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PREFACE

These proceedings collect contributions from about 200 participants to the 6th International Conference on
Squeezed States and Uncertainty Relations (ICSSUR’99) held in Naples from May 24-29, 1999, organized
jointly by the University of Naples’ “Federico II,” the University of Maryland at College Park, and the
Lebedev Institute, Moscow.

This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the
University of Maryland. The other meetings of the series were held in Moscow (1992), Baltimore (1993),
Taiyuan PR.C. (1995) and Balatonfiired, Hungary (1997). The present one was held at the campus Monte
Sant’ Angelo of the University “Federico II” of Naples.

The meeting aimed to provide a forum for updating and reviewing a wide range of quantum optics disciplines,
including device developments and applications, and related areas of quantum measurements and quantum
noise.

Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum
optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement,
and applications of nonclassical light (squeezed and Schrédinger cat radiation fields, etc.), and encompassing
several related areas, ranging from quantum measurement to quantum noise.

ICSSUR’99 brought together about 250 people active in the field of quantum optics, with special emphasis on
nonclassical light sources and related areas.

The Conference was organized in 8 Sections:

A—Squeezed states and uncertainty relations;
B—Harmonic oscillators and squeeze transformations;
C—Methods of quantum interference and correlations;
D—~Quantum measurements;

E—Generation and characterisation of non-classical light;
F—Quantum noise;

G—CQuantum communication and information;
H—~Quantum-like systems.

In 2001 the Seventh International Conference will be hosted by the University of Boston. The meeting will
take place in Boston.

The organizers of the Conference acknowledge the cooperation and the support of several Institutions. Among
them, they wish to express special thanks to:

NASA’s Goddard Space Flight Center

International Union Pure and Applied Physics (I.U.P.A.P.)
University of Naples “Federico 11

Phys. Dept. Univ. of Naples,

University of Maryland

Istituto Nazionale di Fisica Nucleare (I.N.E.N.)

Istituto Nazionale di Fisica della Materia (I.N.F.M.)

Particular thanks are due to the Soprintendente of the Archeological Museum of Naples for having organized
and offered to all partecipants a guided tour of the most relevant collections originating from the Pompei and
Herculaneum ruins.



In parallel to the Conference two short courses on “Optical quantum limits: From theory to engineering” and
“Spectroscopic Methods for Quantum State Measurement” were delivered by Profs. Hans Bachor and Suhail
Zubairy. These events were sponsored by the Istituto Nazionale di Fisica della Materia (I.N.F.M). and the
Graduate School of Physics of Naples.
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Abstract

We introduce a new squeeze operator, which is related to the time-
dependent evolution operator for Hamiltonian representing mutual interaction
between three different modes. The effect of intermodal correlation between
modes is discussed in terms of the variances of the photon-number sum and
difference, the Glauber second-order correlation function and the violation of
Cauchy-Schwarz inequality.

I. INTRODUCTION

Squeezed states of the electromagnetic field are purely quantum states and have sev-
eral applications in quantum optics. There are two familiar squeeze operators to produce
squeezed states; namely, single mode squeeze operator [1] and two-mode squeeze operator
[2]. Here we introduce a highly correlated multidimensional squeeze operator as the evo-
lution operator of an interaction part, in a slowly varying amplitudes, of the Hamiltonian
representing three mode interaction ( equation (1.5) in [3]), glven as

S(r) = exp[ri (Al Al — A,4;) + r2(AfA — A1As) + r3(As AL — ALA,)), (1.1)
where r; = A\t, with 0 < r; < o0, j = 1,2,3, A; are coupling constants, ¢ is the time of
interaction and r = (ry,re,rs3). It is evident that this squeeze operator involves three different
squeezing mechanisms and therefore it is more complicated than squeezing operators that
have appeared in the literature earlier {1,2,4].

Squeezing property is the important phenomenon well distinguishing mechanism of cor-
relation of systems, where squeezing can occur in combination of the quantum mechani-
cal modes described by operators Al,Az and Aj, even if single modes are not themselves



squeezed. For more details about this the reader can consult [1]. In fact, the idea that
quantum correlations can give rise to squeezing in the combination of mode operators has
been shown true for multimode squeezed states of light [1,5] and for dipole fluctuations in
multimode squeezed states [4].
The squeeze operator (1.1) provides a Bogoliubov transformation of the annihilation and
creation operators that mixes the three modes as
A= S (0)AS(r) = i+ AL + Alfs, (
A, = 5 ( )Azs( )= Azgl + Asgz + A193> (
A3 = S ( )A3S( ) Aghl + A h2 + A2h3, (
2

and r2 < r? + r2 ( for exact forms see [7]).

We may point out that a strong correlation is built up between the three modes described
by squeeze operator (1.1). This is quite obvious for the case of the parametric amplification
when two mode waves are mixed to generate a third wave via nonlinear medium, e.g. in
an optical crystal with nonlinear second-order susceptibility [1J This can be demonstrated
with the help of three-mode pure squeezed vacuum states S(r)[I}, |0;), where S(r) is
the squeeze operator (1.1). In this case the eigenstates of the three—rnode photon-number
difference Al A1 Al A2 A3A3 correspond to zero eigenvalue, thus

A(ATA, — ALA, — ALA5)? = 0. (1.3a)
However, the situation will be different for three-mode photon-number sum; after minor
calculations we obtain

A(ALA, + AjA; + AlAs) = fR(fE — 1) + d3(1 + 62)

+hi(L + h3) + 2(f1g3 + fihy + hig3). (1.3)

In the following section we employ the relations (1.2) to study the sub-Poissonian statis-
tics for three-mode squeezed coherent states.

II. SUB-POISSONIAN STATISTICS FOR THREE-MODE SQUEEZED
COHERENT STATES

Three-mode squeezed coherent states are defined formally by means of three-mode
squeeze operator (1.1), in a sense similar to that of squeezed coherent states, as

la, ) = S(r)lau)|ez)]os), (2.1)
where |a;) are coherent states; for simplicity we have used a = (a1, ag, a3).

Here we study the second-order correlation function, g( )(0), for measuring the devi-
ation from the Poisson statistics of the three-mode coherent states. Also we extend our
investigation to include the violation of the Cauchy-Schwarz inequality.

The second-order nogmalized correlation function has been defined by

91(2)(0) =14 ((A74)%) — (Ay)

A \92 ?

(2.2)
J
where ((A7;)?) and (7;) are the variance and average of the photon number for the jth

mode, respectively. It can happen that g(z)(O) = 1 for Poisson light (coherent states), or

§2)(0) < 1 for sub-Poisson light (e.g. Fock states), otherwise we have super-Poisson light
(e.g. chaotic field). In the following we restrict our discussion to the first mode 1, because



the other modes would have similar behaviour. So after calculating the required quantities
in (2.2), in a straightforward way, we get
2 - 2 2
g?(0) =1+ [z(fl 1)<n{>°"2’,’ Ur =7 (2.3)
<n1>coh
where (fi1)con = |fron + faos + fao3|* + f5 + f3.

In phase space, squeezed coherent states |a,r) are represented by a noise ellipse with
the origin at «, and exhibit Poisson distribution at » = 0, and it is growing rapidly to
superthermal distribution, i.e. g®(0) > 2, and it persists for a large domain of r [8,9]. In
our model, e.g. for mode 1, one can prove easily from equation (2.3) that the modes exhibit
only partial coherence behaviour, i.e. 1 < g(?(0) < 2. This is a consequence of intermodal
correlations of the three-mode squeezed coherent states for a; # 0.

In quantum theory, the violation of Cauchy-Schwarz inequality can be represented by
the factor [10]

(AT AR AL AD)E
L = AT -1 (2.4)
(A;A;ALAx)

The negative values for the quantity I, mean that the intermodal correlation is larger
than the correlation between the photons in the same mode [11] and this indicates strong
violation of the Cauchy-Schwarz inequality. The quantity (2.4) may be used to investigate
the anticorrelation (antibunching) between modes. We have concluded from the numerical
analysis of (2.4) that there is a strong violation of Cauchy-Schwarz inequality between dif-
ferent modes, which means that the photons are more strongly correlated than it is possible
classically. Further, we noted that the violation of this inequality is strongly sensitive to the
values of squeeze parameters and coherent amplitudes.

It is known that the correspondence between quantum and classical theories can be es-
tablished via Glauber-Sudarshan P-representation. But the P-representation does not have
all the properties of a classical distribution function for quantum fields. So the violation of
the Cauchy-Schwarz inequality provides explicit evidence of the quantum nature of inter-
modal correlations between modes, which implies that the P-distribution function possesses
strong quantum properties [10].

II1. Conclusion

In this contribution we have introduced new type of multidimensional squeeze operator
which is more general than usually used. This operator yields from the time-dependent evo-
lution operator for the Hamiltonian representing mutual interaction between three different
modes of the field. We have shown that a strong correlation is built up between the three
modes described by this operator and this is quite obvious for the case of the paramet-
ric amplification, when two-mode waves are mixed to generate a third wave via nonlinear
medium. For the three-mode squeezed coherent state, we found that its second-order cor-
relation function describes partially coherent field, so that one mechanism of squeezing is
always surviving. Further we found strong violation for Cauchy-Schwarz inequality between
some modes, i.e. the photons are more strongly correlated than it is allowed classically.
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LIGHT PULSE SQUEEZED STATE
FORMATION IN MEDIUM WITH THE
RELAXATION KERR NONLINEARITY
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Faculty of Physics, Lomonosov Moscow State University, Moscow 119899, Russia

Abstract

The consistent theory of forming a pulsed squeezed state as a result of self-
action of ultrashort light pulse in the medium with relaxation Kerr nonlinear-
ity has been developed. A simple method to form the ultrashort light pulse
with sub-Poissonian photon statistics is analyzed too.

L. INTRODUCTION

There are two groups of works in the quantum theory of self-action (or self-phase mod-
ulation) of ultrashort light pulses (USPs). In one group of the works (for example, [1]" [3])
the calculations of the nonclassical light formation at the self-action of pulses assume that
- the nonlinear response of the medium is instantaneous and that the relative fluctuations
are small. The latter assumption is valid for the intense USP ordinarily used in experi-
ments. However a finite relaxation time of the nonlinearity is of principal importance. The
relaxation time of the nonlinearity determines a region of the spectrum of the quantum
fluctuations that play a large role in the formation of squeezed light.

The inertia of the nonlinearity is taken into account in works [4]" [5]). The methods
that have been developed in Refs. [4] and [5] differ in interaction Hamiltonians. The authors
of Ref. [4] considered the interaction Hamiltonian using which one has to introduce thermal
fluctuations to satisfy the commutation relations for time-dependent Bose-operators. For
the case of the normally ordered interaction Hamiltonian [5] it is no necessary to include
into consideration thermal fluctuations.

The results of the quantum theory of the USP self-action in the medium with the relax-
ation Kerr nonlinearity based on the normally ordered interaction Hamiltonian are presented
below. Variances of the quadrature components and spectral distribution of the pulsed
quadrature-squeezed light are calculated. Besides, propagation of such a pulse through a
dispersive linear medium is analyzed. It is shown that in this case the pulse with sub-
Poissonian photon statistics can be formed.

*chirkin@foton.ilc.msu.su, florentin_p@hotmail.com



II. QUANTUM THEORY OF SELF-ACTION OF LIGHT PULSE

We will describe the process under consideration by the following interaction Hamiltonian
A oo t
Hine(2) = b8 / dt / H(t — t)N[i(t, 2)a(ty, 2)] dty, (1)
—o0o —00

where the coefficient 3 is determined by the nonlinearity of the medium, H(t) is the nonlinear
response function of the Kerr medium (H(t) # 0 for t > 0 and H(t) = 0 for ¢t < 0; N is the
normal ordering operator, ni(t, z) = A*(t,z)A(t, z) is the photon number density operator,
and A*(t,2) and A(t, z) are the Bose operators creating and annihilating photons in a given
cross section z. The operator 7i(t,z) commutes with the Hamiltonian (1) and therefore
n(t, z) = A(t, z = 0) = 7ig(t), where z = 0 corresponds to the input of the nonlinear medium.

According to Eq. (1) the spatial evolution of the operator A(t, 2) is given by the equation

OAL2) | ipafin(e)lAct,2) =, @)

in the moving coordinate system, z = 2z and t =t — 2z /u (u is the velocity of the pulse),

dio®) = [ ht)ao(t —t)dt (b(e) = H(l).

The solution of Eq. (2) is

A(t, 1) = exp[—iyq[fio(t)]] Ao(t)- (3)

Here Ay(t) = A(t,0), v = B, | is the length of the nonlinear medium. For h(t) = 246(t) and
Ap(t) = ap expressions (2), (3) have a form corresponding to single-mode radiation.

To verify commutation relation [A(t,1), A*(¢2,1)] = §(¢; —t2) and to calculate the quan-
tum characteristics of the pulse it is necessary to apply an algebra of time-dependend Bose
operators [5), [7].

In accordance with Eq.(3) the photon number operator remains unchanged in the nonlin-
ear medium. This fact has already used in Eq.(2). Therefore in the case of a self-action it is
of greatest interest to study the fluctuations of the quadrature components. Here we restrict
our consideration by the X-quadrature X (t,z) = [A*(t,z) + A(t,2)]/2. The correlation
function of the X-quadrature is given by the formula [5]

R(t,t+7) = £15(r) — $(O)h(r) sin 28(0) + $*(t)g(r) sin? 2()}, ()

where 9¥(t) = 27|ay(t)|? is the nonlinear phase addition, ap(t) is an eigenvalue of the operator
Ap(t) of a pulse in a coherent state, ®(t) = ¥(t) + ¢(t) (¢(t) is the initial phase of the
pulse). For the considered nonlinear response h(r) = 7,7 exp(—|7|/7,) and g(1) = 77'(1 +
|7|/7) exp(—|7|/7) (7, is the nonlinearity relaxation time). We took into consideration that
the parameter v < 1 and the pulse duration 7, > .

According to Eq. (4) the spectral density of the quadrature fluctuations is

S(w,t) = /0; R(t,t +T1)e" " dr = %[1 ~ 24(t) L(w) sin 2®(t) + 49 (t) L*(w) sin® ®(t)], (5)



where L(w) = 1/[1 + (w7)?] . It follows from Eq.(5) that the level of the quadrature
fluctuations, depending on the the value of the phase ®(t), can be greater or less than the
short noise one corresponding to S(®"(w) = 1

If the phase of the pulse is chosen optimal for a frequency wy, ¢o(t) =
0.5 arctan[(y(t)L(wy)) '] — 9(t), then the spectral density at this frequency is minimal.

The calculated spectra at ¢ = 0 for the case of wy = 7,71 are presented in Fig.1. It is
obvious from Fig.1 that the frequency band in which the spectra.l density of the quatrature
fluctuations is low than the shot noise level depends on the nonlinear phase addition 1(0).

III. SQUEEZED LIGHT PULSE IN DISPERSIVE LINEAR MEDIUM

We consider now the propagation of the quadrature-squeezed pulse through a dispersive
linear medium in which the following operator transformation take place

B(t,2) = /_ ZG(t — 11, 2)A(ty, I)dt, (6)

Here G(t, z) is the Green function for the medium, z is the distance and A(t,]) is the input
value of the operator (at z = 0 ) defined by Eq. (3).

Let us introduce the photon number operator over the measurement time 7" and the
Mandel parameter Q(%, 2):

t4+T/2
= t(ty, 2 2 z) = BLUL)
Nr(t, 2) —J/ 2B (6,280, e, QUez) = 2o (7)

e(t, z) = (N3 (8, 2)) — (Nr(t, 2))* — (Nr(t, 2)).-
Let us assume that the initial light pulse has the form 7iy(t) = 7 exp(—t*/7?) and G(t, z) =
(—i2mkyz) "% exp {—it2/2kyz}. The coefficient k, characterises the dispersion of a group
velocity. In the case of the normal dispersion k; > 0 and for the anormal dispersion ky <
0. When the phase self-modulation pulse passes through the dispersive linear medium a
compression or a decompression of the pulse takes place. This effect can change the photon
statistics of the pulse.
In the so called paraxial approximation we get [6)

(Nr(t,2)) = 1TV (2) exp[~8/V3(2)7)],  V(2) = wP(2) + ¢*(2),

(0,2) =— [T% ] sinfarctan(p(z)/w(2)) + 0.5arctan[2p(z)w(2)/(2¢(2)pa(z) — w? z))]]
’ VT [wi(z) — 2¢*(2)w?(2) + 4¢*(2))]/* 8

w(z) = 1 — sop(2), ¢(z) = z/D, va(z) = z/d, D =12/lka, d = 77/]kal.
D and d are the characteristic dispersion lengths, s = 1 for k3 < 0, and s = —1 for ky > 0.

It follows from Eq.(8) that the pulse with sub-Poissonian photon statistics (Q(t, z) < 0)
can be obtained. Of particular interest is the compression of the phase self-immodulation pulse
(s =1, k3 < 0). The dependence of the Mandel parameter in this case is presented in Fig.2.
One can see that the suppression of quantum fluctuation of the photon number becomes
noticeable for the nonlinear phase 1 > 1.
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squeezed quadrature of a pulse at time t=0 as the maximum nonlinear phase 1y and the dis-
a function of the maximum nonlinear phase 9 persion phase ¢(2).
and the reduced frequency Q = w7p.

IV. CONCLUSIONS

The basic results of the developed systematic theory are following. The spectral region
with level of the quatrature fluctuations less than the shot noise one depends on relaxation
time of the nonlinearity and the nonlinear phase addition. Choicing initial phase of pulse
gives us possibility to control the frequency when the coefficient of squeezing is maximal.
Propagation of the quadrature-squeezed light pulse through a dispersion linear medium (an
optical fiber or optical copressor) can lead to formation of the pulse with sub-Poissonian
photon statistics.

V. ACKNOWLEDGEMENT

One the authors (A.Ch.) acknowledges the Organizing Committee of ICSSUR’99 for
finantial support of participating in the Conference.

REFERENCES

[1} N. Nishizawa, M. Hashiura, T. Horio et al., Jpn. J. Appl. Phys., Part.2, 37, L792 (1998).
[2] M. Shirasaki and H.A. Haus, J. Opt. Soc. Am. B, 7, 30 (1990).

[3] S.A. Akhmanov, V.A. Vysloukh and A.S. Chirkin, Optics of Femtosecond Laser Pulses,
AIP, 1992.

]

]

] F. Popescu, A.S. Chirkin, Quantum Electron., 29, N7 (1999).

] K.J. Blow, R. Loudon, and S.J. Phoenix, J.Opt.Soc. Am.B, 8, 1750 (1991).




DETECTION OF SQUEEZED PHONONS
VIA STOKES-ANTI-STOKES
CORRELATIONS

~ Alexander 5. Shumovsky and Ozgﬁr E. Miistecaphoglu
Physics Department, Bilkent University, Bilkent, 06538 Ankara, Turkey

Abstract

A method of detection of number variance of Raman-active excitations in
solids via measurement of Stokes—anti-Stokes correlations is proposed.

Recent progress in the field of quantum optics have stimulated the theoretical and exper-
imental study of the so-called "nonclassical states of bosons” in solids (e.g., see [1-5]). Let
us stress very important difference between the squeezed state of light and that of bosons in
condensed matter. The former is usually a nonequilibrium state of radiation. The squeezed
phonons which have been recently produced and detected [5] are similar to squeezed photons.
At the same time, the squeezed states of bosons in solids can exist at thermal equilibrium
[6]. The polariton excitations in an ionic crystal, for example, can be treated in terms of the
”two-mode” squeezed thermal states [2]. Although the squeezing of quantum fluctuations
cannot be observed in this case, the pairwise creation of phonons and photons leads to quite
strong quantum fluctuations which can strongly influence the system at low temperature
[2]. Among the other mechanisms leading to squeezed states of phonons the polaron-type
interaction, exciton-phonon interaction, and phonon anharmonicity can be mentioned here
[7].

In contrast to the case of nonclassical states of photons, there is no effective direct
methods of measurements allowing the characterization of the quantum states of bosons
in solids [3]. Here we propose a way of measurement of the number variance of Raman-
active Bose-type excitations in solids (phonons, polaritons, etc.). It has been shown that
the quantum statistical properties of a vibration mode can strongly influence the parameters
of scattered light in the Stokes-type Raman process [8]. We show here that the measurement
of Stokes—anti-Stokes photon correlations might be an effective way of investigation of the
quantum statistical properties of vibration mode even at thermal equilibrium.

It is well known that the Raman-type process can be specified by the following Manley-
Rowe relations [9,10]

Ns-I—NA-FNP:él,
Ng—~ Ny — Ny =(C) (1)

where Nx denotes the number operator for Stokes (X = ), anti-Stokes (X = A), and
pumping (X = P) photons and for ”vibration” excitations of medium (X = V). These



operators are determined in the Heisenberg representation at an arbitrary time, while CA'1,2
are some constant operators. If, for example, the S and A components are initially in the
vacuum state, then C7 = Np(0) and Cy = Ny(0). Consider the correlation function

(A; B) = (AB) — (A)(B).

Since in the Heisenberg representation the evolution is provided by the time-dependent
operators, the averaging should be performed with respect to the initial state of the system.
Then, assuming the initial vacuum state of the components S and A, for the operators Ns(t)
and N,(t) we get

(Ra(t); Nis(0)) = 71V6(Np) ~ Vo(Nv) + Vi(Np) — Vi(Ny)
—~2{p(0); No(1)) — 208 (0); Ny (&) 2)

Here Vi(X) = (X (t);f( (t)) denotes the variance of a physical quantity described by the
operator X at time ¢. The equation (2) establishes an important connection between the
S — A correlations and quantum statistical properties of pump photons and excitations
in solids (phonons). On making the further assumption that P-component is represented
initially by a strong monochromatic coherent field, one can obtain

Vo(Np) = laf?,  (Np(0); Np(t)) = a™([ap(0), Np(t)])

where « is the parameter of coherent state and ap is the annihilation operator of P-type
photon.

Let us stress that conventional quantum theory of Raman scattering [13,14] usually
neglects the quantum properties of pump through the completely classical pump assumption.
In view of (2) it means that Np is supposed to be independent of time so that

Vi(Np) + Va(Np) — 2(Np(0); Np(t)) = 0. (3)

Then the S— A correlation function (2) is related only to phonon (vibration modes) statistics.
The condition (3) implies a time range to the problem during which any change in the pump
intensity remains negligible [13,14]. However, it is not enough as far as the correlations of
scattered photons are considered. As a matter of fact, the quantum statistical properties
of the pump photons might be changed significantly in shorter time than the occurance of
a visible change in their intensity. To evaluate such a time, let us consider conventional
parametric Raman model [13,14]

H = Z LL)AN)\ + ququV + Z(gqug—&g—v -+ qu&Z&qv + HC) (4)
q q

A=5,4

Here the operators a, describe the photons of scattered light, a,v are the vibration-mode
(phonon) Bose operators, and the complex coupling constants gqy include the dependence on
intensity of the classical pump. Summation over ¢ in (4) permits us to take into account the
Markoffian properties of phonons at thermal equilibrium [13,14]. One can expect, however,
that phase-matching condition would have limited the number of active phonon modes to
one.



Since the Hamiltonian (4) is a bilinear form in Bose operators, the Heisenberg equations
for the scattered photons have the following general solution

a (t) = Ux(t)ag(0) + Va(t)aa(0) + 3 War(t)aev (0)

where the coefficients U, V, and W are some known functions of parameters of the Hamil-
tonian (4) and time. In view of this result and Eq. (3), the Eq. (2) can now be done in a
straightforward manner to yield

(Ws(2); Na(0) = AE) + 32 Bua(8)iy (D) (0)
+;2Ckzpq a:V(O)&qv(O);afv(mapv(o» (5)

so that the time evolution of § — A correlation function is completely determined by the
initial state of phonon sub-system. It is also straightforward to calculate the coefficients
A, B, and C in terms of U,V , and W.

As usually, the summations in (5) can be converted into integrals involving phonon
density of states. In the simplest case of perfectly phase-matched pump and phonon modes,
the only phonon mode contributes in the right-hand side of (5) which yields

(Ns(t); Na(®)) = A(t) + B(t)(Nv (0) + C(t)Vo(Nv). (6)

Since (Ny(0)) can be determined by measurement of either (Ns(2)) or (N4(t)) [11] at short
time, the Eq. (6) shows that Vo(/Ny) can be determined by simultaneous measurement of
the scattered light intensities and S — A correlation function. The latter can be measured
by standard homodyne detection scheme.

Similar result can be also obtained in the case of strong Van Hove singularities corre-
sponding to the modes selected by Raman process which has been considered in [5] in the
context of generation of squeezed phonons. In general, a relation similar to (6) can be ob-
tained through the use of random-phase approximation under assumption that the phonon
modes obeying Raman selection rules play the dominant role.

To estimate the time range of validity of the parametric approximation, one can use
the sort-time approximation of the Heisenberg equations with the Hamiltonian (4) [13] u
to the second order of ¢ close to the beginning of interaction [2]. Using the condition
Vi(Np) = (Np(t)), we find the time range as t < 7, where

Ty = ! s . (7)
AM(1 + (Nv(0)))

Here M is some constant determined by the parameters of the Hamiltonian (4). It should
be emphasized that 7, < 7, where

1
Ly + Ly(Nv(0))

"=

is the conventional range of parametric approximation [15]. As an estimation, we may take
g» = 107 Hz, giving the time ranges as 1y ~ 10fs [15] and 7, ~ 3 fs. This time range seems to



be available now due to remarkable recent process in the field of femto-second spectroscopy
[14]. Thus, it is shown that the variance of number of Raman-active excitations in solids can
be detected even at thermal equilibrium via measurement of Stokes—anti-Stokes correlation
function. It is clear that the measurement of quantum statistical properties of phonons
can give an important information about microscopic interactions in solids [15]. The above
obtained results can be also applied in the molecular Raman spectroscopy.
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Abstract

We address the question: how broad must be the squeezed vacuum to make

the Markov approximation still applicable? We compare the resonance flu-
orescence spectra obtained using the Markovian master equation with the
spectra calculated from the coupled-systems approach. We show that both
approaches give very similar spectra up to realistic values of the squeezed
vacuum bandwidth (~ 10v).

Broadband squeezed vacuum can be treated as a reservoir to an atom and a master
equation in the Born and Markov approximation can be derived for the reduced density
matrix of the atomic system. Realistic sources of squeezed field, such as the degenerate
parametric oscillator (DPO), produce a squeezed vacuum with finite bandwidth. However,
when the bandwidth of the DPO cavity is much larger than the atomic linewidth, one can
still treat the squeezed vacuum as a reservoir to the atom and derive the Markovian master
equation that describes the dynamics of the atomic variables only. If, moreover, the atom
is driven by a classical coherent laser field one can perform the dressing transformation
first and next apply the standard perturbation procedure to derive the master equation [1].
We have derived such a master equation [2,3], which in the frame rotating with the laser
frequency wy can be written as

.1
p=5illdo. = Qos +0-)) ]
1 -
+ 5 N (20.p0_ —0_0,p—po_oy)
1 -
+ 31V +1) Qo_pos —arop—poso) 1)

—yMo poy —yM*o_po_



i (Blowlonpl - Bl o)

where

fum—y

N:N(wL+Q’)+—2~(1 — A%)Rel_,
M= M(wy + )~ —;-(1 — AT 4 i Ay e,
5:A+%(1—AZ)ImI‘_+7AéN,
ﬁ:»yQ[cSN+5Me"¢’-z‘AF_], (2)
T_ ———N(wL) —N(wL—!-Q') - [M(CUL) —M(Q)L+Q,)} R

5N=1P/°° N@) 4, 5M=17>/°° IM(@)] 4,

m Jocox+ T Jeoo T+
”ZQQ A=%, Q= VO AZ,

and the principal value terms for DPO have the form

5 :Q,)\z——;ﬂ 1 B 1
N 4 | p@2+u2) A(Q2+23)]°

JAZ -2 1 1
ou =S [M(Q’2+u2) +/\(Q’2+)\2)] ! (3)

A= —g + € §= g— — €,
where k is the bandwidth of the DPO cavity and ¢ the amplitude of the pump field.

In the derivation of equation (1) we have included the divergent frequency shifts (the
Lamb shift) to the redefinition of the atomic transition frequency. Moreover, we have as-
sumed that the squeezed vacuum is symmetric about the central frequency wy, so that
N(wp — @) = N(wy + '), and a similar relation holds for M(w). The atomic natural
linewidth is v, A = wy; — wy4 is the detuning of the laser frequency of the atomic resonance,
and Q is the Rabi frequency of the coherent driving field.

The master equation (1) has the standard form known from the broadband squeezing
approaches with the new effective squeezing parameters N and M. There are also new
terms, proportional to 3 which are essentially narrow bandwidth modifications to the master
equation. All the narrow bandwidth modifications are determined by the parameter I'_ and
the shifts y and dj,. These parameters become zero when the squeezing bandwidth goes
to infinity.

As a reference for testing our master equation (1) we use the coupled-system (or cascaded-
system) approach [4,5] in which output of the first system (DPO) drives the second system
(atom) without any coupling back from the the second system to the first. In our case of an
atom driven by a squeezed light from DPO and a coherent field with the Rabi frequency €,
the corresponding master equation has the form [6].



1
p= ai[(Aaz —Q(oy +0-)+ (eaT2 ~ ¢*a?)), p] + g {2 apal — pata—al ap}
Y
— vy {low,apl + pal o} + 3 120-pos —poro-—o40-p}, (4)

where the parameter 77 (0 < n < 1) describes the matching of the incident squeezed vacuum
to the modes surrounding the atom. For perfect matching n = 1, whereas n < 1 for an
imperfect matching.

Since in (4) DPO is not treated as a reservoir but as a part of the system, equation (4)
is applicable for any bandwidth of the squeezed vacuum produced by DPO. The advantage
of the Markovian master equation (1) over equation (4), however, is the fact that the former
allows for analytical solutions while the latter does not. When the DPO cavity bandwidth
k > =, both equations are expected to give the same results. There is a question, however,
how big really must be x with respect to v to make equation (1) still applicable.  To
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FIG. 1. Fluorescence spectra — coupled-systems (solid) and Markovian master equation (dash): € = x/8 (N = 0.26,

M=057),2=10,9=0,A=0,7=0.98 and (a) k =10, (b) k =40
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FIG. 2. Fluorescence spectra — coupled-systems (solid) and Markovian master equation (dash): € = x/4 (N = 1.78,
M=222),2=10,0=0,A=0,7=09and (a}) k=10, (b)x =40

answer this question we show in Figs. 1-3 few examples of the resonance fluorescence spectra
obtained using both approaches. The width of the squeezed light « as well as the amplitude
of the pump field € are given in units of the atomic linewidth of . In Figs. 1 and 2 there



are examples of the resonance fluorescence spectra for strong field (2 = 10 in units of 7).
In Fig. 1 the squeezing is smaller than in Fig. 2. The well known squeezing parameters
N and M (mean number of photons and the field correlation) are: for Fig. 1 N = 0.26,
M =0.57, and for Fig. 2 N = 1.78, M = 2.22. As it is seen from Fig. 1, for weak squeezing
the agreement between the two approaches is perfect even for the squeezing bandwidth &
as small as 10. When the squeezing becomes more pronounced the agreement is worse for
the same bandwidths of the squeezed vacuum, but it is still pretty good. We would like to
emphasize that for kK = () = 10 the squeezing bandwidth is the same as the Rabi frequency
of the field, which shows explicitly that the Markovian approximation works well when the
squeezing bandwidth is much broader than the atomic linewidth, but not necessarily larger
than the Rabi frequency. This is an advantage of our master equation (1), which was derived
by performing the dressing transformation first, and next coupling the atom to the reservoir.
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FIG. 3. Fluorescence spectra — coupled-systems (solid) and Markovian master equation (dash): e = Kk/8 (N = 0.26,
M =057),2=035 ¢=0,A=0,7=0.98 and (a) k = 20, (b) k =40

In Fig. 3 we show examples of the spectra for a weak field (2 = 0.35). In this figure the
Rabi frequency is chosen as to show a possibility to burn a hole in the spectrum. It is seen
that for x = 10 in this case the Markovian master equation does not reproduce the hole, and
broader squeezing is needed to reproduce the feature, but for k = 40 agreement is already
quite good.

The results shown here convince us that the Markovian master equation (1) works quite
well for the squeezing bandwidth which is ten times bigger than the atomic linewidth.
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Abstract

The recent observation of trapping state in the micromaser demonstrated
that a maser field in a number state of Fock state can be generated in steady
state. Additionally we have shown that Fock states in the micromaser can
also be generated dynamically using state reduction of the pump atoms. In
this case the purity of the Fock state can be probed by an additional atom
sent into the cavity after the first.

The quantum treatment of the radiation field uses the number of photons in a particular
mode to characterise the quantum states. The ground state of the quantum field is rep-
resented by the vacuum state consisting of field fluctuations with no residual energy. The
states with fixed photon number are usually called Fock or number states. These states are
also used as the basis for the quantum representation of all general radiation fields which
are usually expressed in an expansion of number states. Fock states thus represent the most
basic quantum states and are maximally distant from what one would call a classical field.
So far Fock states of the radiation field have not been realised experimentally under steady
state conditions since they are very fragile and very difficult to produce and maintain. In
order to generate these states it is necessary that the mode considered has minimal losses.
Additionally the thermal field, always present at finite temperatures, has to be eliminated
since it causes photon number fluctuations. In this paper we demonstrate the presence of
Fock states by probing the micromaser field using atoms to investigate the dynamics of the
photon exchange.

In the micromaser highly excited Rydberg atoms, interact with a single mode of a super-
conducting cavity which can have a quality factor as high as 3 x 10'°, leading to a photon
lifetime in the cavity of 0.2s. The steady state field generated in the cavity was the object
of detailed studies of the sub-Poissonian statistical distribution of the field [1], the quantum
dynamics of the atom-field photon exchange represented in the collapse and revivals of the
Rabi nutation [2], atomic interference [3], bistability and quantum jumps of the field [4],
atom-field and atom-atom entanglement [5].

The interaction of a two-level atom with a single mode of the cavity field is governed by
the Jaynes-Cummings Hamiltonian [6]. In this system an atom in the presence of a resonant
quantum field undergoes Rabi oscillations. At low temperatures of the cavity the number of
blackbody photons in the cavity mode is reduced and under this condition, trapping states



begin to appear [11]. They occur in the micromaser when the atom field coupling, 2, and
the interaction time, t;,;, are chosen such that in a cavity field with n, photons each atom
undergoes an integer number, k, of Rabi cycles. This is summarised by the condition,

Ming (/g + 1 = km (1)

When Eq.1 is fulfilled, each atom undergoes a full Rabi cycle leaving the cavity photon
number unchanged after the interaction, hence the photon number is ”trapped”. This will
occur over a long range of the atomic pump rates (Ne). The trapping state is therefore
characterised by the upper bound photon number n, and the number of integer multiples of
full Rabi cycles k. Trapping states are quantum features of the micromaser field that occur
through the influence of Fock or number states of the electromagnetic field.

The experimental apparatus is presented in Fig. 1. The present setup has been described
in detail previously [4,7]. Briefly a rubidium oven provides two collimated atomic beams; a
main one passing directly into the cryostat which contains the maser cavity and a secondary
one used to control the laser frequency. The cavity is cooled by the cryostat to 300mK
which corresponds to a thermal photon number of 0.054. A frequency doubled dye laser
(A = 294nm) was used to excite rubidium (®*Rb) atoms to the Rydberg 63P;/» state from
the 551 /2(F = 3) ground state. The maser cavity is tuned to the 63P3/2-61Ds5/2 (21.4560
GHz) transition. Velocity selection is provided by angling the excitation laser towards the
main atomic beam at 11° to the normal. The dye laser was locked to the reference beam,
using an external computer control, to the 5S)/2(F = 3) - 63P5/, transition of the reference
atomic beam excited under normal incidence. The natural velocity distribution of the atomic
beam allowed the interaction time of the atoms with the cavity to be tuned from 40us to
160us by Stark shifting the reference frequency with a high quality programmable power
supply. The detection of the Rydberg atoms is performed by field ionisation in two detectors
set to different voltages so the upper and lower states, 63P3/; and 61Ds5/, respectively, can
be counted separately. The cavity we used had a @Q factor of 1.5 x 10'? for the trapping
state measurement and 3.4 x 10°, for the dynamical measurement.

When a trapping state is realised by choosing a proper interaction time, the photon
number distribution is strongly peaked in the range n < my. In which state the maser
remains until a random event occurs, which changes the photon number in the cavity and
violates the trapping state condition. In general during the steady state operation of a
micromaser in a trapping state, the waiting time between two atoms in the lower state
becomes longer and one should expect a general suppression of events in the lower state
atom detector and an increase in the upper state detector [12]; a feature that should be
preserved through increasing atomic pump rate N [7].

A Fock state shows ideal sub-Poissonian statistics hence under the influence of a trapping
state the atomic statistics (which are closely related to the photon statistics [9]) should also
be sub-Poissonian. Consequently a first indication that the trapping states represented Fock
states of the field was the observation of Sub-Poissonian Statistics when the maser was under
conditions of a trapping state [7].

It has been shown theoretically [11] that fixed photon numbers may persist under steady
state conditions of the micromaser when dissipation of the field is small and the thermal
field in the cavity is reduced to photon numbers on the order of 1072, or below. This is the
case for the following reason: normally the cavity field builds up from the initial thermal



distribution, the photon fluctuations are therefore determined by the initial field. If they
are eliminated at low temperatures, the initial state is then the vacuum field. Successive
emission events fill the cavity with photons until the photon number becomes ”trapped”,
this being achieved when the emission probability of all subsequent atoms is reduced as all
atoms perform complete Rabi cycles without releasing a photon.

Using a dynamical measurement we were able to observe the build up of the maser field
using state reduction [13] of a detected atom to project the cavity field onto a Fock state and
the Rabi oscillations of a probe atom to test the cavity state. In this way we have observed
the Fock states of the maser field up to n = 2 [14].

In this paper we reported on the observation of trapping states in the micromaser and
subsequent measurements of the maser field under the influence of a Fock state; the ultimate
quantum states of a radiation field. The successful generation of Fock states makes many
further experiments using these states possible. In the steady state Fock states can be used
in quantum information, the observation of Schrédinger cat states and their decoherence
and the investigation of nonlocal quantum phenomena such as the entanglement of atoms.



REFERENCES

1
2

| G. Rempe and H. Walther, Phys. Rev. A 42, 1650 (1990).

| G. Rempe, H. Walther and N. Klein Phys. Rev. A 58, 353 (1987).

3] G. Raithel, O. Benson and H. Walther, Phys. Rev. Lett. 75, 3446 (1995).
4] O.

5| B.

Benson, G. Raithel and H. Walther, Phys. Rev. Lett. 72, 3506 (1994).
Englert, M. LofHler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, Fortschr.
Phys. 46, 897 (1998)
[6] E. T. Jaynes and F. W. Cummings, Proc.IEEE 51, 89 (1963).
[7] M. Weidinger, B. T. H. Varcoe, R. Heerlein and H. Walther, Phys. Rev. Lett. 82, 3795
(1999).
[8] P. Meystre, G. Rempe and H. Walther, Opt. Lett. 13, 1078 (1988).
[9] H.-J. Briegel et al., Phys. Rev. A 49, 2962 (1994); G. Rempe, F. Schmidt-Kaler and
H. Walther, Phys. Rev. Lett. 64, 2783 (1990).
[10] P. Filipowicz, J. Javanainen and P. Meystre, Phys. Rev. A 34, 3077 (1986).
[11] P. Meystre, G. Rempe and H. Walther, Opt. Lett. 13, 1078 (1988).
[12] C. Wagner, A. Schenzle and H. Walther, Opt. Comm. 107, 318 (1994).
[13] J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A. 36, 4547 (1987).
[14] B. T. H. Varcoe, S. Brattke, H. Walther. In preparation.

[
[
[3]
4]
[5]



Rubidium oven

7 Auxiliary
detector

crerence L.ascr

Velocity selecting
UV laser

Piezos for fine-
adjustment of the
niobium resonator

State selective
field ionisation of
Rydberg atoms

FIG. 1. The experimental setup. The atoms leaving the rubidium oven are excited into the
63P3/2 Rydberg state using a UV laser at an angle of 11°. After interacting with the cavity
the atoms are detected using state selective field ionisation. Tuming of the cavity is performed
using two piezo translators. The reference beam is used to stabilise the laser frequency to a Stark
shifted atomic resonance. This allowed the velocity subgroup selected by excitation to be changed
continuously within the range of the velocity distribution of the atoms.
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Abstract

Within the framework of the Thermal Wave Model description, an investigation is made of the
longitudinal instability properties of a coasting high energy charged particle beam.The analysis,
which is based on a nonlinear Schroedinger-like equation for the beam wave function, is shown to
reproduce the characteristic features of the coherent instabilities as obtained previously by
conventional techniques based on the Vlasov equation for the beam distribution in phase space.

Introduction. The thermal wave model (TWM) is a quantum-like description of classical
charged particle beam dynamics. In the TWM description, the beam properties are described by a
complex valued beam wave function, which satisfies a Schroedinger-like evolution equation with
the beam emittance playing the role of Planck’s constant, [1]. The square modulus of the beam
wave function represents the beam density. The TWM has been used to analyze a number of linear
as well as nonlinear collective effects that occur in charged particle beam dynamics. The approach
has successfully reproduced many results of conventional analysis, but has also provided new
insight and physical understanding for the propagation dynamics of charged particle beams, e.g.

(2]

In the present analysis we will concentrate on an analysis of longitudinal coherent instabilities
associated with particle beams. The dynamics of the beam wave function is determined by a
Schroedinger equation where the potential is given in terms of a complex impedence, Z, which
describes the self consistent interaction between the beam and its surroundings. The self
consistency implies that Z is a nonlinear function of the beam wave function and the resulting
equation becomes a generalized nonlinear Schroedinger equation.

A modulational instability analysis of a coasting paticle beam is carried out for the general case of
an impedance having both resistive and reactive parts and the results are shown to be fully
consistent with the results of previous conventional analysis. An effort is also made to extend the
modulational analysis to the case of bunched particle beams with a finite energy spread where
Landau damping is known to be important. This effort is only partially successful in the sense that
an increased region of stability in (Z,Z,) space ( Z = Z_+ iZ,) is indeed obtained. However, this
region is one-dimensional and, although of the correct extension in this dimension, does not
reproduce the two-dimensional region of stability close to the origin in (Z,Z)) space, which is
found using Vlasov theory. On the other hand, in the limit of large instability growth rates (where
Landau damping is negligible) there is again complete agreement between the TWM and Vlasov
theories.

The question now arises whether the phenomenon of Landau damping is outside of the TWM as
described by the characteristic model equation used. An indication that this is not the case is
demonstrated as follows: If the analysis in configuration space, as expressed by the nonlinear



Schroedinger equation for the beam wave function, is generalized into a phase space description by
means of a Wigner formalism, the TWM approach does indeed reproduce exactly the Landau
damping phenomenon of the Vlasov formalism. Since the phase- and configuration -space
descriptions are physically equivalent, Landau damping should be possible to regain also in
configuration space, although it seems easier to obtain within a phase-space description.

Generalized nonlinear Schroedinger equation for the beam wave function.
Within the TWM description, the longitudinal dynamics of a charged particle beam is described by

the following evolution equation for the beam wave function ¥(z,x), cf [2].

M 1 n 0% b
E—=——5 +
% 2p% X% (Eple)BcTy
where the first term on the RHS accounts for the longitudinal spreading of the beam and the second
term describes the interaction between the beam and its surroundings, as characterized by the self

consistent voltage U(z,x) which is related to the charge line density of the beam, A(z,x), according
toU(x,2) = efcZ,A(x,2) + efcRy(Z; In)dA/ &k where Z is the coupling impedance between the beam and its

surroundings. Finally the system is closed by the relation between the charge line density A(z,x)

[u(x, 2dx (1)
0

and the beam density, viz.M(z,x)= N /(2R )[¥(z,x)|>» The notation used here is standard see e.g.

[2]. Combining eq. (1) with the definitions of U and A , the following generalized nonlinear
Schroedinger equation is obtained for the beam wave function

X
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where the coefficients are defined by
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Modulational instability analysis. A convenient way of analyzing the stability
properties of small perturbations on a background solution is to decompose the beam wave
function as  W(x,z) = A(x, z) exp[iO(x, z)] and to write eq.(2) as two coupled equations for A

and 6

A, = 0(aA,®, + AB,,)
1
~0; = 0l Ay, - (©,)%1+KA> (4)

It is straightforward to show that a stationary solution of eq.(4) is given by A(x,z)=A = constant;
O(x,2) = Oy (x,2) = —KA2z — pAZxz + (1/3)ou’A} 7> .Considering small perturbations 6A and 6O on

the amplitude and phase of the stationary background solution, the linear evolution of these
perturbations are determined by the coupled system

SA, = (284,00 + 4900 1)
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The system (5) admits plane wave solutions of the form 84,80 o exp[i(Kz + ,uQA(%zz —Qx)] which
gives rise to the dispersion relation

ZK‘PO 2#‘1’0
OCQ3
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Neglecting the first dispersively stabilizing part, eq.(6) can be rewritten in physical quantities as

I’la)o)2 610 lﬂ
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in full agreement with conventional Vlasov results for the instability of a coasting beam cf e.g. [2].
In particular we note that if Z_# 0, the beam is always unstable and writing K = K, +iK; , we can

eliminate K, from eq.(7) to express the dispersion relation in the form Z; = Z;(Z,; K;). It is found
that the level curves Z; = Z;(Z,;K;) for constant K, are parabolas of the form
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Modulational instability. We now generalize the situation to allow for a bunched beam, i.e.
A(x,0)=A,(x). If we assume that the width of the beam bunch is large, the scale length for its
change can be assumed much longer than that of the instability growth. Consequently, we can
neglect the z-variation of the background profile and approximate A, (x,z) = A, (x). Allowing
however for the curvature of A (x) we can approximate eq.(5) as

oA
(—); = [2( )xx® x T00 ]
AO z AO 0

dA AO '
50 = el __M__zg x5@ 2 2 —dx (10)
¢ = O + 0 1+ KAo + /JAOI

Here we can approximate further A, /A, = -F/a’, where a is the width of the beam and F is a form
factor which depends on the actual shape, but is of the order of unity, e.g. if A (x) = A cos(mx/2a)

we have A, /A, = -T*/4. It can now easily be shown from eq.10) that the dispersion relation (6) is
changed into

F  2k% 2;»1!0 )
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From eq.(11) we infer that the finite extension of the beam provides a further stabilizing effect. The
corresponding level curves for constant growth rate are still parabolas, but are shifted by the new
stabilizing term to read

5 _r2.9p2__L1 52
Zi=F +Ki —WZr (12)
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where T2 =1+F /(a2£22). Clearly, the region of instability for Z, =0 has been increased.
However, conventional Vlasov theory predicts a two-dimensional region of stability close to the
origin in the (Z,Z,) plane and in the vicinity of this region, the level curves are deformed away
from the simple parabolic form. For large growth rates though, the level curves regain their
parabolic form. Thus, the present analysis based on the TWM reproduces all the characteristic
features of the conventional analyisis except for the small two-dimensional region of stability close
to the origin in (Z,Z,) space. Possible explanations for this discrepancy are the fact that the present
analysis is based on the full nonlinear stationary solution and in particular that the analysis assumes
that the scale length for the variation of the background solution is much longer than that of the
instability. The latter assumption is clearly not valid in or close to the stability region.

Is there Landau damping in the TWM description ?

It is possible to go from configuration space (as described by the NLS equation for ¥(x,2)) to
phase space by introducing the Wigner-like function (p conjugate momentum to x)

+o0
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If "P(X, 7) satisfies eq.(1), it can be shown that ,O(Z, X, p) satisfies the von Neuman equation
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Expanding U for small values of €and linearizing the corresponding equation around the
equilibrium state p,(p), the dispersion relation becomes (¢ = q° BenAg (2TEGRy))
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which coincides with the dispersion relation of the conventional theory, including the phenomenon
of Landau damping.

Conclusion. The present analysis has confirmed that the TWM provides a powerful new
approach for analyzing the properties of high energy charged particle beams. In particular, the main
properties of coherent longitudial instabilities of a particle beam have been recovered although
some additional analysis is needed to explain the two-dimensional stability region close to the
origin in impedence space as found by classical Vlasov theory.
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Abstract

We use a subset of coherent states {|ar >}, which is complete but not
overcomplete, and its biortogonal set {|w) >}, to define the action of the
phase operator ¢, introduced somewhat imprecisely by Lewis et al [Phys.
Rev. Lett. 77, 5157 (1996) ], on a dense set of states. We show that its
domain does not contain the number states so that the "no go” theorem for
this putative phase operator does not apply, and we explane some missunder-
standings related to it.

I. INTRODUCTION

It is well known that there is no self-adjoint operator with the domain containing the
number states |n >, which satisfies canonical commutation relations with the oscillator
hamiltonian. This is the content of the well known "no go ” theorem for the operator
representing the phase variable of the quantum harmonic oscillator. It is usually ascribed
to Susskind and Glogower [1], but it was probably noticed already by Dirac [2] as early as
in 1931.

Recently, Lewis at al... [3] proposed the following expression:

- 1
oL = ;z:(ln at —Ina), (1)



where @t and & are the creation and annihilation operators, to represent the phase of the
quantum harmonic oscillator. They proceeded, without a precise definition of the domain of
the expression (2), to symbolically calculate its matrix elements in the overcomplete bases
of the coherent states |a >. Furthermore they formally obtained the standard canonical
commutation relations of ¢z, with the Hamiltonian. Somewhat later, Smith and Vacarro [4]
clamed that the proposed expression ¢y, is equivalent to the one proposed by Turski [5]: &T,
and for the later they explicitly showed that it does not satisfy the canonical commutation
relations.

We show, by direct and simple, computation that the two expressions are not equivalent.

The conclusions of Smith and Vacarro are correct but they do not apply on the q@_r, by
Lewis at all... Nevertheless, the analyses of Smith and Vacarro points to the one important
aspect of the problem: If an expression, like (2), defined as a nonentire function of the
creation and annihilation operators, is apparently changed by the unity [|a >< a|d*a, how
should one correctly define its action on the states different from the coherent states. In the
next section we give a constructive answer on this question

II. WHAT IS THE DOMAIN OF ¢ ?

The subtlety of the problem with a putative phase operator is well illustrated by the
example of the Lewis et al... expression (2), and the corresponding objections raised by
Smith and Vacarro. Lewis at al... proposed the expression ¢ér given by (2) to represent
the phase of the quantum harmonic oscillator, guided by the fact that its mean value in a
coherent state |a >, a = pexp(i¢) is formally equal to the phase ¢. They claim that in a (
unspecified) domain ¢y, satisfies the canonical commutation relations with the Hamiltonian.
Smith and Vacarro [4] acted on (2) by the unity expressed as 1 = [ |a >< a|d?a to obtain:

1 ~
5;:;[/|a >< a]d2a111a+ — /lna]a >< a]dza] = /¢]a >< ald?a = ¢r 2)

Then they showed that gZ)T does not satisfy the canonical commutation relations with the
Hamiltonian, which, as they concluded, contradicts the claim by Lewis at all.

However, one should be careful in applying the resolution of unity given by the overcom-
plete set of coherent states on the symbolic expressions like (2). Indeed, remaining on the
formal level of Lewis at all, the mean value of ¢z in a coherent state |a > is:

< OL|<2>L|OA >=< alln ot —1n a|a >= (lna" — h’la) < a’a >=¢ (3)

Let us suppose that 0 < ¢’ < 27 and that 0 < ¢ < 7. Since | < ala’ > |* = f(p', cos(¢' — $))
we have:

<algrla>= [¢' <ald ><dla>da =
2r—¢

27 —¢ 2n—¢
J (pt+u)|<ala >’ =¢ [ |<ala > da'+ [ uf(p,cosu)dup'dp'. (4)
-9 -¢

The first integral is equal to ¢ and the second can be split into a sum of two integrals, one
on (—¢, #) and the other on (¢, 27 — ¢). Since f(p', cosu) is an even function of u the first



of these integrals is zero and the second is different {rom zero except when ¢ = w. Thus, we
have shown that

< a|¢rla >#< alr|a > . (5)

So the claim by Smith and Vacarro can not be considered as proved since it is irrelevant
for &L, although correct for $T.

These, apparently contradictory conclusions, about a putative phase operator are math-
ematically due to the facts that ¢ = iln(e/p) is not an entire function of a € C, and that
the bases of the coherent states is overcomplete and nonortogonal.

The difficulties with ¢z, can be circumvented by a more careful consideration of the states
where the expression (2) gives convergent results. These states are obtained by picking up
a discrete and complete, but not overcomplete, subset {|ay >} from the overcomplete set
of all coheret states. Such states are first considered by J. von Neumann [6], and the
exact completnes of {|ag >} was proved by Perelomov [7]. He also constructed the set
of the corresponding biortogonal states {|ws >}. The states {|ay >} are parameterised
by points in a lattice in the complex plain. Namely, {|ax >} = {|mw; + nw; >}, where
(m,n) # (0,0) € Z x Z are pairs of entire numebers exept (m,n) = (0,0) and w;,w, € C
are complex numbers. Furthermore, w; and w; are chosen such that the surface of the cell
S = Im(w,wy) is equal to w. The latest condition is necessary and sufficient for the set of
states to be complete and not overcomplete. In order to save on the notation we use single
index k instead of the pair (m,n). The biortogonal basis {|wy > satisfies < wi|ay >= x.
Explicit relations for < ajw, >, which shall not be used in this paper, are given in [7].

Using the sets {|ax >} and {|wy >} we define the following expression:

<Z;L = Zln oplog >< wi| — Inagjog >< wy) (6)
k

to represent ¢ when acting on the dense set of states represented as convergent sums of
|ak >

I’Qb >= chIak >, ¢ =< wk|7,b > . (7)
k

The domain of ¢r, contains the dense set {|ay >}, and in addition all the vectors represented

as convergent sums (10) such that the action of ¢y, is also represented as a convergent sum
(10). For example,

< aklngak >= (lnaj —Inag) = ¢s. (8)

in accord with Lewis at all. However ¢; and (ZSL, formally given by (2), could, and do,
formally give different results when acting on the "redundant™ coherent states |a ># |ag >.
Since the Lewis at all expression (2) has no properly defined domain, and in orderA to avoid
multiplication of symbols, in what follows we shall always denote the operator ¢r by J’L’
baring on mind the definition of its domain.

It is important to notice that the eigenstates of the Hamiltonian |n > can not be repre-
sented as a convergent sum (10), so that < n|¢z|n > is not defined. Indeed, if |n > would



have been equal to [n >= Y cx|ay >than, by applying n+1 times the annihilation operator,
one would obtain 0 = 3, ™ lci|ag >,which can not be since {|oy >} are not overcom-
plete. This fact points out to a deep physical reason for the difficulties in the definition of
the quantum phase.

II1I. DISCUSSION

Major impediment to a consistent definition of an operator representing the phase of
the quantum harmonic oscillator is the well known ”"no go” theorem, mentioned in the
introduction, which states that there is no hermitian operator O on L,(R) with a domain
containing the hermite functions and satistying [, O] = 1, where 7 is the number operator.

Our approach was to question the domain of the putative phase operator. Following
Lewis et all. we introduced the expression (9) defined on a dense set of states, containing
the complete subset of the coherent states, and we gave explicit rules how this expression
should be used to give convergent results. The domain of the operator ¢r, given by (9),
does not contain the number states, so that the "no go” theorem does not apply, and the
canonical commutation relations could be satisfied. The operator ¢z, is based on a complete
subset of the coherent states [ay >, its biortogonal set Jwy, > and the In ay function. The lna
function was previously used in this context by Lewis et al...but they remain on a formal,
symbolic treatment of this quantity, which made possible, also formal, criticism of Smith
and Vacarro. However, ¢y, is an explicitly defined quantity, with a properly specified domain
and action. Its action is defined by convergent series whenever it acts on a state which can
be represented as a convergent series of | >. Such states arve dense in Ly(R). However,
&1 is not well defined in the number states |n >, which is, in a way, in accord with the "no
go” theorem.
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We show that 100% squeezed output can be produced in the fluorescence
from a driven two-level atom interacting with a squeezed vacuum, and that
the atom evolves into a pure atomic state. The quadrature for which optimal
squeezing occurs depends on the squeezing phase ®. For small N, squeezing
amplification may occur.

There have been several theoretical investigations of squeezing in resonance fluorescence,
both in terms of the total variances and in terms of the fluctuation spectra of the phase
quadratures. Single-mode or frequency-tunable two-mode squeezing with a finite bandwidth
may be obtained, depending on the Rabi frequency and detuning [1].

Experimental observation of squeezing in the fluorescence field has proved a great chal-
lenge, one problem being that atomic motion produces phase shifts which destroy squeezing.
This difficulty was surmounted in the recent experimental advances [2]. Recently, experi-
ments carried out by Zhao et al. [3] have found some evidence of squeezing by measuring
the phase-dependent fluorescence spectra of a coherently driven two-level atom with a long
lifetime, stimulating the further exploration of squeezing in resonance fluorescence.

We have recently found that squeezing in resonance fluorescence can be greatly enhanced
in a frequency-tunable cavity [4], or in a squeezed vacuum [5]. The latter works mainly in
the regime over which anomalous spectra such as hole-burning and dispersive profiles [6]
occur, where squeezing occurs in the out-phase quadrature of the fluorescent field.

Here we extend the study to the general case, and show that large squeezing occurs
in different phase quadratures of the fluorescent field, depending upon the values of the
parameters. The large squeezing is associated with an atomic pure state, and thereby with a
large atomic coherence. Perfect fluorescent squeezing may only take place for the particular
squeezing number N = 1/8.

For a two-level atom driven by a coherently laser field and damped by a broadband
squeezed vacuum, the optical Bloch equations are of the form

(62) = =Ye{0z) — (A +yM sin q))<0y>v

(Gy) = —loy) + (A — yM sin ®)(0z) — o),
<dz> = '_'72<0-2> + Q<0y> — % (1)



where v, , = +yMcos®, v, = v+, [ = v(N +1/2), and A = wy —wy, is the detuning,
{2 the Rabi frequency and @ the relative phase between the laser and the squeezed vacuum,
N the squeezing photon number, and M the strength of the two-photon correlations in the
squeezed vacuum which obeys M < /N(N +1); 0, and o, are the in-phase (X) and out-
of-phase (Y) quadrature components of the atomic polarization, respectively, and o, is the
population inversion.

It has been shown that such a coherently driven two-level atom interacting with the
squeezed vacuum reservoir can collapse into a steady-state which is a pure state, for the case
® =0or7[6], i.e., & = (04)2 + (o) + (0,)> = 1. We point out here that a steady pure
state can, in fact, be achieved for other values of the squeezing phase as well, the requirement
being that given ®, ) and A are chosen to satisfy ¥ = 1. The general pure state has the
form

_ VM) - e*VN[L).

v (M + N)'/?

(2)

where o = arctan (%ﬁ;’—f}%). The conditions for the pure state (2) for a few specific cases
are given below:

=0, A=0, Q=-—YM (3)
VN+1+VN
i YV2M
d==, A=T-yM, Q= , 4
2 i VNF1+VN @)
2AVM

d=7n, A>T-9M, Q= . 5
! VN+1-+VN ©)
Notice that for resonant excitation, a pure state is only possible if & = 0. In general, the

pure state (2) describes a completely polarized atom with the Bloch vector B lying on the
Bloch sphere with polar angles o and (3,

B = cosa sin fe; + sina sin fe, 4+ cos Fe, (6)

where 8 = arccos (—%—3%) When @, Q and A satisfy the condition (3), then o = 7/2,
and the atomic Bloch vector (polarization) is in the Y-Z plane, whereas if the condition (5)
holds, we have o« = 0 and the atom polarizes in the X-Z plane.

The total normally-ordered variances of the phase quadratures of the fluorescent field can

be expressed in terms of the steady state solution of the Bloch equations (1) as
Sp = <: (AEy)? :> =14 (0,) — ({0,) cos @ — () sin H)? (7)

where Fy = e &) 1 ¢9€(-) i the #-phase quadrature of the atomic fluorescence field,
measured by homodyning with a local oscillator having a controllable phase 8 relative to the
driving laser. Ey—q and Ey—, /, are usually the in-phase (X) and out-of-phase (Y) quadratures
of the fluorescent field, respectively. Sy is the total normally-ordered variance of the & -phase
quadrature of the fluorescent field. The field is said to be squeezed when S5 < 0. The



normalization we have chosen is such that maximum squeezing corresponds to Sy = —0.25.
Eq. (7) implies that the squeezing occurs at large values of the atomic coherences, (o).

It is not difficult to show that the total normally-ordered variances in the phase quadra-
ture component of the fluorescent field reach their minimal value

So, =1+ (02) = (0a)" = (0y)* = (=) (1 + (02)) + 1 = L, 8)

when the quadrature phase 8, = arctan (%%—Cs—fl—%). (Note that only when Sy, < 0 is the
resonance fluorescence a noise-squeezed field.) Furthermore, if the atom is in a pure state,

i.e., & = 1, then Sy, reduces to
S5 = (02)(1 + (02)) <0, 9)

showing that maximum squeezing occurs when (o,) = —1/2. Therefore, a completely po-
larized atom always radiates a fluorescent field with ,-phase quadrature squeezing. The
quadrature phase 0, is same as the longitudinal angle « of the polarized atom in the Bloch
sphere.

We may conclude that when ® = 0 and A = 0, optimal squeezing in the fluorescent
field always occurs in the out-of-phase (Y) quadrature component, i.e., 6, = 7/2 [5]. When
® =7/2 and A =T — yM, then 8, = 7/4, and optimal squeezing takes place in the 7/4
phase quadrature [3]. When ® = 7 and A > I" — yM, then 6, = 0, and optimal squeezing
is always in the in-phase (X) quadrature [4].

FIG. 1. Sx and X as functions of Q, for v = 1, ® = 7, A = 12.5 and (a): N = 0.05, (b):
N =1/8 and (c): N = 0.5. The solid and dashed lines represent respectively Sx and X.

Figure 1 shows that large squeezing in the resonance fluorescence of the two-level atom
occurs for pure atomic states. When N = 1/8, maximal squeezing (Sx = —0.25) is achieved
at the Rabi frequency €2 = 21.65y. The large squeezing is due to the large atomic coherence
in the pure state.

When eq. (5) is satisfied, the atom is in the pure state (2) with & = 0. The corresponding
total, normally-ordered variance Sx of the in-phase quadrature of the fluorescent field is of
the form

CENYMA12 (10



When N = 1/8, M = 3/8. Then, from eq. (10) we have S¥° = —0.25 (100% squeezing).
The corresponding value of the Rabi frequency is = /3A.

FIG. 2. S)IZS and S ;";V as functions of NV, represented by the solid and dashed lines respectively.

We plot S%°, indicated by the solid line, against N in Fig. 2, which demonstrates
that large squeezing occurs for small photon numbers. For comparison, we also present the
normally-ordered variance S5V of the in-phase quadrature in the squeezed vacuum field,
represented by the dashed line in this figure. It is clear that the squeezing of the output
field (fluorescence) is greatly enhanced over the region 0 < N < 0.562, compared with
the squeezing of the input (squeezed vacuum) field. Hence, the atom may be applied as a
nonlinear optical element to amplify squeezing.

Fluorescent field squeezing can also occur in other phase quadratures with the phase
between 0 (in-phase) and 7/2 (out-of-phase).
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Abstract

We have investigated the intensity noise properties of injection locked VC-
SEL’s. This injection is realized with a laser diode in an external grating
configuration. We observe a reduction of the intensity below the shot noise
level with a reduction of the number of transverse oscillating modes.

I. INTRODUCTION

VCSEL’s have been studied extensively in the past few years because of several useful
characteristics and because they appear very promising both for industrial applications and
for basic research. Indeed they show many advantages with respect to the previous standard
semiconductor lasers architectures. They present a very low threshold, a high quantum effi-
ciency and they can exhibit single longitudinal and transverse mode operation [1]. However,
the maximum single mode power is limited by the onset of higher order transverse modes.
Moreover, many changes are observed in the polarisation states of the emitted field as the
driving current is increased [2,3].

In this paper, we investigate the intensity noise of high quantum efficiency oxide confined
VCSEL’s. We report generation of amplitude squeezed light by injection locked VCSEL’s.
This technique, already used to reduce the intensity noise of other semiconductor lasers [4]
is applied with success to VCSEL’s.

The material of the paper is organised as follows : after this introduction, we present the
experimental' setup in section II. In section III, we analyse the experimental results. Finally,
in section IV, we summarize the results.

II. EXPERIMENTAL SETUP

We use oxide confined VCSEL’s (made at the Department of Optoelectronics of the
University of Ulm) with different active media diameters: 5, 7, 10, 12, 16 and 20 pum. They



 obectve
h. ;jec ive \

VCSEL

7
e,

o

Half wave plate

w Optical isolator
Master laser ﬁ%ﬁ%

Anamorphic prism

Monomode fiber

FIG. 1. Experimental setup for noise measurement on injection locked VCSEL’s.

consist of carbon doped p-type AlGaAs/AlGaAs and silicon doped n-type AlAs/AlGaAs
Bragg reflectors with pairs of quarter wavelength thick layers. The top (respectively bottom)
mirror has a reflectivity of 99,8 % (respectively 99%). They are coated on each side of a
cladding layer containing the three active 8 nm thick GaAs quantum wells and the oxide
aperture which provides both current and optical confinement. The devices are attached to
a copper plate using silver paste and the operation wavelength ranges from 820 to 850 nm.

Figure 1 shows the detail of the experimental setup. According to the principle of
pump noise suppression [5], a low noise home made power supply with an appropriate LC
filter provides the regulated electrical current which drives the VCSEL’s. The VCSEL’s are
also thermally stabilised with an active temperature stabilisation. With this stabilisation,
we were able to operate at a fixed temperature with a drift as small as 0.01°C per hour.
The light beam is collimated by an antireflection coated microscope objective located at
a distance of 2 mm from the laser output. This objective has a large numerical aperture
(N.A. = 0.6) to avoid optical losses which would deteriorate the squeezing. To measure the
intensity noise and the corresponding shot noise, the standard scheme consists in a pair of
two high quantum efficiency balanced photodiodes: this is the usual homodyne detection.
The sum of the two photocurrents is proportional to the intensity noise while the difference
is proportional to the corresponding shot noise [6]. However, in our case, it is better to use
only one photodiode (FND100, bandwidth 1-30 MHz, quantum efficiency of 90 %). Indeed,
because of the multimode operation with two orthogonal linear polarisations, the shot noise
obtained with a balanced detection would not be reliable and we preferred to use a separately
calibrated shot noise. The shot noise reference is obtained by means of a laser diode beam
which has a low intensity noise in the range of frequency of 1-30 MHz according to the
above mentionned property. We carefully checked the linear dependence of the calibrated
shot noise signal with the optical power incident on the photodiodes. The shot noise obtained



with this method was in agreement within 0.1 dB with the noise obtained by a thermal light
generating the same DC current on the photodiode. The photodiode is connected via a low
noise home made amplifier (with a4 CLC425) and electronic amplifier (Nucletude 4-40-1A)
to a spectrum analyser (Tektronix 2753P). With this setup, the electronic noise was more
than 6 dB below the signal we measured for a typical detected power of 1.5 mW.

We chose to inject the VCSEL’s fundamental gaussian transverse mode TEMy,. We use
a squeezed index guided quantum well GaAlAs laser diode operating at 850 nm as a master
laser. Low noise operation is achieved by suppressing the side modes using feedback from
an extenal grating in an extended cavity laser [6,7]. By tilting the grating, the laser diode
wavelength can be tuned coarsely to match the wavelength of the VCSEL TEMg, mode.
The grating is mounted on a piezoelectric ceramic to precisely tune the wavelength of the
laser diode. Astigmatism in the beam is corrected by means of an anamorphic prism. Two
optical isolators (for a total isolation of 50 dB) are used to prevent back reflection into the
laser diode. A single mode optical fiber filters the laser diode beam: only the TEMgy, mode
gets out from the fiber. Hence we have same transverse geometry for the master beam and
for the VCSEL transverse mode we want to inject. This ensures an efficient mode matching.
Moreover the waists of the master beam and of the slave laser mode are about the same. A
half wave plate enables to match the polarisation of the laser diode beam to the one of the
VCSEL TEMy, mode. At last, the master laser beam is coupled to the VCSEL one with a
beamsplitter. The injection locking is checked with a Fabry-Perot (FSR ~ 800 GHz, finesse
~ 100).

II1. EXPERIMENTAL RESULTS

We were able to realize the injection locking of VOSEL’s with various diameters. In
figure 2, we have plotted the normalized intensity noise measured versus the noise frequency
for a VCSEL of 7 um diameter. In free-running operation this device always exhibits an
excess noise. Curve (a) shows the normalized intensity noise in free-running operation while
curve (b) shows the intensity noise of the VCSEL for the same driving current when it
is injection locked (the injection power is equal to 2 % of the power of the free-running
laser). The best squeezing (after correction for optical losses) obtained is about -0.8 dB.
The VCSEL’s with larger diameters present the same property: injection locking technique
reduces the intensity noise. A spectral analysis shows that the intensity of the TEMg, mode
is increased by injection locking. However, despite injection, several transverse modes still
oscillate. The injection locking technique reduces the intensity noise but does not ensure
single mode operation.

IV. CONCLUSION

In this paper, we have shown that the injection locking technique can be applied with
success to reduce the intensity noise of the VCSEL’s. We can obtain squeezed light with this
technique from a laser which always shows an excess noise in free-running operation.
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FIG. 2. Normalized intensity noise spectrum (0-10 MHz) for a 7 um laser in free-running
operation (curve (a)) and for the injection locked laser(curve (b)).
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Abstract

We develop a theory of photodetection in the presence of feedback valid for
arbitrary time delay in the feedback loop and any degree of field fluctuation.
As a result we show that the statistical equivalence between photon flux and
photocurrent in the feedback loop has no place at times exceeding the loop
round-trip time.

Quantum theory of light detection was developed in 60’s by Glauber [1] and Kelly and
Kleiner [2]. The most important and widely used result of this theory is the expression
connecting the photocurrent autocorrelation function and the normally ordered averages of
the measured field:

((t)it)) = n(BYE)s(t —t') + n* (B (¢)EY () B E()), (1)

where the photocount charge is set to unity, 7 is the detector quantum efficiency and £ is
the positive-frequency part of the field, normalized so that the operator I(t) = E+(t)E(t)
has meaning of photon flux through the surface of the detector. For n = 1, using the
commutation relations for free field: [E(t), E*(t')] = o(t — t'), [E(t), E(t')] = 0, one can
rewrite Eq. (1) as (i(t)i(t')) = (I(t)I(t))), which, together with the relation (i) = (I), lets
one speak about statistical equivalence of photon flux and photocurrent.

However, the deduction of Eq. (1), as well as the traditional theory of photodetection
itself, is valid only when ”the sources are assumed not to interact with the detector” [2].
Considerable effort has been made in the last years to developing a theory of photodetection
in the presence of feedback between the detector and the sources. Shapiro et al. [3] proposed
such a theory for linearized fields. In our early work [4] we considered feedback photode-
tection of intensity modulated coherent light. Wiseman and Milburn [5], [6] developed an
operator formalism for describing feedback with zero time delay, which has been applied
recently to many important problems of quantum optics [7]. Experimental investigations of
feedback can be found in Ref. [8]. In the present work we develop a theory of photodetection
in the presence of feedback valid for any degree of field fluctuation, any state of the field
and arbitrary time delay in the loop.

Our starting idea is that in the presence of feedback the expression for photocount
sequence probability has the same form as in the standard theory, but with field intensity
explicitly depending on the times of the preceding counts of the in-loop detector:



k

Pl (T <H (t:|T) exp{ Oj (7| Tx)d }> 7 (2)

where pfg,i)(Tk) is the probability density to observe in the time interval [0,t) exactly k

counts at times Ty = t,,..., tx, 7 is the detector quantum efficiency, 1(t) = E*(t)E(t) is
the operator of field intensity on the surface of detector, and (...) , stands for time-normally
ordered averaging of field operators. The validity of Eq. (2) in the presence of feedback can
be justified by the continuous photodetection theory [10], [11], [12].

The set of elementary probability densities given by Eq. (2) completely describes the
stochastic point process of photocount arrivals. However, the correlation function of the
photocurrent i(t) is expressed via coincidence rates [9):

(i(t)ito)) = wi(t)d(t — to) +w2(t, o), (3)

where the function wi(t1, ..., %) is the probability density to observe [ counts at times ¢, ..., ;,
with possible counts at other times. These functions (coincidence rates) are related to
elementary probability densities in the following way [9]:

+o0 1
wit), ...t Z dtl dtkpf(’;j)” £t T, (4)
kl

In the absence of feedback such a transformation is trivial and results in a photocurrent
correlation function given by Eq. (1). In the presence of feedback the calculation of coinci-
dence rates can not be performed in general case and requires considering a concrete type
of field intensity dependence on detector counts. Here we consider one rather general type
of such a dependence, which in the P-representation of the field can be written as

k

I(7|T%) = L(t) + ZF(t —t;), (5)

=1

where Io(t) is the stochastic field intensity describing fluctuations of field not connected with
feedback and F(t) is the transmission function of the feedback loop (F(t) = 0 for t < 0).
Substituting Eq. (5) into Eq. (2), rewritten in the P-representation, and averaging over
photocount times according to Eq. (4), we arrive at a set of Volterra integral equations for
coincidence rates, after resolving which we obtain (¢ > to):

wi(t) =1 (I(t)), (6)

wa(t, to) = 1° (B (to) EX (1) E(t) E(to) ) + R (t — to)wn (fo), (7)

where Rp(t) is the resolvent corresponding to the kernel nF'(t) [13]:

_ 1 ' Nfw) i
Rp(t)—'2—7r—[0 1—j17—f(¢_056 dw, (8)



where f(w) is the Fourier transform of F(t). The most important property of the resolvent
is that if F'(t) = 0 for ¢ < 74 (74 is the delay time of the loop), then Rp(t) is also zero for
t < 74 Substituting Egs. (6), (7) into Eq. (3), we obtain

(i()i(to)) = (EVE) G(t — to) +n* (E*(to) E* () E(t) E(to) ) , (9)

where G(T) = n8(7)+ Rp(7)+ Rp(—7) is the Green function of the feedback loop, describing
the repeated round-trips of the signal in the loop. For no feedback G(7) = né(7) and Eq.
(9) coincides with Eq. (1).

Eq. (9) is the main result of our theory. For unity quantum efficiency, applying the
commutation relations for free field, we rewrite it in the form ( ¢t > t'):

)ity = (T 1)) + Re(t — ') (I) (10)

showing that in the presence of feedback the statistical equivalence of photocurrent and
photon flux has no place at times exceeding the delay time in the loop 74 (for which R is not
zero). This result is rather surprising for the intuitive representation of the photodetection
process with unity quantum efficiency as a ”direct conversion of photons into photocounts”.
However, the number of photons in some region of space is always equivalent to the number
of photocounts in the corresponding time interval, as the integral of I(7) over time interval
t has a sense of number of photons in some region of space only for ¢t < 7,,, where 7, is the
time of light propagation from the source to the detector, which is always less than 7.

It has been argued (3] that in the feedback loop the commutation relations of field
operators are not the same as for free field. Let us show that no modification of that relations
can preserve the statistical equivalence of the photon flux and the photocurrent. Indeed, for
bosonic field the commutator must be a c-number. Then, to obtain (i(t)i(t')) = (I(t)I(t"))
we would need to combine Eq. (9) with the commutator

(ETE)

[E@®),ET ()] =6t —1t)+ EOE@)

(Rp(t —t')+ Rp(t' — 1)), (11)

which is unphysical, being state-dependent. In their approach Shapiro et al. [3] considered
linearized fields, in which case Eq. (11) reduces to the relation

[E(t), B (t)] = G(t — 1) (12)

having a more physical appearance. However this trick is possible for linearized fields only.

In summary, we have shown, how the traditional theory of photodetection can be ex-
tended to the case of feedback between the detector and the source of radiation (Eq. (2)).
For the case of additive feedback our approach allows to obtain an exact expression for the
in-loop photocurrent autocorrelation function given by Eq. (9). This expression shows un-
ambiguously that statistical equivalence between photon flux and photocurrent has no place
in the feedback loop (even for unity quantum efficiency of the detector) at times exceeding
the loop delay time 74,.

This work was supported by INTAS, grant # 96-0167 and by Belarus Foundation for
Basic Research, grant F 97-300.
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Abstract

The system with an overdense plasma produced from a solid target evapo-
rated by an ultrashort high power laser pulse can provide a very large non-
linearity at optical frequencies. In a field of a strong electromagnetic wave
plasma boundary oscillates with double frequency of the field. Using an elec-
tron sheets model the statistical and dynamical characteristics of the reflected
electromagnetic field are investigated. The squeezing coefficient for a funda-
mental mode at the frequency of the incident laser pulse is estimated.

Nonclassical states of light were generated in experiment more than ten years ago but
hitherto the experimental squeezing coeflicients were modest - about several units. At the
same time applications of non-classical light seem to be very promising. Thus, for example, in
experiments with probe bodies specifically in gravitational wave experiments the sensitivity
of installation to external classical force can be considerably increased if the squeezed light
1s used for the pumping. Generally a gain in sensitivity can be proportional to the squeezing
coefficient of the input light.

The systems with free electrons can be very perspective for squeezed states generation
because of small dissipation and high nonlinearity of electron medium. Modern methods
of creation of high charge density electron medium including an evaporation of targets by
high-intensity ultrashort laser pulses and a possibility to tune the appropriate regime by
changing a velocity of electrons give an expectation that a highly squeezed electromagnetic
wave can be generated in the electron medium.

Let consider a thin layer of electrons with uniform density (electron mirror). Let the
density of electrons N will be large enough for the reflection coefficient will be close to
unity. Each electron in nonrelativistic limit moves along the figure of eight in the field of
a strong electromagnetic wave with frequency wo. Thus all electrons in the electron mirror
move synchronously with frequency 2wy in the direction of the wave vector of incident field.
So for the reflection of the incident electromagnetic wave the parametric regime takes place

[1].



In the linear approximation when V < ¢ the squeezing coefficient g of the reflected wave
have the following value [1]

g=(1-v)"! (1)

where v = €2E2 /(4m*c?w?), e and m are electron charge and mass, Ey is an amplitude of the
field. Therefore the larger the value of v the smaller the noise spectral density of the "silent”
quadrature of reflected field. However the expression (1) is valid only for the small values
of parameter v therefore in the case of v close to unity one have to take into account the
higher nonlinearities in the system besides the relativistic equations for the electron motion
have to be used.

It is useful to explore the microscopic model of electron medium for consideration of
the relativistic mirror velocities. Electronic medium is modeled by a set of parallel planes
with constant electron density N. Each plane has infinite dimensions in ¢ and y directions.
Thickness in z direction is considerably smaller than characteristic wavelength (wavelength
of input electromagnetic wave). If the movement of the planes is without rotation then all
variables depend only on coordinate z and time t and for a system with such a symmetry
the (341) model can be used: the movement of the planes is described by three components
of velocity By = Vi/e, By = Vy /¢, B, = V,/c and one coordinate z. This is the so called
electron sheets model.

For a thin charged plane (electron sheet) charge density and current have the following
form (o is a surface charge density)

p(ert) = 08(:— 2()), J(est) = OV (2)6(z — 21)) @)
where Z(t) is z coordinate of a sheet and the solutions for the fields have the form [2]

{i‘z(z,t) =270 - sign(z — Z(t")
Ei(z,t) = 2oV (t')/[c — V(¢ '251gn(z — Z(t")] (3)
H(z,t) = 2m0 - sign(z — Z(t))[VL(t), &]/[c — V. (¢)sign(z — Z(t))]
where El(z,t) = E.é + E,é€,, V. = Ve, + V€, and t - is a retarded time: ¢(t —t') =|
—Z({t) |

Let the movement of the plane in the z direction is defined by the following equation

(Bo < 1)
Ba(t) = Bosin(2wot), (4)

This type of equation can be supported by the powerful electromagnetic wave incident
normally at the plane. For the large surface charge density o one can omit the dispersive
term, in this case the charged plane becomes an ideal mirror with the reflectivity coefficient
about 1.

Let the field incident at the plane have the form (¢ =0,1...)

Eig = Eqcos((2g + Lwo(t — 2/¢) + ¢q)
= a4 c08(2q + Dwo(t — z/¢) — by sin((2q + 1)wo(t — z/c¢) (5)



where a, and b, are the quadrature components of the incident field. Then a reflected
field E, consists of a sum of odd harmonics of fundamental frequency wy with frequencies
(2p + 1)wo,p = 0,1... and amplitudes defined by the following expression:

Egp = — (1) (Agp(80)(—1)7 exp(ivg) + Bap(o) (i)™ exp(—ig,)) (6)
The coeflicients Ay, and B,, have the following form

o

Agp(Po) = Z 1+2(—n+p—q)/(2¢+1))Ju((2p + 1)B0/2) - J-ntp-a((2¢ + 1)50/2)
Byp(fo) = _ii: (1+2(n—p—q—1)/(2¢+1))Ja((2p + 1)B0/2) Jn-p-g-1((2¢ + 1)50/2) (7)

For the relative intensities of reflected harmonics one can obtain
| Eqp ‘2 /Eq2 = Azp + Bq2p — 2A4pByp sin 2¢4 (8)

and for Ay, By, # 0 they depend on phase ¢. So for the large velocity (o the scattering of
input modes into output modes is phase sensitive.

The transformation of input noise from frequency (2g+ 1)wp into the frequency (2p+1)wq
is defined by the following expressions

ap = Agpag + Bypby
bp = Bypaq + Agpby (9)

where a, and b, are the quadratures of the input field (cf. Eq. (5)) at frequency (2¢ + 1)wo
and a, and b, are the quadratures of the output field with frequency (2p + 1l)wg. The
output quadratures are correlated in this case. Introducing the new quadrature components
"rotated” with respect to the old quadratures [1] and optimizing the angle of rotation one
can obtain for the noise in the most "silent” quadrature

NopVgp = NOq(qu - qu)2 (10)

where Ng, and Ny, are spectral densities of quadrature components for the field in the
vacuum state at the frequencies (2p+1)wg and (2g+1)wo, and v, is the dimensionless noise
suppression coefficient for scattering from frequency (2¢+ 1)wy into the frequency (2p+1)wp.
Input noises at frequencies (2¢ + 1)wp for different ¢ are uncorrelated therefore for the whole
noise at frequency (2p + 1)wp one can obtain

vpNop = Nop - ZVQP ZNOq ) (11)

For scattering of the fundamental mode wy into itself (¢ = 0, p = 0) without noises from
other input frequencies the expressions for the elements of transformation matrix are the
following

o0

Awo(Bo) = Y (=1)"T5(50/2)

n=—o

Boo(Bo) = (0/2 (12)
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FIG. 1. Fluctuations v (in units of vacuum spectral density) of "silent” quadrature of output
(reflected) field at frequency wo when only input fluctuations at frequency wq are considered (dot);
the same for input fluctuations at frequencies wp and 3wy (dash dot); the same for input fluctuations
with frequencies (2¢ + 1)wp, where ¢ = 0,1...30 (dash). The solid line - linear theory.

and for noise suppression coefficient one has (cf. the linear theory Eq.(1), 8o < 1)

voo(Bo) = [ D (=1)"J3(Bo/2) — Bo/2)? (13)

Therefore taking into consideration the nonlinearity change the coefficient Ago(Bs) while
the coefficient Boo(/3p) remains unchanged (see fig. 1).

The noise suppression coefficient with consideration of vacuum noises at different number
of input harmonics (maximum about 30) is shown in the figure 1. The contribution of
the fluctuations of input odd harmonics into the fluctuations at the frequency wo can be
decreased with optical resonators or by using the electron mirror with appropriate thickness
for the interference of harmonics would be destructrive [2].

The considered mechanism of squeezed state generation can be useful only if the param-
eter v will be close to unity. This condition can be met for very high amplitude of the laser
light. Such high amplitude can be achieved in ultrashort laser pulses. Actually for input
frequency wy from the optical band and cross section of the light beam about 1 mm? the
required instantaneous power of the laser have to be about 10®* Wt that is easy enough to
get in experiment. The excessive noises of laser light and the noises of electron medium have
to be considered in more details for real experiment.

In conclusion the most advantage of the considered scheme is that the squeezing coefli-
cient can be high and independent of frequency in the large frequency band.
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Abstract

General method is developed for analyzing the evolution of non-classical light

in two-mode integrated-optical systems where linear and non-linear processes
with quadratic Hamiltonians can take place simultaneously or successively.
As an example, the evolution of sub-Poissonian light is analyzed in a non-
linear coupler with degenerate and non-degenerate parametric amplification.
It is shown that all-optical switching can be realized in this system.

I. GENERAL TWO-MODE PROCESS

Let us consider first the most general quadratic two-mode oscillator Hamiltonian in the
interaction picture:

5 1 1, . 1 1 - 3 A
Hih=ZA, ata + 54 b'b+ SHad + Sy bb+ Aab+ xab! +h.c. (1)

This Hamiltonian describes simultaneous linear coupling and non-degenerate parametric
amplification (two-mode squeezing) of the modes, and degenerate parametric amplification
(self-squeezing) of both of them. The parameters A, and A}, describe the possible detuning
values of the modes, x is the linear coupling con