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A novel approach for the refinement of finite-element-based analytical models of flexible structures is presented.
The proposed approach models the possible refinements in the mass, damping, and stiffness matrices of the finite
element model in the form of a constant gain feedback with acceleration, velocity, and displacement measurements,
respectively. Once the free elements of the structural matrices have been defined, the problem of model refinement
reduces to obtaining position, velocity, and acceleration gain matrices with appropriate sparsity that reassign
a desired subset of the eigenvalues of the model, along with partial mode shapes, from their baseline values to
those obtained from system identification test data. A sequential procedure is used to assign one conjugate pair
of eigenvalues at each step using symmetric output feedback gain matrices, and the eigenvectors are partially
assigned, while ensuring that the eigenvalues assigned in the previous steps are not disturbed. The procedure
can also impose that gain matrices be dissipative to guarantee the stability of the refined model. A numerical
example, involving finite element model refinement for a structural testbed at NASA Langley Research Center
(Controls-Structures-Interaction Evolutionary model) is presented to demonstrate the feasibility of the proposed

approach.

Introduction: Problem Statement

YPICALLY, the spacecraft structure can be modeled as a linear,
time-invariant flexible system, which in turn can be represented

by the following second-order dynamical equations:

M Jr + D Jr + Kx = Hf (1)

where M is the positive definite mass matrix, D is the positive

definite (semidefinite in the presence of rigid-body modes) damp-

ing matrix, K is the positive definite (semidefinite in the presence

of rigid-body modes) stiffness matrix, /4 is the disturbance input
influence matrix, x is a k x l vector of displacements, andf is a

e x I vector of disturbances to the system. Usually, a finite element
analysis is used to obtain these matrices analytically. However, the

accuracy of the finite element model in predicting the dynamical

behavior of the structure depends on a number of factors, such as

proper knowledge of element and component material and geo-
metric properties, appropriate meshing, correct joint modeling, etc.

From past experience with flexible structures, the accuracy of the

finite element model is limited when compared to test results from
modal parameter identification. In almost every structure, the modal

frequencies and amplitudes predicted using finite element models

differ from those obtained from modal testing. This lack of accuracy

in modal parameters can be a detriment to control system design.

Control system design for flexible systems is challenging because

of their special dynamic characteristics: a large number of struc-

tural modes within the controller bandwidth; low, closely spaced

modal frequencies; very small inherent damping; and insufficient

knowledge of the parameters.

Control system design requires accurate knowledge of the plant

that is to be controlled. In the case of spacecraft control systems,

this means that an accurate knowledge of the parameters associated

with the flexible modes of the spacecraft, such as modal frequencies,

damping ratios, and mode shapes, is required. The need for accu-

rate knowledge is particularly critical for the modal frequencies. In

traditional gain-stabilized spacecraft control design, this knowledge

is required to achieve nominal performance while guaranteeing sta-
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bility margins in the form of phase and gain margins. In modern

control system design, which may be gain or phase stabilized, this

knowledge is required to achieve nominal perlbvmance as well as

specific degrees of stability and performance robustness.

One approach to obtain accurate models of flexible structures is to

use models that can be extracted directly from system identification

(ID) or modal test data. This is a feasible approach, which has been

quite successful in a number of applications. However, the useful-

ness of this approach is limited in that the refined model obtained

applies only to the hardware configuration of the system ID. In other

words, the model obtained from system ID data is only valid at the
input/output channels that are used in the test setup. If the model of

a component changes, additional inputs or outputs are included, or

simply new elements are added, the model obtained through system

1D loses its relevancy unless additional system ID tests are per-

formed. Moreover, these models do not easily lend themselves for

other required performance and reliability analyses, such as stress

and strain analysis, vibration and jitter analysis, etc. To overcome

the limited aspect of the system ID models, one can use an analyt-
ical model obtained through finite element analysis, provided that

these models can be made to have sufficient accuracy for design and

analysis. Thus, in this paper we address tl-_eproblem of refining the

analytical model of the flexible spacecraft using the system ID data.

To date, different techniques have been proposed for retining the

finite element rnodcl ofa tlexible sttucture based on modal testing or

system ID procedures. 23 Model refinement involves techniques that

reline the finite element model by minimizing the level of disagree-

ment between the model and test results. These techniques gener-

ally start with a set of parameters of the model (typically, physical

parameters at the element level, e.g., mate,ial and geometric prop-

erties) and systematically tune those parameters to reduce or min-

imize some measure of disparity between the model and test data.

This may be a time-related measure, lor example, the difference

in time history responses, or a modal-related measure, tor exam-

ple, difference in modal frequencies. Various optimization schemes

and least-square techniques have been suggested lot the refinement

process.

This paper describes a novel approach tot the refinement of fi-

nite element models. The approach presumes that modal analysis

or system 1D tests have been performed and that modal parameters,

such as frequencies, damping ratios, and mode shapes (at sensor
locations), have been identified for modes in the range of interest.

The proposed approach models the possible refinements in the mass,
damping, and stiffness matrices of the finite element model in the
form of a constant gain feedback with acceleration, velocity, and

displacement measurements, respectively. The freedom to change
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modelparameters,aswellastherelativedegreeofchangedesired
inoneparameterwithrespecttotherest,isembeddedintheel-
ementsof theinputandoutput influence matrices for the various

measurements. Once the elements of the input and output influ-

ence matrices have been defined and fixed, the problem of model

refinement reduces to obtaining position, velocity, and acceleration

gain matrices that reassign a desired subset of the eigenvalues of the

model, along with partial mode shapes, from their baseline to target

values. Hence, the problem of model refinement becomes a problem

ofeigensystem assignment with output feedback. However, symme-

try and the positive definiteness requirement of the mass matrix, and

the positive definiteness (semidefiniteness if rigid-body modes are

present) requirement of the stiffness and damping matrices, neces-

sitates that gain matrices should be constrained such that the refined

mass matrix remains symmetric and positive definite and the refined

stiffness and damping matrices remain symmetric and positive defi-

nite (semidefinite). Moreover, the refinements in the system matrices

should accommodate the sparsity of the nominal model, such that

unwarranted additional connections are not introduced through re-

finement. In this paper, a procedure for obtaining symmetric gain

matrices via eigensystem assignment is described first. To perlorm

the required eigensystem assignment, a modified procedure to the

sequential algorithm outlined in Ref. 4 is followed. The modified

procedure provides the ability to use acceleration feedback, needed

to refine the mass matrix, as well as the capability to assign eigenvec-

tors partially. Second, additional constraints, in the form of quadratic

inequality constraints, are outlined to render the symmetric gain

matrices dissipative, thus guaranteeing the stability of the refined

model. Finally, quadratic equality constraints are introduced to ac-

commodate the sparsity requirements of the refined model. A nu-

merical example involving model refinement of a structural testbed

at NASA Langley [CSI evolutionary model (CEM) phase 11]is pre-

sented to demonstrate the application of this approach.

Model Refinement

By observing of the nominal dynamical model of the system given

in Eq. (I), the dynamics of the refined system may be written as

(M + AM)J_ + (D + AD).i- + (K + AK)x : Hf (2)

where AM is a symmetric matrix representing the refinement in

the mass matrix, satisfying (M + AM)> 0; AD is a symmetric

matrix representing the refinement in the damping matrix, satisfy-

ing (D + AD) > 0; and AK is a symmetric matrix representing the

refinement in the stiffness matrix, satisfying (K + AK) > 0. Note

that the positive definiteness conditions for the refined stiffness and

damping matrices reduce to positive semidefiniteness in the pres-

ence of rigid-body modes. Now, expand the refinement gain matrices
as follows:

AM = Lr,tG_tL r, AD = LoGoLro, AK = LKGKL r

(3)

where Lm is a matrix representing the distribution of refinements

that are allowed in the mass matrix. The elements of matrix LM can

vary depending on what elements in the mass matrix are chosen to

vary. For example, if the chosen element of the mass matrix is the
one at the ith row and column, then all of the elements of the ith row

of matrix L_ may be chosen to be zeros, except one, which is set to

1. The matrix GM represents the symmetric gain matrix associated

with the mass matrix (acceleration gain matrix) that determines the

extent of the refinement. The matrices LD, Go, Lx, and Gx are

similarly defined to characterize the refinement for the damping

and stiffness matrices, respectively. Note that the refinements in the

mass, damping, and stiffness matrices may be viewed as symmet-

ric, constant-gain acceleration, velocity, and position feedback. The
system equations for the refined system may be rewritten as follows

M_. + Dx+ Kx = Hf +u

(4)

Assume that a number of modes in the desired frequency range

have been identified via a system ID procedure, and let the modal fre-

quencies, damping ratios, and modal amplitudes (at the disturbance

and measurement locations) be denoted by 12t, Zt, and 4% respec-

tively. Here, I2, is an r x 1 real vector of natural frequencies of the r

identified modes; Zr is an r x 1 real vector of modal damping ratios;

and dpt is an s x r complex matrix, whose r columns represent the

mode shapes of these identified modes at s locations. After noting

that, for real systems, complex eigenvalues occur in conjugate pairs,
let the target eigenvalues and eigenvectors be defined as

/-

A_ *-I , , IV/I ,"= -Z,f_, + jf_ - Z,',

A_ _ = -Z,f_, - jf_ - Z,-, ,:' = ,,,

i = 1..... r (5)

The overbar in the expressions in this section refer to complex conju-

gation of the elements of the corresponding vector (or matrix) only,

as opposed to the Hermitian operator, which involves transposition

and complex conjugation. Now the problem of model refinement

may be expressed as the problem of finding symmetric accelera-

tion, velocity, and position gain matrices (GM, Go, and GK) such

that the 2r eigenvalues of the system

(M + L_,G_,Lf,)_ + (O + L:oG)x

+ (K + LKGxLr)x = Itf (6)

are assigned to A I, i = I, 2 ..... 2r, and the s elements of corre-

sponding eigenvectors are assigned to qJ[, i = 1,2 ..... 2r, subject

to the condition that the refined mass, damping, and stiffness ma-

trices are positive definite. The partial assignment of eigenvectors
may be defined as

k_ = % (7)

where matrix /_ represents the influence coefficient matrix for the

system ID sensor locations. The procedure developed and followed

to compute the gain matrices is described in the next section.

Refinements in Damping Matrix
via Eigensystem Assignment

The task of assigning the eigenvalues and partial eigenvectors of

the system in Eq. (6) with symmetric output feedback gain matrices

is accomplished using a sequential algorithm described by Re/\ 4.

The algorithm is modified here to accommodate the partial eigen-
vector assignment and acceleration terms to include refinements in

the mass matrix. For the simplicity of presentation, the procedure is

described for refinements in the damping matrix alone and then tot
an all inclusive model refinement.

tn each step of the sequential procedure, one conjugate pair of

eigenvalues is assigned to desired values while making sure that the
previously assigned eigenvalues are not disturbed. The procedure

uses a first-order descriptor representation of the system, obtained

from Eq. (6),

['0o]I:l:[0 _,o]/x}+[:o].+[o]:
. = -GoG, = -col0

that is, the descriptor form

Ez = Az + Bu + Pf,

where

<lxl--.o.o/x} (8)

/
represents the state in the first-order descriptor form, with Ct_ =/3 r

A brief description of the sequential procedure is given next. The

u = -GoCoz (9)
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reader is referred to Ref. 4 for a thorough description of the proce-
dure.

1) The procedure employs the generalized ordered real Schur

translbrmations of the system matrices, E and A.

2) Orthogonal transformations are used to move previously as-

signed eigenvalue pairs to the top left block of the pair (E, A), where
(E, A) are in ordered real Schur form, 5 and the structure of the new

gain matrix is prescribed such that it only affects the eigenvalues

in the lower bottom partition of the system matrices. For example,

assume that (k - 1) conjugate pairs of the eigenvalues have been

placed in the previous steps and that they are in the top left block

of (E, A). Let Nok denote a matrix whose columns form an orthog-

onal basis for the left null space of 0o,_, that is, ]VD, is a matrix

with orthogonal columns such that Nr.C'o_t = 0. Here, C'D_ denotes
the first 2(k - I) column partition o1"the output intluence matrix in

transformed coordinates. If the gain matrix in the transtbrmed co-

ordinates (_o_ is constructed as

do, = _o, do,_D, (lo)

where (_o_ may be an arbitrary matrix, then output feedback with

the gain matrix will not affect the (k - 1) eigenvalue pairs assigned
in the earlier steps.

3) At each step, an intermediate gain matrix is computed to as-

sign a pair of eigenvalues to desired values in lower bottom partition
of the system matrices. The algorithm used in this eigenvalue as-
signment was initially developed in Ref. 4, but is modified here to

accommodate partial eigenvector assignment as well.

4) At each step, after computing the gain matrix that assigns a pair

of desired eigenvalues, the intermediate state matrix is transformed

to a generalized Schur form with all earlier assigned eigenpairs in

the top left block of the updated system matrix.

5) The overall gain matrix is constructed by accumulating the

gains from each step.

6) This process can be continued until up to m eigenvalues have
been assigned to the desired locations, where m denotes the nmnber

of inputs or outputs.

Eigenpair Assignment

This section describes the approach to select output feedback

gains to assign one pair of complex-conjugate eigenvalues, while

ensuring that the gain matrix is symmetric and the partial eigenvec-

tors are as close as possible to their corresponding target vectors.

Assume that the kth eigenpair is to be assigned. For notational sim-

plicity, the system matrices will be denoted as E22, A22, B2, and

C2, the output feedback gain matrix will be denoted as G, and the

desired eigenvalue pair will be denoted (L, _.). The problem is to

select a symmetric matrix G, such that ()_, _.) is a generalized eigen-

pair of the closed-loop system matrix, (E22, A22 - B2GC2), and the

eigenvectors are partially assigned to desired values, as given in
Eq. (7).

Let _b be the eigenvector corresponding to the eigenvalue ,_..The

generalized eigenvalue problem becomes ()_E2z - A22 + B2GC-,)ch =
0. This expression can be rewritten as

[_-E22 - Az2 I B2] ----F = 0 (I I)

It is obvious from Eq. (I 1), that the vector on the right-hand side

of the expression must lie in the right null space of F. Let N be a

matrix whose columns form an orthogonal basis for the null space

of F, that is, FN = 0. Note that unlike an actual control design

problem where the number of inputs/outputs are usually lixed, we
may choose the number inputs (parameters that can be changed in

the model) large enough as to provide the freedom to assign the

desired eigenvalues and specified elements of the corresponding
eigenvectors. Although E2-,, A2-,, and B-, are real matrices, F and

N are complex matrices because the eigenvalue _. is a complex
scalar. However, to ensure that the gain matrix is real, the eigenvec-

tor corresponding to the complex-conjugate_eigenvalue is chosen

to be the complex conjugate_of 0, that is, q5 is chosen to be the
eigenvector corresponding to X.

Because columns of N span the null space o1" F, it follows that

=--N_= ct (12)

where o_ is an arbitrary vector of complex elements and the matrices

Nt and N-, are formed by partitioning N compatibly with g5 and

GCz4). From Eq. (12), 0 = Nlo_ and (;C-,_b = N-,o_, which leads to

GC2NIot = N-,o_ (13)

The eigenassignment problem is now reduced to selecting o_ such

that there exists a symmetric gain matrix G satisfying Eq. (I 3). With
_b being the eigenvector corresponding to ,_, real solutions lor the

gain matrix G can be obtained, and the equations can be written out

to involve only real aritlnnetic operations as lollows.

For the eigenvalue _., with eigenvector _, the matrix 1_=

[_-E22 -- A_,, [ B-,], and ]V is a matrix whose orthogonal colunms

span the null space of 1a. If the arbitrary coeflicient vector is chosen

to be &, the complex conjugate of c_, then it follows that

GC-,/QI& = h_2& (14)

Equation (13) or Eq. (14) can be rewritten as

GC-,[Re(NI) - Im(Nl)l Lhn(cO.j

[Re(_)]
= [ReiN_,) - Ira(N-,)] Lhn(cr)J (15)

and

l F e( ,l
(;('2[Im(N_) Re(N_)lLhn(_,)/ = [hn(,V2) Re(N_,)]Llm(°_)_]

(1o)

,,,,'here Re( ) denotes real part of the argument and Im( ) denotes

imaginary part of the argument. In compact lk)rm these equations
are written as

G Wip = VIp, G W2p = V,p ( 17)

wherep = [Re(a r) Im(ar)] r, WI = (;.,[Re(NI) -hn(Ni )], V1 =

[Re(N2) -hn(N2)], W2 = C_,[hn(Ni) Re(NI)], and _._ =

[Ira(N2) Re(N-,)]. Note that Eq. (17) is a system of quadratic equa-

tions in the unknown variables, namely, the elements o1"the gain
matrix G and the coe'_'ficient vectorp. Furthermore, the elements of

G should be constrained such that G is symmetric, and the solution

of the system has to yield an eigenvector, tot the whole system, T

that satisfies the partial eigenvector conditions of Eq. (7), that is,

RUT =qJ)k , (18)

where R = [/_ 0] is the corresponding coefficient in the descrip-

tor tbrm of the system equations, /'/ is tim right unitary matrix in

the generalized Schur lorm at the kth step (that keeps tim closed-

loop matrices in real Schur form), and tI*__ _ is the target partial

eigenvector lor the kth step. Note that, il" the condition of Eq. (18)

is satisfied for one of the eigenvectors of the eigenpair, it would

identically satisfy its complex conjugate. Here, we assume that the

set of earlier assigned eigenvalucs does not match the remaining
eigcnvalues of the system, either before or after the eigenpair as-

signment. This mild assumption ensures that the eigenvectors of the

earlier assigned eigcnvalues/eigenvectors remain unchanged as ad-
ditional eigenvalues are assigned Furthermore, this means that the

eigenvector condition of the type in Eq. (18) can be imposed one

mode at a time, and once imposed for an eigenvector, it need not

be reimposed again. Now, considering the eigenvalue problem of

the whole system for the eigenvalue being assigned, one can write

i l: I_-E22 A2-, + B-,GC'2J (19)
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Note that

Solving for qo in terms of q_, one obtains

_ = -(_.EII - A|I)-I(_-EI2 - AI2 -t- BIGC2)d_ (20)

and by substituting for GC2d_ and 4_ from Eq. (12), one has

_b = Nlot

_p = -()-Etl - Atl)-I([)_Et2 - AI2]NI + BtN2)c_ -- Qot (21)

or

-- Sa (22)
T= Nt

Using Eq. (22) into Eq. (18) and expanding and separating the real

and imaginary parts, one has

[Re(°O ! = Re(qjr2,- 1)
RU[Re(S) -Im(S)]lim(a) ]

{ Re(a) } = Im(,,P,2k- ') (23)RU[Im(S) Re(S)] Im(ot)

Recalling the definition of vector p from Eq. (17) and combining

these equations, one obtains

Lp = q (24)

where

r.,,.e(s>-RUIm(S)1 [
L : LRUIm(S) RURe(S) j' q I (25)

Therefore, a coefficient vectorp and a symmetric gain matrix G that

satisfy Eqs. (17) and (24) have to be found. The condition for the
existence of a symmetric gain matrix G that satisfies Eq. (17) has

been established in Ref. 4 and is given as the existence of a vector

p that satisfies

pr ( vir w2 - Vf Wl )p _ pr jp = 0 (26)

To summarize, the conditions for the placement of an eigenpair of the

system to desired values, while partially assigning the corresponding

eigenvectors to target values, reduces to computing a coefficient

vector p that satisfies the quadratic equation given by Eq. (26) and

the linear system of equations represented by Eq. (24).

One possible approach to obtaining a coefficient vector p that
satisfies Eqs. (26) and (24) would be to first solve forp in Eq. (24),

to obtain

p = L+q + Nt./3 (27)

where ()+ is the pseudoinverse of (), NL is a matrix collecting a

set of basis vectors for the right null space of matrix L, and/3 is a
coefficient vector associated with the basis vector, yet to be defined.

Substituting forp from Eq. (27) into Eq. (26) yields

--/3 N L JNL/3 +/3rNrjL+q +qrL+r jNL/3f(/3) r T

+ qr L +r j L+q = 0 (28)

Standard Newton methods for obtaining the solution of nonlin-

ear equations may be used to obtain a solution vector /3. Ana-

lytic gradients of f(/3) are readily available because the gradi-
ent of any quadratic, f(/3) =/3T Q 1/3+ 2Qr/3 + c, is given by (0/

0/3)f(/3) = (Ql -t- Qr)/3 + 2Q2. The nonlinear problem of Eq. (28)

is very well behaved because the function is quadratic in/3 and an-

alytic gradients are linear in/3.
Once a coefficient vectorp (or/3) has been determined, the sym-

metric gain matrix G that assigns the desired complex-conjugate

eigenvalues may be obtained as follows. Denoteyj = V_p,y2 = V2p,

xl = WIp andx2 = Wzp, and let X = [xi x2] and Y = [Yl Y2], then

Eq. (17) is rewritten as GX = Y. Let Q be an orthogonal matrix,
such that

where Yl is a nonsingular 2 x 2 matrix (otherwise, the problem is

solved trivially). The matrix Q can be obtained by QR factorization

of Y. Now, define Xl, 22 as follows:

IX';=QrX22 (30)

where )(1 is a 2 × 2 matrix, and ,_2 is a (m -2) × 2 matrix. Now

2t is nonsingular ifxt and x2 are linearly independent (otherwise,

the problem is trivial). Defining Gll = l_l-_ _ l, it can be seen that

Oo}['o,] (31)

Therefore, it lollows that the matrix G defined as

satisfies G X = Y

Note that if only eigenvalue assignment is required, that is, it is not

required to perform partial eigenvector assignment, then the solu-
tion vectorp does not have to satisfy Eq. (24), and only the quadratic

equation given by Eq. (26) needs to be satisfied. The solution to this

equation can be obtained through standard Newton methods as men-
tioned earlier. However, because Eq. (26) is a simple quadratic, the

check for existence and computation of a solution can be achieved
via examination of the matrix J. A solution vector exists if and only

if the symmetric part of J is either indefinite or semidefinite. If the

symmetric part of the matrix has zero eigenvalues, then any cor-

responding eigenvector is a solution for vectorp. If the symmetric

part of J is indefinite, then any linear combination of eigenvectors

of the symmetric part, whose corresponding eigenvalues are not all
of the same sign, qualifies as a solution, if the coefficient of the

linear combination are chosen such that the quadratic in Eq. (26)

vanishes.

Once the gain matrix G is computed, the current refinements in the

damping matrix, represented by Go_ is determined from Eq. (10),

and the overall refinement is updated as

GD +-- Go + Gok (33)

The procedure described thus far determines a symmetric gain ma-

trix that reassigns a desired subset of the eigenvalues of the model,

along with partial mode shapes, from their baseline to target val-

ues. However, the symmetry of the gain matrix does not necessarily

guarantee that the refined (combined) model remains stable. Be-
cause in most situations the flexible system is open-loop stable, any

refinements to the analytical model should be such to maintain that

stability. One approach to this could be to use the design freedom in

the solution vector p and impose constraints on eigenvalues of the

refined damping matrix. However, this could be cumbersome, par-
ticularly, when the size of the system is large (thousands or hundreds

of thousands of degrees of freedom). Another approach could be to

use the freedom beyond eigensystem assignment [quadratic equali-

ties in Eqs. (26) or (28)] to reduce some measure of the gain matrix

G that represents the refinement in the damping matrix. This can
be accomplished, for example, by imposing inequality constraints
in the form of

lprVr wjPl>__3#pr Vf lip, i = !, 2, j = 1,2 (34)

where Sij are positive scalars whose values can be used to adjust the
norm of the gain matrix.
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Alternatively, one can require that the current gain matrix t_o_

be dissipative at every sequence. Although the dissipativity require-

ment can be constraining, it will guarantee that the refined system

remains stable. In other words, at every sequence, a pair of eigen-

values are assigned via a symmetric and dissipative gain matrix.

Reference 4 provides a set of constraints to impose dissipativity of

the gain matrix in this setting. These constraints are in the form of

quadratic inequality constraints in the solution vectorp as follows:

t T v:w,)lp>_o
I T

f_(p)=pT{v:w, - _(v, w2

:,(p)=/{ v/w, -  (v:w2

+ v:w,)Jp>_o

+ v:w,)}p>_0

+ v:w,)}pz0 (35)
These quadratic constraints go well with the quadratic symmetry

condition given in Eq. (26), and hence, the appealing computational

nature of the algorithm is retained• Another possible approach could

be to require that at each sequence of the eigensystem assignment

procedure the overall gain matrix GD remains positive semidefinite,

that is, the gain matrix is dissipative.

Sparsity Accommodation

In most applications involving flexible systems, the system matri-

ces are not fully populated matrices. On the contrary, these matrices

exhibit significant sparsity. However, the formulation presented thus

far for model refinement does not consider or incorporate possible

sparsity in the system. It is essential to have such a capability because

it may not be practical to produce refined models that have different

sparsity (bandwidth) than the nominal model. One exception can be
in applications wherein identification of possible missing elements

(connectivity) in the nominal model is of concern.

To accommodate sparsity in the damping refinement, assume that

the refinement influence matrix Lo is defined such that each of its

columns has only one nonzero element. In other words, no coupling

in matrix LD is considered between the degrees of freedom con-

sidered for refinement. This assumption would isolate any potential

couplings between the degrees of freedom in the elements of the

gain matrix GD. Also, this assumption would not result in any loss

of generality because any coupling in influence matrix Lo can be

absorbed into the gain matrix. The procedure to incorporate sparsity

in the damping matrix refinements follows.

As mentioned earlier, the placement procedure is sequential
wherein at each sequence the model is refined such that a pair of

complex-conjugate eigenvalues (and possibly partial eigenvectors)

are reassigned to match system ID values. At step k of this proce-
dure, the local gain matrix G must satisfy the conditions established

in Eq. (17), such that

G[W_p Wzpl = [V_p VzPl (36)

Note that, in this equation and the following development, the sub-

script k, denoting the step number, has been omitted to improve the

clarity of presentation. Moreover, for this refinement not to effect

the (k - 1) eigenpairs earlier matched by the algorithm, the overall

gain matrix at step k, G, must be defined via Eq. (10). The required
sparsity in the refinement matrix should be incorporated in the el-

ements of matrix G. Now assume that sparsity requires that super

diagonal elements jl, j2 ..... J,i of the ith row of G must be zero,

where q is the number of zero-valued elements. It can easily be

shown that Eq. (36) is satisfied identically if

NGNr_Z[W_p Wzpl=Al[V_p VzP]

leading to

t_il_'_p 1_'_1 = [fZ,p f'_l _ (;I_' = I,' (37)

For a gain matrix t_, with vanishing super diagonal elements j_,

j2 ..... jq in its ith row, to exist while satisfying Eq. (37), the ith

row of matrix _', l_'i, must be in the range space of the rows of 1,$',.,

where li',. includes all rows of _' except rows jl, j2 ..... j,j. From

linear matrix theory, Vi is in the range space of fi/,. iff all rows of

W, are orthogonal to the right null space of V,, that is,

• ,f'? : 0 (38)

The ith row of matrix IS' is a 1 x 2 vector defined as [f'l,P f/2iP],

where the subscript i refers to the ith row of the matrix. The right

null vector of f/_ may be written as

$"? : I _/2iP } (39)
[ -Vlip

Using Eq (39)in Eq. (38) and expanding _',. as [l,_'l,p W2,pl. one
obtains

ki,'l,p V2,p - W._,p _', lP = 0 (40)

Therelore, the condition for existence of a gain matrix G, with

vanishing super diagonal elements Jl, j., ..... ./,/ in its ith row, is

a system of quadratic equalities in the coeflicient vector p. Similar

conditions can be established for vanishing elements in other rows

of matrix (_. These quadratic conditions, together with the quadratic

equation given by Eq. (26) for symmetry, the quadratic inequalities

given by Eq. (35) for dissipativity, and the linear system of equations

provided by Eq. (24) for partial eigenvector assignment constitute

the complete conditions for sparse damping matrix refinement.

The computation of the gain matrix in the presence of sparsity

conditions requires a different treatment than described earlier [see

Eq. (32)]. Here, the gain is directly computed l¥om the solution of

simultaneous equations that impose eigenvalue assignment, sym-

metry, and sparsity conditions• Once, a feasible coefficient vector

p, satisfying the quadratic and linear requirements described earlier

for sparse refinement, has been obtained. Then, the system of simul-

taneous equations that yields the elements of the local gain matrix G
are derived as follows. Denote X = [W_p W_] and Y = l Vlp VzPl;

then transposing Eq. (36) gives

XrG = yr (41)

Packing the columns of matrix G to obtain vector g, Eq. (41) may
be rewritten as

[: 1X r 0 ... 0

X r
• g= Y.

• -- ". 0

• "" 0 X T

(42)

where vector Y? denotes the columns of matrix yr packed in a

columnwise manner• The condition for symmetry of matrix G may
be written as

Sg = 0 (43)

where S is a coefficient matrix with -1, 0, or I for its elements.

Finally, the condition for proper sparsity of matrix (_ or NGiV r

may be written as

Pg = 0 (44)

where P is a coefficient matrix whose elements depend on the el-

ements of the matrix/V. Now the gain matrix G (or gain vector g)

can be computed by solving the system of simultaneous equations

given by Eqs. (42--44). Note that typically there would a great deal

of sparsity in the coefficient matrices of Eqs. (42-44) so that sparse

solvers would be ideal for obtaining the solution. Alternatively, one

can solve first lbrg from Eqs. (43) and (44), that is,

g = NseO (45)

where the matrix Nse is a set of basis vectors lor the right null space
of matrix

[:]
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and O is the coefficient vector yet to be determined. Substitute for

g from Eq. (45) into Eq. (42) and solve for O to obtain the gain
solution. This alternative may be the best approach because there

may be times where a completely feasible solution forp cannot be

obtained. In such a case, its best to guarantee that the refinement is

feasible by being symmetric and having proper sparsity [Eqs. (43)

and (44)], and then attempt to match the system ID data as close as

possible [Eq. (42)].
Before ending this section on incorporation of sparsity, it should

be mentioned that if degrees of freedom for model refinement can

be chosen such that the refinement matrices take a block-diagonal

form, then a much easier procedure, one that is very similar to the

case with no sparsity, may be followed. For example, assume that

the gain matrix at step k is supposed to have the form

As stated earlier, it can easily be shown that the condition for eigen-

pair assignment [Eq. (36)] is satisfied identically if

_a_r_[w,p Waol=_lV, t, v_]

which, along with Eq. (46), becomes

[Go' G20]/_[W'p WzP]= fI[VxP VzP]

leading to

(_ i/VI [ Wip W2,p]:IVI[VIp V_l

G2AI2IW_p Wzp]= l(tz[V_p Vzpl (47)

where matrices /Vl and Nz are partitions of/V according to rows

of matrices G'I and (_2, respectively. These equation are almost

identical to those obtained for the case with no sparsity [see Eq. ( 17)].

The main difference here is that there are two gain matrices for which

the conditions of symmetry and/or dissipativity have to satisfied.

General Model Refinements

The approach for a total model refinement, which includes re-

finements in the mass, damping, and stiffness matrices, parallels

the one described in the preceding sections for the refinement in
the damping matrix alone. In each step of the sequential procedure,

one conjugate pair ofeigenvalues is assigned to desired values while

making sure that the earlier assigned eigenvalues are not disturbed.
The procedure uses a first-order descriptor representation of the

system, obtained from Eq. (6)

o]{:l:[o,]{x}

E00 Eol+ LM Lo Lx Uo + f
UK

uM=-GML_i=-GM[O L_] i =---GMCM i

Ix} {xlcg] i --G,,Co

II Ix}x -GoCx (48)0] , -
that is, the descriptor form

E_. = AZ + Bu + Pf, u = uo (49)

UK

The same sequential procedure is now used to assign the eigenpairs,

one at a time. As in the damping case, the structure of the three gain

matrices, GM, Go and GK, iS prescribed such that it only affects the

eigenvalues in the lower bottom partition of the system matrices.

For example, assume that (k - t) conjugate pairs of the eigenvalucs

have been_placed in the earlier stepsand that they are in the top le:t
block of (E, A). Let NM_, No_, and NK_ be matrices whose columns

lorm an orthogonal basis for the left null space of CM_,, C'o., and

6"K_ respectively. Here, 6"-M., Co_,, and Cxk_ are the first 2(k - 1)
column partitions of the output influence matrices in transformed

coordinates. If the gain matrices (in the transformed coordinates)
are constructed as

= - ^ M,, NDLGo*N_

with (_M,, (_o_, and GKk arbitrary matrices, then output feedback

with the gain matrices will not affect the (k - 1) eigenvalue pairs

assigned in the earlier steps.
The approach to select output feedback gains is described next, to

assign one pair of complex-conjugate eigenvalues, while ensuring

that the gain matrices are symmetric and the partial eigenvectors

are as close as possible to their corresponding target vectors. As-
sume that the kth eigenpair is to be assigned. For notational sim-

plicity, the system matrices will be denoted as E22, A22, Bu__, CM2,

Bo_, Co,, Bx,, and C__,, the output feedback gain matrices GM_,

0o_, ancl 0K_- will be denoted, respectively, as G,, G,,, and Gd,

and the desired eigenvalue pair will be denoted (X, _.). The prob-

lem is to select symmetric matrices G,,, G,,, and Gd, such that

O-, _-) is a generalized eigenpair of the closed-loop system ma-

trix, (E22 + BM2GaCM 2, A22 - Btg,_G,,Co,. - BK._GdCK2), and the

eigenvectors are partially assigned to desired values, as given in

Eq. (7).

Let 4, be the eigenvector corresponding to the eigenvalue M The

generalized eigenvalue problem becomes

[L(E22 + BM, G,,CM,_) - A22 + Btg:G,,CD,. + BK2GdCK._]4, =0

(51)

This expression can be rewritten as

4,
-IG,,CM, O1

/ /
LG,,C,,: 4,J

[°1G,, Cst_.4,

=rlo,,co,4,l =0
LG_C_I4,J

It is obvious from Eq. (52), that the vector on the right-hand side of

the preceding expression must lie in the right null space of F. Let

N be a matrix whose columns form an orthogonal basis lbr the null

space of F, that is, FN =0. Because columns of N span the null

space of F, it follows that

G,,CM,_4, = No_ = N2 ot

(:jL G ,_C K: 4, _J N

(53)

where o_ is an arbitrary vector of complex elements and the matri-
ces N_, N2, N3, N4 are formed by partitioning N compatibly wilh

4,, G, CM,_4,, G,,CD4,. and G,ICK24,. From Eq. (53), one has

4, = Nto¢, G.CM24, = N2ot

GvCDz4, = N3_, GdCK24, : g4oz (54)

or

GaCM._NIO_ = N2ot, GvCD,_NI_ = N3ot

G,ICx,_NIo_ = N4ot (55)
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Following algebraic manipulations, similar to those outlined in

Eqs (13-17) for the damping refinement case, the eigenpair as-
signment problem reduces to the solution of

G, WM_p = VM_p, G, WM,p = VM_, G,,WoLp = Vo_p

GvWD,p = Vo2P, GaWK_p = VKIp, GdWK,fl "=-VK,p

(56)

where p= [Rer(o0 Imr(o0] r. The matrices WM,, WM,_, Wo_,

Wo,_, WK_, Wr,., Vu_, VM2, Vow, Vo2, Vx_, and VK, are formed from

the imaginary and real parts of the matrices CM,_, Co,_, Cr,_,
N,, N2, N3, and N4, similar to what was done for the damping re-

finement case in Eqs. (15) and (16). Note that Eq. (56) is a system of

quadratic equations in the unknown variables, namely, the elements

of the gain matrices G,, Go, and Gd and the coefficient vector p.

The elements of the gain matrices should be constrained such that

they are symmetric, and the solution of the system has to yield an

eigenvector T for the whole system, which satisfies the partial eigen-

vector conditions of Eq. (18) for the kth eigensystem assignment.

The assumption that the set of earlier assigned eigenvalues does not

match the remaining eigcnvalues of the system, either before or af-

ter the eigenpair assignment still holds here. Now, considering the

eigenvalue problem of the whole system for the eigenvaluc being

assigned, one can write

x22j[:l={ }Xll = _.Ell - All

XI2 -= ).(El2 + BM,_,GaCM2) -- A12 + BDz, GvCD2 + BKz, G,,CKz

;_(E2,. + BMz_GaCM2) -- A22 + BD22GvCD, - +X22 Bx,_,_GaCK,_

(57)

Note that

Solving for qo in terms of O, one obtains

qO = -XIlIXI2¢_ (58)

and by using Eq. (54), one has

q_ = NlOt

qO= -XII I([_-E12 -- AI2]NI + LBM,_I N2 + Bo,I N3

+ Br,_, N4)ot =-- Q_

or

(59)

ct = So_ (60)
Ni

Using Eq. (60) into Eq. (18) and expanding and separating the real

and imaginary parts, one obtains an expression similar to the onc

for the damping case [see Eq. (24)]

Lp = q (61)

where the matrix L and vector q have been defined in Eq. (25). The

condition for the existence of symmetric gain matrices G,, G_,, and

Ga that satisfies Eq. (56) reduces to the existence of a vectorp that
satisfies

pr (v_, WM, - v r_ M,_WMt)P -- PrjIp = 0

pr(vLWo2- vL w,,,)p =o

pr(vr, wx,_ - V[fi Wrt)p_p r J3p=0 (62)

To summarize, the conditions for the placement of an eigenpair of

the system to desired values, while partially assigning the corre-

sponding cigenvectors to target values, reduces to computing a co-

efficient vectorp that satisfies the three quadratic equations given by

Eq. (62) and the linear system of equations represented by Eq. (61).
This is very similar to the problem obtained for the damping refine-

ment case, with the exception that instead of one quadratic equation
we have three quadratic equations. Hence, the approach proposed

for the damping case, which involved a combination of the solu-

tion of the linear system of equations along with standard Newton

methods, may be used to solve for a feasible coefficient vector p.
Once a coefficient vector p is obtained, the procedure to compute

the gain matrices G,,, G,,, and Ga is straightforward and follows the

treatment described for computing the gain matrix in the damping

refinement case [see Eqs. (27-32)]. Once the gain matrices G,, G ....

and Gd (or matrices GMk, Go,, and (_,v,) are computed, the current

refinements in the mass, damping, and stiffness matrices, repre-
sented by GMt, if, o,, and Gx,, are determined from Eq. (50), and

the overall refinements are updated as

GM "*"GM-I'-GMt, GD _--- GD-FGot,, GK _--- GK-FGK¢,

(63)

The procedure outlined determines symmetric gain matrices GM,

Gt), and GK that reassigns a desired subset of the eigenvalues of the

model, along with partial mode shapes, from their baseline to target

values. As described for the case o1 damping matrix refinements,

the symmetry of the gain matrices does not necessarily guarantee
that the refined (combined) model remains stable. Because, in most

situations, the flexible system is open-loop stable, any refinements

to the analytical model should be such to maintain that stability. One

approach to this could be to use the design freedom in the solution

vectorp and impose constraints on eigenvalues of the relined mass,

damping, and stiffness matrices. However, this could be cumber-

some, particularly when the size of the system is large (thousands

or hundreds of thousands of degrees of freedom). Another approach

could be to use the freedom beyond eigensystem assignment to re-

duce some measures of the gain matrices GM, Go, and GA. that

represent the re/inement in the system matrices. This can be accom-

plished, for example, by imposing inequality constraints similar to

those presented in Eq. (34) for each of the matrices.

_ Alternatively, one can require that the current gain matrices (_Mz,

Go,, and GK_ be dissipative at every sequence. Although dissipativ-

ity requirement can be constraining, it will guarantee that the refined

system remains stable. In other words, at every sequence, a pair of

eigenvalues are assigned via a symmetric and dissipative gain ma-

trices. Similar to the damping case, dissipativity of the gain matrices

can be achieved through a set of 12 (4 per gain matrix) quadratic

inequality constraints in the solution vector p. The lbrm of tile in-

equality constraints for each gain matrix is exactly thc same as the

ones given in Eq. (35), except that the appropriate coefficient ma-

trices are used instead of matrices W_, W2, V_, and ½. Yet another

approach could be to require that at each sequence of the eigen-

system assignment procedure the overall gain matrices G,_¢, Go,

and Gx remain positive semidelinite, that is, the gain matrices are

dissipative.

Finally, the conditions for accommodating sparsity requirements

of each of the system matrices directly lbllows the development

for the damping refinement. These conditions are expressed as

quadratic equalities in the coefficient vectorp, similar to those given

in Eqs. (40) or (47).

Numerical Example

The approach for model refinement using eigensystem assign-
ment has been applied to a finite element model of the phase II
CEM, a testbed for control of flexible space structures at NASA
Langley Research Center. Here, the proposed approach is used to
refine the damping and stiffness matrices of the structure using sim-

ulated identified modal frequencies and damping ratios.
The phase II CEM structure consists of a 62-bay central truss

(each bay is 10-in. long), along with two horizontal booms for
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suspension,averticallaser,andaverticalreflectortower,asshown
inFig.i.Thisstructurehas10modeswithfrequenciesuptoabout
5Hzand95modeswithfrequenciesunder60Hz.Thefirstsixmodes
arerigid-bodymodes,duetosuspensionofthestructurefromthe
laboratoryceiling,thathavefrequenciesuptoabout0.3Hz.Eight
controlstationshousingcollocatedandcompatiblesensorsandactu-
atorsarelocatedatthebaysshowninFig.1.Airthrusters,providing
linearforces,areavailableattheselocationsalongthedirections
showninFig.I. Linearvelocitiesareassumedtobeavailableat
theselocationsalongthesamedirections.

Aneight-degree-of-freedomstructuralmodel,whichincludesthe
firsteightmodesofthestructure,isobtainedfollowingdynamic
condensationtechniquesandisusedinthisnumericalexample.A
lowinherentdampingratioof0.1%hasbeenassumedfortheeach
oftheeightmodes.Thenominaleigenvaluesalongwithdamping
andfrequenciesareshowninTable1.Assumethatonlymodes2
and8aretobeconsideredforrefinementandthatthefrequencyof
mode2islowby10%anditsdampingratioislowbyalmost25%,
andthefrequencyofmode8ishighby12%anditsdampingratio
is lowbyalmost10%.Moreover,assumethatthemassmatrixis
perfectlyknown,suchthatnorefinementsinthematrixisrequired.
However,it isdesiredtorefinethedampingandstiffnessmatri-
ces,usingtheproposedeigensystemassignmenttechnique,such
thatthefrequenciesanddampingratiosofmodes2and8ofthe
refinedsystemmatchestheidentifiedvalues.Noidentifiedeigen-
vectorsareincluded,thatis,thereisnoneedforpartialeigenvector
assignment.

Assumethatthereisuncertaintyintheelementsofthedamping
andstiffnessmatricescorrespondingtodegreesoffreedom1,2,7,
and8.Theinput/outputinfluencematrices[seeEq.(3)]werethen
chosenas

-1 0
0 1
0 0
0 0

L K =
0 0

0 0

0 0

0 0

0-

0

0

0

0

0

0

1

Lo = 0.1 x Lx (64)

to provide freedom for the appropriate elements of damping and

stiffness matrices to change.

Symmetric Refinements
The first objective was to decrease the natural frequency of the

second mode by 10% and increase its damping ratio to 25% so that

the first target pair of eigenvalues was A_.z =-0.228 + 0.8841j.

First, symmetric position and rate gain matrices were sought to re-

assign this pair of eigenvalues. Following the procedure described

in the preceding section, the gain matrices were computed from the

solution of system of quadratic equation given in Eq. (62), except

for no equations corresponding to mass matrix refinements. The
quadratic equations were solved using the MATLAB ® (Ref. 5) non-

linear equation solver routine FSOLVE, which uses a Levenberg-

Marquardt method. The eigenvalues of the system, with the inter-

mediate position and rate gain matrices in place, are provided in
Table 2. Table 2 indicates that the complex-conjugate pair were

successfully reassigned to desired values. However, the resulting

refined system has an unstable pole on the real axis. This is to be ex-

pected because, as mentioned earlier, the symmetry of gain matrices

does not typically guarantee the stability of the system.
For the second step, the damping ratio in the mode 8 of the system

was to be increased to 10%, while its frequency was to be decreased

by 12%, resulting in the second pair of desired eigenvalues to be
X3.4 = - 1.3149 + !3.0835j. Following the sequential approach out-

lined, first the pair of complex-conjugate eigenvalues were placed

on the top left partition of the real Schur form of the system using
orthogonal transformations. 6 Then, the gain matrices were defined

Table 1 Nominal eigenvalues

Open-loop Damping Frequency,
eigenvalues ratio rad/s

-0.0008 =k0.8180j 0.0010 0.8180
-0.0008 ± 0.8301 j 0.0010 0_8301
-0.0009 4- 0.8565j 0.0010 0.8565
-0.0011 -t- t.1308j 0.0010 1.1308
-0.0011 4- 1.1401 j 0.0010 1.1401
-0.0019 -t- 1.9100j 0.0010 1.9100
-0.0107 4- 10.7278j 0.0010 10.7278

-0.0149 + 14.9425j 0.0010 14.9425

Table 2 Eigenvalues of refined system
with intermediate gains

Closed-loop Damping Frequency,
eigenvalues ratio rad/s

-0.5018 -I-0.6423j 0.6156 0.8151
-0.0068 4- 0.8404j 0.0081 0.8404
-0.1148 4- 0.8554j 0.1330 0.8630
-0.0068 4- 0.8905j 0.0076 0.8906
-0.2283 4- 0.8841 j 0.2500 0.913i
-0.02224- 10.6262j 00021 10.6262
-0.39564- 14.4418j 0.0274 14.4472
6.2235 - 1.0000 6.2235
-19.3636 1.0000 19.3636

8 @

_k Thrusters (1-8)Accelerometers (1-8} @

Fig. 1 Schematic of phaseII CEM structure, with location of eight control stations.

Z

Y
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Table 3 Eigenvalues of refined system

Closed-loop Damping Frequency,
eigenvalues ratio rad/s

-0.4955 + 0.5715j 0.6551 0.7564
-0.1219 4- 0.8600j 0.1403 0.8685

-0.0054 4- 0.8813j 0.0062 0.8813
-0.2283 -l-0.8841 j 0.2500 0.9131
-0.1458 ::h4.9129j 0.0297 4.9151
-0.16404- 12.8917j 0.0127 12.8927
-1.31494- 13.0835j 0.1000 13.1494
-5.3957 4- 15.7620j 0.3239 16.6600

Table 4 Eigenvalues of refined system
with intermediate gains

Closed-loop Damping Frequency,
eigenvalues ratio rad/s

-0.0025 ± 0.8346j 0.0029 0.8346
-0.0137 4- 0.8636j 0.0158 08637
-0.2283 4- 0.8841 j 0.2500 0.9131
-0.2313 4- IA556j 0.2002 1.1322
-0.0127 4- 1.9112j 0.0066 1.9113
-2.3693 + 4.8741j 0.4372 5.4195
-0.0633 4- 10.8268j 0.0058 10.8270
-0.3471 -I- 14.8576j 0.0234 14.8616

such that the eigenpair remain unchanged [_e e Eq. (50)] while the
new pair of eigenvalues were assigned. The cumulative position

and rate gain matrices Go and Gx, which assign the two pairs of

complex conjugate eigenvalues, were computed to be

GD=

"30.367 78.615 68.806 24.593]

78.615 369.249 220.096 63.317 /

68.806 220.096 233.235 94.726[
24.593 63.317 94.726 40.439J

-134.819 -26.937 -27.664 -81.395]

Gx = -26.937 15.249 23.763 9.922 /

-27.664 23.763 38.679 6.7331
_-81.395 9.922 6.733 36.126J

(65)

The eigenvalues of the system, with the position and rate gain matri-

ces in place, are provided in Table 3, where it is observed that the two

pairs of eigenvalues had been successfully assigned to the identified

values. Furthermore, the resulting refined system is stable, although
there were no measures imposed to guarantee such stability. Also,
note that the remaining eigenvalues (those that were not reassigned)

have changed, some significantly. One could make some of those
eigenvalues invariant during refinement by allowing more elements

of the damping and stiffness matrices to change. The refinements

in the damping and stiffness matrices are computed from Eq. (3).

From these equations, the refinements in the damping and stiffness

matrices, namely, A D and A K, are of the same order as the matrices

themselves. However, because of the structures of the assumed L o

and Lx, only the elements corresponding to degrees of freedom I,

2, 7, and 8 are nonzero, and are given as

ADI = 0.01 x GD, AKI = GK (66)

where Go and GK are given in Eq. (65).

Dissipative Refinements
As mentioned earlier, there are a number of ways of guarantee-

ing that the refined system remains stable. One of the proposed

approaches was to take advantage of the freedom beyond eigensys-
tern assignment and to determine the solution vectorp such that the
gain matrices, representing the refinements in the model, are dissi-

pative. In the second example, the same model refinement problem
as in the first case was considered with the exception that position

and rate gain matrices were constrained to be dissipative. The po-

sition and rate gain matrices were computed from the solution of

the system of quadratic equalities, given by Eq. (62), and quadratic

inequalities, given by Eq. (35), except for no equations correspond-

ing to mass matrix refinements. The gain matrices were determined

to reassign the eigenvalues of the second mode to its target val-

ues at k,,2 -----0.228 :i: 0.8841 j. The system of quadratic equalities
and inequalities were posed in the form of a minimax problem and

was solved using MATLAB's minimax solver routine MINIMAX.

The eigenvalues of the system, with the intermediate position and

rate gain matrices in place, are provided in Table 4. Table 4 indi-

cates that the complex-conjugate pair were successfully reassigned

to desired values. The remaining eigenvalues were all stable, that

is, the resulting refined system was stable. This is to be expected

because the dissipative nature of the gain matrices guarantees the

Table 5 Eigenvalues of refined system

Closed-loop Damping Frequency,
eigenval ues ratio rad/s

-0.0023 4- 0.8454j 0.0027 08454
-0.0094 4- 0.8707j 0.0108 0.8707
-0.2283 4- 0.8841j 0.2500 0.9131
-0.3734551.1556j 0.2943 1.2686
-0.1416 4- 6.3839j 0.0222 6.3855
-I.314955 13.0835j 0.1000 13.1494
-0.9821 4- 13.2494j 0.0739 13.2857
-0.7522 ± 14.4382j 0.0520 14A577

stability of the system. Next, the second pair of eigenvalues was

reassigned to .,1._,4= - 1.3149 :[: 13.0835j. Following the sequential

approach outlined, first the pair of complex-conjugate eigenvalues
were placed on the top left partition of the real Schur form of the

system using orthogonal transformations. 6 Then, the gain matrices

were defined such that the first eigenpair remain unchanged [see

Eq. (50)1 while the new pair of eigenvalues were assigned. The cu-

mulative position and rate gain matrices Go and Gx, which assign

the two pairs of complex-conjugate eigenvalues, were computed to
be

77.920 27.566 24.411 -60.682-]
/

27.566 46.150 22.419 12.5321

Go = 24.411 22.419 63.469 6453//
/

-60.682 12.532 6.453 257.2191

60.661-32.170 3.756-121.149]

-32. 170 42.725 -3.516 -7.9361

Gx = 3.756 -3.516 0.696 -1.421| / (67)
/

-121.149 -7.936 -1.421 455.059_]

The eigenvalues of the system, with the position and rate gain ma-

trices in place, are provided in Table 5, where it is observed that

the two pairs of eigenvalues had been successfully assigned to the

identified values. Furthermore, the resulting refined system is stable,

as expected. Also, note that the remaining eigenvalues (those that

were not reassigned) have changed, some significantly. Again, one

could make some of those eigenvalues invariant during refinement

by allowing more elements of the damping and stiffness matrices

to change. The refinements in the damping and stiffness matrices

are computed from Eq. (3) and are given in Eq. (66), with the gain

matrices from Eq. (67).

Comparisons of the refinements in each example indicate that no

conclusions can be made in regards to the direction or magnitude

of the computed refinements. In these examples, the computed re-

finements in damping matrix for the second example are typically

lower than those obtained for the first example. However, the situa-

tion is reversed for the refinements in the stiffness matrix. This may

be attributed to the variability in the solutions of the minimax opti-

mization algorithms as well as the nonlinear equation solvers, in the

sense that they may converge to different solutions depending on the
starting points. In these examples, the starting estimate for the solu-

tion vectorp was randomly chosen, in each example. Conceivably,

one could attempt to exploit the freedom beyond eigensystem as-

signment to minimize, in some sense, the norm of the gain matrices
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to minimize the effective refinement needed for partial model
matching.

Conclusions

This paper presented a novel approach for the refinement of the

dynamic model of flexible structures using an eigensystem assign-

ment technique. The approach presumes that modal parameters,

such as frequencies, damping ratios, and mode shapes (at sensor
locations), have been identified for modes in the range of interest.

The proposed approach models the possible refinements in the mass,

damping, and stiffness matrices of the finite element model in the

form of a constant gain feedback with acceleration, velocity, and
displacement measurements, respectively. The freedom to change

model parameters, as well as the relative degree of change desired in

one parameter with respect to the rest, is embedded in the elements
of the input and output influence matrices for the various measure-

ments. Once the elements of the input and output influence matrices

have been defined and fixed, the problem of model refinement re-

duces to obtaining position, velocity, and acceleration gain matrices,

with appropriate symmetry (and/or dissipativity) and sparsity that

reassign a desired subset of the eigenvalues of the model, along

with partial mode shapes, from their baseline values to those ob-

tained from system identification test data. Hence, the problem of

mode refinement becomes a problem of eigensystem assignment

with output feedback. The proposed procedure assigns one conju-

gate pair of eigenvalues at each step using symmetric (or symmetric
and dissipative) output feedback gain matrices, while ensuring that

the eigenvalues assigned in the earlier steps are not disturbed. More-

over, the procedure provides that original sparsity of the system ma-

trices in nominal model is preserved. The advantages of the proposed

approach are that 1) it provides a systematic and computationally
tractable means for exact model refinement, that is, the refined model

would match the identified values exactly, without dependence on

a nonlinear optimizer, and 2) it characterizes the freedom beyond

model refinement for possible exploitation, which is inherent in the

elements of the input and output matrices, as well as the elements

of the position, velocity, and acceleration gain matrices. This free-

dom may be exploited to minimize the sensitivity of the refined

model, to minimize global or local changes to the system matrices,

etc. A numerical example, involving finite element model refine-

ment for a structural testbed at NASA Langley Research Center

(CEM) was presented to demonstrate the feasibility of the proposed

approach.
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