,-optimal controllers by including the #, cost of the controller in the La-
grangian and using a multiobjective optimization technique. It was numerically shown

that for some systems, namely minimum phase, open-loop unstable or non-minimum

phase, open-loop stable plants, a stable controller can rival the performance of an

unstable H,-optimal LQG controller and yet not be constrained by the loop mar-
gins of unstable controllers. For other systems, however, there could be a significant
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degradation in performance by requiring the controller to remain stable, although
this technique provided controllers yielding the minimal H, closed-loop cost for all
stable linear controllers.

By exploiting the ability of the decentralized static output feedback framework
to a priori fix the structure of the controller, we were able to synthesize H,-optimal
relative degree two controllers. This was accomplished by cascading two strictly
proper dynamic controllers in the feedback loop and optimizing over the free controller
parameters. It was shown that constraining the controller to have a relative degree of
at least two only marginally increased the H; cost of the closed-loop system, though it
was noted that changing the order of the separate cascaded controllers in the feedback
loop does significantly affect the H, cost of the closed-loop system and the natural
frequencies and break frequencies of the controller dynamics.

Next we focused on robust control by extending the implicit small gain guaranteed
cost bound [54] to controller synthesis. Specifically, the implicit small gain guaranteed
cost bound was used to address the problem of robust stability and #, performance
via fixed-order dynamic compensation, and a quasi-Newton optimization algorithm
was used to solve the coupled nonlinear design equations.

We then extended the robust fixed-structure guaranteed cost controller synthesis
framework to synthesize robust resilient controllers, or controllers which are robust
in the face of system parametric uncertainty and variations in the controller gains
themselves. Specifically, the guaranteed cost approach of [10] and [13] was used to
develop sufficient conditions for robust stability and H, performance via fixed-order
dynamic compensation.

The robust fixed-structure control framework was then used to develop linear,
fixed-order (i.e., full- and reduced-order) pressure rise feedback dynamic compen-

sators for axial flow compression systems. Unlike the nonlinear bifurcation-based and
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backstepping controllers proposed in the literature, the proposed dynamic compen-
sator framework explicitly accounts for compressor performance versus sensor noise,
compressor performance versus controller order, and compressor performance versus
disturbance rejection. Furthermore, the proposed pressure rise feedback controllers
provide a considerable simplification in the sensing architecture required for control-
ling rotating stall and surge.

Finally, we used the absolute stability results of [53] to obtain fixed-structure
controllers and fixed-order stability multipliers which provide robust stability and
performance. By tailoring the multipliers to the structure of the uncertainty, we
could permit the treatment of fully populated real and complex uncertain blocks
which may, in addition, possess internal structure. This not only leads to the ability
to address more general uncertainty characterizations but can also lead to less con-
servative controllers than obtained from the standard mixed-u synthesis techniques.
Furthermore, by using a numerical optimization routine, we could optimize over the
free parameters in the controller and the stability multipliers simultaneously, thus

avoiding the D, N — K iterations of standard mixed-u synthesis techniques.

9.2. Recommendations for Future Research

The decentralized static output feedback formulation and the quasi-Newton op-
timization algorithm discussed in Chapter 2 are programmed into a MATLAB tool-
box [35]. However, in its present form, it is not the most user-friendly program, and
making it easier to use would most likely spread its use. Also, as it now stands, the
quasi-Newton optimization algorithm has only one search method. Adding routines
such as “double dog-leg” searches or locally constrained optimal “hook” steps [26] to

the Armijo-type routine already programmed would enhance the robustness of the
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optimization routine. Furthermore, adding numerical gradient computations instead
of relying solely on analytical gradient computations will extend the range of the
problems the routine will be able to solve.

In Chapter 4, we designed controllers with a minimum guaranteed (vector) rel-
ative degree of two. However, the theory itself is very general, and we can use the
same formulation to design controllers of (vector) relative degree r. Furthermore, the
methodology used to obtain relative degree two controllers was solely based on the
structure of the controllers, and was not constrained to a particular notion of opti-
mality. In Chapter 4, we designed Hz-optimal controllers, but we could just as easily
design Hoo-optimal (vector) relative degree two or even relative degree two robust
controllers.

In Chapter 5, robustness was guaranteed by bounding the effects of the uncertain
terms in the Lyapunov equation. However, this was just one particular bound, and it
may not be the best bound for certain applications. Further work may be able to find
new bounds which can reduce conservatism and therefore give better performance for
particular problems.

As noted in Chapter 6, almost all robust control theory available in the literature
address either the issue of (structured or unstructured) plant uncertainty or the issue
of uncertain exogenous disturbance rejection. However, the stability of closed-loop
systems could be very sensitive to numerical errors in the controller gains themselves.
Hence, an important issue in robust control should be the robustness of compensators
with respect to implementation errors arising from floating point accuracy in the
processor. While we presented bounds to deal with controller gain variations for
linear control problems, extending the results of Chapter 6 to address the robustness of
nonlinear compensators is of utmost importance and remains essentially an untapped

area of future research.
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The general fixed-structure positive real stability multipliers developed for real
parameter uncertainty in Chapter 8 are structured to handle real block uncertainty,
but the diagonal structure of Z(s) is not the most general form for the case of repeated

uncertainties. For example, if the uncertainty matrix is

& 0 0 0
o & 0 o0
A=10 06 0|

00 0 &

then the commutative property AD(s) = D(s)A will hold for a multiplier of the form

du(S) dlg(S) 0 0
dlg(S) dlg(S) 0 0
0 0 d21 (S) dgz(s)
0 0 d22($) d23(8)

D(s) =

Similarly, a generalization of the structure of N(s) can be made which will result
in a nondiagonal multiplier which will still satisfy the condition N(s)A = A*N(s).
Further work on this problem can generalize the multiplier structure to handle such
a case. Furthermore, this structure for the multiplier Z(s) only allows us to consider
realizable multipliers. However, this precludes us from considering the famous Popov
multiplier, Z(s) = I + Ns. When using the Popov multiplier, one must assume that
(I+Ns)Gs(s) is realizable, where G5(s) = M~ 4+ (I4Go4(5) M;)Gea(s). Thus, instead

of assuming that Z(s) is realizable, we can take
Z(s) = D.(8) — sN.(s) + sDy + Dy + ...+ 8D, — sN; — §*Ny — ... — s'N,,

where D;(s) and N,(s) are the realizable portions of the multipliers, D; and N; are
constant matrix scales, and r is chosen such that s"Gs(s) is realizable.

Finally, although the theory for designing linear output feedback controllers is
quite mature, nonlinear output feedback controller synthesis remains relatively un-
developed. In numerous real world applications, system nonlinearities such as sat-

uration, relay, deadzone, quantization, geometric and material nonlinearities require
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nonlinear output feedback controllers. Furthermore, for linear plants with parametric
uncertainty and nonquadratic performance criteria, nonlinear controllers exist that
generate superior performance over the best linear controller. A fruitful area of re-
search is to develop a fixed-structure controller synthesis framework for nonlinear
control. The motivation for fixed-structure nonlinear control theory is to address
controller synthesis within a class of candidate nonlinear feedback controller struc-
tures. Specifically, control Lyapunov functions can be used to provide a controller
synthesis framework by assuring global or local asymptotic stability for an a prior
fixed class of nonlinear feedback controllers. A specific controller within this class
can now be chosen to optimize a given performance performance functional. Thus,
this provides a constructive framework where Lyapunov theory is used to guarantee
global or local asymptotic stability over a class of nonlinear feedback controllers while
optimization is performed over the free controller gains so as to minimize a specific

performance functional.
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Appendix

Controller Configuration 2

For this configuration, the controller given by (2.37) can be expressed as

0 1 0 0 0
2
_|=wi —03w; O 0 |1
Ac = 0 0 0 1 » Be= 0y’
0 Wy —w? —0.3w, 0

Co=1[0 0 kw? 0].

Note that there are three free parameters, namely, w;, wy, and k3. Thus

and

Ko———

=B en B e B o B en e JR e B o ) oo}
CO OO OO O -~
C OO OO OO OO
CoOCCoOo oo O
OO~ OO0 OO
CO OO OOoOC OO
COoOC OO OO OOCO
OO OO OoOCOOo
SO O OCOOoOC OO

, 169



w

e
OO0 o000 00O
h
™
I

OO O oo oo oo

L,

O C O OO OO OO
t~

[}

I
OO OO OO OO
[l en B en Y e i en B e B o B o B e
CO OO OOOCO

It
coococor~roO0O

1
[ ]
L[4
L

1
—3
1
]
-]
1
!

R1 = R2 = R3 = M3

S OO OC OO OO =
o B v I o B B e e [ = I e
OO OO OO O OO
O OO OO OoOC OO
OO DO OO O OO
O~ OO0 OO OO
fl

1

[ e B en)

o OO

OO OO OO O OO

SO CcCoOoO oo OO
OO OO O OO O

L
T
L

L - =3

Controller Configuration 3

For this configuration, the controller given by (2.38) can be expressed as

0 1 0 0
~w? —03w; 0 0

0 0 0 1 ’
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Note that there are three free parameters, namely, w;, wz, and k3. Thus
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Note that there are four free parameters, namely, w;, w2, w3, and k3. Thus

and
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