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Abstract

In data mining, one often needs to analyze datasets with a very large number of attributes.

Performing machine learning directly on such data sets is often impractical because of exten-

sive run times, excessive complexity of the fitted model (often leading to overfitting), and the

well-known "curse of dimensionality." In practice, to avoid such problems, feature selection

and/or extraction are often used to reduce data dimensionality prior to the learning step.

However, existing feature selection/extraction algorithms either evaluate features by their

effectiveness across the entire data set or simply disregard class information altogether (e.g.,

principal component analysis). Furthermore, feature extraction algorithms such as principal

components analysis create new features that are often meaningless to human users. In this

article, we present input decimation, a method that provides "feature subsets" that are se-

lected for their ability to discriminate among the classes. These features are subsequently

used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that

use the full set of features, and ensembles based on principal component analysis on both

real and synthetic datasets.

1 Introduction

In data mining, one often deals with large datasets with a high number of input attributes [14,

23, 25]. Performing machine learning directly on such datasets is typically impractical for a

multitude of reasons. Generally, for such data sets:

• Learning algorithms are slow due to the large number of parameters that need to be

learned;
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• Manyattributesareirrelevantforthetaskat hand,resultinginwastedeffort,overfitting,

or worse,learningspuriousrelationships;and

• The numberof training examplesneededto producea meaningfulmodelover the full
attribute spaceisprohibitivelylarge--this isknownasthe "curseof dimensionality"[7].

To alleviateat least someof theseproblems,featureselectionor featureextraction is

oftenusedprior to learning.Featureselectionis the act of choosinga subsetof the original

featuresaccordingto somecriterionfor decidinghowrelevanteachfeatureis for the taskat
hand.1 However,thesemethods,whenappliedto classificationproblems,typically choose

featuresaccordingto thecriterionofhowusefultheyareat discriminatingamongall classes,

or simply choose features that have high variability with little or no regard for their discrim-

inatory power. In many real datasets, however, there are features that are very useful at

distinguishing one class from the remaining classes. Feature extraction involves calculating

new features from the original ones with the intent of keeping the "salient information" while

reducing the dimensionality of the data [63], often resulting in new features that are not in-

tuitively understandable. Furthermore, many unsupervised feature extraction methods such

as Principal Components Analysis (PCA) disregard class information and, therefore, are not

suited for finding features that are useful for classification.

In this paper, we present input decimation, a method that chooses different subsets of

the original features for use in classifiers that are part of an ensemble. This method not

only reduces the dimensionality of the data, but uses this dimensionality reduction to reduce

the correlation among the classifiers in an ensemble, thereby improving the classification

performance of the ensemble [58, 61] (the relationship between ensemble performance and

correlation among its components has been extensively discussed [2, 31, 43, 59]). In this

article, we present details of this method, along with extensive simulations on both real and

synthetic data sets showing that input decimation reduces the error up to 90 % over single

classifiers, ensembles trained on full features and ensembles trained on principal components.

Note that in this study we use the "averaging" ensemble to compare ensembles with and

without, input decimation, rather than compare input decimation to other more sophisticated

methods. Indeed, ensemble methods such as bagging, boosting, and stacking (discussed in

Section 2) can be used in conjunction with input decimation. In that sense, input decimation

is orthogonal to those methods. In this study, we select the averaging ensemble because,

due to its simplicity, it provides a clear comparison of the results with and without input

decimation.

this article we restrict attention to classification problems.



In Section2, we briefly review known methods for dimensionality reduction and ensemble

methods, and discuss an ensemble framework that quantifies the need for correlation reduc-

tion among classifiers (see [59] for further details). In Section 3 we present input decimation,

and in Section 4 we provide experimental results on three data sets from the PROBEN1

benchmark [51] and the UCI Machine Learning Repository [8], along with several synthetic

datasets. We conclude with a discussion of the benefits and limitations of input decimation

and highlight directions for future research.

¢

2 Background

As we mentioned above, input decimation uses dimensionality reduction to reduce the cor-

relation among classifiers in an ensemble, yielding superior ensemble classifier performance.

Because input decimation is a both a dimensionality reduction method and an ensemble

method, below we present a brief background for both. Furthermore, to emphasize the con-

nection between these two concepts, we summarize a framework that shows that reducing

the correlation among classifiers (e.g., through input decimation) in an ensemble improves

classification performance.

2.1 Dimensionality Reduction

Most of the known dimensionality reduction methods are examples of one of two different

classes of methods: feature selection and feature extraction. In feature selection one chooses

some criterion (e.g., statistical correlation or mutual information) for deciding how relevant

each feature is for the classification or regression task and chooses some subset of the features

according to this criterion [3, 9, 10, 19, 32, 40]. In filter methods for feature selection,

the data with the chosen subset of features is then presented to a learning algorithm. In

embedded methods, feature selection is done as part of the learning algorithm. Decision-

tree learning (e.g., [52]) is one example in which an embedded feature selection method is

used--attributes are chosen based on information gain at each node in the decision tree.

In wrapper methods, the learning algorithm itself is run with various subsets of features

and the learner that performs best is chosen [37]. However, most of these feature selection

methods attempt to choose features that are useful in discriminating across all classes. One

exception is to break an L-class problem into _ two-class problems and performs feature

selection within each of those problems [39]. In many real-world problems, there are features

that are useful at distinguishing whether an instance is of one particular class but are not

useful at distinguishing among the remaining classes. Most feature selection algorithms also

3



chooseindividual featuresin a greedymanner,i.e.,they do not accountfor the interactions

amongvarioussetsof features. Methodsthat attempt to overcomethat (e.g., [38]) are
computationallymoreexpensive,a problemthat is accentuatedby largedatasets.
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Figure 1: PCA and classification: The first principal can provide a good discriminating feature

(left) or a poor one (right), since the class membership information is not used.

Feature extraction algorithms such as Principal Components Analysis (PCA) [7, 33, 48] or

Independent Component Analysis (ICA) [30] reduce the dimensionality of the data by creat-

ing new features. Linear PCA, perhaps the most commonly used feature extraction method,

creates new uncorrelated features that are linear combinations of the original features. The

aim of PCA is to find the set of features on which the data shows highest variability. However,

it is generally difficult to intuitively understand these new features. Furthermore, PCA gives

high weight to features with higher variabilities whether they are useful for classification or

not. In other words, because unsupervised feature extraction methods such as PCA do not

use the class labels to create the new features, they often yield features that are not useful

for classification [7]. Figure 1 demonstrates the perils of not using class information. The left

half of the figure shows a case in which PCA works effectively. In this case the first principal

component corresponds to the variable with the highest discriminating power. The right half

shows a similar dataset (similar data distribution and linearly separable). However, because

the first principal component is not "aligned" with the class labels, selecting this component

is a poor choice for this problem. Indeed, an input set consisting of only the first component

would provide practically random decisions on this data set. These examples show that us-

ing PCA for classification problems is a dangerous process, as there is little information to



determinethe amountof discriminatinginformationthat iskept in theprincipalcomponents

that accountfor mostof the variabilityin the input data.
Therearevariationson PCA that uselocaland/or nonlinearprocessingto improvedi-

mensionalityreduction [16,35,36,46,47,56]. Onesuchmethodusesvectorquantization
to createseveralcells,andperformsPCAwithin eachcell [35].Eachexampleis thencoded

usingthe principalcomponentsfor the closestcell. Althoughthesemethodsimplicitly ac-
count for someclassinformationandthereforearebetter suitedthan globalPCA methods

for classificationproblems,they donot directly useclassinformation.

2.2 Ensembles and Correlation

2.2.1 Ensemble methods

A classification task consists of determining the class membership of a pattern, based on an

input vector consisting of features describing that pattern. Learning generally involves using

training examples--patterns with known class memberships--to construct a classifier that

generalizes, i.e., responds correctly to novel patterns. However, in general, there are many

possible generalizations based on a finite training set [41]. For example, when training a feed

forward neural network classifier, different initial weights, learning rates, momentum terms,

and architectures (e.g., number of hidden layers and hidden units, connections, single vs.

distributed output encoding, etc.) affect how the classifier performs on novel examples. For

this reason, choosing a single classifier, even the "best" classifier in terms of generalization

error, is not necessarily optimal, because potentially valuable information may be discarded.

This observation leads to the idea of classifier ensembles, where the outputs of multiple clas-

sifiers are "pooled" before a class label is assigned [11, 26, 62]. In constructing an ensemble,

two issues arise: the method by which the outputs are combined, and the method by which

the individual classifiers are constructed. (See [17, 57] for a review of ensemble methods.)

Majority voting is one of the most basic methods of combining [4, 26]. If the classifiers

provide probability values, simple averaging is an effective ensemble method and has received

a lot of attention [42, 50, 59]. Weighted averaging has also been proposed and different

methods for computing the weights of the classifiers have been examined [6, 27, 31, 34, 42, 44].

Such linear combining techniques have been mathematically analyzed in depth [12, 27, 50,

59]. Other non-linear ensemble schemes include rank-based combining [1, 29], belief-based

methods [54, 64, 65], and order-statistic ensembles [60].

In constructing the individual classifiers to be combined, many methods are used, includ-

ing simply training all classifiers as if they were stand-alone classifiers and then combining
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them intoanensemble.However,onecanalsotry to activelypromotesomediversityamong

the classifiers(weelaborateon the reasonsfor this in the next section).Onesuchmethod

partitions the training set muchlike onedoeswhenusingcross-validationand trains one
classifieron eachpartition [28,59]. Anothermethod,knownas bagging [13], constructs sev-

eral sets of rn training examples drawn randomly with replacement out of the original set

of m training examples and trains one classifier using each of these resampled training sets.

Boosting [24] is similar to bagging, except that the process of drawing training examples

and constructing classifiers is done iteratively [21, 22, 24]. A probability distribution on the

training examples is maintained and training sets are drawn with replacement according to

this distribution. After a classifier is constructed, the probability distribution is adjusted so

that examples that were misclassified are more likely to be chosen in the next iteration than

examples that were correctly classified. Another way of constructing a set of complementary

classifiers is to give each classifier a different output target. One method is error-correcting

output coding [18]. In this method, the set of classes is randomly partitioned into two sub-

sets (At and Bl) T times (that is I E {1, 2,..., T}), and each of the T classifiers is assigned

one partition. The/th classifier's copy of the training examples is relabeled as follows: the

example is considered positive if the class of that example is in Bt and negative otherwise.

Of course, because the data is relabeled differently for each classifier, each classifier will be

different. Each of these methods relies on reducing the correlations among the classifiers

that are part of an ensemble. We now summarize a classification framework that explicitly

connects the reduction in the classification error of an ensemble to the correlation among the

constituent classifiers in that ensemble.

2.2.2 The Need for Correlation Reduction

In this article we focus on classifiers that model the a posteriori probabilities of output

classes. Such algorithms include Bayesian methods, and properly trained feed forward neural

networks [53, 55]. Therefore, we can model the ith output of such a classifier as follows (details

of this derivation are in [58, 59]):

fi(x) = P(Cilx) + rli(x),

where P(Ci[x) is the posterior probability distribution of the ith class given instance x, and

7?i(x) is the error associated with the ith output. Given an input x, if we have one classifier,

we classify x as being in the class i whos_ value fi(x) is largest.

Instead, if we use a ensemble that calculates the arithmetic average over the outputs of
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N classifiers f_n(x), m E {1,..., N}, then we get an approximation to P(Cilx) as follows:

1 N

f_Ve(x) = _ _ fp(x) = P(Cilx) + Oi(x), (1)
rn=l

where:

1 N

m----1

and r/p(x) is the error associated with the ith output of the mth classifier.

Now, the variance of fTi(x) is given by [59]:

1 N N2

l=l rn=l

1 N N

1
rn=l rn----1 l¢rn

If we express the covariances in terms of the correlations (cov(x,y) = corr(x, y)axay),

assume the same variance a_, across classifiers, and use the average correlation factor among

classifiers, 5i, given by

1 N

ai- N(N- 1) _ _ c°rrO?p(x)'_(x))' (2)
rn=l l_rn

then the variance becomes:

ag 1 N- 1_ a 1 +Si(N- 1)a_i(x)" (3),, = a_i(x) + -'_i%,(x) = N

Based on this variance, we can compute the variance of the decision boundary and,

generalizing this result to the classifier error, we obtain the relationship between the error of

the ensemble and that of an individual classifier:

Eaave (l + 6(N-1))Ead d (4)dd = N

where

L

a = Z (5)
i=l

with P_ is the prior probability of class i.

Equation 4 quantifies the connection between error reduction and the correlation among

the errors of the classifiers. This result leads us to seek to reduce the correlation among

classifiers prior to using them in an ensemble. In the next section we present the input

decimation algorithm which merges dimensionality reduction and correlation reduction to

provide classifier ensembles.
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3 Input Decimation

Unlike methods such as bagging and boosting which work by using subsets of input patterns,

input decimation focuses on subsets of input features. Intuitively, input decimation decouples

the classifiers by exposing them to different aspects of the same data. In this method one

trains L classifiers, one corresponding to each class in an L-class problem. For each classifier,

one selects a subset of the input features according to their correlation to the corresponding

class. The objective is to "weed" out all input features that do not carry much discriminating

information relevant to the particular class.

Our learning algorithm works as follows:

• Convert the training dataset to a distributed encoding if necessary.

• For each class i E {1,2,...,L},

- Compute the correlation between each feature and Yi the output for class i.

- Select ni features having the highest correlation with the class i output. Call this

set of features Fi.

- use a learning algorithm to realize the mapping from each new feature set (Fi) to

the full outputs.

Given a new example x, we classify it as follows:

• For each learning algorithm fm in the ensemble (m E {1, 2,..., L}),

- Calculate the output f_n(x) for each class i.

• For each class i E {1,2,...,L},

- Calculate the ensemble average of fin(x) for all m e {1, 2,..., L}, yielding f_Ve(x).

• Return the class i = argmaxifaVe(x).

The main advantage of input decimation over standard dimensionality reduction methods

such as Principal Component Analysis (PCA) is that input decimation selects features based

on their correlation with the outputs. Cherkauer uses a similar feature selection method,

but the feature subsets are selected by hand [15], whereas Bay proposes a method where the

subsets are selected at random [5]. In this paper, we report results on real datasets in which

each decimated feature set had the same dimensionality (i.e., we chose a fixed number of

highest-correlation inputs for each classifier) as well as results with decimated feature sets of

different dimensionality. We also present controlled experiments on synthetic datasets.

As mentioned earlier, input decimation reduces correlation among individual classifiers

by using different subsets of input features, while methods such as bagging and boosting

% r
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reducecorrelationby choosingdifferentsubsetsof input patterns. These facts imply that

input decimation is orthogonal to pattern-based methods such as bagging and boosting, i.e.,

one can use input decimation in conjunction with those methods. We will elaborate on this

point in Section 5.

4 Experimental Results

In this section, we present the results based on input decimation on several synthetic and

real datasets. In these experiments, for an L-class problem, we train L classifiers 2, each of

which uses some of the features having highest correlation with the presence or absence of

one particular class. The results given in the tables are percentages correct and standard

error on the test set averaged over 20 independent runs.

As a standard against which to compare our input decimation results, we also trained a

classifier on the full feature set (referred to as the "single classifier") and separately trained

L copies of the same classifier and incorporated them into an ensemble average (referred to

as the "original ensemble").

4.1 Synthetic Data

We tested input decimation on the following six synthetic datasets.

• Set 1:

- Three classes-one unimodal Gaussian per class.

- 300 training patterns and 150 test patterns-100/50 per class.

- 100 features per pattern where:

• 10 relevant features per class-each class's peak is a multivariate normal distri-

bution in 10 independent dimensions distributed as N(40,52). There are no

features in common among the three classes' peaks. Therefore, there are 30

relevant features.

• 70 irrelevant features-distributed as U[-100, 100].

• Set 2: Same as Set 1, except that 50 irrelevant features were added to the 30 relevant

features, for a total of 80 features in the dataset.

21n this article we use multi-layered perceptrons (MLP) trained with the backpropagation algorithm as our

classifiers. The learning rates, momentum terms, and stoppage times were chosen experimentally, whereas the

number of hidden units was selected using cross-validation.



• Set 3: Same as Set 1, except that only 20 irrelevant features were added to the 30

relevant features, for a total of 50 features in the dataset.

• Set 4: Same as Set 1, except that there are 1000 training examples and 500 testing

examples per class-a total of 3000 training examples and 1500 testing examples.

• Set 5: Same as Set 1, except that there is overlap among the relevant features for each

class (e.g., classes one and two have three relevant features in common).

In the next subsections, we present our results for each dataset followed by our analysis.

Table 1 provides the classification performance for single classifiers and ensembles on the

full feature set 3, along with the correlations among the individual classifiers in the ensemble.

Note that the original ensembles always give some improvement over the individual classifiers

in each case. In Tables 2-6, we provide the single classifier and ensemble results when only

subsets of the feature set are used. The first column provides the dimensionality of the data

(number of features per classifier), the second column specifies which dimensionality methods

was used (input decimation or PCA), and the last column provides the average correlation

among the classifiers in the ensemble.

Table 1" Single Classifier and Ensemble Performance on the Full Feature Set

Single Ensemble Corr.

Set 1 84.267 -t- .2.9394 88.333 ± 1.9720 .678

Set 2 83.467 ± 3.1241 89.600 ± 2.0374 .706

Set 3 84.633 ± 2.8005 89.500 ± 2.0535 .726

Set 4 90.480 ± 0.6849 93.393 ± 0.4948 .808

Set 5 78.5 ± 2.3273 84.633 =t=2.3710 .676

4.1.1 Set 1

Table 2 presents the results for the first data setJ Input decimation provided the best per-

formance for subsets with 20 and 30 features. This is consistent with the data as there are

30 relevant features, out of which at least 10 are needed for each classifier. The 5 and 10

feature ensembles also performed fairly well, even though the single component classifiers

3The ensemble consists of 3 classifiers for all data sets.

4The single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning

rate of 0.2 and a momentum term of 0.5.
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performedpoorly. In thesecases,thereis very little correlation among the individual classi-

tiers, which accounts for the substantial improvements in performance due to the ensemble

(see Equation 4).

Table 2: Synthetic Dataset h Influence of Dimensionality

Dim. [

70 DF

PCA

60 DF

PCA

50 DF

PCA

40 DF

PCA

30 DF

PCA

20 DF

PCA

10 DF

PCA

5 DF

PCA

Single Ensemble

86.911 4- 2.157 91.733 4- 1.467

86.422 4- 2.689 91.133 4- 1.634

87.678 4- 2.510 92.333 4- 1.844

85.778 4- 2.252 90.867 4- 1.416

89.500 4- 2.t12 93.200 4- 1.470

86.467 4- 2.409 91.300 4- 1.542

90.189 4- 1.865 93.4 4- 1.133

86.744 4- 2.162 91.700 4- 0.954

91.322 4- 1.911

86.456 4- 2.566

85.756 4- 2.523

86.445 4- 2.093

66.989 4- 3.165

85.656 5= 2.211

66.333 4- 3.0578

84.856 4- 3.544

95.233 4- 0.8505

90.733 4- 1.685

95.033 4- 1.570

91.100 4- 1.480

on Ensemble Performances

Corr.

0.751

0.769

0.759

0.754

0.783

0.764

0.823

0.787

0.811

0.765

0.638

0.784

0.130

0.783

0.126

0.825

Note that in cases where more than 30 features were used, the performance of the ensem-

ble declined with the addition of additional features, as more and more irrelevant features

were taken into account. Indeed, for 30 or fewer features, input decimation significantly

outperformed PCA while for 40 or more features, input decimation only had marginally

higher performance. However, except for the 70-feature ensemble, all the input decimation

ensembles provided statistically significant improvements over the original ensembles. Also,

note that the single decimated networks with 20 and more features outperformed the orig-

inal single classifier. This perhaps surprising result (as one might have expected only the

ensemble performance to improve with feature subsets) is mainly due to the simplification of

the learning tasks, which allows the classifiers to learn the mapping more efficiently.

Interestingly, the correlation among cle_ssifiers does not decrease until a very small number

of features remain. We attribute this to the removal of noise, which increases the amount

of information shared between the classifiers. Indeed, the correlation increases steadily as

= r
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Table 3: SyntheticDataset2: Influenceof Dimensionality
Dim. I

70 DF
PCA

60 DF

PCA

50 DF
PCA

40 DF
PCA

30 DF
PCA

20 DF
PCA

10 DF

PCA

5 DF

PCA

Single
84.767+ 2.419
84.422=t:2.625

85.778 ± 3.197

85.922 ::L 2.724

87.611 • 2.532

86.767 =i: 2.370

89.667 + 2.193

79.567 -4- 2.416

90.067 ± 2.508

Ensemble

90.000 ± 1.955

89.600 ± 1.902

91.533 ± 1.968

90.533 ± 1.681

92.233 ± 1.567

91.033 ± 1.949

93.700 ! 1.043

88.333 • 2.071

94.500 • 1.364

80.078 =t: 2.502

87.O89 ± 2.094

80.611 ± 2.353

67.356 • 2.601

80.111 ± 2.006

66.100 • 3.038

78.678 ± 2.057

90.667 • 1.862

95.467 ± 1.343

90.267 ± 1.781

93.400 • 2.054

89.600 • 1.890

90.733 ± 2.520

88.333 ± 1.291

on Ensemble Performances

Corr.

0.717

0.729

0.733

0.742

0.761

0.773

0.823

0.659

0.814

0.675

0.638

0.690

0.153

0.714

0.145

0.743

features are removed until we reach 30 features (which corresponds to the actual number of

relevant features). After that point, removing features reduces the correlation and the in-

dividual classfier performance. However, the ensemble performance still remains high. This

experiment clearly shows the trade-off presented in Equation 4: one can either increase indi-

vidual classifier performance (as for DF with more than 30 features) or reduce the correlation

among classifiers (as for DF with less than 20 features) to improve ensemble performance.

4.1.2 Set 2

Table 3 presents the results for the second data set which is obtained by reducing the number

of irrelevant features (from 70 to 50) from the first dataset. 5 The decimated ensembles with

20, 30, and 40 features outperformed the original ensemble and PCA-based ensemble signifi-

cantly, while the 10-feature ensemble performed marginally better. The remaining decimated

ensembles provided results that were statistically similar to those of the original ensemble.

SThe single classifier used was an MLP with a single hidden layer consisting of 65 units, trained using a learning

rate of 0.2 and a momentum term of 0.5.

12



Note that just as it wasfor the first data set, in this case,the singleclassifierswith 20or
morefeaturesoutperformedthesingleoriginalclassifier,demonstratingthe improvementwe

canachievethroughdimensionalityreductionalone,if theoriginal featuresetis noisy.

4.1.3 Set 3

Table 4 presents the results for the third data set, which is obtained by reducing the number

of irrelevant features (from 70 to 20) from the first dataset. _ That the original single classifier

and ensemble perform better for this dataset relative to dataset 1 (see Table 1) is not surpris-

ing, because With fewer irrelevant features, there is less noise to "overfit." Therefore in this

dataset, the gains due to input decimation are smaller. Indeed only the 10-dimensional dec-
%

±mated ensemble significantly outperformed the original ensemble while the others provided

only marginal improvements.

Table 4: Synthetic Dataset 3: Influence of Dimensionality

Dim. I

4O DF

PCA

30 DF

PCA

20 DF

PCA

10 DF

PCA

5 DF

PCA

I Single Ensemble

86.478 + 2.389 91.633 ± 2.060

87.222 ± 2.427 92.167 ± 1.412

87.400 + 2.826 92.333 ± 1.693

88.367 + 2.370 92.200 i 1.621

84.133 ± 2.461 90.933 =h 1.583

89.411 ± 2.016 93.000 i 1.498

68.878 ± 2.810 94.167 ± 2.804

91.056 ± 1.909 93.633 ± 0.977

65.889 ± 3.045 90.933 ± 2.255

92.211 ± 1.195 93.700 ± 1.064

on Ensemble Performances

Corr.

0.747

0.760

0.759

0.790

0.660

0.834

0.204

0.870

0.123

0.894

, ¢_ -

4.1.4 Set 4

Table 5 presents the results for the fourth data set, which is obtained from the first dataset by

increasing the number of examples in the training and test sets by tenfold. 7 The performance

improvements due to decimation are smaller here than they were for the previous datasets;

6The single classifier used was an MLP with a single hidden layer consisting of 45 units, trained using a learning

rate of 0.2 and a momentum term of 0.5.

7The single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning

rate of 0.2 and a momentum term of 0.5.
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however,all thedecimatedensembleswith 20or morefeaturesstill significantlyoutperformed

the originalensemble.In this case,singledecimatedclassifierswith 20or more featuresdo
not outperformthe originalclassifiersto the sameextentasthey did for dataset1. This is
becausewith the increasein thenumberof samples,theoriginalclassifierhasabetterchance

to extract the "signal"from the "noise"andthus is lessaffectedby the irrelevantfeatures.

Also, in this experimentthe PCAbasedensemblesperformedwellandwereonly beaten

by input decimatedensemblesfor subsetsof 20and 30 features.Furthermore,the first few
principal componentsfound by PCA carry good discriminatinginformation in this case,
explainingwhythereissuchlittle variability betweenthe performanceof the PCA ensembles

with varyingnumbersof features.Although the behaviorof the correlationis very similar
to that observedfor Set1, theactualcorrelationvaluesarehigheracrossthe board. This'is

not surprisingsincewith moredata,the similaritiesbetweentheclassifiersareamplified.

r

Table 5: Synthetic Dataset 4: Influence of Dimensionality

Dim. [

70 DF

PCA

60 DF

PCA

50 DF

PCA

40 DF

PCA

30 DF

PCA

20 DF

PCA

10 DF

PCA

5 DF

PCA

I Single Ensemble

91.732 ± 0.614 94.107 ± 0.357

92.078 ± 0.668 94.267 ± 0.125

92.257 ! 0.565 94.433 ± 0.414

92.213 ± 0.601 94.440 ± 0.480

92.820 ± 0.513 94.780 ± 0.326

93.078 ± 0.488 94.660 ± 0.477

93.356 ± 0.634 95.040 ± 0.438

93.299 ± 0.479 94.830 ± 0.299

94.153 ± 0.516 95.683 ± 0.381

93.581 ± 0.366 94.886 ± 0.328

91.482 ± 0.895 97.380 ± 0.372

93.968 ± 0.519 95.039 ± 0.416

66.587 ± 0.660 93.113 ± 2.998

94.408 ± 0.429 95.113 ± 0.298

65.298 ± 4.806

94.520 ± 0.403

89.463 ± 6.453

95.007 ± 0.288

on Ensemble Performances

Corr.

0.847

0.851

0.853

0.854

0.872

0.869

0.885

0.880

0.903

0.893

0.786

0.905

0.130

0.924

0.107

0.942
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4.1.5 Set 5

Table 6 presents the results for the fifth data set, which is similar to the first dataset but

there is overlap among the relevant features for the classes, s Because of this overlap, this

feature set has fewer total relevant features and thus it constitutes a more difficult problem

(as indicated by the results in Table 1). This is also demonstrated by the similarity among

the correlations for all the different subset sizes. Unlike with the previous four data sets, the

correlation does not go down drastically here for a small subset, because the overlap among

the classes forces the classifiers to remain "coupled" to one another.

Table 6: Synthetic Dataset 5: Influence of Dimensionality

Dim. [ [ Single Ensemble

70 DF

PCA

60 DF

PCA

50 DF

PCA

40 DF

PCA

3O DF

PCA

20 DF

PCA

10 DF

PCA

5 DF

PCA

on Ensemble Performances

Corr.

81.778 5= 2.792 87.567 4- 2.331 0.720

79.822 4- 2.733 86.100 4- 2.173 0.706

83.811 + 2.704 89.333 -4- 2.404 0.749

80.422 + 2.689 85.567 4- 2.036 0.735

85.056 -4- 2.605 90.233 4- 1.664 0.796

81.056 4- 2.406 86.467 4- 1.335 0.729

86.333 4- 2.433 91.100 4- 2.122 0.802

79.933 4- 2.685 84.933 4- 1.389 0.732

86.844 4- 2.155 91.467 4- 1.771 0.795

79.878 4- 2.625 85.600 4- 1.254 0.732

86.967 4- 2.632 92.267 ± 1.806 0.783

79.656 4- 2.798 84.500 4- 1.590 0.743

98.133 4- 0.980

85.133 4- 1.910
, ,,,,,, ,,

95.467 4- 1.614

78.200 4- 1.507

0.707

0.755

0.706

0.683

In spite of these difficulties, input decimation ensembles perform extremely well. Indeed,

they significantly outperform both the original ensemble and PCA ensembles on all but a few

subsets where they only provide marginal improvements. Furthermore the input decimated

single classifiers also outperform their original and PCA counterparts for all but the 60

and 70 feature subsets. This experiment demonstrates that when there is overlap among

SThe single classifier used was an MLP with a single hidden layer consisting of 95 units, trained using a learning

rate of 0.2 and a momentum term of 0.5.
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classes,classinformationiscrucial.Without this vital information,PCA cannotprovideany

statisticallysignificantimprovementsovertheoriginalclassifierandensembles.

4.2 UCI/Probenl Datasets

To complement the experiments discussed above, we also selected three datasets from the

UCI/PROBEN1 benchmarks [8, 51]: The Gene database from the PROBEN1 (i.e., using

train/validate/test split from PROBEN1), and the Splice junction gene sequences and Satel-

lite Image database (Statlog version) from the UCI Machine Learning Repository. In these

experiments, just as in those described above, our classifiers consist of MLPs.

4.2.1 Data Description and Full Feature Set Performance

In this section we provide a brief description of the data sets and the individual classifiers.

The Gene dataset has 120 input features and three class variables [45, 51]. We selected

a component MLPs with a single hidden layer of 20 units, a learning rate of 0.2 and a

momentum term of 0.8. The Splice data consists of 60 input features and three classes [8].

Here we selected an MLP with a single hidden layer composed of 120 units, a learning rate

of 0.05, and a momentum term of 0.1. The Satellite Image data has 36 input features and 6

classes [8]. We selected an MLP with a single hidden layer of 50 units, and a learning rate

and momentum term of 0.5.

Table 7: Average Accuracy o; Ori_;inal Network and Ensembles

Dataset Single I Ensemble Correlation

Gene 83.417 + .796 86.418 4- .342 .7910

Splice 84.722 -I- .534 85.372 + .631 .7263

Satellite 87.785 4- .685 89.010 4- .273 .9523

Table 7 provides the classification performance for single classifiers and ensembles on

the full feature set for all three datasets 9. For the Gene data, the average ensemble was

significantly more accurate than the single network, while for the Satellite Image and Splice

data sets, the ensemble was only marginally more accurate.

9The ensemble consists of 3 classifiers for the Gene and Splice datasets and of 6 classifiers for the Satellite Image

dataset.
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4.2.2 Fixed Input Decimated Ensembles

This section describes experiments that mirror those above where we investigate the perfor-

mance of single classifiers and ensembles with "fixed" subsets of the features set (i.e., each

classifier sees the same number of features). For the Gene and Splice datasets, we use incre-

ments of 10 features up to the full set, while for the Satellite Image data we use increments

of 9 features. The classification performance for both the single classifiers and the ensembles

on all subsets, averaged over 20 runs, along with the corresponding correlation values (i.e.,

correlation among classifiers in the ensemble) are given in Tables 8-10 below.

Table 8: Gene Data: Influence of Dimensionality

Dim. [

110 DF

PCA

100 DF

PCA

90 DF

PCA

80 DF

PCA

40 DF

PCA

30 DF

PCA

2O DF

PCA

Single Ensemble

83.636 4- 0.930 86.482 4- 0.851

76.595 4- 1.086 85.876 4- 0.529

83.623 4. 1.165 86.419 4. 0.731

76.166 4- 0.561 85.574 + 0.837

82.947 4. 1.041 86.091 4. 0.584

81.761 4. 1.222 85.839 4- 0.885

83.632 4- 1.216 86.457 4- 1.015

83.316 -4- 0.894 86.368 4- 0.530

84.237 4- 0.897 87.276 4- 0.671

65.737 4- 2.141 80.958 4- 0.806

83.422 4- 0.836 88.045 4- 0.617

76.784 4- 1.645 84.767 4- 0.919

85.754 4- 0.955

67.192 =h 0.905

89.546 4- 0.548

83.001 4- 0.697

on Ensemble Performances

Corr.

0.800

0.394

0.791

0.457

0.788

0.729

0.794

0.781

0.805

0.240

0.762

0.523

0.734

0.665

In case of the Gene data, the average ensembles with 20, 30, and 40 inputs are significantly

more accurate than both the original network ensembles described in the previous section

and their PCA counterparts. Note also that the performances of the PCA-based ensembles

vary arbitrarily as the number of principal components changes, while the performances of

the feature-based ensembles are more stable. This is consistent with the fact that princi-

pal components are not necessarily good discriminative features, and eliminating particular

principal components have unpredictable effects on the classification performance.

In the Splice data experiments, all the decimated feature-based ensembles significantly

outperformed both the original ensemble and the PCA-based ensembles. What is particularly
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Table 9: SatelliteIma_;eData: Influence of Dimensional± D, on Ensemble Performances
i

Dim. Single

27 DF 86.512 :h 0.764

PCA 87.863 ± 0.572

18 DF 82.645 ± 1.164

PCA 84.877 ± 1.031

9 DF 70.679 ± 0.838

PCA 83.574 ± 0.756

Ensemble

86.482 + 0.851

88.820 ± 0.154

86.419 ± 0.731

89.510 ± 0.242

86.091 ± 0.584

89.035 ± 0.252

Corr.

0.923

0.897

0.856

0.910

0.395

0.948

_/ r-

Table 10: Splice Data:

Dim. I

5O DF

4O

3O

2O

10

Influence of Dimensionality on Ensemble Performances

Single Ensemble Corr.

85.152 ± 0.619 86.896 ± 0.312 0.857

83.230 ± 0.868 85.014 ± 0.767 0.861

86.460 ± 0.607 88.532 ± 0.523 0.855

82.286 ± 0.824 84.939 ± 0.556 0.838

87.880 ± 0.928 90.329 ± 0.833 0.859

81.276 ± 0.726 84.073 ± 0.355 0.805

88.310 ± 0.666 92.380 ± 0.714 0.792

79.263 ± 0.548 82.493 ± 0.495 0.785

84.669 ± 0.561 92.342 ± 0.737 0.719

78.109 ± 0.542 80.066 ± 0.400 0.816

PCA

DF

PCA

DF

PCA

DF

PCA

DF

PCA

notable in this case is that a reduction of dimensionality based on PCA has a strong negative

impact on the classification performance. With 20 principle components for example, the

performance of the single classifiers drops by 7 %, whereas the performance of the DF single

classifier increases by 3 %. The improvement of the performance of the single classifiers

due to decimation is an initially surprising aspect of these experiments (unlike the synthetic

data sets, one does not expect to find too many "irrelevant" features in these real datasets).

However, an analysis shows that the inputs that were decimated were in fact providing "noise"

to the classifier. Although it is theoretically true that the classifier with more information

will do at least as well as the classifier with less information, in practice with only a limited

amount of data, extracting the correct information can cause a problem for such classifiers

causing them to perform worse than their counterparts with less information.

In th}_ Satellite Image data however, the input decimated ensemble with 27 features was

the only one that did not perform significantly worse than the single neural network and
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the original ensemble.This is the dataset with the lowestdimensionality,and showstwo
things: (i) in order to take advantageof input decimation,the initial dimensionalityhas
to be very high; and (ii) If thereare featuresthat havesignificantmeaning,they needto

be includedin the featuresetregardlessof their correlationto the particular output. We
observedthat consecutivegroupsof four featuresin the satelliteimagedataset correspond
to spectralvaluesfor agivenpixel. In examiningthe eigenvaluesandeigenvectors,wefound

that the highesteigenvaluewas91.6%of the sumof the eigenvalues,and the corresponding

eigenvectorwasasimplelinearcombinationof thefourspectralvaluesacrossall thepixels.In
this case,thehigherprincipalcomponentsprovidegooddiscriminativefeatures.A potential

solutionto this problemisto select"wild card" featuresoncorrelationto theoverallproblem
and includethem in each decimated subset.

4.2.3 Variable Input Decimated Ensembles

With the UCI/Probenl datasets there is no reason to assume that each of the classifiers

in an ensemble should have the same number of features. Therefore we have performed

experiments where we allowed the subsets to vary in size. To select the number of features

for each class, we first plotted the correlation between each feature and one output class

in decreasing order. We then selected the subset with the most natural break point as the

significant features. The experiments reported below show the potential of using variable

numbers of features. We are currently investigating more formal methods to automate the

selection of the number of features for each classfier.

Table 11: Variable Input Ensembles.

Dataset Features/Class Single Ensemble Corr.

gene 11-8-14 82.211 ± 0.857 90.757 ± 0.615 0.6334

satellite 27-27-9-18-27 80.483 ± 0.890 88.370 ± 0.005 0.6361

splice 13-10-21 87.833 ± 0.641 92.371 ± 0.3351 0.7719

Table 11 provides the classification performance for single classifiers and ensembles on

the decimated feature sets for the three data sets. The second column provides the number

of features present in each of the classifiers (i.e., for Gene the first classifier in the ensemble

had 11 features, the second had 8 while the third had 14). For the Gene database, the

variable input decimated ensembles improved upon the fixed subset input decimation results

(which themselves were an improvement over the original ensemble). For the splice dataset,

the improvements over the original ensemble are even more drastic, although the results are
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statisticallyequivalentto thoseobtainedwith fixedsubsetsof 10and 20features.As for the
satellite imagedataset,variableinput decimatedensemblesimproveduponthe fixed input
decimatedensembles,but still fell shortof theoriginalensembles(for the samereasonsthat

wehighlightedin Section4.2.2).

5 Discussion and Conclusions

This paper discusses input decimation, a dimensionality reduction method for ensemble classi-

fication. We present experimental results demonstrating that input decimated ensembles are

a promising machine learning method that yield superior results by combining the strengths

of dimensionality reduction and ensembles. Specifically, we show that, in most cases, the sin-

gle decimated classifiers outperform the single original classifier (trained on the full feature

set), which demonstrates that simply eliminating irrelevant features improves performance.

In addition, eliminating irrelevant features in each of many classifiers using different rel-

evance criteria (in this case, relevance with respect to different classes) yields significant

improvement in ensemble performance, as seen by comparing our decimated ensembles to

the original ensembles. Selecting the features using class label information also provided

significant performance gains over PCA-based ensembles. Furthermore, using subsets of the

original features instead of new features allows human operators to gain more insight into how

each classifier and ensemble makes its decisions, alleviating a serious difficulty in interpreting

results in large data mining problems [20, 49].

Through our tests on real and synthetic datasets, we show certain characterizations that

datasets need to have to fully benefit from input decimation. Namely, we show that input

decimation performs best when there are a large number of features (e.g., where it's likely

that there will be irrelevant features) and when the number of training examples is relatively

small (e.g., where it's difficult to properly learn all the parameters in a classifier based on the

full feature set). In these cases, decimation removes the extraneous features, thereby reducing

noise and reducing the number of training examples needed to produce a meaningful model

(i.e., alleviate the curse of dimensionality).

An interesting observation is that input decimation works well in spite of our rather crude

method of choosing the relevant features (i.e., statistical correlation). One reason why this

simply method succeeds is that we have greatly simplified the relevance criterion: only the

relevance of the features to a single output is taken into consideration, rather than focus on the

discriminatory ability across all classes. Nevertheless, we are currently extending this work

in three directions: considering cross-correlations among the features; investigating mutual
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information based relevance criteria; and incorporating global relevance into the selection

process. We are confident that a fully developed input decimated ensemble method will

provide an easy to use, understandable and robust method for addressing high-dimensional

classification problems that are common in data mining.
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