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PREFACE

These proceedings collect contributions from about 200 participants to the 6th International Conference on

Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples from May 24 29, 1999, organized

jointly by the University of Naples' "Federico II," the University of Maryland at College Park, and the

Lebedev Institute, Moscow.

This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the

University of Maryland. The other meetings of the series were held in Moscow (1992), Baltimore (1993),

Taiyuan P.R.C. (1995) and Balatonftired, Hungary (1997). The present one was held at the campus Monte

Sant'Angelo of the University "Federico II" of Naples.

The meeting aimed to provide a forum for updating and reviewing a wide range of quantum optics disciplines,

including device developments and applications, and related areas of quantum measurements and quantum
noise.

Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum

optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement,

and applications of nonclassical light (squeezed and Schr6dinger cat radiation fields, etc.), and encompassing

several related areas, ranging from quantum measurement to quantum noise.

ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on

nonclassical light sources and related areas.

The Conference was organized in 8 Sections:

_Squeezed states and uncertainty relations;

B_armonic oscillators and squeeze transformations;

C_ethods of quantum interference and correlations;

D Quantum measurements;

E Generation and characterisation of non-classical light;
_Quantum noise;

G Quantum communication and information;

H Quantum-like systems.

In 2001 the Seventh International Conference will be hosted by the University of Boston. The meeting will

take place in Boston.

The organizers of the Conference acknowledge the cooperation and the support of several Institutions. Among

them, they wish to express special thanks to:

NASA's Goddard Space Flight Center

International Union Pure and Applied Physics (I.U.RA.R)

University of Naples "Federico II"

Phys. Dept. Univ. of Naples,

University of Maryland
Istituto Nazionale di Fisica Nucleare (I.N.RN.)

Istituto Nazionale di Fisica della Materia (I.N.F.M.)

Particular thanks are due to the Soprintendente of the Archeological Museum of Naples for having organized

and offered to all partecipants a guided tour of the most relevant collections originating from the Pompei and
Herculaneum ruins.
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Abstract

We introduce a new squeeze operator, which is related to the time-

dependent evolution operator for Hamiltonian representing mutual interaction

between three different modes. The effect of intermodal correlation between

modes is discussed in terms of the variances of the photon-number sum and

difference, the Glauber second-order correlation function and the violation of

Cauchy-Schwarz inequality.

I. INTRODUCTION

Squeezed states of the electromagnetic field are purely quantum states and have sev-

eral applications in quantum optics. There are two familiar squeeze operators to produce

squeezed states; namely, single mode squeeze operator [1] and two-mode squeeze operator

[2]. Here we introduce a highly correlated multidimensional squeeze operator as the evo-

lution operator of an interaction part, in a slowly varying amplitudes, of the Hamiltonian

representing three mode interaction ( equation (1.5) in [3]), given as

S(r_) = exp[rl(/iIA _ - A1A2) + r2(AIAta - -_1A3) + r3(A3A_ - At3A2)], (1.1)

where rj = ,_jt, with 0 <_ rj < oc, j = 1,2,3, ,_j are coupling constants, t is the time of

interaction and r__= (rl, r2, ra). It is evident that this squeeze operator involves three different

squeezing mechanisms and therefore it is more complicated than squeezing operators that

have appeared in the literature earlier [1,2,4].

Squeezing property is the important phenomenon well distinguishing mechanism of cor-

relation of systems, where squeezinfl can occur in combination of the quantum mechani-
cal modes described by operators A1, A2 and A3, even if single modes are not themselves



squeezed. For more details about this the reader can consult [1]. In fact, the idea that

quantum correlations can give rise to squeezing in the combination of mode operators has

been shown true for multimode squeezed states of light [1,5] and for dipole fluctuations in

multimode squeezed states [4].

The squeeze operator (1.1) provides a Bogoliubov transformation of the annihilation and

creation operators that mixes the three modes as

nl --_-_ S-1 (_)A1S(r) _ A_ lfl -t- 2J2T _J3, (12b)(1..2a)
A2 -- s-l(r_)n2s(r_) -- n2gl -11- 2_392 -Jr _Zilg3 ,

Aa = S-1 (r__)AaS(r__) = Aahl + Alh2 + A2h3, (1.2c)

where fj,gj,hj are functions in terms of sinh(.) and cosh(.)with argument # = V/r_ + r_ - r_

and r] < r_ + r_ ( for exact forms see [7]).

We may point out that a strong correlation is built up between the three modes described

by squeeze operator (1.1). This is quite obvious for the case of the parametric amplification

when two mode waves are mixed to generate a third wave via nonlinear medium, e.g. in

an optical crystal with nonlinear second-order susceptibility [lJ. This can be demonstrated

with the help of three-mode pure squeezed vacuum states S(r_)1-I_=110y), where S(r_) is

the squeeze operator (1.1). In this case the eigenstates of the three-mode photon-number

difference Alfi_l - A_A2 - AtAa correspond to zero eigenvalue, thus

A(AIA, -- A_A2 - At3A3)2 = 0. (1.3a)

However, the situation will be different for three-mode photon-number sum; after minor
calculations we obtain

^t ^ 2

2 2
+h_(1 + h_) + 2(f_g_ + f_h_ + h2ga). (1.3b)

In the following section we employ the relations (1.2) to study the sub-Poissonian statis-

tics for three-mode squeezed coherent states.

II. SUB-POISSONIAN STATISTICS FOR THREE-MODE SQUEEZED

COHERENT STATES

Three-mode squeezed coherent states are defined formally by means of three-mode

squeeze operator (1.1), in a sense similar to that of squeezed coherent states, as

-- (2.1)
where [c_j) are coherent states; for simp]icity we have used c_ = (_1, c_2,_3)-

Here we study the second-order correlation function, g!2)(0), for measuring the devi-

ation from the Poisson statistics of the three-mode coherent states. Also we extend our

investigation to include the violation of the Cauchy-Schwarz inequality.

The second-order normalized correlation function has been defined by

9}2)(0) = 1 + ((AfiJ)2)- (fij) (2.2)

where ((/kfij) 2) and (fij) are the variance and average of the photon number for the jth

mode, respectively. It can happen that g!2)(0) = 1 for Poisson light (coherent states), or

g_2)(0) < 1 for sub-Poisson light (e.g. Fock states), otherwise we have super-Poisson light

(e.g. chaotic field). In the following we restrict our discussion to the first mode 1, because



the other modeswould havesimilar behaviour. Soafter calculating the required quantities
in (2.2), in a straightforward way,weget

g_2)(O) 1 + 2(f_ - 1)<hi)cob --(fi 2 - 1) 2]= , (2.3)<nl>coh
where (hi)cob = ]flal + f2a_ + f3a_] 2 + f_ + f_.

In phase space, squeezed coherent states ]a, r) are represented by a noise ellipse with

the origin at a, and exhibit Poisson distribution at r = 0, and it is growing rapidly to

superthermal distribution, i.e. g(2)(0) > 2, and it persists for a large domain of r [8,9]. In

our model, e.g. for mode 1, one can prove easily from equation (2.3) that the modes exhibit

only partial coherence behaviour, i.e. 1 < g(2)(0) < 2. This is a consequence of intermodal

correlations of the three-mode squeezed coherent states for aj -_ 0.

In quantum theory, the violation of Cauchy-Schwarz inequality can be represented by

the factor [10]
^2t ^2 ^2t ^2 1

Ij,k = [(Aj Aj)(A k Ak)]_ _ 1. (2.4)

The negative values for the quantity Ij,k mean that the intermodal correlation is larger

than the correlation between the photons in the same mode [11] and this indicates strong

violation of the Cauchy-Schwarz inequality. The quantity (2.4) may be used to investigate

the anticorrelation (antibunching) between modes. We have concluded from the numerical

analysis of (2.4) that there is a strong violation of Cauchy-Schwarz inequality between dif-

ferent modes, which means that the photons are more strongly correlated than it is possible

classically. Further, we noted that the violation of this inequality is strongly sensitive to the

values of squeeze parameters and coherent amplitudes.

It is known that the correspondence between quantum and classical theories can be es-

tablished via Glauber-Sudarshan P-representation. But the P-representation does not have

all the properties of a classical distribution function for quantum fields. So the violation of

the Cauchy-Schwarz inequality provides explicit evidence of the quantum nature of inter-

modal correlations between modes, which implies that the P-distribution function possesses

strong quantum properties [10].

III. Conclusion

In this contribution we have introduced new type of multidimensional squeeze operator

which is more general than usually used. This operator yields from the time-dependent evo-

lution operator for the Hamiltonian representing mutual interaction between three different

modes of the field. We have shown that a strong correlation is built up between the three

modes described by this operator and this is quite obvious for the case of the paramet-

ric amplification, when two-mode waves are mixed to generate a third wave via nonlinear

medium. For the three-mode squeezed coherent state, we found that its second-order cor-

relation function describes partially coherent field, so that one mechanism of squeezing is

always surviving. Further we found strong violation for Cauchy-Schwarz inequality between

some modes, i.e. the photons are more strongly correlated than it is allowed classically.

Aknowledgments

J. P. and F. A. A. E-O. acknowledge the partial support from the Project VS96028 of Czech

Ministry of Education. One of us (M. S. A.) is grateful for the financial support from the

project Math 1418/19 of the Research Centre, College of Science, King Saud University.



REFERENCES

[1] D. Stoler, Phys. Rev. D 1, 3217 (1970); H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

[2] S. M. Barnett and P. L. Knight, J. Opt. Soc. Am. B 2,467 (1985).

[3] M. S. Abdalla, M. M. A. Ahmed and S. AL-Homidan, J. Phys. A: Math. Gen. 31, 3117

(1998).

[4] S. M. Barnett and P. L. Knight, J. Mod. Opt. 34, 841 (1987).

[5] W. Vogel and D.-G. Welsch, Lectures on Quantum Optics (Academie, Berlin 1994).

[6] S. M. Barnett and M. A. Dupertuis, J. Opt. Am. B 4, 505 (1987).

[7] M. S. Abdalla, F. A. A. El-Orany and J. Pe_ina, J. Opt. Soc. Am. B (accepted).

[8] M. S. Kim, F. A. M. de Oliveira and P. L. Knight, Opt. Comm. 72, 99 (1989).

[9] M. S. Kim, F. A. M. de Oliveira and P. L. Knight, Phys. Rev. A 40, 2494 (1989).

[10] G. S. Agarwal, J. Opt. Soc. Am. B 5, 1940 (1988).

[11] L. Gilles and P. L. Knight, J. Mod. Opt. 39, 1411 (1992).



LIGHT PULSE SQUEEZED STATE
FORMATION IN MEDIUM WITH THE

RELAXATION KERR NONLINEARITY

A.S. Chirkin*, F. Popescu
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Abstract

Ttm consistent theory of forming a pulsed squeezed state as a result of self-

action of ultrashort light pulse in the medium with relaxation Kerr nonlinear-

ity has been developed. A simple method to form the ultraslmrt light pulse

with sub-Poissoifia_ photon statistics is analyzed too.

I. INTRODUCTION

There are two groups of works in the quantum theory of self-action (or self-phase mod-

ulation) of ultrashort light pulses (VSPs). In one group of the works (for example, [1]- [3])

the calculations of the nonclassical light formation at the self-action of pulses assume that

the nonlinear response of the medium is instantaneous and that the relative fluctuations

are small. The latter assumption is valid for the intense USP ordinarily used in experi-

ments. However a finite relaxation time of the nonlinearity is of principal importance. The

relaxation time of the nonlinearity determines a region of the spectrum of the quantum

fluctuations that play a large role in the formation of squeezed light.

The inertia of the nonlinearity is taken into account in works [4_- [5]). The methods

that have been developed in Refs. [4] and [5] differ in interaction Hamiltonians. The authors

of Ref. [4] considered the interaction Hamiltonian using which one has to introduce thermal

fluctuations to satisfy the commutation relations for time-dependent Bose-operators. For

tile case of the normally ordered interaction Hamiltonian [5] it is no necessary to include

into consideration thermal fluctuations.

The results of the quantum theory of the USP self-action in the medium with the relax-

ation Kerr nonlinearity based on the normally ordered interaction Hamiltonian are presented

below. Variances of the quadrature components and spectral distribution of the pulsed

quadrature-squeezed light are calculated. Besides, propagation of such a pulse through a

dispersive linear medium is analyzed. It is shown that in this case the pulse with sub-

Poissonian photon statistics can be formed.

*chirkin_foton.ilc.msu.su, florentin_p_hotmail.com



II. QUANTUM THEORY OF SELF-ACTION OF LIGHT PULSE

We will describe tile process under consideration by the following interaction Harniltonian

[Imt( z) -- h[:l J-_oo dt /too Hit- tt )N[fi( t, z)fi( t,, z)] dt,, (1)

where the coefficient _ is determined by tile nonlinearity of the medium, H(t) is the nonlinear

response function of the Kerr medium (H(t) # 0 for t > 0 and H(t) = 0 for t < 0; N is the

normal ordering operator, h(t, z) = A+(t, z)A(t, z) is the photon number density operator,

and A+(t, z) and A(t, z) are the Bose operators creating and annihilating photons in a given

cross section z. The operator hit , z) commutes with the Hamiltonian (1) and therefore

hit , z) = fi(t, z = 0) = ho(t), where z = 0 corresponds to the input of the nonlinear medium.

According to Eq. (1) the spatial evolution of the operator A(t, z) is given by the equation

OA(t,z)
+ il3q[ho(t)lA(t,z) = 0, (2)

Z t _ t tin the moving coordinate system, z -- and t z'/u ( u is the velocity of the pulse),

£q[fi0(t)] = h(t,)fio(t - t,) dt,
OO

(h(t) = H(It]) ).

The solution of Eq. (2) is

A(t, l) = exp[-i3"q[fio(t)llAo(t ). (3)

Here Ao(t) = A(t, 0), 7 = ill, l is the length of the nonlinear medium. For h(t) = 25(t) and

A0(t) = a0 expressions (2), (3) have a form corresponding to single-mode radiation.

To verify commutation relation [A(t,, l), A+(t2,/)] = 5(t_ -t_) and to calculate the quan-

tum characteristics of the pulse it is necessary to apply an algebra of time-dependend Bose

operators [5], [7].

In accordance with Eq.(3) the photon number operator remains unchanged in the nonlin-

ear medium. This fact has already used in Eq. (2). Therefore in the case of a self-action it is

of greatest interest to study the fluctuations of the quadrature components. Here we restrict

our consideration by the X-quadrature X(t,z) - [A+(t,z)+ A(t,z)]/2. The correlation

function of the X-quadrature is given by the formula [5]

R(t,t + 7-) = 1{5(T) - _b(t)h(v)sin2O(t) + ¢_(t)g(7") sin _ 4)(t)}, (4)

where ¢(t) = 23'1_o (t)[2 is the nonlinear phase addition, a0(t) is an eigenvalue of the operator

Ao(t) of a pulse in a coherent state, 4)(t) = ¢(t) + ¢(t) (_b(t) is the initial phase of the

pulse). For the considered nonlinear response h(T) = T_-l a ,d g(r) = +
ITI/Tr) exp(--ITI/Tr) (r_ is the nonlinearity relaxation time). We took into consideration that

the parameter 3' << 1 and the pulse duration 7-r >> 7-_.

According to Eq. (4) the spectral density of the quadrature fluctuations is

S(w,t) =/__ R(t,t + T)e i'_ dT"= _[1 - 2¢(t)L(w)sin2@it ) + 4¢2(t)L2(w)sin2@(t)], (5)
O0



where L(w) = 1/[1 + (wvr) 2] . It follows fro,,, Eq.(5) that the level of the quadrature

fluctuations, depending on the the value of the phase (I)(t), can be greater or less than the

short noise one corresponding to S(_'h)(w) -- 1

If the phase of the pulse is chosen optimal for a frequency w0, ¢0(t) -

0.5 arctan[(¢(t)i(wo)) -_] - ¢(t), then the spectral density at this frequency is minimal.

The calculated spectra at t -- 0 for the case of w0 = Tr-1 are presented in Fig.1. It is

obvious from Fig. 1 that the frequency band in which the spectral density of the quatrature

fluctuations is low than the shot noise level depends on the nonlinear phase addition ¢(0).

III. SQUEEZED LIGHT PULSE IN DISPERSIVE LINEAR MEDIUM

We consider now the propagation of tile quadrature-squeezed pulse through a dispersive

linear medium in which the following operator transformation take place

VB(t,z) = a(t- t,,z)A(tl,l)dt_ (6)
oo

Here G(t, z) is the Green function for the medium, z is the distance and A(t,1) is the input

value of the operator (at z = 0 ) defined by Eq. (3).

Let us introduce the photon number operator over the measurement time T" and the

Mandel parameter Q(t, z):

t+//2 e( t, z)
I_T(t,z)- B+(tl,z)B(tl,z)dt_, Q(t,z)- (l_T(t,z)) , (7)

t-T�2

_(t,z) = (N_(t,z)) - (_(t, z))_- (N_(t,z)).

Let us assume that the initial light pulse has the form ri0(t) = fi0 exp(--t2/T_) and G(t, z) =

(-i27rk2z)-½ exp {-it2/2k2z}. The coefficient k2 characterises the dispersion of a group

velocity. In the case of the normal dispersion k2 > 0 and for the anormal dispersion k2 <

0. When the phase self-modulation pulse passes through the dispersive linear medium a

compression or a decompression of the pulse takes place. This effect can change the photon

statistics of the pulse.

In the so called paraxial approximation we get [6]

(Nr(t, z)) = noTV-_(z)exp[-t2/V2(z)r_], V2(z) = w2(z) + _2(z),

Q(0, z) = - [ T¢0 ] sin[arctan(_(z)lw(z)) + 0.5arctan[2_o(z)w(z)l(2_(Z)Va(Z) - w2(z))]]
Lv_J [_(_) - 2v_(z)_(_) + 4v,(_))],/,

(s)
w_(z) = 1 - s¢o_(z), _(z) = z/D, _d(Z) -- z/d, D = r_/Ik_l, d = _llk_l.
D and d are the characteristic dispersion lengths, s = 1 for k_ < 0, and s -- -1 for k_ > 0.

It follows from Eq.(8) that the pulse with sub-Poissonian photon statistics (Q(t, z) < 0)

can be obtained. Of particular interest is the compression of the phase self-modulation pulse

(s - 1, k_ < 0). The dependence of the Mandel parameter in this case is presented in Fig.2.

One can see that the suppression of quantum fluctuation of the photon number becomes

noticeable for the nonlinear phase ¢0 > 1.
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FIG. 1. Spectrum of the fluctuations of the

squeezed quadrature of a pulse at time t--0 as

a function of the maximum nonlinear phase Co

and the reduced frequency _ = WTp.

FIG. 2. Parameter Q(0, z) as a function of

the maximum nonlinear phase ¢0 and the dis-

persion phase _o(z).

IV. CONCLUSIONS

The basic results of the developed systematic theory are following. The spectral region

with level of the quatrature fluctuations less than the shot noise one depends on relaxation

time of the nonlinearity and the nonlinear phase addition. Choicing initial phase of pulse

gives us possibility to control the frequency when the coefficient of squeezing is maximal.

Propagation of the quadrature-squeezed light pulse through a dispersion linear medium (an

optical fiber or optical copressor) can lead to formation of the pulse with sub-Poissonian

photon statistics.
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Abstract

A method of detection of number variance of Raman-active excitations in

solids via measurement of Stokes-anti-Stokes correlations is proposed.

Recent progress in the field of quantum optics have stimulated the theoretical and exper-

imental study of the so-called "nonclassical states of bosons" in solids (e.g., see [1-5]). Let

us stress very important difference between the squeezed state of light and that of bosons in

condensed matter. The former is usually a nonequilibrium state of radiation. The squeezed

phonons which have been recently produced and detected [5] are similar to squeezed photons.

At the same time, the squeezed states of bosons in solids can exist at thermal equilibrium

[6]. The polariton excitations in an ionic crystal, for example, can be treated in terms of the

"two-mode" squeezed thermal states [2]. Although the squeezing of quantum fluctuations

cannot be observed in this case, the pairwise creation of phonons and photons leads to quite

strong quantum fluctuations which can strongly influence the system at low temperature

[2]. Among the other mechanisms leading to squeezed states of phonons the polaron-type

interaction, exciton-phonon interaction, and phonon anharmonicity can be mentioned here

[7].
In contrast to the case of nonclassical states of photons, there is no effective direct

methods of measurements allowing the characterization of the quantum states of bosons

in solids [3]. Here we propose a way of measurement of the number variance of Raman-

active Bose-type excitations in solids (phonons, polaritons, etc.). It has been shown that

the quantum statistical properties of a vibration mode can strongly influence the parameters

of scattered light in the Stokes-type Raman process [8]. We show here that the measurement

of Stokes-anti-Stokes photon correlations might be an effective way of investigation of the

quantum statistical properties of vibration mode even at thermal equilibrium.

It is well known that the Raman-type process can be specified by the following Manley-

Rowe relations [9,10]

&- & - ; d'2 (1)

where Nx denotes the number operator for Stokes (X = S), anti-Stokes (X = A), and

pumping (X = P) photons and for "vibration" excitations of medium (X = V). These



operators are determined in the Heisenbergrepresentationat an arbitrary time, while C1,2

are some constant op^erators. If, for example, the S and A components are initially in the

vacuum state, then C1 = Np(O) and C2 = )Vv(0). Consider the correlation function

(A; B) = (AB) - (A)(B}.

Since in the Heisenberg representation the evolution is provided by the time-dependent

operators, the averaging should be performed with respect to the initial state of the system.

Then, assuming the initial vacuum state of the components S and A, for the operators lVs(t)

and NA(t) we get

1
2s(t)) = 4[V0(Np) - Vo(Nv)+ Vt(Np)- V_(Nv)

- (2)

Here Vt(X) = (._(t);X(t)) denotes the variance of a physical quantity described by the

operator X at time t. The equation (2) establishes an important connection between the

S - A correlations and quantum statistical properties of pump photons and excitations

in solids (phonons). On making the further assumption that P-component is represented

initially by a strong monochromatic coherent field, one can obtain

v0( p) =

where c_ is the parameter of coherent state and ap is the annihilation operator of P-type

photon.

Let us stress that conventional quantum theory of Raman scattering [13,14] usually

neglects the quantum properties of pump through the completely classical pump assumption.

In view of (2) it means that fi/p is supposed to be independent of time so that

+ Vo( P)- = o. (3)

Then the S-A correlation function (2) is related only to phonon (vibration modes) statistics.

The condition (3) implies a time range to the problem during which any change in the pump

intensity remains negligible [13,14]. However, it is not enough as far as the correlations of

scattered photons are considered. As a matter of fact, the quantum statistical properties

of the pump photons might be changed significantly in shorter time than the occurance of

a visible change in their intensity. To evaluate such a time, let us consider conventional

parametric Raman model [13,14]

^ v"/_ a+5+ H.c.).
A=S,A q q

(4)

Here the operators ax describe the photons of scattered light, &qv are the vibration-mode

(phonon) Bose operators, and the complex coupling constants gq_ include the dependence on

intensity of the classical pump. Summation over q in (4) permits us to take into account the

Markoffian properties of phonons at thermal equilibrium [13,14]. One can expect, however,

that phase-matching condition would have limited the number of active phonon modes to

one.



Since the Hamiltonian (4) is a bilinear form in Bose operators, the Heisenberg equations

for the scattered photons have the following general solution

h+(t) = U_(t)gt+(O) + Va(t)&A(O) + __, Wqa(t)aqv(O)
q

where the coefficients U, V, and W are some known functions of parameters of the Hamil-

tonian (4) and time. In view of this result and Eq. (3), the Eq. (2) can now be done in a

straightforward manner to yield

<Ns(t); NA(t)) = A(t) + _ Bkq(t)(a+v(O)fqv(O))
kq

+ ck,pq(t)(a+v(0)aqv(0);a+(0)apv(0)) (5)
klpq

so that the time evolution of S - A correlation function is completely determined by the

initial state of phonon sub-system. It is also straightforward to calculate the coefficients

A, B, and C in terms of U, V, and W.

As usually, the summations in (5) can be converted into integrals involving phonon

density of states. In the simplest case of perfectly phase-matched pump and phonon modes,

the only phonon mode contributes in the right-hand side of (5) which yields

(-Ns(t); Na(t)) = A(t) + B(t)<Nv(O)) + C(t)Vo(Nv). (6)

Since (Nv(0)) can be determined by measurement of either (Ns(t)) or (Na(t)) [11] at short

time, the Eq. (6) shows that V0(-Nv)can be determined by simultaneous measurement of

the scattered light intensities and S - A correlation function. The latter can be measured

by standard homodyne detection scheme.

Similar result can be also obtained in the case of strong Van Hove singularities corre-

sponding to the modes selected by Raman process which has been considered in [5] in the

context of generation of squeezed phonons. In general, a relation similar to (6) can be ob-

tained through the use of random-phase approximation under assumption that the phonon

modes obeying Raman selection rules play the dominant role.

To estimate the time range of validity of the parametric approximation, one can use

the sort-time approximation of the Heisenberg equations with the Hamiltonian (4) [13] up

to the second order of t close to the beginning of interaction [2]. Using the condition

Vt(Np) = (]Vp(t)), we find the time range as t << r2 where

1

_-2= 4M(1 + (Nv(0)))" (7)

Here M is some constant determined by the parameters of the Hamiltonian (4). It should

be emphasized that T_ < T1 where

1
TI-=

L, + L2(Nv(O))

is the conventional range of parametric approximation [15]. As an estimation, we may take

g_ _ 107Hz, giving the time ranges as T1 _ lOfs [15] and _-2 _ 3fs. This time range seems to



be available now due to remarkable recent process in the field of femto-second spectroscopy

[14]. Thus, it is shown that the variance of number of Raman-active excitations in solids can

be detected even at thermal equilibrium via measurement of Stokes-anti-Stokes correlation

function. It is clear that the measurement of quantum statistical properties of phonons

can give an important information about microscopic interactions in solids [15]. The above

obtained results can be also applied in the molecular Raman spectroscopy.

REFERENCES

[1] M. Artoni and J.L. Birman, Phys. Rev. B 44, 3736 (1991); Optics Commun. 104, 319

(1994).

[2] A.V. Chizhov, R.G. Nazmitdinov, and A.S. Shumovsky, Quant. Optics 3, 1 (1991);

Mod. Phys. Lett. B 7, 1233 (1993).

[3] X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); Phys. Rev. Lett. 76, 2294 (1996).

[4] O. E. Miistecapho_lu and A.S. Shumovsky, Appl. Phys. Lett. 70, 3489 (1997).

[5] G.A. Garrett, A.G. Rojo, A.K. Sood, J.F. Whitaker, and R. Merlin, Science 175, 1638

(1997).

[6] M.S. Kim, F.A.M. de Olivera, and P.L. Knight, Phys. Rev. A 40, 2494 (1989).

[7] A.S. Shumovsky, in Quantum Optics and the Spectroscopy of Solids, edited by T.

Hakio_lu and A.S. Shumovsky (Kluwer, Dordreht, 1997).

[8] A.S. Shumovsky and B. Tanatar, Phys. Rev. A 48, 4735 (1993); Phys. Lett. A 182,411

(1993).

[9] Y.R. Shen, The Principles of Non-Linear Optics (Wiley, New York, 1984).

[10] A.S. Shumovsky, in Modern Nonlinear Optics Part I, edited by M. Evans and S. Kielich

(Wiley, New York, 1993).

[11] D.F. Walls, Z. Phys. 237, 224 (1970); J. Phys. A 6, 496 (1973).

[12] R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 1983).

[13] J. Pe_ina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Reidel,

Dordreht, 1984).

[14] J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

(Springer, Berlin, 1996.).

[15] A.S. Shumovsky and O. E. Miistecapho_lu, Phys. Rev. B (1999) (to be published).



Two-level Atom in a Squeezed Vacuum with

Finite Bandwidth: Master Equation versus

Coupled-systems Approach

Ryszard Tanag

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz Univesity, Umultowska 85,

61-614 Poznad, Poland

Zbigniew Ficek

Department of Physics and Centre for Laser Science, The University of Queensland, Brisbane,

Australia 4072

Abstract

We address the question: how broad must be the squeezed vacuum to make

the Markov approximation still applicable? We compare the resonance flu-

orescence spectra obtained using the Markovian master equation with the

spectra calculated from the coupled-systems approach. We show that both

approaches give very similar spectra up to realistic values of the squeezed

vacuum bandwidth (_ 10y).

Broadband squeezed vacuum can be treated as a reservoir to an atom and a master

equation in the Born and Markov approximation can be derived for the reduced density

matrix of the atomic system. Realistic sources of squeezed field, such as the degenerate

parametric oscillator (DPO), produce a squeezed vacuum with finite bandwidth. However,

when the bandwidth of the DPO cavity is much larger than the atomic linewidth, one can

still treat the squeezed vacuum as a reservoir to the atom and derive the Markovian master

equation that describes the dynamics of the atomic variables only. If, moreover, the atom

is driven by a classical coherent laser field one can perform the dressing transformation

first and next apply the standard perturbation procedure to derive the master equation [1].

We have derived such a master equation [2,3], which in the frame rotating with the laser

frequency WL can be written as

1

P=5i[(Saz-n(a++a-)),P]

1 ~

+ _N (2a+pcr_ - a_a+p- pa_a+)

1

+ _(_ + 1) (2__p_+- _+__p-p_+__)
- vMa+pa+ -71_I*a_pa_

(1)



1

where

£r=

6=

_=
P__

aN =

1 (1 -/_2) ReP_N(coL+ _')+ 7

1 (1 -/k2)F_ + i ha M e i¢M(coL+ a') - 7

A + _(1 - _x2) ImP_ + 3' Zx aN,

7_ [aN + ave'_- ihr_] ,

N(co_)- N(co_+ _') -[M(co_) - M(coL+ _')],

x + _t' dx, aM = rrP oox+ _, dx,

A Q, = x/Q 2 + A2a k = a--'

(2)

and the principal value terms for DPO have the form

aN =.___t A2 -- #2 [ 1 1 ]--T- . (_,2+ u2) _ (_,2+ _)

7 _ (a,_ + _2) + _ (a,_ + _) ' (a)

/g /g

A=_+e #=--e 2 '

where _ is the bandwidth of the DPO cavity and e the amplitude of the pump field.

In the derivation of equation (1) we have included the divergent frequency shifts (the

Lamb shift) to the redefinition of the atomic transition frequency. Moreover, we have as-

sumed that the squeezed vacuum is symmetric about the central frequency COL, SO that

N(COL -- _') = N(COL + _'), and a similar relation holds for M(co). The atomic natural

linewidth is 7, A = COL-- COA is the detuning of the laser frequency of the atomic resonance,

and _t is the Rabi frequency of the coherent driving field.

The master equation (1) has the standard form known from the broadband squeezing

approaches with the new effective squeezing parameters N and it7/. There are also new

terms, proportional to/7 which are essentially narrow bandwidth modifications to the master

equation. All the narrow bandwidth modifications are determined by the parameter F_ and

the shifts aN and aM. These parameters become zero when the squeezing bandwidth goes

to infinity.

As a reference for testing our master equation (1) we use the coupled-system (or cascaded-

system) approach [4,5] in which output of the first system (DPO) drives the second system

(atom) without any coupling back from the the second system to the first. In our case of an

atom driven by a squeezed light from DPO and a coherent field with the Rabi frequency _t,

the corresponding master equation has the form [6].



1 t¢ { 2 ap a t a t/5=_i[(A_z-_(a++cr-)+(_at2-_*a2)),p]+-_ -pata - ap}

7 {2a_pa+- _x/-_-_{[a+,ap]+[pa*,cr_]}+-_ -pa+a--a+a-p} (4)

where the parameter q (0 < _/_< 1) describes the matching of the incident squeezed vacuum

to the modes surrounding the atom. For perfect matching _7 = 1, whereas _/ < 1 for an

imperfect matching.

Since in (4) DPO is not treated as a reservoir but as a part of the system, equation (4)

is applicable for any bandwidth of the squeezed vacuum produced by DPO. The advantage

of the Markovian master equation (1) over equation (4), however, is the fact that the former

allows for analytical solutions while the latter does not. When the DPO cavity bandwidth

>> 7, both equations are expected to give the same results. There is a question, however,

how big really must be _ with respect to V to make equation (1) still applicable. To

o,1,
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FIG. 1. Fluorescence spectra -- coupled-systems (solid) and Markovian master equation (dash): e = _/8 (N = 0.26,
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answer this question we show in Figs. 1-3 few examples of the resonance fluorescence spectra

obtained using both approaches. The width of the squeezed light n as well as the amplitude

of the pump field _ are given in units of the atomic linewidth of 7. In Figs. 1 and 2 there



are examplesof the resonancefluorescencespectra for strong field (_ = 10 in units of V).
In Fig. 1 the squeezingis smaller than in Fig. 2. The well known squeezingparameters
N and M (mean number of photons and the field correlation) are: for Fig. 1 N = 0.26,

M = 0.57, and for Fig. 2 N = 1.78, M = 2.22. As it is seen from Fig. 1, for weak squeezing

the agreement between the two approaches is perfect even for the squeezing bandwidth

as small as 10. When the squeezing becomes more pronounced the agreement is worse for

the same bandwidths of the squeezed vacuum, but it is still pretty good. We would like to

emphasize that for _ = _ = 10 the squeezing bandwidth is the same as the Rabi frequency

of the field, which shows explicitly that the Markovian approximation works well when the

squeezing bandwidth is much broader than the atomic linewidth, but not necessarily larger

than the Rabi frequency. This is an advantage of our master equation (1), which was derived

by performing the dressing transformation first, and next coupling the atom to the reservoir.
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FIG. 3. Fluorescence spectra -- coupled-systems (solid) and Maxkovian master equation (dash): e = _/8 (N = 0.26,

M = 0.57), gt = 0.35, _ = 0, A = 0, _ ---- 0.98 and (a) t_ = 20, (b) _ = 40

In Fig. 3 we show examples of the spectra for a weak field (_ = 0.35). In this figure the

Rabi frequency is chosen as to show a possibility to burn a hole in the spectrum. It is seen

that for _ = 10 in this case the Markovian master equation does not reproduce the hole, and

broader squeezing is needed to reproduce the feature, but for _ = 40 agreement is already

quite good.

The results shown here convince us that the Markovian master equation (1) works quite

well for the squeezing bandwidth which is ten times bigger than the atomic linewidth.
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Abstract

The recent observation of trapping state in the micromaser demonstrated

that a maser field in a number state of Fock state can be generated in steady

state. Additionally we have shown that Fock states in the micromaser can

also be generated dynamically using state reduction of the pump atoms. In

this case the purity of the Fock state can be probed by an additional atom

sent into the cavity after the first.

The quantum treatment of the radiation field uses the number of photons in a particular

mode to characterise the quantum states. The ground state of the quantum field is rep-

resented by the vacuum state consisting of field fluctuations with no residual energy. The

states with fixed photon number are usually called Fock or number states. These states are

also used as the basis for the quantum representation of all general radiation fields which

are usually expressed in an expansion of number states. Fock states thus represent the most

basic quantum states and are maximally distant from what one would call a classical field.

So far Fock states of the radiation field have not been realised experimentally under steady

state conditions since they are very fragile and very difficult to produce and maintain. In

order to generate these states it is necessary that the mode considered has minimal losses.

Additionally the thermal field, always present at finite temperatures, has to be eliminated

since it causes photon number fluctuations. In this paper we demonstrate the presence of

Fock states by probing the micromaser field using atoms to investigate the dynamics of the

photon exchange.

In the micromaser highly excited Rydberg atoms, interact with a single mode of a super-

conducting cavity which can have a quality factor as high as 3 × 10 m, leading to a photon

lifetime in the cavity of 0.2s. The steady state field generated in the cavity was the object

of detailed studies of the sub-Poissonian statistical distribution of the field [1], the quantum

dynamics of the atom-field photon exchange represented in the collapse and revivals of the

Rabi nutation [2], atomic interference [3], bistability and quantum jumps of the field [4],

atom-field and atom-atom entanglement [5].

The interaction of a two-level atom with a single mode of the cavity field is governed by

the Jaynes-Cummings Hamiltonian [6]. In this system an atom in the presence of a resonant

quantum field undergoes Rabi oscillations. At low temperatures of the cavity the number of

blackbody photons in the cavity mode is reduced and under this condition, trapping states



begin to appear [11]. They occur in the micromaserwhen the atom field coupling, f_, and
the interaction time, tint, are chosen such that in a cavity field with nq photons each atom

undergoes an integer number, k, of Rabi cycles. This is summarised by the condition,

_tintV/_q + 1 : k_ (1)

When Eq.1 is fulfilled, each atom undergoes a full Rabi cycle leaving the cavity photon

number unchanged after the interaction, hence the photon number is "trapped". This will

occur over a long range of the atomic pump rates (/Vex). The trapping state is therefore

characterised by the upper bound photon number nq and the number of integer multiples of

full Rabi cycles k. Trapping states are quantum features of the micromaser field that occur

through the influence of Fock or number states of the electromagnetic field.

The experimental apparatus is presented in Fig. 1. The present setup has been described

in detail previously [4,7]. Briefly a rubidium oven provides two collimated atomic beams; a

main one passing directly into the cryostat which contains the maser cavity and a secondary

one used to control the laser frequency. The cavity is cooled by the cryostat to 300mK

which corresponds to a thermal photon number of 0.054. A frequency doubled dye laser

(A = 294nm) was used to excite rubidium (SSRb) atoms to the Rydberg 63P3/2 state from

the 5S1/2(F = 3) ground state. The maser cavity is tuned to the 63Pa/2-61Ds/2 (21.4560

GHz) transition. Velocity selection is provided by angling the excitation laser towards the

main atomic beam at 11 ° to the normal. The dye laser was locked to the reference beam,

using an external computer control, to the 5S1/2(F = 3) - 63Pa/2 transition of the reference

atomic beam excited under normal incidence. The natural velocity distribution of the atomic

beam allowed the interaction time of the atoms with the cavity to be tuned from 40#s to

160#s by Stark shifting the reference frequency with a high quality programmable power

supply. The detection of the Rydberg atoms is performed by field ionisation in two detectors

set to different voltages so the upper and lower states, 63P3/2 and 61D5/2 respectively, can

be counted separately. The cavity we used had a Q factor of 1.5 × 10 l° for the trapping

state measurement and 3.4 x 10 9, for the dynamical measurement.

When a trapping state is realised by choosing a proper interaction time, the photon

number distribution is strongly peaked in the range n _< nq. In which state the maser

remains until a random event occurs, which changes the photon number in the cavity and

violates the trapping state condition. In general during the steady state operation of a

micromaser in a trapping state, the waiting time between two atoms in the lower state

becomes longer and one should expect a general suppression of events in the lower state

atom detector and an increase in the upper state detector [12]; a feature that should be

preserved through increasing atomic pump rate Nex [7].

A Fock state shows ideal sub-Poissonian statistics hence under the influence of a trapping

state the atomic statistics (which are closely related to the photon statistics [9]) should also

be sub-Poissonian. Consequently a first indication that the trapping states represented Fock

states of the field was the observation of Sub-Poissonian Statistics when the maser was under

conditions of a trapping state [7].

It has been shown theoretically [11] that fixed photon numbers may persist under steady

state conditions of the micromaser when dissipation of the field is small and the thermal

field in the cavity is reduced to photon numbers on the order of 10 -2 , or below. This is the

case for the following reason: normally the cavity field builds up from the initial thermal



distribution, the photon fluctuations are therefore determined by the initial field. If they
are eliminated at low temperatures, the initial state is then the vacuum field. Successive
emissionevents fill the cavity with photons until the photon number becomes"trapped",
this being achievedwhenthe emissionprobability of all subsequentatoms is reducedasall
atomsperform completeRabi cycleswithout releasinga photon.

Using a dynamical measurementwewere ableto observethe build up of the maserfield
usingstate reduction [13]of a detectedatom to project the cavity field ontoa Fockstate and
the Rabi oscillationsof a probe atom to test the cavity state. In this way wehaveobserved
the Fock statesof the maserfield up to n = 2 [14].

In this paper we reported on the observation of trapping states in the micromaser and

subsequent measurements of the maser field under the influence of a Fock state; the ultimate

quantum states of a radiation field. The successful generation of Fock states makes many

further experiments using these states possible. In the steady state Fock states can be used

in quantum information, the observation of Schr5dinger cat states and their decoherence

and the investigation of nonlocal quantum phenomena such as the entanglement of atoms.
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FIG. 1. The experimental setup. The atoms leaving the rubidium oven are excited into the

63P3/2 Rydberg state using a UV laser at an angle of 11°. After interacting with the cavity

the atoms are detected using state selective field ionisation. Tuning of the cavity is performed

using two piezo translators. The reference beam is used to stabilise the laser frequency to a Stark

shifted atomic resonance. This allowed the velocity subgroup selected by excitation to be changed

continuously within the range of the velocity distribution of the atoms.
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Abstract

Within the framework of the Thermal Wave Model description, an investigation is made of the
longitudinal instability properties of a coasting high energy charged particle beam.The analysis,
which is based on a nonlinear Schroedinger-like equation for the beam wave function, is shown to
reproduce the characteristic features of the coherent instabilities as obtained previously by
conventional techniques based on the Vlasov equation for the beam distribution in phase space.

Introduction. The thermal wave model (TWM) is a quantum-like description of classical
charged particle beam dynamics. In the TWM description, the beam properties are described by a
complex valued beam wave function, which satisfies a Schroedinger-like evolution equation with
the beam emittance playing the role of Planck's constant, [1]. The square modulus of the beam
wave function represents the beam density. The TWM has been used to analyze a number of linear

as well as nonlinear collective effects that occur in charged particle beam dynamics. The approach
has successfully reproduced many results of conventional analysis, but has also provided new
insight and physical understanding for the propagation dynamics of charged particle beams, e.g.
[21.

In the present analysis we will concentrate on an analysis of longitudinal coherent instabilities
associated with particle beams. The dynamics of the beam wave function is determined by a
Schroedinger equation where the potential is given in terms of a complex impedence, Z, which
describes the self consistent interaction between the beam and its surroundings. The self
consistency implies that Z is a nonlinear function of the beam wave function and the resulting
equation becomes a generalized nonlinear Schroedinger equation.

A modulational instability analysis of a coasting paticle beam is carried out for the general case of

an impedance having both resistive and reactive parts and the results are shown to be fully
consistent with the results of previous conventional analysis. An effort is also made to extend the
modulational analysis to the case of bunched particle beams with a finite energy spread where
Landau damping is known to be important. This effort is only partially successful in the sense that
an increased region of stability in (Zr,Zi) space ( Z = Z r + iZi) is indeed obtained. However, this
region is one-dimensional and, although of the correct extension in this dimension, does not
reproduce the two-dimensional region of stability close to the origin in (Zr,Zi) space, which is
found using Vlasov theory. On the other hand, in the limit of large instability growth rates (where
Landau damping is negligible) there is again complete agreement between the TWM and Vlasov
theories.

The question now arises whether the phenomenon of Landau damping is outside of the TWM as
described by the characteristic model equation used. An indication that this is not the case is
demonstrated as follows: If the analysis in configuration space, as expressed by the nonlinear



Schroedingerequationfor thebeamwavefunction,is generalizedinto aphasespacedescriptionby
meansof a Wigner formalism, the TWM approachdoesindeed reproduceexactly the Landau
damping phenomenonof the Vlasov formalism. Since the phase- and configuration-space
descriptionsarephysically equivalent,Landaudamping should be possible to regain also in
configurationspace,althoughit seemseasierto obtainwithin aphase-spacedescription.

Generalized nonlinear Schroedinger equation for the beam wave function.
Within the TWM description, the longitudinal dynamics of a charged particle beam is described by

the following evolution equation for the beam wave function _F(z,x), cf [2].

ie °3W 1 77 E2 o32"trkt _xj x

Oz - 2 t_2 oax2 t- f U(x' ,z)dx' (1)(Eo/e)&To 0
where the first term on the RHS accounts for the longitudinal spreading of the beam and the second
term describes the interaction between the beam and its surroundings, as characterized by the self

consistent voltage U(z,x) which is related to the charge line density of the beam, )_(z,x), according

toU(x,z)= efleZr2(X,Z)+ efieRo(Zi/n)OX/oax where Z is the coupling impedance between the beam and its

surroundings. Finally the system is closed by the relation between the charge line density X(z,x)

and the beam density, viz._,(z,x)= N/(2gR0)l_(z,x)12° The notation used here is standard see e.g.

[2]. Combining eq. (1) with the definitions of U and _., the following generalized nonlinear

Schroedinger equation is obtained for the beam wave function
x

iWz =O_Wxx+KlwlZ w + t.tWf lW(x',z)] 2 dx' (2)
0

where the coefficients are defined by

l]E . eZN Zi " eZN (3)= , , _= Zr
a -_ x - 2zceEoTo n 2_reEoToRo

Modulational instability analysis. A convenient way of analyzing the stability
properties of small perturbations on a background solution is to decompose the beam wave

function as _(x, z) = A(x, z)exp[iO(x, z)] and to write eq.(2) as two coupled equations for A

and 0

A z = t_(aAxO x + AOxx)

-®z = a[1Axx - (Ox) 2] + KA2 (4)

It is straightforward to show that a stationary solution of eq.(4) is given by A(x,z)=A0= constant;

O(x,z) = Oo(X,Z) = -r,_z - pA_xz + (1/3)c¢#2A_z 3.Considering small perturbations 6A and _ on

the amplitude and phase of the stationary background solution, the linear evolution of these
perturbations are determined by the coupled system

_Az = a(2_Az®ox + Aoc_O xx )
X

-60 z = o_(6Axx - 2OOx_ x ) + 2tcAo6A + 2#Aof 6Adx'
A° o

(5)



The system (5) admits plane wave solutions of the form 8A, g_O_ exp[i(Kz + [.t_z 2 - f2.x)] which

gives rise to the dispersion relation

2tdI_
K2 = (c_22)2(1 i Z_-_J30) (6)

O_ 2 O_

Neglecting the first dispersively stabilizing part, eq.(6) can be rewritten in physical quantities as

K 2 - -2c_2W2 (K + i_) = (?) 2 2_z/_2E0eI°i tlZn
(7)

in full agreement with conventional Vlasov results for the instability of a coasting beam cf e.g. [2].

In particular we note that if Z r ¢ 0, the beam is always unstable and writing K = K r + iK i , we can

eliminate K r from eq.(7) to express the dispersion relation in the form Z i = Z i (Zr;K i). It is found

that the level curves Z i = Zi(Zr;Ki) for constant K i are parabolas of the form

where

1

Zi = I+R "2 4_.2 22

2KA_Z i ]AA_Z r

Zi=-_ -e_- ; Zr=_-_ e_-rln r/n

(8)

and R'i = _22 (9)

Modulational instability. We now generalize the situation to allow for a bunched beam, i.e.

A(x,0)=A0(x). If we assume that the width of the beam bunch is large, the scale length for its
change can be assumed much longer than that of the instability growth. Consequently, we can

neglect the z-variation of the background profile and approximate A0(x,z) - A0(x). Allowing
however for the curvature of A0(x) we can approximate eq.(5) as

(_)z = a[2(t)xx®Ox +_Oxx]

_A x

+ 26)Ox60x]+2xA_Sa+2_a_fSAdx, (10)_6ez = c_[(__:a_A)_ Aoxx
A0 AoAo A0 ;Ao

Here we can approximate further A0xx/A 0 = -F/a 2, where a is the width of the beam and F is a form

factor which depends on the actual shape, but is of the order of unity, e.g. if A0(x ) = A0cos(rcx/2a )

we have A0xx/A 0 = -_z/4. It can now easily be shown from eq.10) that the dispersion relation (6) is

changed into

F 2evg 2#vg)
K 2 =(0ff22)2(1-_ a2_22 c_ 2 i 0_23 (11)

From eq.(11) we infer that the finite extension of the beam provides a further stabilizing effect. The
corresponding level curves for constant growth rate are still parabolas, but are shifted by the new
stabilizing term to read

1

Zi = F2 + R/2 4._ 2 Z2 (12)



where F2= 1+F/(a2g22). Clearly, the region of instability for 2r = 0 has been increased.

However, conventional Vlasov theory predicts a two-dimensional region of stability close to the
origin in the (Zr,Zi) plane and in the vicinity of this region, the level curves are deformed away
from the simple parabolic form. For large growth rates though, the level curves regain their
parabolic form. Thus, the present analysis based on the TWM reproduces all the characteristic
features of the conventional analyisis except for the small two-dimensional region of stability close
to the origin in (Zr,Zi) space. Possible explanations for this discrepancy are the fact that the present
analysis is based on the full nonlinear stationary solution and in particular that the analysis assumes
that the scale length for the variation of the background solution is much longer than that of the
instability. The latter assumption is clearly not valid in or close to the stability region.

Is there Landau damping in the TWM description ?

It is possible to go from configuration space (as described by the NLS equation for U_(x,z)) to

phase space by introducing the Wigner-like function (p conjugate momentum to x)

+oo

p(z,x,p) _ I W(x-Y'z)W*(x-Y'z)exp(i PY)dY (13)z ct 1

If _(X, Z) satisfies eq.(1), it can be shown that IO(z, x, p) satisfies the von Neuman equation

{-_ + p--_ + J-[U(Xstl + _ 2 0p" U(x -i-_---_)]}p = 0 (14)

Expanding U for small values of e and linearizing the corresponding equation around the

equilibrium state 9o(P), the dispersion relation becomes (a o = q2flcrl2o/(2_EoRo))

+_do0/@ (15)
1 = iaoZ Kp - £2

which coincides with the dispersion relation of the conventional theory, including the phenomenon
of Landau damping.

Conclusion. The present analysis has confirmed that the TWM provides a powerful new

approach for analyzing the properties of high energy charged particle beams. In particular, the main
properties of coherent longitudial instabilities of a particle beam have been recovered although
some additional analysis is needed to explain the two-dimensional stability region close to the
origin in impedence space as found by classical Vlasov theory.
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Abstract

We use a subset of coherent states {Ic_k >}, which is complete but not

overcomplete, and its biortogonal set {Iwk >}, to define the action of the

phase operator eL, introduced somewhat imprecisely by Lewis et al [Phys.

Rev. Lett. 77, 5157 (1996) ], on a dense set of states. We show that its

domain does not contain the number states so that the "no go" theorem for

this putative phase operator does not apply, and we explane some missunder-

standings related to it.

I. INTRODUCTION

It is well known that there is no self-adjoint operator with the domain containing the

number states In >, which satisfies canonical commutation relations with the oscillator

hamiltonian. This is the content of the well known "no go " theorem for the operator

representing the phase variable of the qua.ntmn ha.rnlonic oscilIa, tor. It is usually ascribed

to Susskind and Glogower [1], but it was probably noticed already by Dirac [2] as early as
in 1931.

Recently, Lewis at al... [3] proposed the following expression:

_L : 2i (
±,lna +-1,-_a) (1)



where &+ and & are the creation and annihilation operators, to represent the phase of the

quantum harmonic oscillator. They proceeded, without a precise definition of the domain of

the expression (2), to symbolically calculate its matrix elements in the overcomplete bases

of the coherent states Is >. Furthermore they fbrmally obtained the standard canonical

commutation relations of az with the Hamiltonian. Somewhat later, Smith and Vacarro ^[4]

clamed that the proposed expression aL is equivalent to the one proposed by Turski [5]: CT,

and for the later they explicitly showed that it does not satisfy the canonical commutation
relations.

We show, by direct and simple, computation that tim two expressions are not equivalent.

The conclusions of Smith and Vacarro are correct but they do not apply on the eL by

Lewis at all... Nevertheless, the analyses of Smith and \/acarro points to the one important

aspect of the problem: If an expression, like (2), defined as a nonentire function of the

creation and annihilation operators, is apparently cha._ged by the unity f Is >< c_ld2a, how

should one correctly define its action on the states different from the coherent states. In the

next section we give a constructive answer on this question

II. WHAT IS THE DOMAIN OF eL ?

The subtlety of the problem with a putative phase operator is well illustrated by the

example of the Lewis et al... expression (2), and the corresi{onding objections raised by

Smith and Vacarro. Lewis at al... proposed the expression eL given by (2) to represent

the phase of the quantum harmonic oscillator, guided by the fact that its mean value in a

coherent state [a >,a = pexp(i¢) is formally equal to the phase ¢. They claim that in a (

unspecified) domain aL satisfies the canonical conmmtation relations with the Hamiltonian.

Smith and Vacarro [4] acted on (2) by the unity expressed as 1 = f ]a >< a]d2a to obtain:

'1 / /2i_. [ ]_ >< _]d2_lna +- lna]_ >< _]dZ_]-- ¢1_ >< _ld2_ = CT (2)

Then they showed that aT does not satisfy the canonical commutation relations with the

Hamiltonian, which, as they concluded, contradicts the claim by Lewis at all.

However, one should be caxeful in applying the resolution of unity given by the overcom-

plete set of coherent states on the symbolic ex[_ressions like (2). Indeed, remaining on the

formal level of Lewis at all, the mean value of eL in a coherent state ]a > is:

< _laLIo_ >=< c_llnc_ + - In c_lc_ >= (lna* - lna) < o_1o_>=¢ (3)

Let us suppose that 0 ___¢' < 2r_ and that 0 < ¢ < 7r. Since I < c_]a' > 12: f(P', cos(¢'- ¢))
we have:

< >= f ¢' < >< >
2_r-¢ 2_r-¢ 2_r-¢

f (¢ + u)] < o_1_' > 12de/= ¢ J I < °_1°/> I_dc/+ f uf(p',cosu)dup'dp'. (4)
-¢ -¢ -¢

The first integral is equal to ¢ and the second can be split into a sum of two integrals, one

on (-¢,¢) and the other on (¢,2_r -¢). Since f(p',cosu) is an even function of u the first



of theseintegrals is zeroand the secondis different from zeroexcept whenq_ = 7r. Thus, we
have shown that

(5)

So the claim by Smith and Vacarro can not be considered as proved since it is irrelevant

for at,, although correct for q_T.

These, apparently contradictory conclusions, about a putative phase operator are math-

ematically due to the facts that ¢ = i ln(a/p) is not an entire function of a C C, and that

the bases of the coherent states is overcomplete and nonortogonal.

The difficulties with q_L can be circumvented by a more careful consideration of the states

where the expression (2) gives convergent results. These states are obtained by picking up

a discrete and complete, but not overcomplete, subset {]ak >} from the overcomplete set

of all coheret states. Such states are first considered by J. von Neumann [6], and the

exact completnes of {lak >} was proved by Perelomov [7]. He also constructed the set

of the corresponding biortogonal states {Iwk >}. The states {lak >} are parameterised

by points in a lattice in the complex plain. Namely, {Ic_k >} = {[rnw_ + nw_. >}, where

(re, n) 7_ (0,0) e Z x Z are pairs of entire numebers exept (m,n) = (0,0) and wl,w2 e C

are complex numbers. Furthermore, wl and w2 are chosen such that the surface of the cell

S = Irn(w_w_) is equal to 7r. The latest, condition is necessary and sufficient for the set of

states to be complete and not overcomplete. In order to save on the notation we use single

index k instead of the pair (rn, n). Tl_e biortogonal basis {Iwk > satisfies < wklaz >= 5kt.

Explicit relations for < aIwk >, which shall not be used in this paper, are given in [7].

Using the sets {lak >} and {]wk >} we define the following expression:

_L = _lnc_kl_k >< Wk]- In c_]ak >< wk I
k

(6)

to represent _ when acting on the dense set of states represented as convergent sums of

IOtk >:

k

(7)

The domain of q_L contains the dense set {[c_ >}, and in addition all the vectors represented

as convergent sums (10) such that the action of eL is also represented as a convergent sum

(10). For example,

< o kl¢ lo k>= (ln = Ck- (8)

in accord with Lewis at all. However _L and _L, formally given by (2), could, and do,

formally give different results when acting on the "redundant" coherent states la >¢ Ic_k >.

Since the Lewis at all expression (2) has no plOl)' c_'-;tlS'defined domain, and in order to avoid

multiplication of symbols, in what follows we shall always denote the operator _bL by q_z,

baring on mind the definition of its domain.

It is important to notice that the eigenstates of the Hamiltonian In > can not be repre-

sented as a convergent sum (10), so that <  lq;Ll > is not defined. Indeed, if In > would



havebeenequalto In >= _ cklak>than, by applying n+ 1 times the annihilation operator,

one would obtain 0 = _kak"+lcklak >,which can not be since {Ic_k >} are not overcom-

plete. This fact points out to a deep physical reason for the difficulties in the definition of

the quantum phase.

III. DISCUSSION

Major impediment to a consistent definition of an operator representing the phase of

the quantum harmonic oscillator is the well known "no go" theorem, mentioned in the

introduction, which states that there is no hermitian operator 0 on L2(R) with a domain

containing the hermite functions and satist'ying [/z, 0] = i, where _ is the number operator.

Our approach was to question the domain of the putative phase operator. Following

Lewis et all. we introduced the expression (9) defined on a dense set of states, containing

the complete subset of the coherent states, and we gave explicit rules how this expression

should be used to give convergent results. The domain of the operator qSL, given by (9),

does not contain the number states, so that the "no go" theorem does not apply, and the

canonical commutation relations could be satisfied. The operator eL is based on a complete

subset of the coherent states Ic_k >, its biortogonal set Iwk > and the in c_k function. The in g

function was previously used in this context by Lewis et al...but they remain on a formal,

symbolic treatment of this quantity, which made possible, also formal, criticism of Smith

and Vacarro. However, eL is an explicitly defined quantity, with a properly specified domain

and action. Its action is defined by convergent series whenever it acts on a state which can

be represented as a convergent series of lak >. Such states are dense in L2(R). However,
.A

eL is not well defined in the number states In >, which is, in a way, in accord with the "no

go" theorem.
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We show that 100% squeezed output can be produced in the fluorescence

from a driven two-level atom interacting with a squeezed vacuum, and that

the atom evolves into a pure atomic state. The quadrature for which optimal

squeezing occurs depends on the squeezing phase _. For small N, squeezing

amplification may occur.

There have been several theoretical investigations of squeezing in resonance fluorescence,

both in terms of the total variances and in terms of the fluctuation spectra of the phase

quadratures. Single-mode or frequency-tunable two-mode squeezing with a finite bandwidth

may be obtained, depending on the Rabi frequency and detuning [1].

Experimental observation of squeezing in the fluorescence field has proved a great chal-

lenge, one problem being that atomic motion produces phase shifts which destroy squeezing.

This difficulty was surmounted in the recent experimental advances [2]. Recently, experi-

ments carried out by Zhao et al. [3] have found some evidence of squeezing by measuring

the phase-dependent fluorescence spectra of a coherently driven two-level atom with a long

lifetime, stimulating the further exploration of squeezing in resonance fluorescence.

We have recently found that squeezing in resonance fluorescence can be greatly enhanced

in a frequency-tunable cavity [4], or in a squeezed vacuum [5]. The latter works mainly in

the regime over which anomalous spectra such as hole-burning and dispersive profiles [6]

occur, where squeezing occurs in the out-phase quadrature of the fluorescent field.

Here we extend the study to the general case, and show that large squeezing occurs

in different phase quadratures of the fluorescent field, depending upon the values of the

parameters. The large squeezing is associated with an atomic pure state, and thereby with a

large atomic coherence. Perfect fluorescent squeezing may only take place for the particular

squeezing number N = 1/8.

For a two-level atom driven by a coherently laser field and damped by a broadband

squeezed vacuum, the optical Bloch equations are of the form

(dx) = -%(ax) - (A + 7M sin(I))(ay),
(hy)= -%(ay) + (A - 7M sin _)(ax) - _(az},

(1)



where 7x,y = F+TMcos_5, 7z = %+%, F = 7(N+ 1/2), and A = o.) A -02 L is the detuning,

f_ the Rabi frequency and q) the relative phase between the laser and the squeezed vacuum,

N the squeezing photon number, and M the strength of the two-photon correlations in the

squeezed vacuum which obeys M <_ V/N(N + 1); crz and Cry are the in-phase (X) and out-

of-phase (Y) quadrature components of the atomic polarization, respectively, and Crz is the

population inversion.

It has been shown that such a coherently driven two-level atom interacting with the

squeezed vacuum reservoir can collapse into a steady-state which is a pure state, for the case

= 0 or 7r [6], i.e., E = (Crx)2 + (cry)2 + (crz)2 = 1. We point out here that a steady pure

state can, in fact, be achieved for other values of the squeezing phase as well, the requirement

being that given q), 9 and A are chosen to satisfy E = 1. The general pure state has the

form

19)= v/--MI0}_ ei_v/-_ll}
(M -}-iV)1/2 (2)

{P+TMc°sO _ The conditions for the pure state (2) for a few specific caseswhere c_ = arctan k a+_M sin q_]"

are given below:

e=0, A=0, _= 7v_
v/_ + 1 + v/N ' (3)

_r 7v/T_
• =_, A=F-TM, a=v/Y+l+x/N, (4)

2Av_
• =_, A>>F-TM, a=vW+l_v _. (5)

Notice that for resonant excitation, a pure state is only possible if _5 = 0. In general, the

pure state (2) describes a completely polarized atom with the Bloch vector B lying on the

Bloch sphere with polar angles a and/_,

B = cos c_ sin/3 ex + sin c_ sin/3 ey + cos fl ez (6)

(where 3 = arccos -_-4-_ " When _, t2 and A satisfy the condition (3), then a =

and the atomic Bloch vector (polarization) is in the Y-Z plane, whereas if the condition (5)

holds, we have c_ = 0 and the atom polarizes in the X-Z plane.

The total normally-ordered variances of the phase quadratures of the fluorescent field can

be expressed in terms of the steady state solution of the Bloch equations (1) as

So : <'(AEo) 2 :)= 1 + @z) -(@x)COS0-@y)sin0) 2, (7)

where Eo = e-i°g (+) + ei°g (-) is the 0-phase quadrature of the atomic fluorescence field,

measured by homodyning with a local oscillator having a controllable phase 0 relative to the

driving laser. Eo=o and Eo=_/2 are usually the in-phase (X) and out-of-phase (Y) quadratures

of the fluorescent field, respectively. So is the total normally-ordered variance of the 0 -phase

quadrature of the fluorescent field. The field is said to be squeezed when So < 0. The



normalization wehavechosenis such that maximum squeezingcorrespondsto So = -0.25.

Eq. (7) implies that the squeezing occurs at large values of the atomic coherences, @x(y)).

It is not difficult to show that the total normally-ordered variances in the phase quadra-

ture component of the fluorescent field reach their minimal value

SOo = 1 + (Oz) - @x) 2- (o-u)2 = @z}(1 + @z)) + 1 - E, (8)

(r+TMcos_h (Note that only when Soo < 0 is thewhen the quadrature phase 0o = arctan \A+TMsin_].

resonance fluorescence a noise-squeezed field.) Furthermore, if the atom is in a pure state,

i.e., E = 1, then Soo reduces to

S_ _ = <o-z>(1 + <o-z>) <_ O, (9)

showing that maximum squeezing occurs when @z) = -1/2. Therefore, a completely po-

larized atom always radiates a fluorescent field with 0o-phase quadrature squeezing. The

quadrature phase 0o is same as the longitudinal angle a of the polarized atom in the Bloch

sphere.

We may conclude that when (I) = 0 and A = 0, optimal squeezing in the fluorescent

field always occurs in the out-of-phase (Y) quadrature component, i.e., 0o = 7c/2 [5]. When

= 7r/2 and A = F - 7M, then 0o = 7r/4, and optimal squeezing takes place in the 7c/4

phase quadrature [3]. When (I) = 7c and A >> F - 7M, then 0o = 0, and optimal squeezing

is always in the in-phase (X) quadrature [4].

l/ / "_>, ?', c ::
o_k "-; ........ ........ :

-_o_.. ..........}......................._..}_..._-_.:...... >--.................

-o2°_; ............ :...................... c .................i

-04
20 40 60 80 100

FIG. 1. Sx and E as functions of f_, for 7 = 1,_ = %A = 12.5 and (a): N = 0.05, (b):

N = 1/8 and (c): N = 0.5. The solid and dashed lines represent respectively Sx and E.

Figure 1 shows that large squeezing in the resonance fluorescence of the two-level atom

occurs for pure atomic states. When N = 1/8, maximal squeezing (Sx = -0.25) is achieved

at the Rabi frequency t2 = 21.653,. The large squeezing is due to the large atomic coherence

in the pure state.

When eq. (5) is satisfied, the atom is in the pure state (2) with a = 0. The corresponding

total, normally-ordered variance Sx of the in-phase quadrature of the fluorescent field is of
the form

sp s = N - M
X + M + 1/2" (10)



When N = 1/8, M = 3/8. Then, from eq. (10) we have SxpS = -0.25 (100% squeezing).

The corresponding value of the Rabi frequency is _ -- x/_A.
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FIG. 2. S gs and S_cV as functions of N, represented by the solid and dashed lines respectively.

We plot SPxs, indicated by the solid line, against N in Fig. 2, which demonstrates

that large squeezing occurs for small photon numbers. For comparison, we also present the

normally-ordered variance S sV of the in-phase quadrature in the squeezed vacuum field,

represented by the dashed line in this figure. It is clear that the squeezing of the output

field (fluorescence) is greatly enhanced over the region 0 < N < 0.562, compared with

the squeezing of the input (squeezed vacuum) field. Hence, the atom may be applied as a

nonlinear optical element to amplify squeezing.

Fluorescent field squeezing can also occur in other phase quadratures with the phase

between 0 (in-phase) and 7r/2 (out-of-phase).
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Abstract

We have investigated the intensity noise properties of injection locked VC-

SEL's. This injection is realized with a laser diode in an external grating

configuration. We observe a reduction of the intensity below the shot noise

level with a reduction of the number of transverse oscillating modes.

I. INTRODUCTION

VCSEL's have been studied extensively in the past few years because of several useful

characteristics and because they appear very promising both for industrial applications and

for basic research. Indeed they show many advantages with respect to the previous standard

semiconductor lasers architectures. They present a very low threshold, a high quantum effi-

ciency and they can exhibit single longitudinal and transverse mode operation [1]. However,

the maximum single mode power is limited by the onset of higher order transverse modes.

Moreover, many changes are observed in the polarisation states of the emitted field as the

driving current is increased [2,3].

In this paper, we investigate the intensity noise of high quantum efficiency oxide confined

VCSEL's. We report generation of amplitude squeezed light by injection locked VCSEL's.

.This technique, already used to reduce the intensity noise of other semiconductor lasers [4]

is applied with success to VCSEL's.

The material of the paper is organised as follows : after this introduction, we present the

experimental' setup in section II. In section III, we analyse the experimental results. Finally,

in section IV, we summarize the results.

II. EXPERIMENTAL SETUP

We use oxide confined VCSEL's (made at the Department of Optoelectronics of the

University of Ulm) with different active media diameters: 5, 7, 10, 12, 16 and 20 pro. They
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FIG. 1. Experimental setup for noise measurement on .injection locked VCSEL's.

consist of carbon doped p-type A1GaAs/A1GaAs and silicon doped n-type A1As/A1GaAs

Bragg reflectors with pairs of quarter wavelength thick layers. The top (respectively bottom)

mirror has a reflectivity of 99,8 % (respectively 99%). They are coated on each side of a

cladding layer containing the three active 8 nm thick GaAs quantum wells and the oxide

aperture which provides both current and optical confinement. The devices are attached to

a copper plate using silver paste and the operation wavelength ranges from 820 to 850 nm.

Figure 1 shows the detail of the experimental setup. According to the principle of

pump noise suppression [5], a low noise home made power supply with an appropriate LC

filter provides the regulated electrical current which drives the VCSEL's. The VCSEL's are

also thermally stabilised with an active temperature stabilisation. With this stabilisation,

we were able to operate at a fixed temperature with a drift as small as 0.01°C per hour.

The light beam is collimated by an antireflection coated microscope objective located at

a distance of 2 mm from the laser output. This objective has a large numerical aperture

(N.A. = 0.6) to avoid optical losses which would deteriorate the squeezing. To measure the

intensity noise and the corresponding shot noise, the standard scheme consists in a pair of

two high quantum efficiency balanced photodiodes: this is the usual homodyne detection.

The sum of the two photocurrents is proportional to the intensity noise while the difference

is proportional to the corresponding shot noise [6]. However, in our case, it is better to use

only one photodiode (FND100, bandwidth 1-30 MHz, quantum efficiency of 90 %). Indeed,

because of the multimode operation with two orthogonal linear polarisations, the shot noise

obtained with a balanced detection would not be reliable and we preferred to use a separately

calibrated shot noise. The shot noise reference is obtained by means of a laser diode beam

which has a low intensity noise in the range of frequency of 1-30 MHz according to the

above mentionned property. We carefully checked the linear dependence of the calibrated

shot noise signal with the optical power incident on the photodiodes. The shot noise obtained



with this method was in agreementwithin 0.1 dB with the noiseobtained by a thermal light
gen¢,ratingthe sameDC current on the photodiode. The photodiode is connectedvia a low
nois_horn(,made amplifier (with a CLC425) and electronic amplifier (Nucletude t-40-1A)
t:oa spectrum analyst_r(Tek[ronix 2753P). \Vith this setup, the electronic noise wasmore
than 6 dB below the signal we measuredfor a typical detectedpower of 1.5 roW.

We choseto inject the VCSEL's fundamental gaussiantransversemode TEM00. We use
a squeezedindex guided quantum well GaA1Aslaser diodeoperating at 850 nm as a master

laser. Low noise operation is achieved by suppressing the side modes using feedback from

an extenal grating in an extended cavity laser [6,7]. By tilting the grating, the laser diode

wavelength can be tuned coarsely to match the wavelength of the VCSEL TEM00 mode.

The grating is mounted on a piezoelectric ceramic to precisely tune the wavelength of the

laser diode. Astigmatism in the beam is corrected by means of an anamorphic prism. Two

optical isolators (for a total isolation of 50 dB) are used to prevent back reflection into the

laser diode. A single mode optical fiber filters the laser diode beam: only the TEM00 mode

gets out from the fiber. Hence we have same transverse geometry for the master beam and

for the VCSEL transverse mode we want to inject. This ensures an efficient mode matching.

Moreover the waists of the master beam and of the slave laser mode are about the same. A

half wave plate enables to match the polarisation of the laser diode beam to the one of the

VCSEL TEM00 mode. At last, the master laser beam is coupled to the VCSEL one with a

beamsplitter. The injection locking is checked with a Fabry-Perot (FSR _ 800 GHz, finesse

~ 100).

III. EXPERIMENTAL RESULTS

We were able to realize the injection locking of VCSEL's with various diameters. In

figure 2, we have plotted the normalized intensity noise measured versus the noise frequency

for a VCSEL of 7 pm diameter. In free-running operation this device always exhibits an

excess noise. Curve (a) shows the normalized intensity noise in free-running operation while

curve (b) shows the intensity noise of the VCSEL for the same driving current when it

is injection locked (the injection power is equal to 2 % of the power of the free-running

laser). The best squeezing (after correction for optical losses) obtained is about -0.8 dB.

The VCSEL's with larger diameters present the same property: injection locking technique

reduces the intensity noise. A spectral analysis shows that the intensity of the TEM00 mode

is increased by injection locking. However, despite injection, several transverse modes still

oscillate. The injection locking technique reduces the intensity noise but does not ensure

single mode operation.

IV. CONCLUSION

In this paper, we have shown that the injection locking technique can be applied with

success to reduce the intensity noise of the VCSEL's. We can obtain squeezed light with this

technique from a laser which always shows an excess noise in free-running operation.
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FIG. 2. Normalized intensity noise spectrum (0-10 MHz) for a 7 #m laser in free-running

operation (curve (a)) and for the injection locked laser(curve (b)).
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Abstract

We develop a theory of photodetection in the presence of feedback valid for

arbitrary time delay in the feedback loop and any degree of field fluctuation.

As a result we show that the statistical equivalence between photon flux and

photocurrent in the feedback loop has no place at times exceeding the loop

round-trip time.

Quantum theory of light detection was developed in 60's by Glauber [1] and Kelly and

Kleiner [2]. The most important and widely used result of this theory is the expression

connecting the photoeurrent autocorrelation function and the normally ordered averages of
the measured field:

(1)

where the photocount charge is set to unity, r/is the detector quantum efficiency and E is

the positive-frequency part of the field, normalized so that the operator i(t) = E+(t)E(t)

has meaning of photon flux through the surface of the detector. For r/ = 1, using the

commutation relations for free field: [E(t),E+(t')] = 5(t - t'), [E(t),E(t')] = 0, one can

rewrite Eq. (1) as (i(t)i(t')) = (/*(t)I(t')}, which, together with the relation (i} = (i}, lets

one speak about statistical equivalence of photon flux and photocurrent.

However, the deduction of Eq. (1), as well as the traditional theory of photodetection

itself, is valid only when "the sources are assumed not to interact with the detector" [2].

Considerable effort has been made in the last years to developing a theory of photodetection

in the presence of feedback between the detector and the sources. Shapiro et al. [3] proposed

such a theory for linearized fields. In our early work [4] we considered feedback photode-

tection of intensity modulated coherent light. Wiseman and Milburn [5], [6] developed an

operator formalism for describing feedback with zero time delay, which has been applied

recently to many important problems of quantum optics [7]. ExperimentM investigations of

feedback can be found in Ref. [8]. In the present work we develop a theory of photodetection

in the presence of feedback valid for any degree of field fluctuation, any state of the field

and arbitrary time delay in the loop.

Our starting idea is that in the presence of feedback the expression for photocount

sequence probability has the same form as in the standard theory, but with field intensity

explicitly depending on the times of the preceding counts of the in-loop detector:



P[°'0 (Tk) = i=1 ITk) exp ]_(T]Tk)dT ,
N

(2)

(k)
where p[o,t)(Tk) is the probability density to observe in the time interval [0, t) exactly k

counts at times Tk ---- tl,...,tk, r] is the detector quantum efficiency, I(t) = E+(t)E(t) is

the operator of field intensity on the surface of detector, and (--')N stands for time-normally

ordered averaging of field operators. The validity of Eq. (2) in the presence of feedback can

be justified by the continuous photodetection theory [10], [11], [12].

The set of elementary probability densities given by Eq. (2) completely describes the

stochastic point process of photocount arrivals. However, the correlation function of the

photocurrent i(t) is expressed via coincidence rates [9]:

(i(t)i(to)} = wl(t)g(t- to) + w2(t, to), (z)

where the function w_(tl, ..., tl) is the probability density to observe I counts at times tl,..., tl,

with possible counts at other times. These functions (coincidence rates) are related to

elementary probability densities in the following way [9]:

-t-oo 1 t t

/ / "44-_(k-91)[+' 'Tk).wl(t'l,...,t_) - _ _. dtl... _kJ'[o,t) t_l,..-,tl,
k=0 0 0

(4)

In the absence of feedback such a transformation is trivial and results in a photocurrent

correlation function given by Eq. (1). In the presence of feedback the calculation of coinci-

dence rates can not be performed in general case and requires considering a concrete type

of field intensity dependence on detector counts. Here we consider one rather general type

of such a dependence, which in the P-representation of the field can be written as

k

I('r[Tk) = Io(t) + __, F(t - t_), (5)
i=1

where I0 (t) is the stochastic field intensity describing fluctuations of field not connected with

feedback and F(t) is the transmission function of the feedback loop (F(t) = 0 for t < 0).

Substituting Eq. (5) into Eq. (2), rewritten in the P-representation, and averaging over

photocount times according to Eq. (4), we arrive at a set of Volterra integral equations for

coincidence rates, after resolving which we obtain (t _> to):

w_(t) = r/(I(t)), (6)

w2(t, to) = 712(E+(to)E+(t)E(t)E(to)} + Rr(t - to)w,(to),

where RF(t) is the resolvent corresponding to the kernel rlF(t) [13]:

(7)

1 vf( ) •
RF(t) = -_ f 1 ---_-f-(w) e-_tdw' (8)

--00



where f(w) is the Fourier transform of F(t). The most important property of the resolvent

is that if F(t) = 0 for t < Tad (TaeZ is the delay time of the loop), then RF(t) is also zero for

t < _-d_. Substituting Eqs. (6), (7) into Eq. (3), we obtain

(9)

where G0- ) = r/60- ) + RE(T)+ RF (--_-) is the Green function of the feedback loop, describing

the repeated round-trips of the signal in the loop. For no feedback G0- ) = r/60- ) and Eq.

(9) coincides with Eq. (1).

Eq. (9) is the main result of our theory. For unity quantum efficiency, applying the

commutation relations for free field, we rewrite it in the form ( t > t'):

(10)

showing that in the presence of feedback the statistical equivalence of photocurrent and

photon flux has no place at times exceeding the delay time in the loop _-d_z(for which -RE is not

zero). This result is rather surprising for the intuitive representation of the photodetection

process with unity quantum efficiency as a "direct conversion of photons into photocounts".

However, the number of photons in some region of space is always equivalent to the number

of photocounts in the corresponding time interval, as the integral of _f0-) over time interval

t has a sense of number of photons in some region of space only for t < wpr, where wpr is the

time of light propagation from the source to the detector, which is always less than <_z.

It has been argued [3] that in the feedback loop the commutation relations of field

operators are not the same as for free field. Let us show that no modification of that relations

can preserve the statistical equivalence of the photon flux and the photocurrent. Indeed, for

bosonic field the commutator must be a c-number. Then, to obtain (i(t)i(t')) = (i(t)i(t'))

we would need to combine Eq. (9) with the commutator

[E(t),E+(t')] = 6(t- t') +
(E+E)

<E+(t)E(t')>
(RF(t--t')+RF(t'--t)), (11)

which is unphysical, being state-dependent. In their approach Shapiro et al. [3] considered

linearized fields, in which case Eq. (11) reduces to the relation

[E(t),E+(t')] : a(t - t') (12)

having a more physical appearance. However this trick is possible for linearized fields only.

In summary, we have shown, how the traditional theory of photodetection can be ex-

tended to the case of feedback between the detector and the source of radiation (Eq. (2)).

For the case of additive feedback our approach allows to obtain an exact expression for the

in-loop photocurrent autocorrelation function given by Eq. (9). This expression shows un-

ambiguously that statistical equivalence between photon flux and photocurrent has no place

in the feedback loop (even for unity quantum efficiency of the detector) at times exceeding

the loop delay time _-dd.

This work was supported by INTAS, grant # 96-0167 and by Belarus Foundation for

Basic Research, grant F 97-300.
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Abstract

The system with an overdense plasma produced from a solid target evapo-

rated by an ultrashort high power laser pulse can provide a very large non-

linearity at optical frequencies. In a field of a strong electromagnetic wave

plasma boundary oscillates with double frequency of the field. Using an elec-

tron sheets model the statistical and dynamical characteristics of the reflected

electromagnetic field are investigated. The squeezing coefficient for a funda-

mental mode at the frequency of the incident laser pulse is estimated.

Nonclassical states of light were generated in experiment more than ten years ago but

hitherto the experimental squeezing coefficients were modest - about several units. At the

same time applications of non-classical light seem to be very promising. Thus, for example, in

experiments with probe bodies specifically in gravitational wave experiments the sensitivity

of installation to external classical force can be considerably increased if the squeezed light

is used for the pumping. Generally a gain in sensitivity can be proportional to the squeezing

coefficient of the input light.

The systems with free electrons can be very perspective for squeezed states generation

because of small dissipation and high nonlinearity of electron medium. Modern methods

of creation of high charge density electron medium including an evaporation of targets by

high-intensity ultrashort laser pulses and a possibility to tune the appropriate regime by

changing a velocity of electrons give an expectation that a highly squeezed electromagnetic

wave can be generated in the electron medium.

Let consider a thin layer of electrons with uniform density (electron mirror). Let the

density of electrons N will be large enough for the reflection coefiCicient will be close to

unity. Each electron in nonrelativistic limit moves along the figure of eight in the field of

a strong electromagnetic wave with frequency cz0. Thus all electrons in the electron mirror

move synchronously with frequency 2w0 in the direction of the wave vector of incident field.

So for the reflection of the incident electromagnetic wave the parametric regime takes place

[1].



In the linear approximation whenV << c the squeezing coefficient g of the reflected wave

have the following value [1]

g=(1-u) -1 (1)

where r, : e2E_)/(4rn2c2a_g), e and m are electron charge and mass, E0 is an amplitude of the

field. Therefore the larger the value of u the smaller the noise spectral density of the "silent"

quadrature of reflected field. However the expression (1) is valid only for the small values

of parameter r, therefore in the case of u close to unity one have to take into account the

higher nonlinearities in the system besides the relativistic equations for the electron motion

have to be used.

It is useful to explore the microscopic model of electron medium for consideration of

the relativistic mirror velocities. Electronic medium is modeled by a set of parallel planes

with constant electron density N. Each plane has infinite dimensions in x and y directions.

Thickness in z direction is considerably smaller than characteristic wavelength (wavelength

of input electromagnetic wave). If the movement of the planes is without rotation then all

variables depend only on coordinate z and time t and for a system with such a symmetry

the (3+1) model can be used: the movement of the planes is described by three components

of velocity _x = Vx/c, By = Vy/c, _z = Vz/c and one coordinate z. This is the so called
electron sheets model.

For a thin charged plane (electron sheet) charge density and current have the following

form (_r is a surface charge density)

p(z,O= _(z- z(t)), ?z,t): _¢(_)_(z-z(t)) (2)

where Z(t) is z coordinate of a sheet and the solutions for the fields have the form [2]

Ez(z,?)= 27rcr.sign(z-Z(t'))

£.(z,t)= -2_.(t')/[c-V_(t')sign(z-Z(t'))]

[I(z,t)= 2rrcr.sign(z-Z(t'))[<(t'),_]/[c-V_(t')sign(z-Z(t'))]

(3)

where /_±(z,t) = Exe'x + Eyg'y, V± = VxCx + Vycy and t- is a retarded time: c(t - t') =l

z- z(t')I.
Let the movement of the plane in the z direction is defined by the following equation

(/9o < 1)

9,(t) = _osin(2_ot), (4)

This type of equation can be supported by the powerful electromagnetic wave incident

normally at the plane. For the large surface charge density c_ one can omit the dispersive

term, in this case the charged plane becomes an ideal mirror with the reflectivity coefficient
about 1.

Let the field incident at the plane have the form (q = 0, 1 ...)

Eiq = Eqcos((2q + 1)aJo(t - z/c) + C2q)

= aqCOS(2q + 1)wo(t - z/c) - bqsin((2q + 1)wo(t - z/c) (5)



where aq and bq are the quadrature components of the incident field. Then a reflected

field Er consists of a sum of odd harmonics of fundamental frequency _0 with frequencies

(2p + 1)w0,p = 0, 1 ... and amplitudes defined by the following expression:

Eqp = - Eq(i )P( Aqp(/3o)(-i )q exp(icpq) + Bqp(rio)(i )q+l exp(-iWq)) (6)

The coefficients Aqp and Bqp have the following form

Aqp(rio ) =

oo

(1 ÷ 2(--n + p-- q)/(2q + 1))J,_((2p + 1)/3o/2). J__+p_q((2q + 1)/3o/2)

oo

Bqp(/30)= Z (1+ 2(_-p- q- 1)/(2q+ 1))J_((2p+ 1)/3o/2)J,,_p_q_,((2q+1)/30/2)(7)

For the relative intensities of reflected harmonics one can obtain

2 2 _ 2AqpBqp sin 2_qIEqp12/E3= aqp+ B_. (s)

and for AqpBqp _ 0 they depend on phase _. So for the large velocity rio the scattering of

input modes into output modes is phase sensitive.

The transformation of input noise from frequency (2q+ 1)_0 into the frequency (2p+ 1)co0

is defined by the following expressions

ap -= Aqpaq _- Uqpbq

bp = Uqpaq @ Aqpbq (9)

where aq and bq are the quadratures of the input field (cf. Eq. (5)) at frequency (2q + 1)w0

and ap and bp are the quadratures of the output field with frequency (2p + 1)w0. The

output quadratures are correlated in this case. Introducing the new quadrature components

"rotated" with respect to the old quadratures [1] and optimizing the angle of rotation one

can obtain for the noise in the most "silent" quadrature

Xo_'_p = Noq(&_ - B_,,)2 (10)

where Nop and Noq are spectral densities of quadrature components for the field in the

vacuum state at the frequencies (2p+ 1)w0 and (2q + 1)w0, and r,qp is the dimensionless noise

suppression coefficient for scattering from frequency (2q+ 1)w0 into the frequency (2p+ 1)w0.

Input noises at frequencies (2q + 1)w0 for different q are uncorrelated therefore for the whole

noise at frequency (2p + 1)w0 one can obtain

oo oo

_'pNop = Nop. _ _/qp = _ Noq(Aqp- Bqp) 2 (11)
q=0 q=0

For scattering of the fundamental mode w0 into itself (q = 0, p = 0) without noises from

other input frequencies the expressions for the elements of transformation matrix are the

following

oo

Aoo(rio)= _ (-1)'_J_(rio/2)

Boo(rio) =/30/2 (12)
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FIG. 1. Fluctuations u (in units of vacuum spectral density) of "silent" quadrature of output

(reflected) field at frequency _0 when only input fluctuations at frequency a_0 are considered (dot);

the same for input fluctuations at frequencies _0 and 3aJ0 (dash dot) ; the same for input fluctuations

with frequencies (2q + 1)_0, where q = 0, 1...30 (dash). The solid line - linear theory.

and for noise suppression coefficient one has (cf. the linear theory Eq.(1), rio << 1)

oo

,.,00(90): [ E - rio/2] (la)
n:--O0

Therefore taking into consideration the nonlinearity change the coefficient A00(ri0) while

the coefficient Boo(rio) remains unchanged (see fig. 1).

The noise suppression coefficient with consideration of vacuum noises at different number

of input harmonics (maximum about 30) is shown in the figure 1. The contribution of

the fluctuations of input odd harmonics into the fluctuations at the frequency a0 can be

decreased with optical resonators or by using the electron mirror with appropriate thickness

for the interference of harmonics would be destructrive [2].

The considered mechanism of squeezed state generation can be useful only if the param-

eter z/will be close to unity. This condition can be met for very high amplitude of the laser

light. Such high amplitude can be achieved in ultrashort laser pulses. Actually for input

frequency co0 from the optical band and cross section of the light beam about 1 mm 2 the

required instantaneous power of the laser have to be about 10 s Wt that is easy enough to

get in experiment. The excessive noises of laser light and the noises of electron medium have

to be considered in more details for real experiment.

In conclusion the most advantage of the considered scheme is that the squeezing coeffi-

cient can be high and independent of frequency in the large frequency band.
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Abstract

General method is developed for analyzing the evolution of non-classical light

in two-mode integrated-optical systems where linear and non-linear processes

with quadratic Hamiltonians can take place simultaneously or successively.

As an example, the evolution of sub-Poissonian light is analyzed in a non-

linear coupler with degenerate and non-degenerate parametric amplification.

It is shown that all-optical switching can be realized in this system.

I. GENERAL TWO-MODE PROCESS

Let us consider first the most general quadratic two-mode oscillator Hamiltonian in the

interaction picture:

1 1 A 1 1

This Hamiltonian describes simultaneous linear coupling and non-degenerate parametric

amplification (two-mode squeezing) of the modes, and degenerate parametric amplification

(self-squeezing) of both of them. The parameters A_ and Ab describe the possible detuning

values of the modes, t_ is the linear coupling constant, A is the non-degenerate amplification

parameter, and # and z/ are the effective degenerate amplification parameters in the self-

squeezing processes. The amplification parameters are proportional to the amplitudes of the

corresponding pumping fields that are assumed to be classical and non-depleting.

By solving the Heisenberg-equations we have found the solution for the annihilation

operators in the rotating interaction frame at a given moment tout in the form

a(tout)----aout : Uain -_ v/)in -_- Wa_n -_- ZD_n,

/_(tout) =/)out--_ V/)in -_- Vain -_- Wb_n -_- Za:n (2)

where for example,

 (tout)-
1

_1 - _2 (- cosh(_tout)(_ + _2) + cosh(v/_2tout)(Vt_ + _1)+

-_ sinh(v/-_lt°ut) [iA_(_ + _2) - it_*A* + iA*B] -

sinh(v/-_t°ut)v/_ [iA_(_2_ + _1) - ia*A* + iA*B])



where

A : -(/x_ +/xb),_*+ _,_*+ _,*_, B = -(/',_ -/Xb)_,- ,_, + ,_*_,
1

¢l:p+v_-q, ¢2=p-v/_-q, p=-_(a_+Ft2),

2 2

The obtained linear transformation generally holds for any integrated-optical four-port

device [1-9] in which not only the general process of equation (1) but several successive

quadratic processes are allowed. Equation (2) is also valid for phase-conjugate resonators

[4]. The input and the output states can be completely described by the the two-mode

Wigner function. The transformation formula between the input and the output Wigner

functions is obtained as

Wout(C_) = Win(M-lc_) (3)

where a denotes the vector (a, a*, fl, fl*) and M -1 is the inverse of the parameter matrix:

-1

M_ 1 = w* u* Z* V*
V Z U W =:

Z* V* W* U*
a c b d)

c* a* d* b*

B D A C "

D* B* C* A*

(4)

II. PHOTON STATISTICS OF A COHERENT-STATE SUPERPOSITION INPUT

As it is well-known discrete coherent-state superpositions can approximate any quantum

state of light with a high degree of accuracy [10]. Hence to describe the evolution of an

arbitrary non-classical state of light in the considered integrated-optical systems it is usually

sufficient to regard the following input states:

I_) = Z _klo.&® IO)b (5)
k

where [C_k) are the coherent states in the superposition and the coefficients ck can be obtained

for a given non-classical state using the method presented in [10]. Here the vacuum state is

chosen for the input state of the mode 'b'.

In the following we present the results only for the mode 'a'. Using the results of the

previous section and equation (5) the following expression can be derived for the output

Wigner function of the mode 'a':

4 1
EK_lx

w°ut(_) = _ _/R_- Is_l_,,

( 1.,._ )x exp -R'lo_l_+ _(_,_o_+ J*o?)+ a£'_ + _,2'o_* (6)



where

Ka kl

!

S a

._k_ =

kl
12a

R'=

R a =

8 a

Ya

.R _ekl _kl 1 ( _ .ekl 2 ^* -kl2"_ "_
, 1 12 1 , aJa ga + _vaJa +zaga )

2R_y_=*_+ s_y_ + s*S__
-4(ca* + DB*) +

2(aa*k+ c*al) +

nl- I_l_
R rkl .* kl S fklx _* _kl_ *_J a ga + R_xag_ + _J a a -4- _aYa Ya

r_ * ekl -*-kl--*
R_y_g_ l + _txj_ + safkZy + _g_ _

2(ca_ + a*al) +
R_- Ls_L_

2(lat_+ i_1_+ IBI_+ IZ)I=)_ na(Ix_l2+ lY_l_)+ _x_y_+ _x_y;
n_ -I_1 _

2(ibl2 + id12 + IAI2 + IC]2), fkZ = 2(ba_ + d*az), g_l= 2(da_ + b*al),

-4(db* + CA*), x_ = -2(bc* + d* a + D*A + BC*),

-2(ba* + cd* + AB* + C'D). (7)

Knowing the Wigner function any physical quantity can be determined. For example, the

photon number distribution's expression can also be calculated analytically.

III. EVOLUTION OF AMPLITUDE SQUEEZED STATES

Using this method we have analyzed the time-evolution of amplitude squeezed states

[11] in simultaneous non-degenerate parametric amplifier and linear coupling processes, that

correspond to parameters Aa = Z2kb : p = P : 0 in the Hamiltonian (1). We have found

that the time-evolution in this system will be periodic if IAI < I_I. For IAI > I_cl the mean

photon number will diverge.

We have shown that sub-Poissonian statistic emerges in the mode 'b' only for small am-

plification. At a fixed coupling _ there exists a critical amplification/_crit where the Mandel

Q parameter of the mode 'a' is exactly zero through the whole process. The parameter "_crit

depends on the parameters of the input state.

It is an interesting effect that there is a maximal value of amplitude squeezing such that

the less squeezed states get more amplitude squeezed during the evolution in the mode 'a' for

certain time intervals. At any coupling constant _ one can find an optimal amplification Aopt

for which the amount of amplitude squeezing enhancement is maximal, and the minimal

Mandel Q parameter does not depend on the coupling constant n, only on the input state.

IV. ALL-OPTICAL SWITCHER

Introducing degenerate parametric amplification for both modes in the previous system,

and assuming the symmetric case (# = u), it is easy to see that two oscillating frequencies

will appear in the time-evolution of the system when I_1+ I_1 < I_1. This fact results

in a beating effect in the time-evolution of physical quantities. It can be shown that for



certain moments complete switching of the input coherent-state superposition signal into

the mode 'b' occurs without additional noise. Figure 1 shows the time-evolution of the

Mandel Q parameters for an input amplitude squeezed state. The switching moment is

indicated in the figure. For certain parameter values it can be realized that in the system

without degenerate parametric amplification (# = _ = 0) the original input state emerges

at these moments (see figure 1). Having a four-port device with outputs corresponding to

the switching moment, an all-optical switcher is realized since the degenerate amplification

parameters # and _ can be changed by adjusting the corresponding optical pump fields.

FIG. 1. Time-evolution of the Mandel Q parameter for an amplitude squeezed state in the

process _ = 0.08078, _ = 1 and # = u = 0.5227, and on the right side in the process _ = 0.08078,

_ = 1 and # = u = O. Pull switching occurs at tswitch=31.5189.
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We consider a single two-level atom driven by the output from a degen-

erate optical parametric oscillator. For squeezing bandwidths of the order of

the natural atomic width and smaller, we report remarkable spectral profiles

for the scattered light, including the existence of a narrow hole at line-centre.

In 1986, Gardiner [1] predicted that a two-level atom interacting with an ideal squeezed

vacuum exhibited different decay rates for the real and imaginary parts of the atomic dipole

moment, one part having a supernatural, and the other part a subnatural, linewidth. As

the intensity of the squeezed field is increased, the value of the reduced decay rate tends to

zero. The difficulty in observing this very narrow linewidth predicted for a strong squeezed

vacuum is that all the modes with which the atom interacts must be squeezed. Here we

consider a two-level atom driven by an ideal, but weak squeezed vacuum, and we show that

for squeezing bandwidths of the order of the natural linewidth, unusual fluorescence spectra

can be obtained, including spectra which exhibit complete quenching of fluorecence at line

centre. We also show that pronounced line narrowing can occur even in this weak field case.

However, unlike the regime considered by Gardiner, it does not require a nonclassical field

or 4_ coupling. Full references are cited in the papers [2,3], where details of the calulations

presented here may also be found. A recent review on atom/squeezed light interactions is

given by Dalton et al. [4].

We consider a single two-level atom, of transition frequency wa, driven by the output

of a degenerate optical parametric oscillator (DOPO) operating below threshold, using the

cascaded-systems approach given by Gardiner, and Gardiner and Parkins [5,6]. The inter-

action is described through the master equation

P = E/2[aP-a2,p]

+t_/2 (2apa t - atap - pata)

--(_rN,-_) 1/2 {[a+, ap] + [pat,a-I}

(1)

+3'/2 (2a-pa + - a+a-p - pa+a-),

with E being the pump amplitude (assumed real), n = na + t%, A the fraction of modes

surrounding the atom which are squeezed, r the fraction of output from the DOPO which

drives the atom and "y is the natural width of the atom. In general, Eq. (1) must be solved

numerically.



The output field from a DOP0 operating below threshold is squeezedvacuum light,
characterizedby the two parameters,N (w) and M (w), where

(at (_) aW')} = X(_)_(_- w')
<a(_)a (_')> = M (_)exp(i¢_)_(_ + _') (2)

and a (w) destroys a photon of frequency w_ +w, w_ being the centre frequency of the squeezed

vacuum. The N and M functions are related as follows

M2(_) = 7/(_)N (_)IX (w)+ 1], (3)

where

(_2/4 + E2 + w2)2

7/(w) = r (_2/4 + E2 + w2)2 + (1 - r) (E_) 2" (4)

If r = 1 (i.e. _ = _a) then 7/(w) = 1. This maximum possible value of 7/is attained when

the OPO cavity is single-ended, and represents ideal squeezing.

We also consider an alternative system, in which the atom is driven by arbitrarily corre-

lated light of arbitrary bandwidth, and we find different spectral features depending whether

we require the driving field to have classical or non-classical characteristics.

In 1986 Gardiner made the broadband assumption, that N (w) and M (w) are constant

(independent of w). He showed that the real and imaginary parts of the dipole moment

p o( al + ia2 of the two-level atom have different decay rates, one much faster and one much

slower than the natural decay rate 7/2 :

1 M)>7L=7(N+_+ _7/2,

1 M) < _/2.7s =7(N+_ (5)

For N >> 1 and the ideal case, 7/= 1, or M 2 = N (N + 1), we have

_s = _ -+ 0 as N -_ oo. (6)

Pronounced line narrowing is thus possible, and the larger the value of N, the narrower the

line.

On the other hand, the greatest value of M that a field with a classical analogue can take

is M = N [2,3]. Such fields are often called classically-squeezed fields. So a = N/(N + 1)

is the fraction of correlations reproducible classically. Clearly a -+ 0 as N --+ 0 and a --+ 1

as N --+ oo. The most pronounced quantum effects are therefore expected for small N (and

7l = 1). This is the regime we consider here, and of course we also allow for the finite

bandwidth of the driving field.

The steady state fluorescence spectrum for the two-level atom is

O_

sW) = f d_ -_" (_+(0)_- (_))_
--OO

(7)
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FIG. 1. Fluorescence spectrum emitted by a two-level atom driven by finite-bandwidth squeezed

light from a degenerate parametric oscillator (D.O.P.O.). Parameters are E = _/100 and ), = 1.

The solid curves in (a),(b),(c) and (d) are for e;/7 = 1,0.5,0.15, and 0.01 respectively. The

dashed curve in each frame is a normalized Lorentzian of width 7, whilst the dotted curve is

No_ (_)/No_ (0).

where

(c_+ (0)c_-(r))s8 = lira (c7+ (t)or- (t + r)). (8)
t--+oo

The results presented have been obtained via numerical solution of the master equation.

Frame (a) of Figure 1 shows that complete quenching of the fluoresence occurs at line

centre for an atom driven by an ideal squeezed vacuum when _ = % The quenching per-

sists for arbitrarily weak driving fields, but vanishes for classical fields. In Frame (b), it is

demonstrated that the hole is gradually filled in as _ is reduced. In Frame (c), we see that
the fluorescence linewidth is less than both the natural linewidth and the linewidth of the

driving field, and in the final frame the fluorescence is essentially that of the incident driving

field.

In Figure 2, we demonstrate that the quenching at line centre requires a quantum driving

field, by employing the alternative system, which allows us to vary the value of M for a fixed

N, and thus the quantum or classical nature of the field.

To summarize, we have considered the fluorescence spectrum resulting from a two-level

atom driven by fields with finite bandwidths,which may be of a classical or nonclassical

nature. A variety of distinctive spectral features have been shown to exist in the regime of

weak narrowband atomic excitation. Nonclassical light is essential for the appearance of a

narrow hole at line-centre, and for an ideal squeezed vacuum, the fluorescence at line-centre

vanishes. Complete fluorescence quenching requires 4re solid angle squeezing.
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FIG. 2. Fluorescence spectrum emitted by a two-level atom driven by the finite-bandwidth light

from the alternative physical system. The solid line corresponds to an ideal squeezed vacuum, the

dashed line to a classically-squeezed field (M = N), and the dotted line represents the spectrum of

the driving field.

We also report that line narrowing can be achieved with both classical and non-classical

driving sources. The bandwidths which give rise to optimal narrowing coincide with readily

accessible experimental values. The early predictions of spectral narrowing for this system

required an intense, ideally squeezed field with bandwidth very much larger than the atomic

transition linewidth, and 47c solid angle squeezing. By contrast, the line-narrowing we de-

scribe here requires weak, narrowband driving, and crucially, does not require 47c solid angle

squeezing.
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Abstract

Influence of partial coherence of laser radiation upon a nonclassical light

formation during second harmonic generation by mixing was considered. The

anMysis was made in terms of mean values and variances of the Stokes

parameters under short time approximation. It was shown that partial

coherence decreased the degree of polarization squeezing, but in the involved

process it was possible to suppress both coherent and thermal fluctuations.

I. INTRODUCTION

Recently a set of nonlinear optical processes which lead to polarization - squeezed

(PS) light formation has been studied thoroughly. This type of nonclassical light is

characterized by suppressed fluctuation of the Stokes parameters which are used to describe

the polarization state of radiation.

PS light formation in type II second harmonic generation was considered in [1,2].

To estimate the real fluctuation suppression in experiment taking into account the real

properties of light and media is necessary. Influence of dissipation and thermal noise was

analyzed in [3]. The another important factor influencing the fluctuation suppression is

partial coherence of laser radiation.

The quadrature nonlinear media have comparatively strong nonlinearities. In such a

medium it is possible to achieve high conversion coefficients. Due to these reasons the X2

medium most likely seem to reveal the PS light in the experiment. The main aim of this

work is to analyze the influence of fundamental radiation partial coherence upon the PS

light formation at frequency doubling by type II.

II. QUANTUM DESCRIPTION OF SHG PROCESS

Let us consider the type II second harmonic generation. In this process the PS light

formed due to simultaneous anihilation of quanta in two orthgonally polarized modes of



fundamental radiation which makesthesemodescorrelated.
for this casehas the form

Hint = h_(a+l a+2a3 + ala2a+3 ),

The interaction Hamiltonian

(1)

here aj(a +) are the j-th fundamental (j=l,2) mode and second harmonic (j=3) photon

annihilation (creation) operators, _ is nonlinear coupling coefficient.

The Hamiltonian (1) leads to the following system of operator equations

da___= @a+a3, dal _ @a+a3, dal _ @ala2. (2)
dt dt dt

The system under consideration does not have an analytical solution. Thus the short

time approximation was employed. Then the time dependence of operators has the form

.~ + 0.5_2t2(ajoa+oa3o += ajoakoako )aj(t) ajo + zTtakoa3o + -- ,

here the subscript 0 denotes the value of corresponding operator at medium input (at t=0).

III. PARTIALLY COHERENT PUMP

Let the initial state of each of the two fundamental modes is given by density matrix

p(0) with Fock matrix elements

/_*m /_k

pro,k(0)= < lp(0)lk>= f exp-(l/3[2)P(3)d23,

here P(fl) is Glauber- Shudarshan quasidistribution function.
radiation of fundamental modes it has the form

1 IZ- I
P(/3) = exp-( ).

For partially coherent

At medium input (t=0) the polarization modes were assumed uncorrelated then the

initial state of the whole field was given by the matrix

p(O) = _ ]ml)[m2)pm,,k_(O)p_,k_(O)(&_[(k2].

IV. STATISTICAL PROPERTIES OF THE STOKES PARAMETERS

We used the radiation polarization state description by means of the Stokes operators

which in the given basis has the form

So(t) = a+(t)al(t) + a+(t)a2(t),

Sl(t) = a+l(t)al(t) - a+(t)a2(t),

S2(t) = a+(t)al(t)e i¢ + a+(t)a2(t)e -i¢,

S3(t) = i(a+(t)al(t)e i¢ - a+(t)a2(t)e-i¢).

(3)



The operators satisfy commutation relation of SU(2) algebra

[S,_, S_] = 2ie,_mlSl

which leads to the following uncertainty relation

where V,_ is the parameter S,_ fluctuation variance, e,_z is antisymmetric Levi - Civitta

tensor.

Having determined the operators time dependence one can get the statistical

characteristics of Stokes operators by applying the usual averaging procedure (A(t) =

Tr(A(t)p(O))} where A(t) should be substituted by Sj(t) and S_(t). Then for Stokes

operators variances one can obtain

Vo = o20 + O_o + 43 ,2 (nao)(n2o) - 4"/2 (nlo)O2o - 472 (n2o)O12o,

1/1= O o+ O o,
V2,3 : G1 _- G2 - 2N1N2 - 2")'2(721o>Cr2202.2(n2o>O120 -_ 2"/2(N1 + N2)((nlO) -- (n2o> -- NIN2),

(4)

Here Gy = (nj0)(1 + 2Nk + 272(N 2 - NIN2)), (nj0) = [aj[ 2 + Nj is the j-th mode

photon mean value, ]c_j [2 and Nj are the coherent and thermal photon number, respectively;

_rjz0= [c_j[2(1 + 2Nj) + Nj + N_ is the initial photon number variance, 7 = 5 t.

V. SUPPRESSION OF POLARIZATION FLUCTUATIONS

As it can be seen from (4) in case of completely coherent radiation the variances have

the simple form [1] (nj0 = I_Jl2).

V1 = _10 -_- _20, Vo _-- V2 _-- V3 = filO -_- fi20 - 4"72nlofi2o •

Thus, it can also be seen from (4) that partial coherence of the pump causes the

presence of additional terms in variances dependencies. These terms decrease the efficiency

of fluctuation suppression. To illustrate this effect the values of variances vj = Vj/(SO)

normalized by the fundamental field intensity are the most appropriate. The coefficient of

conversion into the second harmonic is given by the relation r/= h2wnsh/ha_no where no and

nsh are mean photon number of fundamental radiation and second harmonic, respectively.

Then for the fundamental field intensity one can obtain (So) = n0(1 - 71(1 + 4r + 4r 2) + 2r).

Taking into account the real properties of laser field (r = N/no << 1, N + Nj) the normalized

variances can be expressed in the form

1 1 - 2r/
= --, Vo = v2 = v3 = (1 + 2N)-- (5)

vl (1 + 2N) l - r/ 1 - 71

It should be noted that this result is valid for comparatively low conversion coefficients

(7] < 0.5) since the short time approximation was used to determine the operator time

dependence (for details see [4]).
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VI. CONCLUSIONS

The analysis made allows to conclude that partial coherence of the radiation decreases the

efficiency of polarization - squeezed light formation as it was expected. Besides, during the

PS light formation process both the coherent and thermal fluctuation could be suppressed.

Also it can be seen that for partial coherence of laser radiation not to influence dramatically

the fluctuation suppression process the number of noise photons should be less than 0.1.

This value limits the thermal fluctuation level to generate the PS light.
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Prof. A.S.Chirkin for useful discussion.
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Abstract

The optical Stark effect in a pump-probe setup is expected to show new fea-

tures if the quantization of the pump field becomes important. For example,

the lineshape of a Stark-shifted resonance is strongly modified when squeezing

the pump field. Moreover, nonclassical gain occurs at low pump detuning. A

quantitative calculation of these effects in terms of a density matrix approach

is presented.

I. INTRODUCTION

The optical Stark effect is a well-known phenomenon in modern spectroscopy. It is due

to the dynamic coupling of two energy levels by a near-resonant pump field which shifts the

levels with respect to their original positions. One common detection scheme is a pump-

probe setup, where the pump-induced optical Stark-shift of a two-level system (TLS) is

observed in the absorption spectrum of an additional probe field [1,2,3].

In this scheme, new additional features are expected if the quantization of the pump field

is of importance [4]. In section II, we will discuss two of these features, i.e. the influence

of a squeezed pump field on the lineshape and nonclassical gain. In section III, we give

an outline of a density matrix approach (DMA) which allows an approximate but reliable

calculation of the Stark-shifted probe absorption with low numerical effort.

II. PROBE ABSORPTION SPECTRUM FOR A SQUEEZED PUMP FIELD

The system under consideration consists of N identical two-level systems (TLS) which

are strongly coupled to a near-resonant pump field of frequency wp. The coupling constant

g is enhanced by confining the pump mode within a cavity. Moreover, a probe field at

frequency w being non-resonant to a cavity mode is irradiated. Its absorption spectrum

displays the pump-induced optical Stark-shift.

The pump field is assumed to be in a squeezed state defined by
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Other parameters: N=10, (n)=60.

0 =

with = exp - a2)) ; D(a) = emp(aa t - a'a) (i)

where o_ and _ are c-numbers [5].

In Fig. la, the Stark-shifted probe absorption spectrum for a pump detuning A of the

order of the (mean) Rabi frequency _7 = 2g (_n-} ((n): mean pump photon number) is shown

for three different types of squeezed states. The first type is a coherent state ((=0), while the

second type with _ being positive is a state with suppressed fluctuations of the pump photon

number. The third type for negative _ is a state with suppressed phase fluctuations. If the

lineshapes of the Stark-shifted resonances are compared to the various photon statistics of

these three states shown in the inset of Fig. la, it becomes apparent that the lineshape

directly displays the pump photon statistics. The results of Fig. 1 have been obtained by

exact diagonalization of the Hamiltonian that will be discussed in the next section.

For smaller pump detuning, a probe gain occurs within the Stark-shifted resonance

(Fig. lb). As this gain would not appear when treating the pump field classically, we

refer to it as nonclassical gain. Although the lineshape does not directly display the pump

photon statistics here, it still strongly depends on the latter, as can also be seen in Fig. lb.

III. DENSITY MATRIX APPROACH (DMA)

In this section, we briefly descibe a density matrix approach that allows the calculation

of the Stark-shifted probe absorption. The starting point is a Hamiltonian describing the

coupling between N two-level systems (TLS) (Ig-), le-); y = 1,...,N) and the two fields

(pump and probe) which reads in rotating wave approximation
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7-l = hc@]C + hA J3 + hg(J+ a + a t J_) + h_7(J+Ae -{_t + h.c.). (2)

Here, a and a t are annihilation and creation operators of pump photons. The J-operators

definded by

N N

,1+= E J.,+ : E ; J- : (J+)* ;
u=l u=l

N 1 N

u=l u=l

(3)

are collective operators of the N TLS that are well-known from the Dicke-model [6]. More-

over, we have introduced the excitation number operator/(; as l_ =_ a t a + J3 + N/2. l_

commutes with 7-I and counts pump photons and excited TLS. The c-number A denotes the

amplitude of the probe field which can be treated classically due to weak coupling [7].

The linear probe absorption is determined by the linear probe-induced polarization which

is proportional to (J_(t)}(0. If an initial state with all the TLS being in their ground states

is assumed, (J_(t)) O) can be decomposed as

OO

(J-(t)) (1) = E Pn (J-(t)) (1), (4)

n--0

where Pn is the pump photon statistics and (...)_ refers to an initial state with n pump

photons.

The density matrix equations for (J_ (t))(1) directly follow from the Heisenberg equations

of motion. One obtains, as usual, an infinite set of equations. In order to truncate the

hierachy, we approximately decouple terms which describe correlations between different

two-level systems, for example (J3,, J-,_,)n for u _ u'. For pump detunings of the order of



the (mean) Rabi frequency, the results of the DMA agree with the exact results apart from

a small shift (Fig. 2a). Nevertherless, this first approach is inappropriate for a quantitative

calculation in the regime of nonclassical gain (dotted curve in Fig. 2b).

In order to improve the DMA, terms which include pair correlations between different

TLS are fully taken into account. A finite set of equations is then obtained by decoupling

terms which describe correlations between three different TLS, for example (g__ J3,_, J3,_"}_

with _, _', and _" being pairwise different. This improved approach then gives an accurate

description of nonclassical gain (dashed curve in Fig. lb).

The advantage of the DMA is that it allows the calculation of the Stark-shifted probe

absorption for even high numbers of TLS N as its numerical effort is independent of N in

contrast to an exact diagonalization of 7/.

IV. SUMMARY

In this paper, we have shown that a squeezed pump field can alter the lineshape of a

Stark-shifted resonance. For a pump detuning of the order of the (mean) Rabi frequency,

the lineshape directly displays the squeezed photon statistics. An efficient way to calculate

the probe absorption spectra is given by a density matrix approach in which higher-order

correlations between different TLS are approximated. The advantage of the density matrix

approach is that its numerical burden is independent on TLS number N. Moreover, an

extension of the density matrix approach to describe the optical Stark effect in more complex

systems as, for example, impurity-bound excitons in semiconductors is possible [8].

ACKNOWLEDGMENTS

This work was supported by the DFG (Deutsche Forschungsgemeinschaft).

V. REFERENCES

1. F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev. Lett. 38, 1073 (1977).

2. Ph. Tamarat, B. Lounis, J. Bernard, S. Kummer, R. Kettner, S. Mais, Th. Basch_,

Phys. Rev. Lett. 75, 1514 (1995).

3. A. Mysrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Moroc,

Phys. Rev. Lett. 56, 274 (1986).

4. T. Altevogt, H. Puff, R. Zimmermann, Phys. Rev. A 56, 1592 (1997).

5. D. F. Walls, G. J. Milburn; Quantum Optics, Springer-Verlag (1994).

6. R. H. Dicke, Phys. Rev. 93, 99 (1954).

7. S. M. Dutra, P. L. Knight, H. Moya-Cessa, Phys. Rev. A 49, 1993 (1994).

8. T. nltevogt, H. Puff, R. Zimmermann, phys. star. sol. (b), 206, 87 (1998).



Nonclassical states in a model of micromaser

with unified Jaynes-Cummings interaction

G. Ariunbotd

Department of Optics, Palack_ University, 17. listopadu 50, 772 07 Olomouc, Czech Republic;

Department of Theoretical Physics, National University of Mongolia, 210646 Ulaanbaatar,

Mongolia

J. Pe_ina

Department of Optics, Palack_) University, 17. listopadu 50, 772 07 Olomouc, Czech Republic;

Joint Laboratory of Optics of Palack_) University and Physical Institute of Academy of Sciences

of Czech Republic, 17. listopadu 50, 772 07 Olomouc, Czech Republic

Ts. Gantsog

Department of Theoretical Physics, National University of Mongolia, 210646 Ulaanbaatar,

Mongolia

Abstract

The lossless micromaser-type models with the various versions of the Jaynes-

Cummings (JC) interaction are treated in a unified formalism based on the

oscillator Mgebra. It is proposed *hat the vacuum in _he cavity with injected

atomic coherence evolves to pure states when atom-field interaction is weak.

We consider a monokinetic beam of individual _wo-level atoms which are prepared in

the same coherent superposition of the upper and lower states and injected into a lossless

cavity in such a rate that at most one atom at a time is present inside the cavity, in order

to generate a maser field [1]. However, from the theoretical point of view, the similarities

among the algebraic manipulations used in the various micromaser-type systems [2-4] in the

weak interaction regime (WlR) suggest that there would be a unified approach predicting

the production of arbitrary states, that is based on the generalized bosonic oscillator (GBO)

algebra. The most general form of the JC Hamiltonian is given, in the dipole and rotating-

wave approximations and in the interaction picture, by [5]

= hg(a + + ate_), (1)

where &+ are the standard spin-l/2 operators, g is the atom-cavity mode coupling, the fre-

quency of the cavity mode coincides with the atomic transition frequency and the operators

5, 5 t constitute the GBO algebra basis {3,5, ft, fi} which satisfies the relations,

&tfi=_(n), _t=_(n+l), [h, fi]=&, [5.t, fi]=-a t , (2)



where h being the excitation number operators and real non-negative structure function

q(n) (q(n) _> 0, Vn > 0) characterizes the given system. We assume that system (2) has a

unique vacuum state 10) such that _]0) = 0, _(n) > 0, Vn > 0, the spectrum of fi is taken

to be {0, 1, 2,... } [6]. The micromaser cavity field density matrix t3 evolves according to

PN = TrA[e-iI:I_/h Pn @ PN-leiI?'r/h]. (3)

Here /)N is the density matrix of the field after N atoms have passed through the cavity

with the constant flight time T, TrA stands for the trace over the atomic variables. Thus

the recursion relation for the density matrix elements can be written as

flN(rt, rt t) = [(t2 Cn+l Cn,+l q- fl2CnCn,]flN_l (rt, nt )

q-_2Sn+lSn'+lflN-l(rt -t- 1,rt' q- 1) -t- Oz2SnSn'flN-l(n -- 1, n t- 1)

q-ictflei¢Cn+l_n,+lflN_l(n,n t q- 1) -}- ictfle-i¢Cn_n, flN_l(n,n t- 1)

--i_flei¢ _n Cn, flN_l (rt - 1, rt t) -- iolfle-i¢ Sn+ l Cn,+ lflN_l (n q- 1, nt), (4)

with an input state pN=o(n, n') = po(n, n'), where C,_ = cos (gT ff_-n)), sn = sin (gT ff-_)

and p_ = c_2, flbb = f12, flab = Ctei¢fl, Pba = C_e-i¢fl, (c_2 + f12 = 1) are the atomic

parameters. We also suppose that the input state be constructed from the vacuum using

the sole operators in (2). However, the case of the input ordinary coherent state does lead to

the generation of the two-photon state [7] in the two-photon micromaser system [2], which

is not considered here. The solution of the recursion relation (4) can be found by the same

method which was adopted in [2-4] to be

n r6 !

_(n-k), ,..(_'-k')..,

k=0 M=0

(5)

nn Iunder the conditionsc_,flS¢0, N>> 1, gw << 1, n+n'+-fir <<N, Izl < 1, where

z = iei¢c_flgTN, G(k'_)(z) = -_k,._/_(n + k)!/_(n)!, _(0)!- 1. Of course, this solution has

been written for those systems in which the structure function be chosen in such a way that

the function G__-k) (z) to be convergent for finite z. If the micromaser system starts from a

pure state I¢_n), then the cavity field evolves also to the pure state I¢o_t), from (5),

n

(nl¢o,t} _ E G(n-k)(z) (n -- klOi_ ). (6)
k=0

Particularly, for the input vacuum (n - kl_i_ ) = 5_-k,0, it becomes (nl¢o_,t) __ G_)(z), while

for an initial state with an amplitude z0 and a certain normalization coefficient, it conserves

its form, but with the displaced amplitude (nl¢o_t) oc G(_°)(zo + z). This means that perfect

echo may occur when the phase difference of the amplitudes z0 and z is _r. These approximate

analytical calculations performed when Izl < 1, since the normalization coefficient does not

appear in both expressions, while the numerical calculation of the recursion relation (4) in

the WIR provides the production of a transformed state for not only small displacement z.
In Table 1. we summarize the results of the numerical calculation of the various micromaser-

type systems in the WIR. Furthermore, we believe that the proposed procedure can suggest



TABLE I. Nonclassical states in the micromaser-type systems with Hamiltonians H, operators

5, _ and functions _(x) for the various version of the Jaynes-Cummings model.

Model Hamiltonian H 5 _ _(x) States

Micromaser

Two-photon system

Two-mode system

ID _ system

hg([#&+ + bt2&_) b2 St____ 2x(2x - 1)
2

2 XlX2

 g(b(btb)½ + + (btb)½bt _) b(btb)½ Stb x2

Displaced [2]

Squeezed [2]

Squeezed [3]

HPTS b [4]

aIntensity Dependent

bHolstein-Primakoff SU(1, 1) transformed state

the production of pure states in the cavity system associated with the structure function

which leads to the divergence of the function G(°)(z) for finite z. Therefore, from the

computational point of view, to make a probable convergent approximation to the pure

states generated in the cavity associated with any structure function, we introduce new

states as

(nJ¢) o( f(n)! - n! \ f(n)! ' (7)

where the deformation function f(x) is always unity if G(°)(z) is a convergent, otherwise, it

is not unity (let f(x) _ O, see, FIG. 1). In fact, these states are included in the class of
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FIG. 1. The photon-number distributions (a) for the three-photon system (bars) with pa-

rameters a = /3 = 1/2, ¢ = 377/2, gv = 0.00001, N = 30000 so that a/3g'cN = 0.15

(input vacuum) and for the multiphoton state (stars) (mule) _ (-z_)_ with
mnn! fro(n)!

/=l if m=1,2 for m = 3 _nd f3(n) = v/-_, z3 = tanhr = 0.6366_(n)
(,_n-m)!' fm(n) _ ¢ 1 otherwise

with r = 0.7524; (b) for the q-deformed [9] system (bars) with the same (_,/3,¢ as in (a),

gv = 0.0001, N = 10000 to get a/3g'cN = 0.5 and for the state (stars) (nql¢) o( _! ](_)!

_ q,__q-,_ J 1 ifn<n0
with _(n) = [n]q q_q--V-, q = 2, f(n) = [ Here no makes truncation establish-oo otherwise.

ing the probability amplitude (nql¢) to be convergent, where no -- 10, z -- 0.49.
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FIG. 2. 'Generalized squeezing' [10]; the Husimi Q-function contour plots for the generated

field states (a) the same as in FIG. la; (b) the same as in FIG. la, but ¢ = _r, with input coherent

state I]).

nonlinear coherent states [8], where in the framework of our model, the f(x) does only assist

to ensure that the 'tail' of the probability amplitude (n I¢) is convergent. The physical reason

why we use the deformation function is that the divergence is the result of the parametric

approximation-that is of the assumption that the pump beam is classical and undepleted.

If the pump beam is quantum and treated dynamically, the energy is conserved and there

is no divergence so that the f(x) may reflect a role of the pump depletion.
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Radiation in a single-mode cavity will evolve from some given initial state to thermal equilibrium with the cavity
mirrors. The temporal, time-dependent, photon intensity correlation functions have been obtained to all orders. The
result is a sum over combinatorial products connecting the detection times. In the limit of zero temperature we
recover a well-known expression.

When radiation in a single-mode cavity is prepared in an initial state, described by the
density operator p(O), then the interaction with the mirrors will lead to relaxation of the radiation
to the unique thermal equilibrium state, which is determined by the temperature only. The
transient state density operator 9(t) obeys the Liouville equation

idP =Lp , (1)
dt

with the Liouvillian L defined by

L9 = C0c[ata, p] - liKneq (aat9 + paa "t - 2atpa) - liK(neq + 1)(a1"ap + 9a'ta - 2apa "t) .(2)

Here, C0cis the cavity frequency, K is the cavity damping rate, and neq is the number of photons
in thermal equilibrium. This last parameter represents the temperature in the usual way. We are
interested in the statistical photon correlations of this radiation during the time evolution towards
equilibrium. Let Ik(tl,...,tk)dtl...dtk be the probability for the detection of a photon in [tl,tl+dtl]
and ... and the detection of a photon in [tk,tk+dtk], irrespective of detections at other times.
Assuming that the detection does not significantly disturb the radiation itself, these photon
correlations are proportional to the field intensity correlations

ik(tl,...,tk ) : _k < a?(tl)...a1"(tk)a(tk)...a(tl) > , k = 1, 2, ..., (3)

where _ is an overall detection efficiency parameter. Here, tk > ... > t2 > tl.
In order to evaluate the intensity correlations, we first transform expression (3) to the

Schr6dinger picture, which yields

ik(tl,...,tk ) = _k TrDe-iL(tk-tk_l) D...De -iL(t2-tl) Dg(tl) . (4)

The Liouville operator D is defined by

D O : a0a t , (5)



giving its effect on an arbitrary density operatorp. In order to clarify the significance of
expression(4), wefirst noticethat for k = 1wehave

oo (X3 o(3

Ii(tl)=_TrDp(tl)=_E<nlap(tl)a_ln>=_En<nlp(tl)ln>=_Enpn(tl) ,(6)

n=O n=0 n=0

with pn(t) = < n Ip(t) ]n > the probability to find n photons in the cavity at time t. Therefore,

Ii(tl) = _fi(tl) , (7)

which is _ times the average number of photons in the cavity at time tl. The intensity I1(tl) is the
uncorrelated photon detection rate. The interpretation of expression (4) for Ik(h,...,tk) is then as
follows: First the system evolves from t = 0 to h, and the state is represented by p(tl). Action of
operator 1) then corresponds to the detection of the first photon at time tl. Then the system
evolves to time t2 by means of the evolution operator exp[-iL(t2-tl)]. Then 1) acts again,
indicating the detection of the second photon, and so on.

Working out expression (4) in the same fashion as I1 gives for k = 2, 3,...

O(3 O(3 OO

Ik(tl'""tk)=_k Z'"Z Z nk'''n2nl

nk=0 n2=0 nl=0

x Xnk,nk_l_l(t k - tk_l)...Xn2,nl_l(t 2 - tl)Pn 1 (tl) . (8)

Here, Xn,m(t) is the propagation matrix for the probability distribution:

0(3

pn(t) = ZXn'm(t)pm(O) '

m=0

(9)

which can be computed explicitly from the equation of motion (1). The result is 1'2

Xn, m(t ) - u n (l+v')m_ TM (m+n-k)!

(l+u)n+l \l+u) z_-. (n - _On_- k)!

V(1 + U)]k

u(1 + v-)J '
(10)

with u = neq{ 1-exp(-Kt)} and v = neq - (neq+l)exp(-Kt).
It then remains to perform the summations in (8). It appears to be convenient to express the

result in terms of the factorial moments Sk(t) of the photon distribution, rather than the
probabilities. At any time t the relation is

OO

sk(t) = (n-k)T
n=k

--pn(t) . (11)

Moreover, the result simplifies considerably if we express the intensity correlations in terms of
the factorial moments at time tl, rather than time t = 0. It follows by inspection that the result
can be written in the form



k
k-m

ik(tl,...,tk ) = _k Zneq Sm(tl) _k,m(tl,...,tk ) .

m=l

(12)

In this expression, the functions Z(tl,...,tk) are independent of neq and the state of the field at

time tl. They are combinatorial functions of the k time variables, and nothing else. Hence,
expression (12) displays the temperature dependence, and the dependence on the state of the
system at time tl. For the combinatorial functions we have found the following result:

Zk,m(tl,...,tk) =

2

_.qT) (p q)!
all paths i=k

1-+m

_ e-K(ti -ti-1))P-q e -qK(ti-ti-1) . (13)

The summation runs over all paths on the lattice shown below. We start at "1" in the lower left

k--m

f ................-::::SI::;2;'::2"IZZL':Z

Z:-:I::-::IS................

4--m

f3 3 =m

2 _2 2=m

1 /_._ _._/_1 1 ......................... l=m

i=k i=k-1 i---2

corner, and go in unit steps to the desired m value on the right. In each step you can go up one

level, remain horizontal, or go down by an arbitrary number of levels. Each step determines a

factor in the product. The values ofp and q follow from the numbers on the lattice that are

connected, according to the following diagram:

pS q+l

The factorial moments Sm(tl) can be expressed in terms of the factorial moments at t = 0, as
derived in Ref. 2. The general result is



um'e 'Kts, 0 
eT; (m e)T

(14)

Combining (14) and (12) then shows that the intensity correlations can also be expressed as

k

Ik(tl'""tk) = _k Z_-'_ nk-neq Sn(0) Zk, n(tl,..-,tk) ,

n=0

(15)

in terms of different combinatorial functions Zk, n . The relation between the two representations
is then found to be

k

Zk,n(tl,...,tk) = ZZk,m(tl,.

m=n

Cm, :1 0
""tk)\_(J (m-n)! ) e 1 , (16)

where we have set Zk 0 = 0.

For k = 1 the 'lattice reduces to one point, and we have

Zl, 0 = 1 - exp(-Ktl) and Zl, 1 = exp(-Ktl) , and then

I 1(tl) = _ s 1(tl) = _ (neq (1- e-Ktl ) + g(0)e-Ktl )

which is the same as expression (7). For k = 2 the lattice is 1 _:::_i

(13) has one factor and each summation has one term. This yields

Zl,1 = 1. This gives

, (17)

so that each product in

22,1 = 1 - exp(-K(t 2 - t 1)) , 7"2,2 = exp(-K(t2 - tl)) , (18)

and then, for instance

Z2, 0 = (1-exp(-K(t2 - tl))(1- exp(-Ktl)) + 2exp(-K(t 2 - tl))(1- exp(-Ktl)) 2 . (19)

For k > 2 the expressions become more involved very rapidly.

for the function Z3,2 are

3

22==::_ 2
1"_1 1

For instance, the possible paths

For zero temperature, the only contribution comes from Zk,k, and therefore from only pathone
on the lattice. We then obtain

ik (tl,..., tk ) = _k Sk (0) e-Ktk ...e -Kt2 e -Ktl (20)

1. B. Ya. Zel'dovich, A. M. Perelomov and V. S. Popov, Sov. Phys. JETP 28 (1969) 308
2. H.F. Arnoldus, J. Opt. Soc. Am. B 1_33(1996) 1099
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Abstract

We report a new optical scheme for the confinement of ultracold atoms in blu-

detuned dipole traps. Three dimensional confinement can be achieved with

a single laser beam. Long coherence times can be expected for Bose-Einstein
condensed atoms.

Optical traps for neutral atoms have recently attracted increasing interest. After the

demonstration of efficient cooling of atoms at ultralow temperatures down to Bose-Einstein

condensation [i], the requirements for trap depth are greatly reduced. On the other hand,

for several experiments it is important to achieve a long confinement and coherence time in a

pure optical potential. Although magnetic traps represent an excellent tool to obtain Bose-

Einstein condensation through the evaporative cooling technique, they can limit the studies

of some atomic properties. Only the atoms in weak-field seeking states can be confined in a

magnetic trap so that it is impossible, for example, to realize samples of unpolarized atoms.

These problems are overcome using far detuned optical dipole traps [2]. The trapping

potential originates from the light shift induced on atomic levels by a far-off-resonance field.

The use of highly detuned laser beams has two advantages: first of all, heating processes

such as spontaneous scattering of photons, inelastic collisions induced by light or radiation

trapping are strongly reduced; then, with detunings greatly exceeding the hyperfine splitting

of the ground state, the trapping potential is completely independent of F and mF quantum

numbers. In red-detuned optical traps atoms are confined where the light field is maximum.

This limits the trap lifetime and moreover, as the atoms spend most of their time in a

strong radiation field, energy levels are deeply perturbed by the AC Stark effect. Long trap

coherence times and very little perturbations on hyperfine atomic levels can be achieved in

blue-detuned optical dipole traps. Using a radiation field detuned to the high frequency side

*Istituto di Cibernetica del CNR, Napoli.

tDipartimento di Fisica, Laboratorio LENS, Universit_ di Firenze.

$Dipartimento di Fisica, UniversitY. di Trento.



of an atomic transition it is possible to confine the atoms in low field intensity regions. So, the

main problem is the realization of a laser beam geometry where a dark region is surrounded

by light. Different methods have been developed to produce the required repulsive optical

wails: light sheets by an elliptical focused laser beam can be used to realize nearly flat

optical walls [3,4]; hollow laser beams geometries obtained by diffractive [5,6] or holographic

methods [7] can provide spatial confinement in two or three dimensions; evanescent waves

trapping [8,9,10] is realized by total reflection on the surface of a dielectric medium.

In this paper we study the generation of a single-beam blue-detuned optical trap using

an axicon lens. We are planning to employ this field geometry for optical confinement of

STRb atomic samples, cooled down to Bose-Einstein condensation, first by evaporatively

cooling the atoms in a magnetic trap and then by transferring them into the optical poten-

tial. Evaporative cooling reduces atomic temperatures well below 1 #K so that only some

milliwatts of laser power are needed for the optical confining beam. This approach allows

us to minimize all heating mechanisms proportional to the field intensity and depending on

amplitude fluctuations of the laser beam.

The axicon [11] is an excellent tool for the generation of hollow beam geometries. It is an

optical element with a shape given by any figure of revolution that, by reflection or refraction

or both, produces a line focus rather than a point focus from an incident collimated light

beam along the symmetry axis of the system. Our axicon is a flat cone with a base angle

__ 10 mrad realized on a plexiglass substrate. We use as a test a diode laser (A = 780 nm).

The output beam is expanded to a waist w --- 5 mm. An axicon illuminated by a collimated

beam produces a cone of light with an aperture angle 0 = 2c_(n- 1) where n is the refraction

index of the optical medium (n = 1.492 for plexiglass). A converging lens before the axicon

can be used to focus this beam on its back focal plane where, with a CCD camera, it is

possible to observe a ring shaped intensity distribution. A typical picture is shown in Fig.1.

The ring radius R in the focal plane depends on the distance d between the focusing lens

and the axicon:

R = a(n- 1)(f - d)

where f is the focal length. With this configuration it is very easy to obtain ring diameters

630l_m

FIG. 1. Intensity distribution of the hollow beam in the back focal plane of the input lens

observed with a CCD camera (f = 20 cm and d = 13 cm).



around 100#m. The transverseintensity distribution is well approximated by a gaussian
profile [12] whosetypical width is 1.65Af/lrw that is comparablewith the limit imposed
by diffraction on the focusing of a gaussianbeam by a simple lens. Moving the CCD

camera around the focal plane of the input lens it is possible to study the evolution of the

beam profile along the direction of propagation (z axis). The ring radius increases with the

distance from the focal plane: this reveals the expected funnel-like propagation of the hollow

laser beam. However, on distances around one millimeter the ring radius is almost constant.

The hollow beam provides a good two dimentional confinement only if the core region

is extremely dark. Compared to the peak intensity, we measured a 170 of scattered light in

the trap center. This value can be reduced further on by obscuring the inner region with

a dark spot in the back focal plane of the input lens and by using another lens to image

the ring shaped intensity distribution [6]. Another improvement to the optical system is

possible using a couple of axicons [13]. A divergent and a convergent axicon with the same

base angle in a telescopic mounting turn a collimated incident beam into a collimated tube

of light. In this case, by varying the axicons separation it is possible to change the trapping

volume.

A far detuned hollow laser beam is an efficient tool for bidimensional confinement (2D

trap). The restoring force along the z axis can be obtained by adding two "plugging" laser

beams (3D trap) or crossing two tubes of light around the sample of ultracold atoms. We

are studying a novel scheme to confine atoms in a blue-detuned optical dipole trap that uses

a single laser beam. In the experimental set up (Fig.2) a collimated laser beam crosses a

converging lens, enters the axicon and comes out from a second converging lens. A similar

scheme was reported by L. A. Orozco in [14]. The input lens and the axicon produce a

virtual ring shaped intensity distribution which is focused by the output lens. Around the

plane of image of the second lens it is possible to observe a dark region surrounded by light.

If Gy is the magnification of the output lens, the ring shaped intensity distribution in the

plane of image has a radius

R = GyOL(n- 1)(d- f)

where d is the distance between the axicon and the first lens and f is its focal length. Using

this scheme we have realized an optical trap with a diameter of 300 pm and an axial lenght

of 3 mm. In Fig.3 we report the intensity profile along the propagation direction of the

laser beam (z axis). In the radial direction a ring shaped intensity distribution provides the

required repulsive walls to trap atoms in the dark region.

lens

trapping region_ _

d

FIG. 2. Experimental set up for the generation of a single-beam blu-detuned optical trap.
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FIG. 3. Intensity profile of the single-beam blu-detuned optical trap along the axial direction

(z axis).

We have developed a new scheme to realize a blue-detuned dipole trap of variable size

using an axicon lens. In particular, the single-beam optical trap simplifies the alignment

and the trap geometry offering new opportunities in the study of a Bose-condensed gas.

The authors acknowledge useful discussions with C. Altucci, C. De Lisio and P. Maddalena.
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Abstract

We discuss the squeezing properties and the photon distribution functions of the

electromagnetic field modes excited from vacuum due to the non-stationary Casimir

effect in an ideal one-dimensional Fabry-Perot cavity with vibrating walls, provided the

frequency of vibrations is close to a multiple frequency of the fundamental unperturbed

electromagnetic mode.

Many authors considered recently the phenomena related to the quantum properties of

the electromagnetic fields created due to the motion of boundaries, which are known under

the names nonstationary Casimir effect (NSCE) [1], dynamical Casimir effect [2], or mirror

(motion) induced radiation [3, 4]. Here we report on a progress in studying the NSCE in

a cavity with resonantly vibrating boundaries. It was suggested as far back as in [5] that

a significant amount of photons could be created from vacuum provided the boundaries

of a high-Q cavity perform small oscillations at a frequency proportional to some cavity

eigenfrequency. Approximate calc_ations in the short- and long-time limits, performed in

the frameworks of different schemes, confirmed this conjecture [6-8]. Recently, analytical

solutions to the problem were found [9, 10] for a small amplitude of the wall vibrations (this

limitation is quite unessential under realistic conditions). These solutions, which hold for

any moment of time, enable to calculate the number of photons created from an arbitrary

initial state and to take into account the effects of detuning from the strict resonance [10].

Here we apply the new solutions to calc_ate the effects of squeezing and to find the

photon distribution function. Although a possibility of squeezing the electromagnetic field

in a cavity with moving boundaries due to the NSCE was discussed for the first time in [5],

the concrete calculations of the variances of the field quadrature components were made only

in the short-time [5, 11] and long-time [12] limits. As to the photon statistics, this question
was not discussed at all until now.

We confine ourselves to the special case of a 1D ideal cavity, assuming that the left

boundary is fixed at the point x = 0 (this condition is not significant [10]), whereas the right

one perforins small oscillations in the (quasi)resonance regime (at t > 0), according to the

law L(t) = Lo (1 + _ sin [P_I (1 + 6)t]), with p = 1, 2,..., Wl = _v/L0 (we assume c = h = 1)

and I_l, ]61^<< 1. The field operator in the Heisenberg^picture ft(x,t) must satisfy the wave

equation Art- z21_x= 0 and the boundary conditions A(0, t) = A(L(t),t) = 0. Remembering

the standard decomposition of the field operator for t < 0 (when the wall was at rest),

__(x, t)-- _-_n___l(2/V_) [/_n sin (nTrx/Lo)exp (-inwlt) Jr b.c. ], [/_n,/_fm] = 6urn, we write, for



t >_ 0, ft(x,t) = _n_=l (2/V_) [bn¢(n)(x,t) + h.c.], and expand each function ¢(n)(x,t) in a
series with respect to the instantaneous basis

OO

¢(')(x,t) = _/Lo/L(t) E [P_n)e-ik_'(a+_)t- P(-_ eik_'(l+_)t] sin[_kx/L(t)]. (1)
k=l

Then the boundary conditions are satisfied automatically. The coefficients p(")(t) obey an

infinite system of coupled ordinary differential equations, which is equivalent to the wave

equation. This system was solved under the resonance conditions in [10].

The nonzero coefficients p(k") form p independent subsets (j = 0, 1,..., p - 1)

r(-m-j/p)r(1 +n+j/p)sin[Tr(m+j/p)]

+mpv) = - _r(l+n-m)

x (ffg)n-m)_m+n+2j/PF(n+j/p,--m--j/p;l+n--m; t_2) (2)

where F(a,b; c; z) is the Gauss hypergeometrie function, a -- (-1) p, T = ½ewlt, and

sinh(apT) V�_t¢ = , a = -- 72, A -_-- _/1 -- 72/_ 2 "_- i7_, 7 = 5/_.
v/a2+ sinh2(a )

If the wall comes back to its initial position L0 after some time T, the coefficients p(_

become time independent at t > T, but the initial operators b,_ and/_ cease to be 'phys-

ical', due to the contribution of the terms p(__ exp(ikwlt) with 'incorrect signs' in the ex-

ponentials. The 'physical' annihilation operator &,_, which can be introduced according to

the 'standard decomposition' .4 = _--_7=1 (2/x/_)sin (nrnx/Lo) [am e-imwl(t+hT) -_- h.c. ] at

t >_ T, is related to the operators b_ and/_ by means of the Bogofiubov transformation

The quadrature operators and their (co)variances are defined as (hereafter wa = 1) _,_ =

1_5,_,_ + Omih,_) - _m)(Om)- For the vacuum initial state,/_10) = 0, we have

Um m 1 p_)(TT) _: p(_')_ Y'_ = E --mIm [P_)* (TT)p(_') (TT)] (3)Vm n ' •
n=l n=l _

Calculating the derivatives of the variances with respect to the 'slow final time' 7T ------% we

finddU /d =dV /d = dV /d =0,for numbersm,exceptingthe
'principal' modes with the numbers m = it =- p(k + 1/2), k = 0, 1, 2,... (provided p is even).

There is no squeezing in the 'nonprincipal' modes, since Ym = 0, and the quadrature variances

U,_ = Vm = .Mm + 1/2 (where Afro is the mean photon number) monotonously increase in time

for 7 -_ 1, with asymptotical linear dependence dAfj+pJdT _-. 2ap2sin2(Trj/p)/[_r2(j + pq)]

at apt >> 1. If 7 > 1, then -1/7 _< _¢ _ 1/7, and the variances oscillate in time with

amplitudes inversly proportional to 7 2 - 1, being always greater than (or equal to) 1/2.

Squeezing can be achieved only in the 'principal' it-modes, for which we have

dU°/dr }dV,/dT = =FitRe ([p_/_) _ p(___)]_), dY,/dT = itIm ([p(P/2)*]_+ [p__/_)]_). (4)



In the resonance case "7= 0, an the coefficients p_) are real, so dUJdT < 0 and Y, = O.

In the important special case p -- 2 we have simple expressions at T --+ 0 and 7 --+ co:

V2m+l I
g2m+ 1

Y2m+ l T---_O

1/2 - am T2m+l [1 - brat +" .]

1/2 -4- am T2m+l [1 + brat -4"'" "] ,

-2(2m + 1)'Tarot 2(m+1) +...

.,. = [(2m-
= (2m+ + i)

ao=l

I { 2sin2 [(m+ 1/2)¢]

U2m+l SaT

V2m+l _ × 2cos2[(m+ 1/2)¢] , ¢=arcsin% '7 < 1

Y2_+, r--,_ _2(2m + 1) -sin[(2m + 1)¢]

If .7 _ 0, then Ym # O, so the field goes to the correlated state [13]. In this case the variances

Urn, Vm, Y,_ rapidly oscillate with the frequency 2win, therefore it is better to characterize the

squeezing properties by means of the minimal and maximal variances [14]

v,_ = _ Um+ Vm =F _/(Um- Vm) 2 + 4Ym2 . (5)

In the special case p 2 and # 1 the coefficients _(1): : v_-i can be written in terms of the

complete elliptic integrals [10], p_l) = 2A(a)E(a)/_, p(_l_ = 2 [g2g(a)- E(a)]/(_n), where

_- v/_-_ a2, and equations (4) can be integrated exactly [15]:

V1 ) - 7r2_
(6)

2"7 [E2(_)_ 2K(a)E(n)+ _2K2(n)],

where _ -- ReA --- v/1 - "72a2. Then the minimal and m_ximal variances (5) read

(7)

ul _ _ 2 [2(a T 1)K(a)E(a) ± i2(1 =t: _;)K2(_;) ± E2(t_)] •
Vl J 71"2_

(8)

Asymptotically the minimal variance tends to the unique limit U 1 (¢O) ---- 2/_ 2 for any 7 < 1

(only the rate of the evolution depends on "7). Moreover, this asymptotical value does not

depend on the initial (nonvacuum) state of the field, provided the initial density matrix was

diagonal in the Fock basis (in particular, for the thermal of Fock states) [15].

The field appears in a mixed quantum state, and Trjb2m = [4(U,_Vm- y2)]-1/2 --+ 0

as a --_ 1 (where jbm is the statistical operator of the ruth mode), due to strong intermode

interactions caused by the Doppler effect. The total energy £(7-) -- _,_ m2kfm(7) (normalizc_xt

by _) of the initially vacuum state equals [10] £('_)(_-) = (p2 _ 1) sinh2(paT)/(12a2).

The knowledge of the quadrature variances enables to find the photon distribution in

each mode, provided initially the field was in a mnltimode Gaussian state (which include,

as special cases, vacuum, coherent, squeezed, and thermal states). Indeed, it was shown in

[7, 16] that the field evolution can be described in the framework of the SchrSdinger picture,

with a quadratic multidimensional time-dependent Hamiltonian. But it is known [17] that



the evolution governedby quadratic Hamiltonians transform any Gaussianstate to another
Gaussian state. And it is also known that the Gaussianstate is determined completely
by the averagevaluesof quadratures and its variances. Using the general formula for the
photon distribution function fro(n) =- (nlf_mln) derived in [18], we get, in the special case of

the initial vacuum state and the exact resonance, the expression

[(2Um- 1)(2Vm- 1)] n/2 ( 4UmVm- 1 )sm( )=2i( ; -- - (9)
where Pn(x) is the Legendre polynomial. In 'non-principal' modes we have the Planck

distributions f,_(n) = [2Vm(T) -- 1] _ /[2Vm(_-) + 1] _+1. For the 'principal' it- modes, one can

simplify (9)for n >> 1 and V,(T) >> 1: f,(n)_-. (lrnV_)-l/2[(2V, - 1)/(2V, + 1)] _. The

Mandel parameter Q - an/fi - 1 is positive for all values of 7 and m, so the statistics is

super-Poissonian. For the other recent results on NSCE see [19-23] and references therein.
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Abstract

The degeneracies of the Jaynes-Cummings Hamiltonian are studied by underscor-

ing operators explaining the non-degeneracy or the degeneracy of some eigenstates.

These operators are supercharges and we thus display the supersymmetry underlying

the Jaynes-Cummings model. Two extensions of the Hamiltonian are also considered.

1 Introduction

The Jaynes-Cummings Hamiltonian (Hjc) [1] is associated with a model describing the

interaction between a spin -1 particle and a one-mode magnetic field having an oscillating

component along one axis and a constant component along another axis [2]. This model,

extensively used in quantum optics [3] is one of the simplest examples of quantum systems

combining bosons and fermions, a typical feature of supersymmetry [4].

This model has been widely studied (see for example Ref.[2], [5], [6], [7] ). Some

supersymmetric characteristics of Hjc have also already been pointed out [7]. We propose

here another approach of some Hjc supersymmetric features [8].

So we underscore the energy spectrum and the eigenstates of Hjc (Section 2). These

states are degenerated only for one value of energy. We explain this fact through super-

symmetry or more precisely through the existence of supercharges which explain the non-

degeneracy or the degeneracy of some eigenstates (Section 3). We also reconsider two gen-

eralizations [6] of Hjc to show the unicity of their supercharges (Section 4).

Our units are taken with the constant h equal to unity.

2 Energy spectrum and eigenstates of Hjc

The Jaynes-Cummings model can be described by the Hamiltonian [1]

1 w0
Hjc = _(ata + -_) + -_(_3 + g(ato "_ + ao-+),

1E-mail: Christine.Geron@ulg.ac.be

(2.1)



where a t and a are respectively the creation and annihilation operators of the bosonic har-

monic oscillator and where a± = al ± a2, a3 refer to the Pauli matrices.

If we note A the difference between the two angular frequencies w and w0, we can

summarize the eigenstates and the energy spectrum of Hzc in the basis of the vectors

as follows [8] :

a)for all the values of g, we have to distinguish two cases

z_ and the corresponding eigenstate is(i) either E = T

leo >=l o,- >; (2.2)

where

and

(ii) or E = wk ± _r(k) ,k C INo, and the corresponding eigenstates are

[ E+ >- R(k)l (gx/_i k_ l,+ > +@(r(k)+ l) Ik,- >), (2.3)

1 A

I E[ >= )R(k----_(7(r(k) + 1) 1k - 1, + > -gv/k I k,- >),

4g2k]1
r(k)=(l+ A2 '

(2.4)

(2.s)

n 2

R(k) = (--5-r(k)(1+ ,(k)))½; (2.6)

A = wk + _r(k), A has to be negative and g has to takeb)if there exists k E INo such as 7
the values

g:±v%(_k-_). (2.7)

Then the corresponding eigenstates are

wk _wk - AIE[>= 2wk_ A(I k- 1,+ > :t= _z-k I k'- >) (2.8)

with respect to the signs of g in (2.7).

c)if there exists k C INo such as _ = wk - _r(k), A has to be positive and, also here, g has
to take the values

g: iv%(_k- _).

Then the corresponding eigenstates are also (2.8).

In the particular case where A = 0 and g = 0, the results are, as expected, those of

the supersymmetric harmonic oscillator [4].



3 Explanation of the degeneracy

The non-degeneracy of the Hjc + c-eigenstates in the general case, when A = 0, c being

a positive constant ensuring the positive nature of the energies, can be explained through

the existence of a supercharge

Q = v_aa+ + v/--_ato- + l-_I, (3.1)

which is unique because of the presence of the generators of the Clifford algebra C12.

The degeneracy of the eigenstates corresponding to E = c is due to the existence [8] of

two operators P and pt connecting these degenerated eigenstates and satisfying the typical

relations of the supersymmetric quantum mechanics characterizing the Lie superalgebra

sqm(2), but only on the space generated by the degenerated eigenstates. On the whole

Fockspace, the relations of sqm(2) are not ascertained.

Because the two operators connecting degenerated eigenstates only act on the above-

mentioned space of these eigenstates, the unicity of Q = (3.1) is not in the balance again.

4 Two generalizations of Hjc in the case A = 0

In the first generalization, the Hamiltonian H + c resulting from the superposition of

a second Hamiltonian//2 [6]

1 1

H2 = w(ata + _ + _a3)+ ig(ato-_ -ao-+) (4.1)

with Hjc, has a supercharge given by

Q = x/-_a_C++ x,/_at__ + g_r/ (4.2)

where

(ooo_ )iooooI (ooio1_+= 0 0 0 0 0 0 1 0 0 0 0 -i (4.3)0 1 0 0 '_-= 0 0 0 0 'V= 1 0 0 0 "

ooo o iooo oio o

These matrices (4.3) are three generators of the Lie superalgebra osp(2/2) [8] whose rep-

resentation with 4 by 4 matrices is unique up to a unitary transformation [9]. Therefore

Q = (4.2) is the only supercharge of H + c.

In the second extension, obtained by adding a positive constant A' to H + c, we can

prove [8] that the Hamiltonian has also only one supercharge given by

where Q = (4.2) and

R

0 0 i 0 /

0 0 0 1

-i 0 0 0 "

0 1 0 0

(4.4)

(4.5)
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Abstract

The effects of a colored-noise reservoir on the index of refraction of a strongly

driven two-level atoms system (gas), probed by a weak field, are analyzed.

For high Rabi frequencies, _, a simple analytic expression results for the

susceptibility function (with respect to the probe) when u _ _, where u is

the detuning between driving and probe fields frequencies. Several features

are revealed in that function when compared to the one resulting from a

reservoir with a white-noise spectrum.

1. Introduction In many quantum systems interacting with an environment the evolution

of the density operator can be described in the framework of a master equation

f0 tidp(t)/dt - [H, p(t)] + K(t- t')p(t')dE , (1)

where H is the Hamiltonian of reservoir, system and its interaction with external fields; K(t-

t _) is a superoperator embodying the interaction of the system with reservoir, whose 'width'

is called memory time. Although any real evolution is, strictly speaking, non-Markovian,

the corrections due to a finite memory time are in many cases very small [1]. In other

cases a nonzero memory time, or a frequency-dependent colored noise spectrum, leads

to significant changes in the dynamical properties of the system: Atoms inside a high-Q

EM cavity [2]. In particular, when an atom in a cavity is strongly driven by an external

radiation (the pump) the phenomenon of dynamical supression of spontaneous emission

occurs [3]. Also, it was shown that if an atom is strongly pumped at a frequency nearby

a two-level transition frequency and is probed by a weak field (probe), then depending

on the fimctional form of the cavity-reservoir spectrum, the absorption spectrum changes

significantly, compared to the Markovian approximation [4]. Yet as another instance, for

*E-mail: salomon_power .ufscar.br



a low density atomic gas confined into a cell or a cavity, when the coupling between the

atoms and the cell modes prevails over the vacuum-atom coupling, the absorption lineshape

function changes from one to two-bump shape beyond some critical temperature [5]. More

recently it was verified [6] that '2nemory" effects on the atomic absorption lineshape function

are significantly enhanced when the atoms are strongly driven and that colored noise leaves

a signature which is characterized by a linear increasing, as function of Rabi frequency, of

the heights of the peaks of the absorption lineshape function. Analyzing the dependence

of the atomic susceptibility function X _ on the Rabi frequency _2 and the detuning between

probe and pump fields u one could infer about the nature of the coupling between atom

and cavity (cell) colored noise. For high values of ft and ft _ u, the measurement of the

modified atomic decay rate and the dynamic frequency shift for several values of _2 and u

could permit determining the frequency spectrum of the cell-reservoir.

2. Stationary solution to the master equation The density matrix of a two-level atom is

p = WI[1 >< 11 +W2[2 >< 21 + W3[1 >< 2[ + 147412 >< 1 I. (2)

For the rotating wave coupling between the atomic variables and the external (pump and

probe) fields, the Hamiltonian reads H = lw0a0 + (Fle-_lta+ + F2e-_2tcr+ + h.c.) where

w0 is the atomic transition frequency, F1 (F2) and wl (w_) are the coupling constant and

frequency of the driving (probe) field and we consider IFll >> IF21. The coupling constants

can be expressed in terms of the vector dipole matrix element between the excited and

ground atomic states/712 and the electric field strengths/_ as F_ = -/712./_, i = 1, 2.

The reservoir is assumed being made of an infinite number of oscillator modes interacting

resonantly with the driven two-level atom, the superoperator kernel Kit- t_) is written as [6]

K(t- t_).= TrR [Vsme -_L°(t-t') [VsR, Prt "]] where L0. -- [Ho, .] is the Liouvillian operator,

H0 is the free (atom plus reservoir) hamiltonian, VSR = f _g(w -- Wo)(b_a_ + h.c.)dw is the

atom-reservoir resonant interaction term, the function g(w -Wo) = D(w- wo)l_(w- w0)l 2

combines the reservoir spectrum D(w-Wo) and the coupling constant _(w- w0) that may be

frequency dependent, and prt is the density operator of the reservoir at thermal equilibrium.

The solution to (1) with the above Hamiltonian can be written as p(t) = po(t) + Ap(t),

where Ap(t) is a small correction term to the density matrix po(t) of the driven atom due to

the weak probe field, thus the functions W_(t), i = 1, 2, 3, 4, at the stationary regime read

Wl(t) = wF + ,',Wx(t), w (t) = - Awl(t), w (t) = e + zxw (t), (3)

and W4(t) = W_(t), W_' (W_ °) is the unperturbed (by the probe) population of the upper

(lower) atomic level, _33 its c.c. are the coherence coefficients; the terms with the prefix

A correspond to the corrections due to the probe. Taking into account the first Floquet

harmonics, we can write [7],

,xw (t) =6wl +¢e , AWe(t)=e (eWo+eW+ -'' +6W: , (4)

where u = w2 - wl is the detuning of the probe from the driving field frequency. Inserting

(2), (3)-(4) into (1) leads to a set of algebraic equations that are solved for the reservoir at

OK and wl = w0 (resonance condition), thus we determine the coefficients 5W1, 77, 5W0, 5W+
and 5W_.



3. The atomic susceptibility function The susceptibility function with respect to the probe

field for N atoms per unit volume is [6],

NA o -
X(v, _) = N 3

--_[fi12126W+/F2 = 3-_r3 5W+(v, _2), (5)

where A0 = 2_rc/wo is the wavelength of the atomic transition, and 6I/;d+ (v, _) ___

h75W+ (v, f_)/F2 is the dimensionless coherence function (it does not depend on the probe

field and its modulus is less or of the order of the unity), which depends on two frequencies:

the detuning between the pump and probe frequencies u and the Rabi frequency g/= 2}Fll.

The square of the matrix dipole element [fi12[2 is replaced by the natural (vacuum) atomic

decay constant 7 = (4w3[fi1212)/(3hc3), and

5i_r+(v,f_ ) = i(W_ - W_)[f_ (1- z*(-_)__.(o)j - 2Q(_,)z*(-_,)]
_ [z(_,)+ z*(-_,)] - 2Q(,,,)z(_,)z*(-_,)

(6)

with W_° - W_ ° = 2r2(0)/(2r2(0)+ _2). z(x) - ix- r(x) ,Q(x) = -z(x) + r*(x), and

fo f-'_ g(')F(x)= oo ig(w - wo) dw _ zrg(x) - i7 9 dw ,
X +Wo-w+ie oow-x

(7)

g(w - o_0) is nearly an even function of its argument, the approximation is quite reasonable

since the atom and reservoir exchange energy resonantly. Hereafter we express all the quan-

tities having the dimension of frequency (like F(x), v, f_) in units of 7. Expression (6) can

be simplified in the case of a strong pumping field, f_ >> 1, the real part of (6) attains its

larger value at v = v,,, slightly shifted from the Rabi frequency,

The subscripts (Tl, I) stand for real and imaginary parts. For the frequencies close to v,_,

the real part of the susceptibility function changes its behavior when compared to the usual

situation of a two-level atom probed without pumping, namely, the real part acquires the

Lorentzian shape:

ReSin+ (v, _) = { 12f_F(0)Fn(ft) [1 + 4(---v-- Vm)2 ] } -1.r_(a) J "
(9)

By varying f_ it should be possible to determine experimentally the real part of the function

F(f_) since the width of the Lorentzian shape is Av = 3Fn(f_). The shift of vm from f_,

3F_(f_)/2, could also be determined. Thus, varying F_ it should be possible to determine the

complex function F(_).

To illustrate the above general results, suppose an effective spectral filnction

g(w - Wo) = go + 9c[1 + _'2(w - w0)2] -1. The first term, go, is the coupling constant between

atom and the vacuum white noise, the second is for the cavity modes when a Lorentzian

shape is assumed. _- is a correlation time and gc (that can be positive or negative) is an

effective coupling constant of the atom with the cavity modes. For 7- = 0 one gets the



,_ l+/xr 1
vacuum+cavity white noise. Then, with F(x) = ½ [7 + ,c_j, % = 2_'gc, the point of

maximum of ReSI/V+ (u, _) is

u,_ = fl + 4(1 + r=fl 2) + O , (10)

thus due to the colored noise the shift ]u,_ - _t I attains its largest value, 31%1/8 , at r_ = 1;

so, by varying _ until the shift attaining its larger value, it should be possible to determine

experimentally % and r. Disregarding terms O(1/_) in (10) vm-12 > 0 (Vm-_ < 0) means

a positive (negative) %. The width of the line is

= 3 +̀ 3`° ) , (11)

and it tells that % can assume values only in the open interval (-3', ec), thus two different

situations may happen for an atom in a cavity (% 7_ 0): i) For % < 0 the linewidth Au

is always narrower than natural linewidth (33`/2) and it becomes broader with increasing

f_ although Au < 33`/2. il) For % > 0 the linewidth is always broader than 33`/2 and it

becomes narrower with increasing f_.

In sum, the modified lineshape differs from the one in free space (% = 0) in three

aspects for a finite r and % < 0 (% > 0):

a) a shift of the point of maximum to the left (right) of u = _,

b) a narrowing (broadening) of the width AL, (although it is wider the larger is _),

c) a decrease (increase) in the height of the curve.

These effects worth be verified experimentally and an experimental setup is reported in [8].
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Abstract

We present a feasible scheme for reconstructing the quantum state of a

field prepared inside a lossy cavity. Quantum coherences are normally de-

stroyed by dissipation, but we show that at zero temperature we are able to

retrieve enough information about the initial state, making possible to recover

its Wigner function.

Methods to reconstruct quantum states of light are of great importance in quantum

optics and there have been several proposals using different techniques to achieve such

reconstructions. 1 However, it is well known that dissipation has destructive effects in most

schemes which makes of importance to study methods of reconstruction which take into

account decoherence?

W_ present a method of reconstruction of the density operator of the cavity radiation field

after the destructive action of dissipation has taken place. We consider a single mode high-Q

cavity where we suppose that a (nonclassical) field state/5(0) is previously prepared. The

first step of our method consists in driving the generated quantum state by a coherent pulse.

The reconstruction of the field state may be accomplished after turning-off the driving field,

i.e., at a time in which the cavity field has already suffered decay. This is a genaralization

of a method previously presented by us where, although we took into account losses, we did

not consider them while the displacement of the initial state took place. 2 We will show below

1see for instance: U. Leonhardt, Measuring the Quantum State of Light (Cambridge: CUP) 1997,

and references therein

2H. Moya-Cessa, S.M. Dutra, J.A. Roversi and A. Vidiella-Barranco, J. of Mod. Optics 46, 555

(1999)



that by displacingtile initial state (evenwhile it is decaying)weturn its quantum coherences
robust enoughto allow its experimentaldetermination, at a later time, despitedissipation.
The evolution of the cavity field is such that it directly yields the Wigner function of the
initial nonclassicalfield from the measurementof field statistics. For that we makedirect
useof tile seriesrepresentationof quasiprobability distributions)

The masterequation in the interactionpicture for the reduceddensity operator/5relative
to a driven cavity mode, taking into account cavity lossesat zero temperature and under
the Born-Markov approximation is givenby

with

H= (2)

where _. and _Lt are the annihilation and creation operators, _7 the (cavity) decay constant

and (_ the amplitude of the driving field.
We define the superoperators 7¢ and Z_ by their action on the density operator s

_ = (_*a - _at)fi - fi(_*_ - _t), (3)

and

Z_/5= ?_a_a t - _ (atat5 + fiat& ` (4)

it is not difficult to show that

and the formal solution of Eq. (1) can then be written' as

fi(t) = exp [(7_ + £)_] fi(0)= exp(£t)exp [-_-(1- evt/2)l _(0). (6)

After driving the initial field during a time td, the resulting field density operator will read

,_(t_)= _ _,,;_(o), (7)

where

fie(o)= .b*(#)#(o)z?(#), (s)

3H. bloya-Cessa and P.L. Knight, Phys. Rev. A 48, 2479 (1993)

4see for instance S.M. Barnett and P.L. Knight, Phys. Rev. A 33, 2444 (1986)



and with

1 -- e _td/2

9 = -2_ (9)
2/

This means that if we drive the initial field while it decays, during a time t_t, this is

equivalent to having the field driven by a coherent field with an effective amplitude/3 given

in Eq. (o).
The driving of the initial field is carried out during a time td. This procedure enables us

to obtain information about all the elements of the initial density matrix from the diagonal

elements of the time-evolved displaced density matrix only. As diagonal elements decay much

slower than off-diagonal ones, information about the initial state stored this way becomes

robust enough to withstand the decoherence process. We will now show how tiffs robustness

can be used to obtain the Wigner function of the initial state after it has already started to

be dissipated. Once the injection of the coherent pulse is completed, the cavity field is left

to decay, so that its dynamics will be governed by the master equation in Eq. (1) without

the first (driving) term in its right-hand-side. Therefore, the cavity field density operator

will be, at a time t, given by

/59(_)= _(J+_)%(0), (10)

with

7
3_/5= 7c_/5_t, ;/5----- --_ (_t/_/5 -t-/sg_¢a) . (11)

The next step is to calculate the diagonal matrix elements of/59(t) = exp [(a* +/L)t]/59

in the number state basis, or

(12)

whereq= 1-e -_t.

Now we multiply those matrix elements by powers of the function

2ev t

x(s; t)= 1+--. (13)
s--1

If we sum over tn the resulting expression we obtain the following simple sum

F(/3,4 = 2 _2 x"(_;t,)(-_l/59(t)l_)- __(- 1)_:o ___-n--f/ (_1/5_1_>. (14)
71- m=O

The expression in Eq. (14) is the s-parametrized quasiprobability distribution 5 6 cor-

responding to /5 (the initial field state) at the point specified by the complex amplitude

5fbr s = -1 one obtains the Q-function, s = 0 the Wigner function and for ._ = 1 the Glauber-

Sudarshan P-function

(_K.E. Cahill and R.J. Glauber, Phys. Rev. 177, 1882 (1969)



[3. Therefore we need simply to measure the diagonal elements of the dissipated displaced

cavity field P,,_(/3;t) = (_'.l_9(t)l_> for a range of fl's, the transformation in Eq. (14) in

order to obtain, for instance, the Wigner function of the initial state for this range. We

note that after performing the sum, the time-dependence cancels out completely, leaving us

a constant s-parametrized quasiprobability distribution function. Therefore the initial state

may be reconstructed, at least in principle, at an arbitrary later time. In practice, however,

the decay of the field energy will impose a limitation on the times in which we will be able

to measure the photon distribution (12) (for a method, see for instance reference 2).

Eq. (14) also implies that, although one needs to know all the density matrix elements

(diagonal and off-diagonal) to have complete information of a given state, in our case it is

only needed to know the diagonal elements of the displaced and decayed density matrix to

know the initial field state.

In conclusion, we have presented a method for reconstructing the Wigner function of

an initial nonclassical state at times when the field would have normally lost its quantum

coherence. In particular, even at times such that the Wigner function would have lost its

negativity, reflecting the decoherence process. The most important point in our approach is

the driving of the initial field immediately after preparation, which stores quantmn coher-

ences in the diagonal elements of the time evolved displaced density matrix, making them

robust. We have therefore shown that the initial displacement transfers the robustness of a

coherent state against dissipation to any initial state, allowing the full reconstruction of the

field state under less than ideal conditions.

A natural application of our method would be the measurement of quantum states in

cavities, where dissipation is difficult to avoid. Moreover, the application of the driving pulse

at different times after the generation of a field state, would allow the "snapshooting" of the

Wigner function as the state is dissipated. This means that valuable information about the

(mixed) quantmn state as well as about the decay mechanism itself could be retrieved while

it suffers decay. The possibility of reconstructing quantum states even in the presence of

dissipation may be also relevant tbr applications in quantum computing. Loss of coherence

associated to dissipation is likely to occur in those devices, and our method could be used,

for instance, as a scheme to refresh the state of a quantum computer in order to minimize the

destructive action of dissipation, r Application of our scheme to recosntruct a Schr/"odinger

cat state will be presented elsewhere. 8

This work was partially supported by FAPESP (Brazil), CONACYT (MSxico), and

CNPq (Brazil).

7A. Ekert and C. Macchiavello, Acta Phys. Polon. A 93, 63 (1998)

8H. Moya-Cessa, S.M. Durra, J.A. Roversi and A. Vidiella-Barranco, Phys. Rev. A, in press



A classical experiment of atom optics with a
Bose-Einstein Condensate

J.H. Miiller

INFM UdR Universitg di Pisa, Dipartimento di Fisica, Via Buonarroti,2 56127 Pisa, Italy

Y.B. Ovchinnikov, E.J.D. Vredenbregt, M.R. Doery, K. Helmerson, S.R. Rolston, and

W.D. Phillips

Atomic Physics Division, PHYS A-167, NIST, Gaithersburg MD20899, USA

Abstract

Diffraction of atoms by a pulsed standing light wave is a classical experiment

of atom optics. We repeat this experiment with sodium atoms in a Bose-

Einstein condensate released from a magnetic trap. For the first time we

give clear experimental evidence of periodic focusing and collimation of the

atomic momentum distribution in the thick grating limit of normal incidence

diffraction. Numerical simulation of the diffraction with our experimental pa-

rameters, suggests that we achieve true squeezing of the atomic wavefunction

at the minima of the periodic potential.

The advent of Bose-Einstein condensation in dilute atomic vapours provides sources of

cold atoms with unprecedent brightness and coherence. Many experiments in atom optics

so far limited by the imperfections of the source can now be performed with much higher

precision allowing for stringent tests of the underlying physical models [2, 3, 4, 5]. We study

normal incidence diffraction of atoms from a standing light wave [1]. In contrast to former

experiments [6] the momentum spread of our sample far below a single recoil momentum

and its small spatial extension together with the use of a large pulsed standing light wave

guarantees clear separation of the various diffraction orders and uniform interaction condi-

tions over the whole sample. Variing the interaction time of the atoms with the periodic

potential we explore the thick grating limit of diffraction, where the interaction time becomes

comparable or larger than the classical oscillation period in the potential wells.

We consider the interaction of two-level atoms with a plane standing light wave pulse

with an electric field amplitude E(z, t) = 2E0 f (t) cos(kz) sin(wt), where the function f (t)

describes the unit step-like envelope of the pulse of duration % k = 21r/_ is the wave number.

We assume the magnitude of the detuning, IAI = lal - w01 >> f_0, F. Here a_ is the standing

wave frequency, w0 is the frequency of the resonant atomic transition, f_0 = #Eo/h is the

traveling wave Rabi frequency, # is the dipole matrix element and F is the natural width of

the transition. In the limit of large detuning the light shift potential can be written as

U(z) = Uocos2(kz), (1)



whereU0 = hf_/A. Atoms near ihe nodes experience an approximately harmonic potential,

with an oscillation frequency of

4_8

where wr = hk2/2M is the recoil frequency, and M is the mass of the atom.

In a classical picture atoms oscillate in the wells of the standing wave potential and

experience cyclic focusing and defocusing with a period of about 7r/a;ho. This leads to a

complementary breathing of the atomic momentum distribution. Classically one expects

rapid dephasing of these breathing oscillations due to the strong anharmonicity of the single

potential wells. In a full quantum treatment of the motion inside the periodic potential,

however, this feature can reappear, if the potential depth is chosen such that the initial

momentum distribution projects onto only a few - ideally two - allowed energy bands. Here

the oscillation of the momentum distribution arises from the interference between equal

momentum states in different energy bands governed by the differential phase accumulated

during the interaction time with the periodic potential. The maximum possible momentum

transferred to an atom in the potential (1) is Pmax = 2l_/_01M, which corresponds to a

maximmn significantly populated diffraction order [5] nmax =  /Ig01/(4h r).
In the experiment we produced with a combination of laser and evaporative cooling a

condensate consisting of about 106 sodium atoms in the 3S1/2(F = 1, mF = --1) state in

a time magnetic trap. Subsequently, the spring constants of the trap were adiabatically

decreased in order to decrease the momentum spread of condensate. The final size of the

adiabatically expanded cloud was about 60 #m. The standing light wave used for diffracting

the BEC was produced by a single-mode dye laser, frequency-locked at A = -42F. A

spatially filtered beam was expanded to a diameter of 2.8 mm (1/e 2 intensity level), passed

through the vacuum chamber containing the BEC, and retroreflected by a flat mirror. The

total power in the laser beam was about 1 mW corresponding to a peak Rabi frequency

t20/27r _- 16 MHz. In all experiments the BEC was suddenly released from the magnetic

trap and allowed to expand for 2 ms, to minimize interaction effects. To produce diffraction

a short pulse of horizontal standing wave light was then applied. After an additional time

of flight of 10 ms the horizontal spatial distribution of the diffracted atoms was detected

using a standard absorption imaging method [7]. As a detector a standard 8-bit CCD

camera was used. Analysing the optical depth information encoded in the images we can

extract the number of atoms in the various diffraction peaks and by looking at the width

of individual peaks we can deduce the momentum spread of the original sample, which

amounts to _(i) = 0.02 4- 0.002 hk in our case. The number of observed diffraction orders
_r- 7,m 8

(n_ax = 2) is in accordance with the calculated value for our experimental parameters.

Shown in Fig. l(a) is the dependence of the relative number of atoms in the n = 0 and

in each of the n = 1 and n = -1 diffraction peaks as a function of the duration of the

standing wave pulse. One can observe three collapses of the BEC motion, manifested as

an absence of splitting of the BEC at T=3.2, 6.5 and 10 #s. The maximum number of

atoms in the n = +1 peaks [Fig. l(b)] was observed between these times. This behavior

can be explained as an alternating sequence of squeezing of the whole atomic distribution

in coordinate (focusing) and momentum (collimation) space in a standing wave potential



with period tc -_ 3.2 #s. In order to understand in more detail the dependence of the

intensities of the main diffracted peaks on the duration of the standing wave pulse, we solved

nmnerically the linear Schrgdinger equation for a two-level atom in a periodic potential with

our experimental parameters. These calculations agree very well with the experimentally-

obtained curves of Fig. 1, yielding tc = 3.2 ¢s. The calculated minimmn rms spatial width

of the focused atomic ensemble in a single well of the optical potential is z_.,_s _ 20 mn

at "r = 1.54 #s. Furthermore, the calculated phase space density of these atoms satisfies

ZT,_spT_ _ h/2 near values of _- for which atoms are maximally focused. A calculation of

the spatial extent of the groundstate wavefunction of an harmonic oscillator corresponding

to the potential near the nodes of the standing wave yields aho = 45 nm. We thus prepare

at times near maximal focusing an array of truely squeezed wavepackets. One should keep

in nfind, though, that the calculations are based on the linear SchrSdinger equation , i.e.

interaction between the atoms wether groundstate or mediated by the light field is neglected.

Calculations taking into account the mean-field interaction show, however, that none of the

experimentally observed quantities are altered with respect to the linear model [9]. Atom

stimulated scattering into the various diffraction orders or creation of new diffraction peaks is

strongly suppressed, since in our 1-D geometry energy and momentum conservation cannot

be satisfied for those processes.

Making use of the standard methods of solid state physics we also calculated the energies

of the eigenstates and their populations for the atoms in the standing wave potential with

a total depth U0 = -19.26 hc_,_. There are only 3 bands (labeled v = 0, 1, 2) of allowed

states below the potential barrier. Due to the very narrow inital momentum distribution,

the atoms are projected onto states near the center of the Brillouin zone of only the three,

lowest-energy, even bands. The energies and occupations of these states are E0 = -15.14

hcJ_., 1'I.% = 59.1%; E.) = -2.28 hc_'_, _% = 38.2%; E4 = 7.37 h'_, W4 = 2.7%. We thus

expect strongly nonclassical behaviour, since the system consists mainly of two populated

vibrational states, with a beat period of 27rh/(Eo - E_) = 3.1 #s between them. This is in

very good agreement with the experimentally observed period of atomic motion tc and the

fact that nmltiple collapses of the diffraction pattern are observable.

This conceptually simple experiment allowed to test the physical models behind diffrac-

tion of matter waves by light waves. Future experiments will go beyond those simple models

and look specifically for effects related to the backaction of a dense sample on the light field

or to the interaction between the atoms.
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Abstract

It is demonstrated that the Haroche-Ramsey experiment is a generalised measurement

that can be interpreted as a joint measurement of incompatible interference and path

observables. Complementarity is studied on the basis of the Martens inequality. From

this point of view a phase measurement is seen to be preferable over the photon number

measurement that was actually performed.

In the atomic-beam interference experiment by Brune et al. (to be referred to as the

Haroche-Ramsey experiment) [1] a Rb atom is sent through three cavities, R1, R2 and C, of

which the first two are resonant with a particular transition between two Rydberg states ]e}

and Ig} of the atom. Finally it is determined whether the atom is in ]e} or Ig}. Whereas

the experiment without cavity C is a pure interference experiment, already performed by

Ramsey [2], the introduction of cavity C provides the possibility to obtain also "which way"

information by measuring some observable of the cavity C field. In the Haroche-Ramsey

experiment the "which way" information is not about trajectories in configuration space,

but about trajectories in the Hilbert space of the internal states of the atom.

Restricting to 7r/2 pulses, the atom experiences the following transitions in cavities R1

and R2: le>_ LP-/= 1 el ilg>),Ig>-+ IP+> _(le} + ilg}) In cavity C there is a_(I - = •
phase change of the field according to le) ® IV) G le>® lyriC>, Ig>® IV) -_ 19)® IVe-_e), IV>
being the initial coherent state of the field. From this it is straightforward to calculate the

final state IqJ/) starting from the initial state I_in) = I_in) ® IV), I_in) = c_le) + fllg).

Measuring an arbitrary observable {R_} of the cavity C field in coincidence with the

measurement of the final state of the atom, we can determine the positive operator-valued

measure {Men, Mg_} representing the experiment, by relating the detection probabilities pe_

and pg_ to the initial state I_in) of the atom according to

We find

with I_e)= lye_) -I_e-'_), I_) = lye'¢) + Ive-_®)•
We shall first consider an experiment in which the phase (I) of the cavity C field is

measured by means of balanced homodyning, having {]@(_l/Tr}, Ic_) coherent states, as

a POVM [3]. By coarsening this POVM according to R± = -_ fc + d2_l_><_l (in which



the integrations are over the upper and lower halves of the complex plane) we restrict to

measuring whether (I) is positive or negative. Moreover, in this measurement we take [(I)I =

_r/2. For this value the Ramsey experiment (corresponding to 3` = 0) is a measurement of

the interference observable {[e){el, Ig)(g[}.

In order to be able to interpret the experiment for 3` 7_ 0 as a joint measurement of

incompatible observables it is necessary to order the four operators Me+, Mg± in a bivariate

way. Thus,

(Me+ Mg+)(Rmn) := Me_ Mg_ "

For the marginals of this bivariate POVM we find

Mg+ + Mg_ =2

Me- +Mg_ =2

(Xmm')

1 -- C1 1 -iv C1 [g)(gl '

(..,_,)

1- A 1 + A [p_}(p_[ '

with C1 = e -2"/2 and A = erf(3`). These relations show that the experiment can be inter-

preted as a joint non-ideal measurement [4] of the incompatible observables {[e)(e[, Ig)(gl}

and {[p+)(p+[, ]P-)(P-I}- Because of the analogy of the present experiment with the neu-

tron interference experiment carried out by Summhammer et al. [5], which can be inter-

preted as a joint non-ideal measurement of interference and path [6], the latter observable

will be referred to as the path observable. The matrices ('_r_') and (#n_,) are the non-

ideality matrices, expressing complementarity in the sense of mutual disturbance in a joint

measurement of incompatible observables. Thus, if 3' = 0 the interference observable is

measured ideally since C1 = 1 implies (Am_) = (5_), whereas the other marginal be-

comes uninformative. For 3` _ oo we have A = 1; then path is measured ideally, whereas

the interference marginal is uninformative. More generally, taking the average row entropy
-- 1 -'_mrnt

d(a) - - _ _2_, ,_, In Era,, atom" as a measure of the non-ideality of the non-ideality matrix

(A_,) (and analogously for (#_,)), it is possible [4] to derive for two observables having

eigenvectors la_) and lb.), respectively, the following inequality (to be referred to as the

Martens inequality):

J(:_) + J(.) >_ -21n{rnax._.[(a._lbn)l }.

If the observables are incompatible, then the right-hand side of this inequality is positive,

thus prohibiting that J(x) and J(.) can simultaneously be small. For the joint non-ideal

measurement of the interference and path observables we get

ln(_----+_) _ _ ln(_-=-_)J(:q = - 2 2 2 2 ,
_+I!_A11_ / I+A _ (l-A) 1 /1-A_

J(.) =- 2 "_k-7-]- 2 mr-V-I"

A parametric plot of d(x) versus d(,) as a function of 3` (cf. figure) clearly exhibits comple-

mentarity in the sense that the plot remains outside the shaded area that is forbidden by

the Martens inequality.
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Figure 1: Parametric plot of J(_) versus J(,), for 0 < 7 < ec.

In the experiment performed by Brune et al. [1] a different measurement of the cavity C

field was performed. A second atom, starting in state le), was used as a probe of the field

[7]. Also for this second atom it is determined whether it is in state [e) or Ig) after leaving

cavity R2. Once again the POVM of the experiment can be found by relating the detection

probabilities Pele2 = (%11_,)(_11o 1_2>(_211%),etc., in the final state [q_f) to the initial

state 1_i_1) ® le2) ® ['Y), [_i_1) = o_[el) H-/3lgl ) (and analogously for the other probabilities).

Allowing • to be arbitrary, we straightforwardly find

1(Me_ = 1---6 i((v_[v;}- 2<v'_l_>) IIIv'e>II2 '

with Iv') = 13,ei2_) -[3,e-i2_), Iv_g)= 17e i2.) + lye-i2e).

Defining a bivariate POVM according to

Mele2 Melg2 )Rmn "= Mg_g_ Mg_ e_

we can straightforwardly determine its marginals. These can be seen to represent non-ideal

measurements of incompatible observables (that will not be reproduced here), with non-

ideality matrices given by

(_m,) = (

with

(1-A A ' (#_') = 1-# # '

A = ½(1 q-e-2_/2sin2_5),

I I e--23,2 sin 2 2_5# = _ + a[{1 + cos(72 sin 4d9) }2 + e-4---/2sin2 2':1) sin2(72 sin 4¢5)]*/2.

For the non-ideality measures we obtain

d(a) = -{A ln(A) + (1 - ,_) ln(1 - ,_)}, d(,) = -{#ln(#) + (1 - #) ln(1 - #)}.



For 3' = 0 we get ,_ = # = 1, and, hence, J(_) = J(,) = 0. This shows that there is no

complementarity in this limit. Evidently, in this limit the field measurement of the second

atom does not yield information on the initial state of the atom that is complementary to

the one obtained from the first atom. The reason for this is that as a measurement of the

cavity C field, the second atom is not a phase measurement, but a (non-ideal) measurement

of photon number. This can be seen by calculating the POVM of the measurement of the

state of the atom, interpreted as a measurement of an observable of the cavity C field. For

the initial state I_i_> = le> ® h'> of atom and cavity C field (1_/> an arbitrary coherent state)

we get as the final state
1

1¢1) = ½[le)lv_) - ilg)lvg)].

Then the POVM is derived by equating

This gives

p_ = (%le>¢el'I's>= ¢_/IR_I_/>3.
p_ = <%19)<g1%>= ¢_/IR_I_)S"

from which the POVM is easily found as {R_ = sin 2 ¢Pata, Rg

1 1 }

p_ _(v_lv_> _(_12-e _'_-e-_'_lw>
p_ l<v_lv_>= 1<zl2+ e_®_'_+ e-_®_'_l_> ,

= cos 2 q_ata}, or

a_ = _=_o _=1_><_1,_ = sin__,
n_ = E_%oa_l_><nl, a_ = cos_en.
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Abstract

We study the optomechanical coupling in a high-finesse cavity with a mirror

coated on a mechanical resonator. We observed the thermal motion of the

mirror with a sensitivity of 2 x 10 -19 m/_/-H--z and cooled the resonator by

laser radiation pressure.

The optomechanical coupling between a movable mirror and a light beam is based on

two complementary effects. The first one is the phase shift of the light due to the mirror

motion. The second one is the mirror response to radiation pressure which induces quantum

correlations between its position and the light intensity. These effects can be enhanced using

a high finesse optical cavity that is very sensitive to mirror displacements and it has recently

been proposed to use such a device to generate squeezed states [1,2], to realize QND mea-

surements [3,4], or to study the Standard Quantum Limit in interferometric measurements

[5]. In this paper, we present the recent progress of our experiment in which a laser beam is

sent into a high-finesse cavity with a movable mirror. We have observed the Brownian mo-

tion of the mirror and cooled the mirror by radiation pressure. We also discuss the quantum

limit of this cooling process.

The experimental set-up is shown in Figure 1. The light source is a titane-sapphire

laser working at 810 nm and frequency-locked to a resonance of the high-finesse cavity by

monitoring the residual light transmitted by the cavity. The beam is intensity-stabilized

by a variable attenuator composed of an electro-optic modulator and a polarizer, and it is

spatially filtered by a mode cleaner. One gets a 100-#W incident beam on the high-finesse

cavity, which is composed of a coupling mirror and a totally reflecting back mirror coated

on the plane side of a piano-convex resonator made of silica. The two mirrors are mounted

in a rigid cylinder at a distance of 1 mm from each other. The phase of the beam reflected

by the cavity is measured by homodyne detection. The reflected beam is mixed on two

photodiodes with a 10-mW local oscillator and a servoloop monitors the length of the local

oscillator arm so that we measure the phase fluctuations of the reflected beam.

For a resonant cavity, this signal is very sensitive to mirror displacements which are due

to the excitation of internal acoustic modes of the resonator. More precisely, a displacement

5x of the mirror induces a phase shift 5_out of the reflected beam equal to

(1)
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FIG. 1. Experimental set-up. A light beam provided by a frequency (F.Stab) and intensity

(I.Stab) stabilized titane-sapphire laser is sent into a high-finesse cavity composed of a coupling

mirror and a highly-reflecting mirror coated on a mechanical resonator. Phase fluctuations of the

reflected beam are mesured by homodyne detection. This signal is fed back to the mirror via the

radiation pressure exerted by an auxiliary beam with modulated intensity (AOM)

where 5_in = 1/2x/_-_ is the quantum phase noise of the incident beam, Y is the cavity

finesse, A is the optical wavelength and Iin is the mean incident intensity counted as a

number of photons per second. The sensitivity of the displacement measurement is given by

the minimum displacement _Xmi n which induces a signal equal to the noise :

A

167vqE (2)

To cool the mirror, we use a 500-mW auxiliary beam derived from the laser and reflected

from the rear of the back mirror. This beam is intensity-modulated by an acousto-optic

modulator driven by the the amplified output of the homodyne detection (see Figure 1).

The mirror motion can be described by its Fourier transform 5x [f_] at frequency f_, which

is proportional to the applied forces

[a]= x [a] [a] + r,o. [a]), (3)

where FT [f_] is the thermal Langevin force and _ad [_-_] is the radiation pressure of the

auxiliary beam. If we assume that the mechanical response of the resonator is harmonic,

the susceptibility has a lorentzian shape

1
X[f_] (4)

M(a_u - a 2 - ira)'

characterized by a mass M, a resonance frequency _M and a damping F. If we neglect the

quantum phase noise &2in, the signal 5_o_t is proportional to the mirror position 5x. We

choose the gain of the servoloop in such a way that the radiation pressure is proportional to

the speed v = if_Sx of the mirror :



lO4 _/a Displacement(m2/Hz)Noise
power 5 lO-_

I • , , i , , ]

0 1858.5 1859 1858.8 0
Frequency (kHz)

FIG. 2. Phase noise spectrum of the reflected field normalized to the shot-noise level (vertical

scale on the left) and equivalent displacement (vertical scale on the right) for a frequency span of

1 kHz around the fundamental resonance frequency of the mirror. The peak reflects the Brownian

motion of the mirror without feedback (a) and with feedback for increasing gains of the loop (b

and c).

F_a [a] = igMaSx [a], (5)

where g is related to the electronic gain. The radiation pressure exerted by the auxiliary

beam is thus equivalent to an additional viscous force and the resulting motion is given by

1

5x [a] = M(a_ 4 _ ft 2 _ i(r + g)f_) FT [a]. (6)

This equation shows that there is an increase of the damping without any change of the

thermal Langevin force. This corresponds to a cold damping of the mirror, the resulting

motion being equivalent to a thermal equilibrium at a temperature T_ H equal to T/(1 +g/I').

Figure 2 shows the cooling obtained in our experiment. The curves represent the phase

noise spectrum of the reflected field normalized to the shot-noise level for a frequency span

of 1 kHz around the fundamental resonance frequency of the mirror. Curve (a) is obtained

at room temperature without feedback. The peak reflects the thermal excitation of the

fundamental mode of the mirror. The vertical scale on the right corresponds to the equivalent

displacement in m2/Hz. The sensitivity 5Xmin reached in our experiment is equal to 2 x

10-19m/4-_ [6].

Curves (b) and (c) show the effect of the feedback loop. The thermal peak is strongly

reduced, while its width is increased. The total area of the peak is decreased, corresponding

to a reduction of the effective temperature T_ H by a factor larger than 10 for curve (c) [7].

Up to now, we have neglected the effect of quantum noise in the description of the

cooling mechanism. As a consequence, we predict that the effective temperature T_]] can

be arbitrarily small for large gain. This will be no longer true if we take into account the

contribution of the quantum phase noise 5_i,_ to the feedback signal _¢Po,_t. The feedback

control F_ad If t] and the resulting motion have then additional terms associated with 5_i_:

( _ )F_d [f_] = igMa 5x [a] + _-_ qpin , (7a)

FT[f_] igMa 8_(_x[f_] = (1/x-igMfl) + (1/x-igMf_) _Vin. (7b)
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FIG. 3. Displacement noise spectrum Sx [f/] normalized to the minimum observable displace-

ment Smin. Curves (a) to (d) correspond to increasing values of the gain g (0, 50, 500 and 5000,

respectively).

Figure 3 shows the theoretical evaluation of the displacement noise spectrum Sx [gt] for

different values of the gain g. The spectrum is normalized to S,_i_ 2= _x,_in which represents

the minimum observable displacement (eq. 2). For large gain, the displacement reduces to

the sensitivity $xmi,_, and the displacement noise spectrum is flat and equal to Stain (dashed

line in Figure 3).

In conclusion, we have observed the Brownian motion of internal acoustic modes of a

mirror with a very high sensitivity. We have cooled the fundamental mode of the resonator

using the radiation pressure exerted by an auxiliary beam, and we have observed a reduction

of the temperature by a factor larger than 10. The cooling reduction is theoretically limited

by the contribution of the quantum phase fluctuations to the feedback signal. The feedback

signal 8¢Pout can become arbitrarly small for very large gains so that the mirror displacement

reproduces the quantum noise of the measurement. Note that the mirror is no longer at

thermal equilibrium since the resulting displacement fluctuations correspond to a white noise

related to the sensitivity of the measurement.
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The phenomenological Maxwell field is quantized for arbitrarily space-

and frequency-dependent complex permittivity. The formalism takes account

of the Kramers-Kronig relation and the dissipation-fluctuation theorem and

yields the fundamental equal-time commutation relations of QED. Applica-

tions to the quantum-state transformation at absorbing and amplifying four-

port devices and to the spontaneous decay of an excited atom in the presence

of absorbing dielectric bodies are discussed.

I. INTRODUCTION

Quantization of the electromagnetic field in dispersive and absorbing dielectrics requires

a concept which is consistent with both the principle of causality and the dissipation-

fluctuation theorem and which necessarily yields the fundamental equal-time commutation

relations of QED. In order to achieve this goal, several approaches are possible. The micro-

scopic approach starts from the exact Hamiltonian of the coupled radiation-matter system

and integrates out, in some approximation, the matter degrees of freedom to obtain an ef-

fective theory for the electromagnetic field. Since the procedure can hardly be performed for

arbitrary media, simplified model systems are considered. A typical example is the use of

harmonic-oscillator models for the matter polarization and the reservoir variables together

with the assumption of bilinear couplings [1]. In the macroscopic approach, the phenomeno-

logical Maxwell theory, in which the effect of the medium is described in terms of constitutive

equations, is quantized. Since this concept does not use any microscopic description of the

medium, it has the benefit of being universally valid, at least as long as the medium can be

regarded as a continuum.

Here we study the problem of quantization of the phenomenological Maxwell theory

for nonmagnetic but otherwise arbitrary linear media at rest, starting from the classical

Green function integral representation of the electromagnetic field. The method was first

established for one-dimensional systems [2] and simple three-dimensional systems [3] and

later generalized to arbitrary inhomogeneous dielectrics described in terms of a spatially

varying permittivity which is a complex function of frequency [4].

In Sec. II we briefly review the quantization scheme and give an extension to anisotropic

dielectrics (including amplifying media), which complete the class of nonmagnetic (local)

media. In Sec. III we apply the method to the problem of quantum-state transformation

at absorbing and amplifying four-port devices, and in Sec. IV we give an application to the

problem of spontaneous decay of an excited atom in the presence of absorbing bodies.



II. QUANTIZATION SCHEME

Let us first consider the electromagneticfield in isotropic dielectrics without external
sources.The (operator-valued)phenomenologicalMaxwell equationsin the temporal Fourier
spaceread

V. 13(r,w) -- 0, V × l_(r,w) = ia;t3(r,w), (1)

V. [e0e(r,w)_(r,w)] = _(r,w), V × t3(r,w) = -i(w/c2)e(r,w)_(r,w) + #0j'(r,w). (2)

From the principle of causality it follows that the complex-valued permittivity e(r, w) =

en(r, a;) + i ez(r, w) satisfies the Kramers-Kronig relations. Hence, it is a holomorphic func-

tion in the upper complex frequency plane without poles and zeros and approaches unity in

the high-frequency limit. Consistency with the dissipation-fluctuation theorem requires the

introduction of an operator noise charge density _(r, w) and an operator noise current den-

sity _(r, a;) satisfying the equation of continuity. Quantization is performed by introducing

bosonic vector fields f(r, w),

j'(r,w) = w_/hCo_i(r,w)/7_f(r,w), (3)

which play the role of the fundamental variables of the theory. All relevant operators of

the system such as the electric and magnetic fields and the matter polarization can be

constructed in terms of them. For example, the operator of the electric field is given by the

integral representation

fi,k(r)=ipO_ fo°_d_ f d3r'w2_/ei(r',w)Gkk,(r,r',w)fk,(r',w)+H.c., (4)

with Gkk,(r, r',w) being the classical dyadic Green function. This representation together
with the fundamental relation

/ d3s(w/c)2ez(s,w)Gik(r,s,w)G;k(r',s,w) = ImGiy(r,r',w), (5)

which follows directly from the partial differential equation for the dyadic Green function,

leads to the equal-time commutation relation [3]

[c0/_k(r),/_(r')] = (h/77) etmk,5 r/__¢dw(w/c2)Gkk,(r,r',w). (6)

Using general properties of the Green function, it can be shown [4] that Eq. (4) reduces, for

arbitrary c(r, w), to the well-known QED commutation relation

_hckt,_cg_5(r r') (7)[_0Ek (r), Bl(r,)l • r' _
L. J

The extension to anisotropic and amplifying media is straightforward, since we may

assume the medium to be reciprocal, so that the permittivity tensor cij (r, w) is necessarily

symmetric. In particular, eij(r,w) can be diagonalized by an orthogonal matrix Ok,(r, w).

With regard to amplifying media, we note that amplification requires the role of the noise

creation and annihilation operators to be exchanged. The calculation then shows that the

fundamental relation (3) can be generalized to

_i(r, w)= w_-_]-_ [_/_(r,w)fj(r,w) + 7i+(r, w)_(r, w)], (8)

with
-//_(r, w) -- Oik(r,w) /l k z(r, w)l O/jl(r_w) O [±_kt/(r,w)], (9)

_ij ,(r,w)= 5ijc_i)(r,w) = O_'(r,w)_k,,(r,w)O,j(r,w). (10)

Equation (8) completes the quantization scheme for the electromagnetic field in arbitrary

linear, nonmagnetic (local) media.



III. QUANTUM-STATE TRANSFORMATIONS BY ABSORBING AND

AMPLIFYING FOUR-PORT DEVICES

Let us first apply the theory to the problem of quantum-state transformation at absorbing

and amplifying four-port devices such as beam-splitter-like devices. Specifying the formulas

to the one-dimensional case for simplicity and rewriting the integral representation (7) in

terms of amplitude operators &j(w) and bj(w) for the incoming and outgoing waves (j = I, 2),

the action of an absorbing device can be given by the (vector) operator transformation

l_(w) : T(w)&(w) + A(w)g(w), (11)

where _0i(w) are the operators of device excitations and T(w) and A(w) are the characteristic

transformation and absorption matrices of the device given in terms of its complex refractive-

index profile [5]. Note that &i(w) and _j(w) are independent bosonic operators. Further,

it can be shown that the relation T(w)T+(w) + A(w)A+(w): I is satisfied, which ensures

bosonic commutation relations for bj(w). In order to construct the unitary transformation,

we introduce some auxiliary (bosonic) device variables hi(w), combine the two-vectors fi(w)

and g(w) to the four-vector &(w), and accordingly l_(w) and h(w) to/_(w). The four-vectors

&(w) and _(w) are related to each other as

/_(w) = h(w)&(w), A(w) e SU(4). (12)

Introducing the positive Hermitian matrices C(w) = _/T(w)T+(w) and S(w) = \/A(w)A+(w),

the four-matrix A(w) can be written in the form [6]

( T(w) A(w) )A(w) = _AS(w)C_l(w)T(w) C(w)S_l(w)A(w) (13)

(A = 1). The input-output relation (12) can then be expressed in terms of a unitary operator

transformation _(w)= g/t&(w)_. Equivalently, U" can be applied to the density operator of

the input quantum state/_in[&(w), at(w)], and tracing over the device variables yields

^(Field)_ Tr(Device){/_in[i+(w)&(w), AT(w)&,(W)] } " (14)Pout --

To give an example, let us consider the case when one input channel is prepared in an

n-photon Fock state and the device and the second input channel are left in vacuum, i.e.,

t_in = In, 0, 0, 0)(n, 0, 0, 0[. Applying Eq. (14), after some algebra we derive for the density

operator of the i-th output channel

^(Field) _(_)[Til,2k(1 ,Til,2)n-k.]_)(k,. (15)
Pout,/ = k=0

Next, let us assume that the two input channels are prepared in single-photon Fock states,

i.e.,/_in = 11, 1, 0, 0}(1, 1, 0, 0 I. We derive for the density operator of the i-th output channel

Field) [1 [Ti1[2(1 -ITi212) -ITi212(1 -IT_112)] 10)(0[out,/ -_- --

+ (IT, l[ 2 q-[Ti212 - 41Til121T 212)I1}(11 q- 21T  I21T 21212}(21. (16)

The extension to amplifying devices is straightforward. One has to replace the annihila-

tion operators _j(w) in Eq. (11) by the corresponding creation operators t_J(w). This leads

again to an input-output relation of the form (12) but with A =-1 in Eq. (13), the matrix

A(w) being now an element of the noncompact group SU(2,2).



IV. SPONTANEOUS DECAY NEAR DIELECTRIC BODIES

Spontaneousdecayof anexcited atomis a processthat is directly relatedto the quantum
vacuumnoise,which in the presenceof absorbingbodiesis drastically changedand sois the
rate of spontaneousdecay,becauseof the additional noise introduced by absorption. To
study a radiating (two-level) atom in the presenceof dielectric media, we start from the
following Hamiltonian in dipole and rotating waveapproximations:

2

/2/= f dar fo_°dwhco_.t(r,w), f(r, co)+ _ hco_._- [ico21A21/_k(+)(rA)"d21 + H.c.]. (17)
a=l

Here, the atomic operators ._, = [c_)(a' I are introduced, and -_(+)(rA) is the (positive-

frequency part of the) vector potential (in Weyl gauge) at the position of the atom. Note

that the first term in Eq. (17) is the (diagonal) Hamiltonian of the system that consists of

the electromagnetic field and the medium (including the dissipative system) and is expressed

in terms of the fundamental variables f(r, aJ). Solving the resulting equations of motion in

Markov approximation, the well-known Bloch equations for the atom are recognized, where

the decay rate is given by [7]

F = 2W2Apkpk,/(heoC 2) Im Gkk,(rA, rA,aJA) (18)

[#k ----(d21)k, _A ----w21]. Note that from Eq. (4) together with Eq. (5) it follows that

^t #
Im Gkk,(r,r',w)5(w -- w') = _CoC2/(hw2)<Ol[_k(r,w),Ek,(r , w')]10 > (19)

in full agreement with the dissipation-fluctuation theorem.

Equation (18) is valid for any absorbing dielectric body. For example, when the atom is

sufficiently near to an absorbing planar interface, then purely nonradiative decay is observed,

with [8]

]-t2z_ _I(bdA) 3C3 (20)r = F0 1 + ,2] le(_m) + 112 (2_Az)3 '

where z is the distance between the atom and the interface, and F0 is the spontaneous

emission rate in free space (for a guest atom embedded in an absorbing dielectric, see [7]).
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Feedback can reduce the fluctuations in one quadrature of an in-loop

field without increasing those in the other. I show that a two-level atom

coupled to the in-loop light responds to broad-band "squashed" fluctuations,

resulting in line-narrowing. For a finite feedback bandwidth the effect is

reduced. With perfect broadband squeezing in one quadrature and perfect

broadband squashing in the other, atomic decay can be completely suppressed.

I. INTRODUCTION

Squeezed states of light are nonclassical. The foremost consequence of this is that they

can produce a homodyne photocurrent having a noise level below the shot-noise limit.

There is, however, a simple way to produce a sub-shot-noise photocurrent without

squeezed light: modulating the light incident on the photodetector by a current originating

from that very detector. This was first observed [1,2] around the same time as the first

incontestable observation of squeezing [3].

The sub-shot noise spectrum of an in-loop photocurrent is not regarded as evidence for

squeezing for two reasons. First, the two-time commutation relations for an in-loop field are

not those of a free field [4]. Second, attempts to remove some of the supposedly low-noise

light by a beam splitter yields only above shot-noise light, as verified experimentally [1,5].

Because of these differences, the presence of a sub-shot noise photocurrent spectrum for

in-loop light has by and large been omitted from discussions of squeezing. However, re-

cent results have shown that the in-loop noise suppression (called "squashing" in Ref. [6])

can sometimes be useful for the same reasons that squeezing is [6-8]. In particular, I re-

cently showed [7,8] that a two-level atom coupled to the in-loop field can exhibit linewidth

narrowing exactly analogous to that produced by squeezed light [9].

In this paper I present the results from Refs. [7,8], and also, for the first time, the in-loop

photocurrent noise spectrum and the effect of non-Markovian feedback on the line-narrowing.

To begin I discuss conventional squeezing and its effect on an atom.

II. SQUEEZING

Consider first a single-mode field described by annihilation and creation operators sat-

isfying [a, a*] -- I, so that a*a is the photon number. This field has quadrature oper-

ators x -- a ÷ a f and y = -ia + ia t limited by the Heisenberg uncertainty relation

VxVy >_ fix, y]�212 = I. For coherent states Vx = Vy = I, while for squeezed states we

have, for example, Vx < I so that Vy > I.



Analogous properties can be defined for a continuum field described by b(t), bt(t) such

that IV(t), b*(t')] = 6(t - t') so that b*b is the photon flux. This field has quadrature op-

erators X(t) = b(t) + b*(t) and Y(t) = -ib(t) + ib*(t), limited by the uncertainty relation

SX(co)SY(cv) > 1, where the quadrature noise spectrum is

(1)

Coherent states of the continuum field have, for all w, Sx(w) = SY(w) = 1, the shot-noise

limit. Squeezed states can have, for some co, SX(co) < 1 so that SY(co) > 1.

III. ATOM IN SQUEEZED LIGHT

Broad-band squeezed light has, for all co inside some "broad" bandwidth B, SX(co) =

0x and SY(co) = SY. This is a good approximation to the output of a below-threshold

degenerate optical parametric oscillator in the bad-cavity limit. Consider a resonant 2-level

atom with decay rate O' << B. Let b(t) be mode-matched into the atom with efficiency r]:

Fluorescence (0 0

b(t)

IIIIllllllllllllllllll e' °eWe:h:e  ;'d2 o' II!l!llll IIIIIlllllll
The Hamiltonian coupling the atom to the squeezed field b and the vacuum field u is

From this model, Gardiner [9] showed that the atomic dynamics are

0 0 O

o-7<_'_>: -_ (o-_>; _ %,>: -_y <o-_>; b-7<o-_>: -O,z<o-_)- c (2)

where

7,= ½"7[(1-r/)+rlSx]; %=}7[(1-rl)+r/Sy]; %=%+%; C:I. (3)

That is to say, the atomic quadrature decay rates are directly proportional to level of noise

in the corresponding light quadratures. In particular, for a squeezed input field the atomic

decay in one quadrature can be suppressed, giving line narrowing.

IV. SQUASHING

As noted in the introduction, a sub-shot-noise spectrum can also be achieved using an

electro-optical feedback loop:



bo(t)
Electro-optic
Modulator

bl(t ) Homodyne
Detector

Here the field exiting the modulator is related to that entering by bl(t) = bo(t) + [x(t),
where added coherent field is

OO
x(t) _--- g(S)/rXm(t- 8)d8. (4)

Here the homodyne photocurrent is represented (for unit-efficiency detectors) by the operator

Ifom(t) = Xl(t) = bl(t) + b_(t).

Now let the feedback be broad-band, and say we are only interested in frequencies co << B,

the bandwidth. This allows us to set e i_ --+ 1, O(co) _ g, giving

21(co)= 20(co)+
ei_(co)20(co) 20(co)

-+ -- (5)
1 - e/Wr0(co) 1-- 9

The noise spectrum of the in-loop X quadrature is thus given by S X(co) = 1/(1 - g) 2,

so that we have squashing for g < 0 (negative feedback). The in-loop Y quadrature is

unaffected: IP, (co) = l>0(co). Thus the usual uncertainty relations are violated: S x (co)S1Y (co) =

1/(1 -9) 2 < 1 for 9 < 0. That is, the phase space area has apparently been compressed

(squashed), rather than merely squeezed out of one quadrature and into the other.

V. ATOM IN SQUASHED LIGHT

Now consider coupling an atom to the squashed field bl just as we earlier considered

coupling it to a squeezed field. In the broad-band limit B >> 7 the atomic dynamics are

again as in Eq. (2), but with

*
%= ½7[(1-- r/) + r//(1-- 9)2] ; %= _7; %:%+%, C=711+9r]/(1-9)]. (6)

That is, the atomic quadrature decay rates are still directly proportional to the level of

high-frequency noise in the light quadratures. The reduction in the z-quadrature decay rate

by squashed light can be seen as line-narrowing in the power spectrum P(co) of resonance

fluorescence into the vacuum modes [7,8], or in the in-loop photocurrent noise spectrum

S2x(co)-- (1 g) 2 l+r/ 1 , (7)- vn' _ +_J

whichgoesto 1/(1- g)_at highfrequencies.BothP(co)andS_(co)areshownbelowfor
r] = 0.8 and squashing _x = 0.2, S'Y = 1. The analogous results for squeezing (Sx = 0.2,

Sy = 5, ..-) and for classical noise (Sx = 1, oOy = 5, --) are also shown.
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VI. EXTENSIONS

The effect of non-unit efficiency photodetectors was considered in Refs. [7,8] and I will

not recapitulate that here. The other obvious effect to consider is when the feedback is

not infinitely broad band. Assuming nevertheless that e = 7/B is small, the perturbation

approach for finite bandwidth feedback in Ref. [10] is applicable. The form of the dynamics

is again as in Eq. (2), but the changed parameters (indicated by the prime) are

7x' :Tx lg_7-g -C c; "7'z=%+ 1-g2C; =C 1-g('7_-C) c (8)

In the limit of large squashing, g ---* -oc, it is evident that 7'= = 7x + 7_(_ - 1/2)c so that

for _7 > 1/2 there is less linewidth narrowing than in the broad-band case.

In addition to considering non-Markovian feedback, there are some obvious extensions

of the work presented here. For example, it is possible to squash light which is already

squeezed in the other quadrature. As shown in Ref. [8], in the limit where the light is

perfectly squeezed in one quadrature and perfectly squashed in the other, the atomic decay

can be completely inhibited. That is, the atom would remain frozen in its initial state.

Another generalization would be to consider squashed cross-correlations between two beams

of light, and the effect of this on a three level atom. This will be a topic for future work, as

will be the effect of a finite bandwidth in the non-perturbative limit.
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Abstract

Excitation of three-level atoms in a cascade configuration with a detuned

squeezed vacuum results in quantum beats in the intensity of the emitted

fluorescence field. We show that the quantum beats are not present for a

classically correlated field and persist even for very small coupling efficiencies

of the squeezed field with the atoms.

The interaction of squeezed light with atoms leads to novel physical effects not obtainable

with conventional radiation sources [1]. The origin of these effects is in quantum correlations

between pairs of photons in the squeezed field which reduce quantum fluctuations in one

quadrature component of the field below the ordinary vacuum level. Since the reduction of

the fluctuations is a nonclassical effect, it is obvious that this feature will lead to intrinsically

quantum effects in the atom-squeezed field interaction.

In contrast to the significant theoretical advances in this area [1,2], experimental work

has proven to be extremely difficult with only one experiment so far demonstrating a purely

non-classical effect in the spectroscopy with squeezed light [3a]. The experiment has demon-



strated the lineardependenceon intensity of the population of the upper state of athree-level

cascadeatom, which is in contrast to the quadratic dependencewith classicalfield. Addi-

tional attempts to observesqueezingeffectsin quantum interference [3b], and spontaneous

decayof the atomic polarization [3c]havenot convincingly demonstratedthat theseeffects

arisefrom the nonclassicalcharacterof the squeezedfield.

A generaldifficulty in the experimental realisation of the predicted nonclassicaleffects

is their strong dependenceon the couplingefficiency7]of the squeezedfield with the atom.

In the experiments [3] the squeezedfield wascoupledonly to a small fraction of the modes

surrounding the atom and the estimatedcoupling efficiencyU wasvery small (r] _ 0.05) .

For suchsmall valuesof r] most of the predicted nonclassical effects disappears [I]. In the

experiment [3a] the nonclassical linear dependence on intensity of the population was ob-

served in accordance with the theoretical prediction [2] that the population changes linearly

with intensity independent of r].

In this paper, we show that the time evolution of the population of the upper state of a

cascade three-level atom driven by a detuned squeezed vacuum can exhibit quantum beats

which are not sensitive to U and are absent for a classically correlated squeezed field.

We consider a three-level atom in the cascade configuration with the ground state II),

the intermediate state 121 and the upper state 131 driven by a squeezed vacuum field whose

the carrier frequency ws is detuned from the average atomic transition frequency w0 --

(aq + a22)/2 by A = Wo - ws. The bandwidth of the squeezed field is assumed to be much

larger than the atomic spontaneous emission rates F3 and F2 of the excited levels li) (i = 3, 2).

In this case the time evolution of the atomic populations is given by the following set of

coupled equations of motion [2]

115slr3 (P13 eiCs _- P31c--iCs) ,/53a = - (A/- + 1) F3P33 + Nr3p22 -

/522 : NF 2 - [_/'F 3 q- (2J_ { q- 1)P2]/922-{- [(_/Y -F 1)F3- fi/-F2] P33

+lSslr  +/331¢-i¢s) , (I)

3 F -
1p32J_/- {_ [_/'P2 H-(_/" -F 1)P3]- 2i/k} /::331-k _ 32Mp22,/931 = (/513)* = 2
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FIG. 1. Time evolution of the population P33(t) for N = 0.1, F3/F2 = 0.5, A = 2.5F2,

IM] = v/N(N + 1) (solid line), ]M[ = N (dashed line), and different r/.

where F32 = Fv/-F-_3F2,N = _N, f/= _M and the parameters N and M = IMle i¢_ characterize

squeezing intensity and the magnitude of the two-mode correlations, respectively, and Cs is

the squeezing phase. For classically correlated fields the squeezing parameters N and IMI

are related by the inequality IMI _ N, whereas for quantum fields ]M] < _/N (N + 1).

We will show that the excess of the correlations over the maximum classical value IM[ =

N can produce dramatic changes in the time evolution of the population P33 (t), which can be

regarded as nonclassical. In order to analyse the time evolution of the atomic population,

we write the set of equations (1) in a matrix form and solve it for P33(t) by the matrix



inversion. In Fig. 1, weplot the population for three different valuesof _ and two valuesof

IM[ IMI = _/N(N + 1) correspondingto the maximum quantum squeezingand [M[ = N of

the maximum classical squeezing. When the atom is driven by a quantum squeezed vacuum,

the time evolution exhibits a sinusoidal modulation (quantum beats). However, the classical

analog does not show quantum beats. The lack of quantum beats for the classical squeezed

field can be explained by the fact that for IMI = N the two-photon correlations are much

weaker than for the corresponding quantum field. In Fig. 1, we plot the population for

N = 0.1. In this case IM[ = 0.1 for the classical field, whereas ]M L= 0.332 for the quantum

field.

Moreover, it is seen from Fig. 1 that the quantum beats are not affected by r/. A small

coupling efficiency diminishes only the value of the population in the state [3). The param-

eter values N = 0.1, Fa/F2 = 0.5 and r/= 0.05 correspond to those in the experiments [3],

and therefore the quantum beats are experimentally accessible with the present technology.

It should be possible to observe this effect without the necessity to squeeze a majority of

the vacuum modes coupled to the atom.

[1] A.S. Parkins, in Modern Nonlinear Optics, Part II, eds. M. Evans and S. Kielich (Wiley,

New York, 1993) p. 607;

For a recent review on spectroscopy with squeezed light fields see: B.J. Dalton, Z. Ficek

and S. Swain, J. Mod. Opt. 46, 379 (1999).

[2] Z. Ficek and P.D. Drummond, Phys. Rev. A43, 6247 (1991); A43, 6258 (1991); Physics

Today 50, 34 (1997).

[3] (a) N.Ph. Georgiades, E.S. Polzik, K. Edamatsu, H.J. Kimble and A.S. Parkins, Phys.

Rev. Lett. 75, 3426 (1995); (b) N.Ph. Georgiades, E.S. Polzik and H.J. Kimble, Phys.

Rev. A55, R1605 (1997); A59, 676 (1999); (c) Q.A. Turchette, N.Ph. Georgiades,

C.J. Hood, H.J. Kimble and A.S. Parkins, Phys. Rev. A 58, 4056 (1998).



Micromaser Atomic Correlations beyond the
RWA

F. De Zela

Pontificia Universidad Cat61ica del Per_, Dpto. de Ciencias -
Secci6n Fisica

Ap. 1761, Lima -Perd, e-mail: fdezela@fisica.pucp, edu.pe

Abstract

We study the possibility of using the micromaser as a tool for testing the

validity of the rotating wave approximation (RWA). We predict that the so-

called counter-rotating terms, which are neglected within the RWA, can give

rise to physically observable effects for the parameter range accesible to cur-

rent experiments. We focuss on atomic correlations, as the atoms exiting the

micromaser cavity constitute the only physical entity that can be subjected

to measurements. Although the predictions we have made do not include the

less than 100% efficiency of the atom detectors, they should serve as a first

indication of the capability of the micromaser for testing the range of validity

of the Jaynes-Cummings model in the microwave domain.

I. INTRODUCTION

It has been generally assumed that the Jaynes-Cummings model correctly describes the

atom-photon interaction in a micromaser cavity. Any departure from the RWA is expected to

occur well beyond the range of parameter values typical of current micromaser experiments.

On the other hand, the range of validity of the RWA still remains unclear and it has been

the subject of recent theoretical investigations [1]. The so-called counter-rotating terms,

which are neglected within the RWA, could give rise to physically observable effects like

the Bloch-Siegert shift or high-frequency modulation of Rabi oscillations. Early studies

assumed that such effects could be experimentally observed by going from the optical to

the microwave domain. However, in spite of having developed the micromaser as a tool for

exploring such a domain, no attempts were made, to our knowledge, to go beyond the RWA

in the interpretation and planning of micromaser experiments.

In a previous work [2], we undertook the study of the micromaser dynamics by going be-

yond the RWA. We calculated linewidths and second-order field correlations, comparing the

standard results with those obtained beyond the RWA. Differences appeared for parameter

values within the range accessible to current experiments. However, as we limited ourselves

to predictions that involved the photon field only, there was no possibility for proposing

a comparison between theory and experiment. The reason is that the photon field itself



cannot be sensed directly but through the exiting two-level atoms, which so play a double

role: they serve to pump the maser field as well as to probe it. By measuring the state in

which the atoms leave the cavity, conclusions can be drawn about the photon field. The

back-action of the measurement process must be properly taken into account, as the atom

and the cavity field constitute an entangled state. Atomic correlations can thus be used to

study different features of the field dynamics. In the present work we have focussed on these

correlations.

II. MASTER EQUATION BEYOND THE RWA

We consider the Hamiltonian given by

1

H = h_o(_ + _z) + huJ(a+a + 1/2) + h(a + a+)(ga+ + g'a_), (1)

for the description of the atom-field interaction. We remark that, even at resonance (w0 = _),

the RWA breaks down when g/w becomes large enough. For current micromaser experi-

ments, e. g. those performed at Garching, g/w _ 10 -6, and the effects stemming from the

counter-rotating terms (aa_ and a+a+), are expected to be negligible. By going slightly out

of resonance (w0 - w _ 1MHz) the RWA is expected to remain valid as long as g/w is kept

small enough: a detuning of 1MHz is still much smaller than the hyperfine splitting of the

Rb 21GHz transition employed in the Garching experiments, which is of-approximately-

50MHz. However, our results indicate that this is not the case: we find differences between

the predictions made within the RWA and those obtained by including the counter-rotating

terms.

In the present work we deduce the master equation for the steady-state photon distri-

bution beyond the RWA. To this end, we have employed continued-fractions techniques,

as developed by Swain [3]. They allow us to go to the desired order of approximation

in the relevant parameter, which in our case is g/w. By using Swain's approach we ob-
]E_a_rt pa_yttain transition probabilities that the RWA do not include, such as i a,n±2 and _ b,n-l"

Here, a and b mean, respectively, the upper and lower atomic energy levels, whereas

n denotes the photon number. Within the RWA the only allowed transitions are pa,n
a_n

and a,nPb,,_+l, the so-called energy-conserving transitions. Of course, all transitions con-

serve energy, as long as the complete Hamiltonian is time-independent. However small,

the additional transitions we have included are real, physical ones. They can give rise

to -in principle - measurable effects that we predict in the present work. In general,

P_(t) =I< fii(t) >12=1< flexp(-iHt/h)li >12, where the transition probability P_(t) can

1 L_(E)exp(-iEt)dE 12, withbe put in the form [3]:P_(t)=1 _

L_(E) = _ < fl_ >< _l i >
E-E7 (2)

It is the calculation of these last quantities which can be accomplished through continued-
a,n Ta,n T a, n

fractions techniques. In our case, we need the quantities L_,n, -a,n+2, _"b,n+l, which can

be readily calculated. It is then straightforward to obtain the part of the master equa-

tion for the photon field, which corresponds to the evolution of the field when it in-

teracts with the atom. Calling T(_-) the evolution operator which results from tracing



the whole atom-field evolution operator over the atomic degreesof freedom, we have:
T(7)p = Tratoms{exp(-iHt/h)pexp(iHt/h)}, with p = _a,n;bmPan,bmla, n >< b,m[. As

usual, we take the initial atom-field state as an uncorrelated one, with atoms entering the

cavity in their excited state: p = Pfidd ® la >< al. After neglecting the coherences of the

resulting photon density matrix in comparison with the populations, we obtain the following

relationship:

pn(T + ti) Da,n+2_ [, _ n_,n+l _p_,n "t ' pa,n-t _,,_-2

(3)

Within the RWA only the terms in brackets on the r. h. s. would appear. Now, during

the time when no atom is inside the cavity, the photon distribution decays as described by

the well-known master equation

dp
d----t= --TdL_p, (4)

with 7d the cavity decay rate, and the Liouvillian operator L_ on the right being defined

through

(L_)nm = (nb + 1)[nS_m - (n + 1)5_+_,,_] + nb[(n + 1)6n,_ - n6_-_,m]. (5)

Here, nb means the average number of thermal photons. For atoms arriving at times

following a Poisson distribution it is possible to describe the evolution of the photon field

through a differential equation encompassing both evolutions, as given in Eqs.(3) and (4):

dp
d---(= + - 1) - (6)

where L = L_ - N_(M - 1), and with N_x - r/_/d; r being the rate of atomic injection. N_x

means therefore the number of atoms passing the cavity in a single decay time. The matrix

M is defined through the r. h. s. of Eq.(3).

III. CORRELATION LENGTHS

The photon steady-state can be obtained by putting the r. h. s. of Eq.(6) equal to zero.

With such a photon distribution we can calculate different quantities related to atomic

measurements [4] like, for example, the conditional probability that an excited atom decays

to the ground state in the cavity. It is given by

p ( _ ) E _a,n + l r-.a,n--1= 1-'i,,_ P,_+I + 1-'b,n Pn-1
n

(7)

With P(+) = l-P(-) we can then calculate the average inversion < s >= P(+)-P(-).

Here, +(-) means the upper (lower) atomic state. If we now define Pk(i, j), with i, j taking

the values +, as the joint probability for observing a first atom in the/-state and the second

in the j-state, with k unobserved atoms in-between, one can show that, besides < s > there



0.00334

0.00332

0.0033

0.00328

L I I I I I I

0.00326

0.00324

0.00322

0.0032

0.00318

0.00316

I

i I I I I I I

0 20 40 60 80 100 120 140

I I

160

m

t
180 200

FIG. 1. Correlation length,3,k, as a function of the number of undetected atoms. The upper

line corresponds to the calculation beyond the RWA

is only one two-point correlation, namely < ss >k= 1 -4Pk(i, j). From it, we can define the
normalized correlation function as

< ss >k -- < 8 >2

7k = 1-- < s >2 (8)

It is for this quantity that we have compared the results obtained with and without the

RWA. Fig. 1 shows a representative example of a case where they differ from each other,

even for parameter values of current experiments. The parameters are: w = 21.5 GHz,

_o - w = 1 MHz, 9 = 44 KHz, nb = 10 -4, r = 3500, Nex -- 700, 7- = 80 #sec.

The differences between the 7k-values obtained with and without the RWA are quite

small. Whether they lie or not within the experimental accuracy of current technology, that

is a question we hope to address in the next future.
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Abstract

We study the conditional evolution of the field in a strongly coupled cavity

QED system in the optical regime using a combination of photon counting

and homodyne detection techniques. We show experimental and theoretical

results of our laboratory realization.

Nonclassical intensity fluctuations of a light beam are detected by two principal meth-

ods: measurement of a second-order intensity correlation function, 9(2)(r), that shows anti-

bunching or some related feature, or measurement of a photon counting distribution that is

sub-Poissonian. The intensity correlation function is obtained from a conditional measure-

ment, and its nonclassical features are insensitive to detection efficiency. A sub-Poissonian

counting distribution on the other hand is sensitive to detection efficiency; the measured

sub-Poissonian character of the distribution is reduced as the efficiency is decreased. The

traditional scheme for detecting quadrature squeezing essentially measures the variance of a

photon counting distribution. The observed nonclassical effect also decreases with decreasing

detection efficiency.

The intensity correlation function can probe some of the dynamical processes involved

in producing the light. The photon correlator does not directly measure the evolution of

the electric field, however a modification of the detection system allows a more complete

exploration of the field.

We have measured the correlation function of the photons escaping from a strongly

coupled cavity QED system formed by a high finesse interferometer traversed by a beam of

N optically pumped Rb atoms [1]. Figure 1 shows an intensity correlation function for weak

resonant excitation. The system is characterized by the single atom cooperativity parameter

C1 _ 6 and the photon saturation number no _ 0.2, placing it in the strong coupling regime

[1-3]. The oscillatory exchange of excitation between the atoms and the cavity is evident in

the figure as well as are the non-classical features of antibunching (g(2)(0) < 9(2)(0+)) and

sub-Poissonian statistics (9(2)(0) < 1). The escape of a single photon has a dramatic effect in

the system, because the saturation phonon number is so small [4]. The jump occurs because
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FIG. 1. Experimentally measured second order correlation function 9(2)(r) of the intensity in

a strongly coupled cavity QED system.

the polarization of the medium increases when a photon leaves the cavity. The collective

cavity enhancement of the dipole decay rate is reduced in the ratio (N - 1)/N and this

increases the polarization amplitude (which is inversely proportional to the damping rate).

We have modified our detection apparatus in a way that permits us to measure the

conditional evolution of the electromagnetic field escaping out of the cavity QED system (see

figure 2). Our detector starts with a beam splitter. One arm has an avalanche photodiode.

The second arm has a balanced homodyne detector. The detection of a photon in the diode

triggers a fast digitizer that records the photocurrent output of the homodyne detector.

The detection of the first photon projects the state in a well defined initial condition that

then evolves back to steady state. The photocurrent of the balanced homodyne detector

provides information about the state of the electromagnetic field escaping the cavity. We can

sample the two quadratures of the signal field with phase reference to a local oscillator beam.

The time record of the photocurrent, in coincidence with the avalanche photon detections,

permits the reconstruction of the field of the cavity QED system.

Although the underlying dynamics involves quantum jumps, our detection scheme cannot

resolve there. The averaging process necessary to extract the signal out of the shot noise

of the homodyne detector eventually evens out the time asymmetry. The resulting field is
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time symmetric with respect to the conditional trigger.

Initial measurements have detected the conditional field magnitude from the cavity, and

show a relation with a bunched second order correlation function. We get additional in-

formation by varying the local oscillator phase. This measurement technique should allow

observation of the evolution of the field of a single photon triggered by the detection of first

photon escaping out of the cavity QED system.

This conditional measurement scheme for electromagnetic field amplitudes detects the

nonclassical correlations underlying squeezing in an efficiency insensitive way [5]. The mea-

surement is in effect a third order correlation function in the field. The correlator response

involves two operators, the photon flux operator governing the response of the "start" de-

tector, and the field amplitude operator for the quadrature selected by the phase of the local

oscillator in the homodyne detector.

We are interested in the regime of large quantum fluctuations observed in Ref. [1]. We

are pursuing a measurement of such correlation functions in cavity QED, where violations of

the classical inequalities underlie the nonclassical intensity correlations discussed in Refs. [2]

and [4]. A similar approach is presently followed by the group of Mlynek in their study of

the state reconstruction of parametric down-converted photon pairs [6], but the time scales

of the evolution are much faster than in cavity QED.

We will use this technique to characterize the evolution of the state of the cavity field.

By sampling the variance of the field at a given time and at a set of phases, tomographic

reconstruction techniques can be used to obtain a density matrix of the field.

This work is supported in part by ONR and NSF.
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Abstract

Within framework of quantum electrodynamics the strong resonance inter-

action between an atom and a dielectric microsphere is considered. As initial

conditions we choose the case when both an atom and a resonance mode

of a microsphere are excited simultaneously. Two-photon fluorescence spec-

trum depends strongly on the way of an excitation of a microsphere resonance

mode, that is it depends on distribution of photon energy over space. The

most characteristic feature of two-photon fluorescence spectrum is the emitted

photons have strong correlations on energy. These correlations are described

by ellipse equation (021 _- 022 -- 202A) 2 + 3 (021 -- 022) 2 ---- 4_2Rabi

The connection of results with dressed state picture is discussed.

Dielectric microsphere is of great interest because it is a high quality resonator with a low

mode density in optical range and with a small effective volume of mode[i-3]. Now there

has been proposed a number of applications and interesting experiments using dielectric

microsphere. In particular the laser with very low lasing threshold is already developed on

the base of microsphere[4].

To describe the two-photon fluorescence spectrum it is necessary to build a quantum

theory of resonance interaction of an excited atom with a resonance mode of a microsphere,

excited by a single photon. Such theory was considered in [5] for the case of first excited

manifold. Here we consider the case of second excited manifold. Within rotating wave

approximation it is a self-consistent problem. As approximation of second excited manifold

we shall consider n (n --_ ec) quantized modes of electromagnetic field with frequencies

wl = i_rc/a,i = 1..n (A-radius of quantization sphere)[5].

To find two-photon spectrum it is necessary to solve a system of Shr5dinger equations for

probability amplitudes of different states. The vector of probability amplitudes of different

states of second excited manifold has a following structure:

*E-mMhkhmov@rim.phys.msu.su



(1)

Here, the first group describesprobability amplitudes of finding an atom and one quantized
mode of electromagneticfield in the excited states. The secondgroup describesprobability
amplitudes of finding an atom in ground state and two photons in one quantized mode.
Finally, the last group describesprobability amplitudes of finding an atom in ground state
and two photonsin differentquantizedmodes.To solveShrSdingerequationsit is necessary
to choosethe initial conditions. Here we shall consider the casewhen two-photon states
are not occupiedat initial instant of time, _.iyh(t = 0) = 0,k_A (t = 0) # 0. In other words,

%3

as wave functions of initial state we shall consider a direct product of wave function of an

excited atom and wave function of photon field. As wave function of photon field we will

consider a superposition of one-photon states with energies, falling into the contour of a

resonance mode of a microsphere (whispering gallery mode).

In frequency domain Shr5dinger equation is reduced to system of linear equations:

(CO-- COi -- COA)_I/¢ (CO) ----- iq A (t = 0) + _ V,s*ehi,s (co) + v/2V/q}Ph (co)
s#i

• A(CO-2CO,)q,:h (CO)= v_V_% (CO)

(CO COi COj)_eh • A,,, (CO)= (CO)+ (_) i-- -- V/ _I/j . aE_, , ¢J (2)

Here COAis atom frequency, which may be considered as equal to resonance frequency of a

microsphere CO_,, COiis fi'equency of i-th quantized modes, _¢ (t = 0) are atomic amplitudes

at initial instant. V/is a matrix element of dipole interaction of an atom with i-th quantized

mode:

d_de_=d (l, rn = 0, ui, r)

vi = v (COi)= _ (a)

Here d_=d- dipole moment, erad (l, rn, Pi, r)-electric field of quantized mode [5]. This ma-

trix element has resonance behaviour near microsphere resonance frequency CO_, [5]:

1
V(COi) _ (4)

Excluding the photon amplitudes from (2) leads to a system of n linear equations for the

probability amplitudes of finding an atom and one photon in the excited states:

(CO --COl--COA) _I/A (CO) _- ilt_A (t -_ 0)+

v#;,_¢ (CO)+ v#¢,_ (CO)
E (CO-COi (5)

If q¢ (t = 0) cv V_*, the average square of electrical field will be maximum at atom

position. Such excitation of a microsphere we shall call optimum excitation. If q_¢ (t = 0)

c_ V/, the average square of electrical field will be minimum at atom position. Such excitation



of a microsphere we shall call anti-optimum excitation. The rest kinds of excitation will have

intermediate nature.

After the solution of (5) is found there is no need to return to the time domain to find

fluorescence spectrum. It happens due to the fact that probability amplitudes of two-photon

states at t --+ oc are expressed through frequency components of atomic amplitudes with

the help of the expressions:

• f) (t _) = . AVi q_j (coi + _j ) + Vf qjA (coi + wj ) , i C j

. A,I,:!'(t --, _) = ,/_v_ % (2_)
't(t

(6)

From these expressions one can easily see that the final two-photon states are entangled.

So we can expect the appearance of strong correlation between final photon states. In its

turn two-photon fluorescence spectrum can be expressed through asymptotic expressions for

two-photon amplitudes:

P (_,_j) = _'J (7)
Aw 2

1.5

0.5

t_

¢,r

0

v

-0.5

-1 ........I.....j .......................

! ! ! | !

-1 -0.5 0 0.5 1

(0} 1- (.OA)/_Rabi
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Fig. 1. Two-photon fluorescence spectrum from atom+ dielectric microsphere syste_

= V* • Ph (t = 0),aR_a/V_ = 3).timum excitation_ q2A (t O) o( _ , _i,j



The result of solution of a ShrSdinger equation for optimum excitation of microsphere is

shown in Fig.1.

First of all in this figure one can see that photon frequencies are situated on the ellipse,

that is they are strongly correlated. Radial width of the ellipse is essentially less in com-

parison with the width of microsphere resonance F_s. In the limit of strong interaction

(ftR_bi >> F_¢s) the equation of ellipse has the following form

(Wl ,sw_ - 2COA)2 "5 3(w, --w2) 2 = 4Ft_b, (8)

Here Rabi frequency f_biis determined through relation

_abi _- E IV/12 (9)

i

Secondly, the four peaks

are present on the ellipse. These peaks are close to difference frequency peaks arising in

picture@_ = COA4- _Rabi, 022 = _2A 4- (_-- 1)_Rabi)[6]." Important
dressed state difference

of our results from the dressed-state picture is that we do not observe the peaks with sum

frequencies @1 = WA ± f_R_bi,w2 = WA 4. (X/2 -5 1)QR_bi).
To test experimentally the existence of the elliptical correlations between energies of

emitted photons it is insufficiently to measure one-photon spectrum, because the main fea-

tures of two-photon spectrum are lost here. For full reconstruction of elliptical structures

one should measure the spectrum of one of the photons provided the energy of second photon
is fixed.

In conclusion, we have shown that in two-photon fluorescence spectrum from the

atom,smicrosphere system the emitted photons have strong energy correlations. These

correlations are expressed through appearance of elliptical structures in two-dimensional

spectrum. The obtained results are applicable to other cases of two-photon fluorescence

spectrum from an atom,5 resonator systems.

The authors thank the Russian Basic Research Foundation for financial support of this

work.
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Abst, ract

The occurrence o[" nonclassical effects in the dynamics of an ion confined in

a isotropic bidimensional t+rap is demons|rated. \;Ve find that the variances of

a simple observaMe undergoes macroscopic variations when the total initial

number of vibrational quanta is increased or decreased by one unit only.

\r_'ry recently it: has been demonstrated thai; a single ion can be confined in a electromagnetic

trap aim <:(>(>led down near to its zero point energy Ill. Such a system is describable as a

qnantllnl particle in a harlnonic potential in the sense that the center of mass (c.m.) too-

lion can l>e qmmtized ms harlnonic oscillat.or. Moreow_r, appropriately driving the confined

ion by classical laser beams, its intornal and external degrees of freedom can be coupled

[2-,-1]. Tlms, simply controlling the configuration of the driving lasers, becomes it. possible

Guiding the vit)rat.ional inotion of the trapped ion. It+ is Inoreover of particular relewmee the

thcl that., if" the Lamb-l)icke limit is salisfied and the driving field is tuned to one of lJ£e

vil>rat.ional sidebands of tJte atomic transition, then the quantum dynamics of such systems

may l)e deduced from generalised nonlinear ,laynes-Cummings models wherein the quantized

radiation field is obviously replaced by the qnantized c.m. motion of the ion [5]. In this

sense tho growing develot>ment in laser cooling and trapping techniques has opened a new

r_-s_,arch field for experimentally l;est.ing ['undament;al [batures eilher of atomic physics and

qnanl.tlIn optics.

In this i)al)er we inw_,stigate on the dynamics of a single ion confined in a bidimensional

1rap. We will show that apt>ropriately choosing bot.h the configuration of the ext;ernal

laser beams and the initial conditions of t.he system, t.he time evolution of some simple

ionic observables exhibits peculiar nonclassical properties which may be traced back to the

granularity of the vibrational sl_al.es.



Consider a two-level ion of massM confined in a bidimensional isotropic harmonic po-

tential characterised by a trap frequency z,. Indicate by & (a t) and t) (1¢) the annihilation

(creal,ion) operators o[ vibrational qua, ida relative to the oscillatory motion along the X and

}_ axes o[ the trap respectively. Accordingly the position and momentmn operators can 1)e

written as

/"_ .... iV_ (a t -//) (_)

The lfidimensional harmonic oscillator can be also described, in the well known Schwinger

representation, introducing a generalised angular momentum operator .] =- (.Ix, dy, J_) in the

for lil

\Vc assume that the ion is driven by two laser beams applied a.long directions with an angle

7r/d and 3rc/d relative to the X axis respeclively, having phases 0_ - 0 and (/)_ - rc and

equal inl.ensity and wawqength. It is possible to demonstrate that [6], if the laser beams

are 1)oth Imbed to the second lower vibrational sideband, the physical system under scrutiny

can l)e described, in the Laml>[)icke limit, by the Ibllowing efli_et.ive Halniltonian

17 ==ht,(&ta@ btb) F h,J#_.[9 [(gd))d-_+ (atbt)# ] (4)

,,'her,_< _ It ><_1- I-><-I, a_ - I W><-I,a_ - I-><t I are internal ionic operators with
It } and I-} ionic excited alld groulld stat.es respectively. In eq. (4) g measures the strength

of the interactioll twlween the interlml and external degrees of freedom and depends on

physical parameters such as laser illtensity, wavelength and amplitude of oscillation of the

ionic center of mass.

It, is easy t,o verit_y that the total number of excitations N - (it& q- iitt) _ b-_ [ 1 and the

dit[brence of vibrational quanta, relative to X and Y harmolfiC motion, fit& _ bt_) _: 2J; are

constants of motion. Let's denote with I'",,, '",,} : I'n,,)ln_,) the simultaneous eigenstates of
aIa and btb such that:

(5)

%)_ SUl,pose to t,ret,are the ion at t..... 0 in the state I'g,(O)} = Ir : l,j0 .... ,_-}I-}, where

N

IT l,.j0 7> -F,.i.} =- 2N/2
k. 0

N

- E I',.IN- k, lc>
k =:0

IN - t,, _:>-

(6)

is a SIT(2) coherent state. Very recently, Fock states of the ion motion along the X direc-

tion of an electromagnetic trap lmw:_ been experimentally realized by the researchers of the



National Institute for Standards and Technologies[71. Of coursethe applicability of this
reel:hodis by no meansrestricted to oscillationsalong the X axis only. As pointed out by

(_,ou and I(night [81, then, the generation of the initial state [7- :- 1, j0) of a bidimensionally

confined ion, amounts a.t rea.lizing a Fock state of the ion motion along the direction with an

angle _/4 relat;ive to the X axis. The states IN - _:, h) appearing in eq. (6) are eigenstates

operator (h)h t bti)) all pertairfing to |he COIIIII1On eigenvalue N = 2j0, representingo[" |,he

the initial total number of vibrat.ional quanta. Observing that .l_j is a purely imaginary her-

mi|.ian operator and that, in the coordinate representation, the initial state I_(0)} is real, it

is easy to convince onesel[ that necessarily

N - N

(_-_=1,.7,,=_:VI4,1_-= 1,No .... _) = 0 (7)

• N
Moreover a si.raight[orward cah:ulation glw-_s that the initial variance of .ly is 7'

If we turn on, a.t l : 0, l.he laser tMds which realize |:.tie l-[amiltonian model (4), then at.

any subsequent instant, of time t the sta.te of the system can be exactly determined in lhe

rorm [.q]

I*(t)> ....Iw-(t)>l->-.zlv_(t)>l+> (s)

wit.h

N

I_ (t)) :-=_ &c,o.q.lbt)lN- L,,_:)
k-O

N-1

it/, (l:)) : _ l_,.<,.i.,,.(.['_d)lN- lc- 1,k- 1)
/¢=1

(9)

where.lt- _ 2,_/(:V- _,)_,areth,_Ral,i f;'e,tuencies.V:q. (S)showsthe oc(:,_rren<;o,>fen-
ianglenient l)etween the internal and external degrees of freedonl ill the tinie evolution of

the system. It is of relewmce to emtihasise that, as a consequence of the specific coupling

m,'chanism adol,ied in this paper, the bosonic states I_0_ (t)) and Ip+(t)), given by eqs. (9),

in the coordinate representation, are real at. any tilne I this implying

(_(t)l,Z_l,l,(t))= 0 (10)

in view of tile fact that J.v is a bosonic operator. As easily deducible flrom eqs. (1-3), the

operator .i v is proportional to the z-component of the ionic angular momentum operator

L:. =_ X[_,- YPx -= ih(tdb-bia). Thus eq. (10) assumes a silnph_ physical nieaning

saying thai. the expeci;ation value of L;_ vanishes at. any t. Since, however, Jv does not

coinnlute with H, useful information on the physical behaviour of this observable may be

achieved investigating on the l.ime evolution of its variance (Ady) 2 here coincident with

(m(t)lJ'_lm(t)). w<, ha,re exactly and analytically calculated this quantity and figure 1

displays its time dependence [br (a) N ::: 20 and (b) N = 21, respectively.

These plots clearly evidence that our system possesses an inherent peculiar nonclassical

sensitivily to the parity of the initial i;otal nunll)er N of vibrational quanta. In fact, there

exists an instant of time l.,. at which lhe variance of <ly assumes vahles strongly dependent on
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the evelmess or oddness of N. We have analytically proved by lengthily calculations that, at

the N-dependent, instant of time l_. .... _tha|,_. the quantity un(ler scrutiny may.. be written
as

x_ if N is odd (11)(AJu)2 :: -_-- if N is even
4

This result suggests the possibility of controlling t.he fluctuations of a physically interest-

ing observable, that is L_, simply varying the initial total number of vibrational quanta.

More in detail, we may claim that at. t :. t_ t.he z component of the angltlar moment.urn

maniflests macroscopically difl'erent fluctuations as a consequence of the variation of only

o11e vibra|ional qua ntmn in the initial conditions. This means that the degree of precision

associated to the measmemelat o[ this highly interesting and simple physical observable may

be macroscopically influenced by the discreteness of the quantum slates of the harmonic

os(:illator.

In conchtsi(m we have demonstrated that the int.eraction mechanism envisaged in this

paper as well as the particular initial condition imposed on the system, doubtless in the

grasp of the experitnent.alists, lead to a nonclassical macroscopic effect directly stemming

from t.he granularity of the vibrational states of the trapped ion.
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Abstract

A scheme for generating quantum superpositions of macroscopically distin-

guishable states of the vibrational mot.ion of a bidimensionally trapped ion

is reported. We show that these states possess highly nonclassical properties

controllable by an adjustable parameter simply related to the initial condition

of the confined system

An ion confined in an electromagnetic trap is describable as a particle in a harmonic potential

in the se_,se that its center of mass (c.m.) can be quantized as harlnonic oscillator [1].

Approprialely driving the trapped ion by classical laser beams, its internal and external

degrees of fleedom can be coupled. It is of particular relevance the fact thai., if the Lamb-

Dicke limit is satisfied and the driving {ield is tamed to one of the vii)rational sidebands

of the alomic transition, then the quantmn dynamics of such systems may be deduced

fl'om generalized nonlinear Jaynes-Cummings models wherein the quantized radiation field is

ol)viously replaced by the quantized c.m. motion of the ion 12]. The advantages of testing the

rich dynamics predicted by these models using trapped ions instead of cavities stem Doln the

circumstance that typical dissipative effects strongly limiting the ]performance of experiments

in cavities, in the optical as well as in the microwave regime, can be significantly suppressed

for the ion motion thanks to the extremely weak coupling between the vibrational lnodes

and the external environment. It is trhus not. surprising that ions confined by electromagnetic

fields are eligible systems for producing, tbr example, specific nonclassical vibrational states.

Sew_'ral schemes tot the generation of l_bck states, coherent states and squeezed states haw_

been, in fact, reported and realized in this contest [3]. Quite recently, Monroe et al. [4] have

proposed an experimental scheme tot generating and detecting a Sdlr6dinger cat-like state of

a trapped ion providing insight into the fllzzy boundary between the classical and quantum

worlds. Over the last, few years, some interesting methods for creating generalized coherent



states of the bidimensional vibrational c.m. motion havealso beenreported [5-7I. In this
paper wepresentanoriginal schemeaimedat generatingquantumsuperpositionsof bosonic
S{:(2) macroseopicallydist.inguishat)lecoherentslatesexploiting tile wavepacket reduction
method. In particular, weshowthat thesestatespossessnonclassicalpropertiescontrollable
l)v an a(t.justal)leparanmtersimply related to the initial condition imposedon the confined
system. Consider a two-hwel ion of mass M confined in a bidimerlsional isot[opic harmolfiC

poten|ial cha.racterized by a trap frequency _J. Denote by X, Y, P_ and Py the posit.ion

operators and their relative conjugate momenta. Then, as usual, the operators i_. (&t) and b

(b I) defined as

(1)

are the annihilation (creation) operators of vibrational quanta in the X and Y directions

respectively. It has been shown 16] that irradiating the trapped ion with an appropriate

configuration of laser beams, if' the Lamb-Dicke limit is satisfied, the physical system under

scrutiny can t)e studied, in the inl.eract.ion pic(.me, by the following tlamiltonian model

I,,, ] (2)

of freedom, ]q) end 1-) being the ionic excited and grmmd states respectively. Let's

denote with In.,,., ,_} .... In.a}l',,.b} the simultaneous eigenstates of t_,tiz and btb sueh that

a) i_ [',,.,,, *.b) :: ,_._l,_o',,.b} and btb{'n,,,,.b} :-:: *,.bJ'u,,',,+} We suppose that the initial state, of the

ion has the form Iqg(0)} ---IT 1,.j0 ::: @}1-} where

I_ : a,j,, ...._7> _ 2-_7_ L:, IN - L=,a:>_ Z WIN - a,,k> (a)
_¢=o k 0

is known as S/7(2) coherent; state and may be prepared exploiting a method recently pro-

posed by Knight et al. [7]. The sta.tes IN - _,,t,) appearing in Eq. (3) are eigenstates of the

(i,l-i_ [ i)lb) all pertaining to the eigenvahle N = 2j0 representirlg the initial total(_ptqal,or

number of vil_ra.tional quanta. The state of the system, at. a generic time l:, (;an be written
N /

down as IS]

N N 1

Iq'(z)} .... __, I'_.co.s(.fkf)lN - a,,a=>l->-i _ PA,s.in.(f#)lN - k:- 1,_: - 1, +}] f)
L_::::0 L- :1

-l_ (e)>l->-,:l_0_(t:)>l_} (_)

where .fa. :: 29_/(N- k:)l,: are the Rabi frequeuces. S ,artlllg frcIIn tile factorized state I_(0)),

lhc Ilamiltonian model (2) leads to entanglement between the exterlml and internal degrees

of t}eedom of the trapped ion giving rise to far-reaching interesting dynamical consequences.

In order to appreciate the meaning of this statemei_t, we focus our att;ention on the tilne

evohllion of the vii)rational entropy defined a.s &(t) -Tr[p,,(t) Iv, #_(t)[, #_ being the

reduced density operator describing lhe external motion of the ion. We have analitically
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FIG. 1. Time evolut.ion of t.he vibrat.ional entropy ,¢;',,,(a) for N 20 and (b) N ::: 21

demonstrated t:hat there exist N-dependent instants of time at which the internal and ex-

ternal degrees of {}eedom of the trapped ion are disent.angled or Inaximally entangled. More

in detail we have obtained that, if N >> 1 is even, t.he vibrational entropy _£'_,reaches its
7cN

maximum value at. t,, .... _ thus implyiltg t.hat l.he vibrational and electronic degrees of
[reed()m are maximally entangled at. t.his instarnt of time. On the contrary, if N >> 1 is odd,

at. t.he instant 1o .... t,. 4_-N t_, , _,(t) reaches its absolute minimunl "_ 0.2, as shown in fig.
1. In this case, the" internal aim external degrees of freedom manifest a marked t,endency to

disentangle each other. This nleans that there exists a N-dependent. instant of time t_ a.t

which the syst.em mlder scrutiny exhibits di[E_rent quantum behaviours dependent on the

parily of N. The physical origin of t.his peculiar sensitivity to the granularity of the ini-

tial total Imm[)er of vibrational quallta, directly stems fl:om the specific two-boson coupling

mecl_anism envisaged in this paper (F]q. (2)).

In order to bring to the light the link between the quantum dynamics followed by our

system and t.he occurrence of such a nonclassical feature we study the time evolution of the

S[:(2) (_2-flmct.ion defined as (2(5) (v) ::: (r,51P,,Ir, 5}, wh,-_e Iv, j) is a generic SU(2)coherent
slate, for wha.t follows it is of relevance to underline t.hat the total excitation number

operator N :: alO q btb t 2,_'_ +- 1 is a constant o[ motion and that the ini|;ial state of our

system ]qJ(o)) is an eigenslate of N correspondent to lhe eigenvalue n ::: 2j0 with j0 .... N

()l)serving that 1_,5) is ol'th(ig()Iltl] to I',,,(,,'D,b) vchell 2j :/?_r_-| "',b, tJ[leil it, is ea, sy t,o convince

oneself that [)9. (t)} ( J_ (t)))can 1)e expressed as quantum superposition of different

stJ(2) cohe,:e ,t, st  tes 1 ,5 : 50 :: N} (Ir, j : j0- 1 .- N 2} ), obtained varying T. _I'his2 2

cir(:umstance dir('ctly leads to consider the Q-functions Q(J=J°)(T) or Q(J=J0 1)(T ) only. In

parlicular "are fix ore attent.ion on t;he quasiprobability flmction O(Jo)('r). Figm:e 2 displays,

for (a) N :-: 20 and (b) N : 21 , Q(._::J°)(T) at 1: : 1.,: and t: ::.: 1:o respectively. A careful

analysis of l;his figure suggests that, detecting at, these N-dependent instants of time _he

electronic sl ate o[ l.he trapped ion in its ground st.ate I-}, projects the c.m. motion into the
Tsl.at_(, Iq_} .... N. I_ } which is a superposit.ion of two macroscopically distinguishable S[ (2)

coherent states. In addition we find that such a. superposition exhibits a high sensiNvity to

the parity of t.he t.otal number of vibrational quanta present at 1.... 0, in accordance with

the c(mclusions previously dedneed on the basis of the properties of _'k U'

In fact figm'e 2 strongly suggests that, aft.er a successful measurement of the internal

st.ate of l.he ion, the two component.s of the vibrational state are 17- -- 1,j N) and2
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IT : -1,j :: @) if N is ew'n, or Ir : 'i,j :. @) and Ir ..... i,j =: N)2 if N is odd. Of eoui'se

it is very difficult to guess the exact form of tile vibrational state, after the measurement of

the electronic state, from this kind of analysis of the @J)(7-) plots. For this reason, in order

to reach nlore quantit_tive conclusions, we have performed an exact analytical caleulaLion

proving t.hat, provided that the measurement is made at t ::: t_ when N is even, the state

I@ has the form of even or odd SI.;(2) coherent state in corrispondence with T even or odd

respectively. On the cont;rary, for N odd, the two states [g,), obtained measuring at t -.- to

the intei'nal state of |.he ion as [-), nlay be called Yurke-Stoler like: states with a relative

7r :_ ill eorrispondenee with _N_I even or odd respectively.quantum phase of : or
Summarizing, in the con|est of our scheme, the total number of excitation N present

in the initial state of the ion center of mass motion, behaves as an adjustable parameter

allowing the realization of vibrational states possessing very difIhrent nonclassical bosonic
number distrilmtions.

It is whorth to emphasize that, whatever the parity of N is, the states discussed in this

paper are quantum superpositions of two macroscopically distinguishable SU(2) coherent

states of a bidimensional isotropic harmonic oscillator.
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Abstract

A pump-probe heterodyne detection scheme is proposed, which allows one

to infer the vibronic quantum state of diatomic molecules from the intensity

of the resulting interference signal. In particular, it is shown that direct

measurement of the vibrational wave-packet in the excited electronic state is

possible.

Many methods for determining the quantum state of light and matter have been recently

developed 1. In particular for molecular systems, methods for recovering the vibrational

quantum state from time and frequency resolved emission spectra by use of tomographic

reconstruction have been experimentally realized 2 and further developed for applications

to anharmonic vibrations 3. Other experimental schemes have been theoretically studied

such as a Raman experiment 4, which allows one to directly measure the Wigner function in

harmonic approximation, and a holographic approach 5, which applies beyond the harmonic

approximation but requires the application of numerical inversion procedures.

1For a recent review of the topic, see D.-G. Welsch, W. Vogel, and T. Opatrny, Homodyne Detec-

tion and Quantum State Reconstruction, in: Progress in Optics, Vol. 39, ed. by E. Wolf.

2T. J. Dunn, I. A. Walmsley and S. Mukamel, Phys. Rev. Left. 74, 884 (1995).

3L. J. Waxer, I. A. Walmsley, and W. Vogel Phys. Rev. A. 56 R2491 (1997).

4L. Davidovich, M. Orszag, and N. Zagury, Phys. Rev. A, 57, 2544 (1998).

5C. Leichtle and W. Schleich, I. Sh. Averbukh, and M. Shapiro, Phys. Rev. Lett. 80, 1418

(1998); I.Sh. Averbukh, M. Shapiro, C. Leichtle, and W. Schleich, Phys. Rev. A 59 2163 (1999).



FIG. 1. Experimental scheme for the heterodyne state measurement. A pump laser (PL) at position

x = 0 is used to prepare the quantum state of a molecular sample (MS) at Xo. A shutter (S) at xs separates

the source signal of the molecular sample from the pump pulse. This signal is superimposed by a beam

splitter (BS) at position XBS with a test pulse from a reference laser (RL), 6x being the path-length difference

between PL and RL. The heterodyne signal is transmitted through a spectral filter (SF) and recorded by a

photodetector (PD).

In this work a heterodyne experimental set-up is proposed which allows one to measure

directly the vibrational quantum state of a diatomic molecule. The experimental set-up

is shown in Fig. 1. An ensemble of diatomic molecules is prepared in a particular vibronic

quantum state by a pump laser. This laser is switched on at position x=0 at time t=0. The

duration of the preparation process is Tp. The pump-laser pulse reaches a molecule located

at position x0 at time Xo/C and the shutter at time xs/c. The shutter is used to suppress

the influence of the preparation process on the measured signal. After the preparation the

shutter is turned on. The outgoing source field is then mixed with a reference field by a

beam splitter. The reference field is a pulse of few femtoseconds duration centered at time _-1_

at position -6z, with 6x being the path-length difference between the pump and reference

lasers. The total field is spectrally filtered and detected by a photodetector at position x.

The photoelectron-count difference, defined as the difference between the number of mea-

sured photoelectrons and the number of photoelectrons measured by detecting the reference

field alone, can be written in frequency domain as 6,

+ c.c. (1)AN- 27r , ref ,

where/)_+) (x, w) and .tJrefl_(±)(X, CO)are the source and the reference field, respectively, at posi-

tion x. The constant factor _ is proportional to the quantum efficiency rl of the photodetec-

tor. Taking into account the effect of the optical devices in the experiment, these fields can

be related to the reference field at the laser source $[_)(w) and to the source field g(±)(w)

passing through the switch device. This gives for the measured photocount difference

AN-- 27c __wlT(w)12<g}-)(w)g}+)(w)}d% c ) +c.c., (2)

where T(co) describes the spectral filtering operated by the spectrometer and _'= _TgT* (T¢

and 7" are the reflection and transmission coefficients of the beam splitter, respectively).

6W.Vogel, D.-G. Welsch and B. Wilhelmi, Phys. Rev. A 37, 3825 (1988).



The reference pulse can be described by a multimode coherent field, which allows one

to replace the reference-field operator in Eq. (2) with the corresponding complex function

defined as

(+) wref ( ) : .A(SO -- WL) e $(OJ-_dL)TR (3)

where ,4(w) is an envelope function and _L the central frequency of the laser. On the other

hand, the source field is related to the vibronic quantum state of the diatomic molecule by

the following equation

mn ~m'gt

nm

(4)

where the coefficients g_n are proportional to the corresponding Franck-Condon factors and

the phase factor arises from the spatial retardation. The Fourier transformed density matrix

elements _n (w) (the indices 1 and 2 label the lower and upper electronic state, respectively,

and the indices n and m the corresponding vibrational level) are defined as

_n(w) = f dt _2n(t) exp [-iwt] .
Tp =tp

(5)

To evaluate Ls_n(w), the density matrix elements _n(t) must be known for t > 7-p. Solving

the corresponding master equation (including radiative damping), the following result is

obtained

= (t >__ (6)

where F_ is the radiative damping rate of the n-th vibrational level in the upper electronic

state.

Inserting the previous results in Eq. (2) and performing the resulting double integral,

taking into account that the envelope function A(w) is slowly varying with respect to the

spectral filter function T(w), we obtain the following expression for the difference signal

AN = _/(lr_n (02F)I_01'r_n(Tp)l COS[(02_n--02L) (_t--_)_2n(TP)],

n_m

(7)

where ¢_'_(_-p) is the phase of the matrix element gl'_(_-p) and the time delay 6t is defined

as 5t = 7R -- Tp + 6x/c. The kernel function K_ n (WF) is given by

mn *t mn A nm _ ,K12 (WF) _--- _ g12 (WF -- WL)IT(co21 WF)[ 2 (8)

under the condition that the time delay 5t is chosen to be longer than the characteristic

time of the spectrometer and shorter than the characteristic damping time of the system.

The measured photocount difference depends linearly on the density matrix elements

g_n(_-p). These elements can be recovered by measuring the difference heterodyne spectrum

for different values of the experimental parameters, such as WF and 5t and inverting the

obtained linear set of equations using, e. g., least-squares inversion. Moreover, the signal

is proportional to the intensity of the reference laser which can be chosen large enough to

assure a optimal signal to noise ratio.
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FIG. 2. Absolute values of the reconstructed density-matrix elements 0_ = c'_*c_ and relative devia-

tions er from the theoretical values.

Equation (7) above shows also that a direct measurement of the vibrational wave-packet

in the upper electronic state is possible. The necessary physical conditions are that the

molecule before the preparation is cooled down to its vibrational ground state and that

the pump pulse is weak enough so that the populations of the excited vibrational levels in

the lower electronic state are negligible. Under such conditions the vibrational state in the

energy eigenstate representation is given by

I¢(_-P)) = c_(_-P)ll, O) ÷ E 4(_-P)12, n>, (9)
n

and Eq. (7) reduces to

= t 21 lQ12( P)lcos - -

The real and the imaginary part of the density matrix elements can de directly measured

from the photocount difference for a particular choice of the time delay 6t. For a pure state

these elements are also the unnormalized coefficients of the vibrational wave-packet in the

upper electronic state, i. e.

On Tp

n e 12. (11)c2( p)-

The unknown coefficient c°(_-p) can be chosen real and determined from the normalization.

For example, measurements have been numerically simulated for an ensemble of Sodium

dimers. A particular quantum state is prepared using a train of three laser pulses of time

duration of 60 fs, and a delay between them of 103 fs tuned on the vibronic transition [1, 0)

_-_ [2, n}. The measurements are simulated by taking into account the shot noise. In Fig. (2)

the norm of the reconstructed density matrix of the vibrational wave-packet in the upper

electronic state is shown together with the relative deviation from the theoretical values.

In conclusion, an experiment has been proposed which allows one to directly measure

the vibrational wave packet of a diatomic molecule. This applies for general anharmonic

potentials and does not require complicated and instable reconstruction methods.

This work was supported by the Deutsche Forschungsgemeinschaft.
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Abstract

A family of angular momentum coherent states on the sphere is constructed

using previous work by Aragone et al. These states depend on a complex

parameter which allows an arbitrary squeezing of the angular momentum

uncertainties. The time evolution of these states is analyzed assuming a rigid

body hamiltonian. The rich scenario of fractional revivals is exhibited with

cloning and many interference effects.

In this contribution we will concentrate on a family of coherent states on the sphere

which can be proposed for the description of the rotation of quantum simple systems like

rigid diatomic molecules or rigid nuclei. The relevant hamiltonian depends then only on the

angular momentum I and the energy spectrum is expressed in terms of a frequency w0 by

E1 = h_o I(I + 1). A general wave packet (WP) of the family depends on a parameter

and of a real integer number k and will be denoted as _k(0, ¢). The states with k different

from 0 are deduced from a parent state ko_0 defined as

i N _N sin 0(cos ¢+i_ sin ¢)• ,7o(0, ¢) = 2__ sinh 2N s (1)

For real _] the angular spread of the latter depends only on N while the average value of Lz

is given by

(Lz> = T](N coth(2N) - ½) 2__ rI(N - ½) (2)

The states with k ¢ 0 are obtained from (1) by application on _v0 of an operator (£+)k.

The operator £+ and two other ones which form an SU(2) algebra are defined by

£3 L_ + iT/Ly (_]Lx + iLy)- lx/y-:-___2, £±=+_, v, ff_V2 -Lz (3)



Up to a normalization factor we have

%k(0, _) = (/2+)k%0(0, _) (4)

i,_12 t=l/3*Tre v
4

o %2
0

I't'12
4

o %2

I,et2
4

o %2
0

i,_,12
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o
0
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o

0

t1=1/2 20__

oo

I_12
I"I=1/42
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FIG. 1. Transition of fractional wave packets from exact clones (7 = 1) through developing

crescents (r1 = 1/2, _ = 1/4) to ring topology (rl = 0) is demonstrated for two fractional revival

times t = 1/3 *Trey (left) and t = 1/4*Trev (right). The fractional waves called mutants are clearly

seen in the lower rows of the figure.

The states _,k have the following properties:

1. They are eigenstates of/2a

£a _,k = kv/_ - rfi _,k (5)



2. The parameter z] = Iz]l exp(ia) is a squeezing parameter since one has

- AL = (6)

3. If q is real the WP are minimum uncertainty states and in general we have

2 2 = _ + I<{L='LY}> - <L=}<Ly}I2]- 4cos 2aAL_ALy [<Lz>2 1 <Lz>2 (7)

4. Changing k enable to change the average values of all the components of L.

N=20 t=(1/10)Tre v

i_12 11=0.5 1_12 _l=e _aa=_/4

k=O

0 0 n/2n 0
n_ 0

I_12 I't'12

_ k=5

g 7t

0 0 n/2

o

2

¢

2

o
¢

[_t,i2

k=1020 I_ =

o

I't'12
2

k=20

0

o

FIG. 2. Shapes of wave packets with N = 20 at fractional revival time t = (1/10) Trev for real

r/ = 0.5 (left column), and _/ = exp(ia), c_ = re/4 (right column) and k = 0, 5, 10, 20 as funtions

of angular variables for a rigid molecule. Clones and mutants are clearly visible• Note that with

increasing k the classical trajectory becomes more and more tilted with respect to Oxy plane•



There exist intensive analytical studies devoted to the eigenstates of L e and £3. When

_] is real they are called intelligent spin states [1] and quasi intelligent spin states if r] is

complex [2]. These states extend the well known work of [3]. Ref. [2] has discussed fully

the use of the SU(2) algebra (3). Obviously our WP are not eigenstates of L 2 but can be

expanded in such a basis of intelligent or quasi intelligent spin states with the freedom, by

a convenient choice of N, to concentrate the WP on the sphere. More details on these WP

can be found in our recent papers [4] and [5].

Let us now sketch briefly the dynamics which take place if one take these WP as initial

WP at time zero and if we let them evolve assuming a rigid body spectrum. Here we rely

fully on the work of Averbukh and Perelman [6]. For times of the form t = (re�n)Trey

(Trev = 27c/w0) the WP is subdivided into q fractional WP (q = n if n is odd, q = n/2 if

n is even), the shape of these WP depends on the squeezing parameter r/. By changing r/

and k one can modify the quantum angular spread and make it different for the variable 0

and for the variable ¢. For r] = 4-1 and for all m/n the fractional WP are all clones of the

initial one (upper part of Fig. 1 for m/n = 1/3 and 1/4). For different values their shape

changes (we have called these WP mutants). These shapes are shown in the lower part of

Fig. 1 and on Fig. 2.

The differences between real and imaginary r_ are not very significant as shown in Fig. 2.

Therefore there exist numerous possibilities for constructing angular coherent states using

these intelligent and quasi intelligent spin states. Obviously the choice made in (1) of an

exponential WP does not exhaust all possible ones. These remarks illustrate the richness

of the rotation of a rigid body in quantum mechanics. The internal rotational degree of

freedom (i.e. the use of DIK functions instead of YM_ ) can be studied on a similar footing

[5].
This work extends to the rigid rotor in three dimensions the revival mechanism discussed

in [7] for the hydrogen atom. The cloning mechanism, valid in our case only for 7] = 4-1,

was already investigated in ref [8] for an infinite square well. A review of the evolution of

localized WP is found in [9].
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A mathematical prelude

Dynamical evolution is described by systems of time-dependent first order differential

equations dxi/dt = Fi(t, x), i = 1,... ,n. The autonomous systems, for which F i do not

depend on t, can be considered as those determining the integral curves of a vector field

X = Fi(x) o Similarly, the previous non-autonomous system determines the integralb--_•
curves of the time-dependent vector field X = Fi(x,t)-_. The simplest case would be

dx_/dt = A_j (t)xJ, i = 1,..., n, which is written in matrix form 2 = A(t)x, with A time-

independent for autonomous systems.

We know that in the simplest case of an autonomous system the general solution can

be written as a linear combination x(t) = ClX(1) + "" + CnX(n) of n independent partic-

ular solutions and that the solution determined by x(0) is x(t) = (I)(t)x(0), from which

¢2(t)(_-l(t) = A, with _(0) = 0, and therefore _5(t) = e At. We remark that _(t) can be

found without computing the exponential when a set of n particular solutions are known,

because if X(t) = eAtX(O) then e At = X(t)X(O) -1.

For linear time-dependent systems, the relation between x(to) and x(t) depends on both

t and to and not only on t - to and as(t, t0) -¢ eA(t-t°). If [A(t),A(t')] = 0, Vt, t', then

• (t, to) = exp (fro A(t')dt'), but how to find • when [A(t),A(t')] ¢ 0? The equation

_(t, to)_-l(t, to) = A(t) cannot be easily solved in the general case, but if n solutions are

known, then _(t, to) = X(t)X(to) -1. For some linear systems it suffices to know k < n

solutions for obtaining the general solution. For instance, for Frenet equations only one

solution is necessary.

Therefore, the questions to be answered are: Are there other differential equation systems

admitting a nonlinear superposition principle and allowing us to write the general solution

in terms of some known particular solutions? How the knowledge of particular solutions can

be used to simplify or, even more, to find the general solution?

Remark that for the linear autonomous case (I)(t) = eAt implies that _(t)(I)(t) -1 = A

with A C gI(]R, n) and that the mentioned simplification in the non-autonomous case arises

when A takes values in a subalgebra of gI(1_, n), for instance A in the Frenet case A is

skew-symmetric.

The main result is due to Lie [1]:



Theorem Given a non-autonomous system of n first order differential equations

dx_/dt = X_(xl,...,x_,t), i = 1...,n, a necessary and sufficient condition for the

existence of a function a2 • IRn(m+l) --+ ]R'_ such that the general solution is x =

• (x(1),...,x(m); kl,...,ks), with {X(a) I a = 1,...,m} being a set of particular solutions

of the system and kl,...,kn, n arbitrary constants, is that the system can be written as

dxi/dt = Zi (t)_li(x) + . . . + Zr(t)_ri(x), where Zl,..., Zr, are r functions depending only on

t and _si, a = 1,...,r, are functions ofx = (xl,...,xn), such that the r vector fields in Rn

given by y(s) - _-_-i_1 _ai( xl' " xn_ O-_-• ' , /oxi, a = 1,...,r, close on a real finite-dimensional Lie

algebra, i.e. {y(s)} are linearly independent and there are r 3 real numbers, fsZ _, such that

[y(a) y(_)] __ E r, c=1 fsZ _y(_) The number r satisfies r < ran.

Particular examples are the linear systems dxi/dt = A_j(t)xJ for which the (linear)

superposition principle is _(x0),... ,X(n); kl,..., kn) = klX(1) + "'" + knx(n). In this case

m = n and there are n 2 vector fields, yij = xjb__, which close on the 9[(n,R) algebra,

[y_j ykl] = 5il ykj _ (_kj yit to be compared with the commutation relations of the 9[(n, ]_)

algebra, [Eij, Ekl] -_ 5jkEil -- 5ilEkj, with (Eij)kl = (_ikbjl •

Another prototypical example is the Riccati equation _ = c2(t) x_(t) + cl(t) x(t) + co(t).

The superposition principle comes from the relation _-Xl . z3-x_ _ k. In this case the
X--X2 X3--X2

vector fields y(1) y(2) and y(3) are given by y(1) = oo_, y(2) = x o and y(3) = x 2 o,o_ which

close on a three-dimensional real Lie algebra, with defining relations [y(1)y(2)] = y(_)

[y(1), y(3)] = 2y(2), and [y(2), y(3)] = y(3), i.e. the s[(2, R) algebra (see e.g. [2]).

Notice that if the system cannot be written in the form of the statement of the Theorem

the general solution cannot be written in terms of an arbitrary set of particular solutions. The

solution should be obtained by approximation methods [3]. When the system can be written

as proposed, the problem reduces to find a curve in a Lie group G with Lie algebra g starting

from the neutral element and given by an equation g(t) g(t) -_ = X(t) C 1_. Such equation in

the group can be solved using a generalization of the method proposed by Wei and Norman

[4] for linear systems, i.e. writing g(t) in terms of the second kind canonical coordinates

w.r.t, a basis {a_ ] a = 1,...,r}, g(t) = l-I_=1 exp(u_(t)as) = exp(ul(t)ai)...exp(ur(t)a_),

and transforming the equation into a differential equation system for the us(t). This last

system may be even more difficult but we only need a particular solution. Moreover, the

problem of finding g(t) can be simplified when we know particular solutions of the original

system: there exist reduction theorems and group based procedures for simplifying it.

The second class coordinates u,(t) can be found using

.X(t) = Ebs(t)as = E its(t) exp(uz(t)adaz)
s=l a=l j3=s+l

as

with us(0) = 0, a = 1,...,r. It is quite simple to use it for the inhomogeneous lin-
dx

ear equation _7 = cl(t)x + co(t) with associated vector field: X = cl(t)xo_ + co(t)_-° _

cl(t) L1 + eo(t) Lo, Lo = _° and L1 = x o, which close on the Lie algebra, [Lo, LI] = Lo,

and there exist _two orderings for g(t); g(t) = exp(ul(t)L1)exp(uo(t)Lo) gives rise to

the linear superposition principle, x(t) = C_xX(t)+ C2x2(t), C1 = (1- x0), C2 = x0,

and using the _econd order, g(t) = exp(vo(t)Lo)exp(vl(t)L1) it is found that x(t) =

ef dtc_(t) (Xo + f tit co(t)e-f dt%(t')). Similarly, for Riccati Equation g(t) takes values in the

group SL(2, IR) and satisfies g(t)g(t) -1 = [co(t)Lo + cl(t)L1 + c2(t)L2], g(0) = I, where Ls



are generating a Lie algebra isomorphic to s[(2,_), L0 = 025, L1 = x o and L2 = x 2 o0x"

There will be six orderings, the first one being g(t) = exp(ulL1)exp(u2L2)exp(u0L0) giving

rise to the following equations:

ito(t) = ao(t) + al(t)uo(t) + a2(t)u_(t)

itl (t) = al (t) + 2a2(t)uo(t)

it2(t) = a2(t) - al (t)u2(t) - 2a2(t)uo(t)u2(t)

with initial conditions u0(0) = ul (0) = u2(0) = 0.

Applications in geometric optics

Not only linear systems, but Riccati equations too, appear very often in Physics, mainly

as a consequence of Lie reduction theory when taking into account that dilations are sym-

metries of second order differential equations [5], and then it may be useful for solving

SchrSdinger equation for stationary states. For other applications, see e.g. [6] and [7]. Fur-

thermore, it is a condition for the superpotential W in the factorization of H

H-c= + W + W

and it plays a relevant role in the search for Shape Invariant potentials (Infeld and Hull

Factorization method). It may appear every time the group SL(2, ]R) plays a role (see e.g.

[8]) and because of the isomorphism of the Lie algebras of SL(2, _) and the linear symplectic

group, it will be useful in the linear approximation of Symplectic transformations.

Radiative transfer equation for polarized light

The intensity, and the state of polarization of a partially polarized beam of light are
completely determined by the four Stokes parameters. The Stokes vector [9] I = (Q, U, V, I)

satisfies the Stokes criterion Q2 + V 2 + V 2 < 1 2, what allows us to define the degree of
1 U 2 V 2 "polarization p = 7 v/Q 2 + + The state of polarization changes because of the inter-

action between the radiation beam and the media itself. Using the terminology borrowed

from relativity, Stokes criterion establishes that I is a time-like vector and according to a

well-known result [10], the fact that this time-like character is preserved in the evolution

means that the change of the state of polarization is described by an element of the Weyl

group [11], T4 (b (D ®/_). At the infinitesimal level, the transfer equation for polarized light,

[12] introduced by Unno and completed by Rachkowsky will be dI= -K I + J where z is

the geometrical path, K is a matrix of the homogeneous Weyl algebra and J is the emission

term. Additional assumptions on the characteristics of media restrict even more the form of

the 4 × 4 matrix K describing absorption in presence of Zeeman effect. So, for nondepolar-

izing media I '2 - QI2 _ UI2 _ VI2 = 12 _ Q2 _ U 2 _ V 2, the group reduces to Poincar_ group

and K lies in the Lie algebra of it.

Applicatiori in symplectic optics

The evolution of rays in optical phase space, which is endowed with a symplectic structure

[13], is not linear but described by Hamilton equations and this gives rise to aberrations. The

optical Hamiltonian is given by h = -V/n2(z, q) -p2, the associated symplectic maps are

_(z) = Ad(Z, Zo)_(Zo), where _ = (q,p), and Ad satisfy A_l = 3/Ill, and AA(0) = I, with H

being the vector field H = {., h}. When H takes values in a Lie algebra we can use the theory



we mentioned in the previous section, otherwise we should use approximation methods. The

simplest case is when the refractive index is constant, H - _ o Then the results of
Oq "

Fer and Magnus approximation methods coincide. In the case of a z-dependent refraction

index, if n = n(z), using Taylor development for the Hamiltonian h = -v/n2(z)- p2 =

-n(z) + 2--_(z)Pl_2 + sT_(z)Pl 4 + _p_ 6 +.. ", we can see that the three methods of Fer, Magnus

and Dragt-Forest, give the same results in the paraxial approach: q(z) = qo + Af(z)po,
z 1

p(z) = p0, with Af(z) = fzo dz'n(z')" The Hamiltonian for the third order aberration is

1 2 1 4 (n--_z) 1 3)h = -n(z) + 2-h_(z)P + _P , and then H = P + _--O-_(z)P _. Once again the three
1 3 z

methods coincide p = Po, q(z) = qo + poN'(z) + _po7_(z), with 7_(z) = fzo dz' 1n3(z,)"
Finally, the most interesting case is that of q and z-dependent refractive index. If h =

h0 + h2 + h4 + "'" , with

1 p2 1 4
ho =-do(Z), h_- 2do(Z) -a_(z)q _, h4- Sa_(z)P

a2(z) p2q2
- 4(z)q4

The paraxial approach is H = _o-_p _q + 2a2(z)q _p.

Using Wei-Norman method, U(z) = exp(ulL1)exp(u2L2)exp(u0L0), we find

1

u0(z)- a0(z) 2a2(z)u_(z)

_l(z) = -4_2(z)_0(z)

_2(z) = -2a2(z) + 4a2(z)uo(z)u2(z) .

This gives the action

q(z) = (1 - UoU2)e½U_qo + uoe-lulpo
1 1

p(z) = -u2e_Ulqo + e_Ulpo .
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Abstract

The quantum algebra SUq(2) is shown to be the approximate dynamical

symmetry algebra of trilinear boson interactions in Quantum Optics. As a

consequence, the spectrum and eigenvectors of a certain hamiltonian defined

on SUq(2) can be used to solve the dynamics of such models. In particular, a

perturbative approach to the obtention of the ground state energy in the case

of second harmonics generation is presented.

I. DYNAMICAL SUq(2) SYMMETRY IN QUANTUM OPTICS

Its well-known that quantum optical hamiltonians describing Raman and Brillouin scat-

tering, the processes of three and four-wave mixing, the second and the third-harmonics

generation or the interaction of atomic systems with a quantized radiation field in an ideal

cavity (Dicke model) can be presented in a block-diagonal form. Each block is a finite dimen-

sional subspace where the Hamiltonian acts as a matrix (usually, of very high dimension) of

the form (see [1]-[6] and references therein)

g

0 Al 0 ... 0

Al 0 Al-_ ... 0 J0 ... A-l+2 0 A-l+_

0 ... 0 A-l+_ 0

(1.1)

In [4-5] it was noticed that, for certain dynamical regimes, such hamiltonians can be ap-

proximated by the Yx = (J+ + J_)/2 generator of the su(2) algebra. This fact allows the

use of a su(2) perturbation theory in order to analyse the dynamics associated to (1.1). In

this contribution we show that the SUq(2) quantum algebra (see [7]-[9]) can be also used to



definea Hamiltonian of the type (I.i) in a natural way. Moreover,the useof a quantum al-
gebraprovidesan additional (deformation)parameter that enlargesthe rangeof dynamical
regimesfor which the perturbation theory canbe applied and improvesthe accuracyof the
model.

We recall that the quantum algebraSUq(2)[7]-[9] is a deformation of the su(2) algebra

given by the following deformed commutation rules:

[Jz,J±] = + J±, [J+,d_]= [2Jz], (1.2)

q-_ ez/2.where [x] := _ and q = Obviously, "classical" (undeformed) results are obtained
q_q-1

when the limit q ---, 1 (z _ O) is considered. In the "bare" basis of eigenvectors of Jz,

2JzlZ,m>= 2mlZ,m>, (1.3)

the (2 l + 1)-dimensional irreducible representation of SUq(2) is given by (1.3) and

J±ll, m) = v/[l_=m][l+m+ 1]ll, m + 1). (1.4)

Let us consider the following operator defined on SUq(2) [10]:

Hq = qJz/2 (& + j_ ) qJz/2 . (1.5)

The connection between (1.5) and trilinear quantum optical hamiltonians is immediate pro-

vided we consider the (21 + l)-dimensional representation Dl for Hv, that takes the form

(1.1) with

An(q) = q_-l/2v/[l+._][l_._+1]. (1.6)

In particular, when 1 = 1 we have,

0 0 /DI(Hq)= ql/2v[_] 0 q-1/2_]. (1.7)

0 q-1/2V/_] 0

A straightforward computation shows that the spectrum of this operator is [2], 0, -[2]. The

corresponding normalized eigenvectors are

11'+1) = 2_ 1(qlJ2 /
I1, 0} = _ __ql/02

(1.8)

By making use of the Hopf algebra structure of the SUq(2) algebra, this result can be

generalized to arbitrary dimensions. It turns out that the spectrum of Hq for a given l

is anharlnonic and given by the q-numbers [2m], with m = -l,..., l. Moreover, arbitrary

eigenvectors can be also constructed, as well as Clebsch-Gordan coemcients for both the

bare and the dressed basis [10].



II. DICKE/SHG HAMILTONIAN AND SUq(2) PERTURBATION THEORY

Let us consider the Dicke model, which describes the interaction of a system of N = 21

two-level atoms with the quantum radiation field in an ideal cavity. The Dicke hamiltonian

can be written in the matrix form (1.1) with the matrix elements

= + + 1 - + 1 - (2.1)

where s _> 1 is a fixed parameter (2s is just the excitation number, which is a constant of the

motion in this model [4]-[5]). In particular, the case s = I represents the highest nonlinearity,

and is mathematically equivalent to the second harmonics generation (SHG) hamiltonian.

Moreover, we will be mainly interested in the limit of large l (high photon numbers).

Let us try to approximate the Dicke hamiltonian H D through a zeroth-order hamiltonian

H0= aHq, (2.2)

with Hq (1.5) belonging to 8Uq(2). It is immediate to realize that we have two free parameters

(q and f_) in order to get the closest Ho that will optimize a further perturbation approach.

The simplest way to do this is to choose both parameters in such a way that the matrix

elements A_ of the three-wave Hamiltonian H D and the matrix elements

A._(q) = f_ (l,m + llHqll, m) = f_qm-a/2v/[l- m][/+ m + 1] (2.3)

of the Hamiltonian H0 coincide in their maxima. This choice gives rise (for s = l) to the

following relations involving both parameters and the number of atoms N:

3 v -i
c_ = N log q = _ log 2 _ -0.7218, (2.4)

a = 4(N + 1) 3/2 (2.5)
v/_[N + 1]

In this way, both the maxima of A_ and Am(q) (considered as functions of m) occur in the

point m0 = -(l- 1)/3.

Now, around such a maximum we can approximate the Dicke/SHG matrix elements as:

ADm_f_-A,_(q)¢(m), ¢(m)=I+¢IA-¢2A 2+¢3A 3, A=m-m0. (2.6)

We thus restrict the expansion up to the third-order polynomial ¢(m). The coefficients Cj

can be explicitly found and read:

(_ 2a2 ) ( A ) 2 (_ 4a3 ) ( A ) 3¢(A)=1- - ta-n---_ct _ + +tan-h2a N+I +O(N-4). (2.7)

Now we may substitute A = m - m0 = Jz + (1 - 1)/3 and rewrite (2.6) in the matrix form:

HD "_ f_[J+O(Jz - too) + ¢(Jz - m0)J-] = 2f_ {Hq, f(Jz)}. (2.8)



Here J*,z are generators of SUq(2) and {A,B} = AB + BA. The new function f(Jz) is also

a polynomial of degree three, whose coefficients fk can be easily obtained. Now the ground

state energy of H D can be approximately given as

3

(--l, liHDl--l,l> [21] fk(-l, ll(&)k[-l,l>,
k=O

(2.9)

where l-l, l} is the ground state for the Hq hamiltonian in the dressed basis. Therefore, we

have reduced the problem to the calculation of averages of the powers of the operators Jz

(the moments) in the eigenstates of the operator Hq, and this problem can be solved for

arbitrary eigenstates.

Comparing these results with the numerical computations, it turns out that the accuracy

for the energy of the ground state is 1.5% for I00 atoms (N = I00) and 0.35% for 400

atoms. Note that the correct asymptotic behaviour when N --, oc (large photon numbers)

is obtained without considering higher degree expansions. It is also worth mentioning that

this method produces much better accuracy than both the analogous su(2) perturbation

theory (see [4],[5],[11]) or than the variational method with the su(2) coherent states as

probe states introduced in [12]. Therefore, quantum algebras seem to provide a new suitable

analytic approach to the dynamics of nonlinear quantum optical processes.
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Abstract

The shear representations of the Sp(2) group is derived from the theory of

ray optics. Sheared states in Fock space are constructed and are discussed as

two-photon or two-phonon coherent states. It is shown that these states can

be described in terms of squeezed states which are already well-established.

I. INTRODUCTION

Shear transformations receive wide attention in applied physics, most significantly in

the context of condensed matter [1] and in optics [2], both geometric and quantum. Here,

our attempt is to contribute to the theoretical aspect of this interdisciplinary concept. We

point out that shear transformations are the representations of the Sp(2) or SU(1, 1) groups,

which are locally isomorphic. We first introduce the two by two transformation matrices

of Sp(2) in the framework of ray optics. We then construct shear states in Fock space and

discuss them in connection with squeezed states of light.

II. RAY OPTICS AS REPRESENTATIONS OF SP(2)

We formulate the Sp(2) symmetry by studying a concrete physical example. For this

purpose, we introduce the fundamental equations of para-axial ray optics [3]. The para-axial

theory of ray optics consists of straight lines of the form

y = sx + b (1)

*electronic mail: baskal@newton.physics.metu.edu.tr

_electronic mail: yskim@physics.umd.edu



on the x 9 coordinate system, where s and b are the slope and the g value at x = 0 respectively.

The y coordinate measures the distance from the x axis. The above equation can be written
in the matrix form as

1 x(_)-(0_)/°_)• _
Let us consider a thin convex lens which changes the slope of the ray. The change

depends on the focal length and the distance from the axis. For the para-axial rays,

Y (3)
J-_-8-- 7 .

This formula can also be converted to a matrix form

_)(_) (4)
The above two-by-two matrix is called the lens matrix.

III. TWO DIFFERENT REPRESENTATIONS OF SP(2)

The translation and lens matrices of the preceding section are generated by

(0° _) (00)X1 = 0 ' X2 = i 0 "

If we take the commutation relation,

[X1, X_] = iX3,

(5)

(6)

_(: 0)gl = 2 i '

1

B2 2 (0= i 0) (10)

above three generators

]- (2 2 -- Xl) ,L=_

with their matrix form as

_(0_)L=_ 0 '

1 X ]- (X 2 -[- Xl) (9)

with

0

This new generator satisfies the following commutation relations with X1 and )(2

[Xl,X3] : -2iXl, [X2,X3] = 2iX2. (8)

Thus the commutation relations in Eq.(6) and Eq.(8) form a closed set, and the matrices

X1, X2 and )(3 generate a Lie group. If we make the following linear combinations of the



we immediately recognizethe Sp(2) group, where L generates rotations while, B1 and B2

generate squeezes. We therefore have two different representations of Sp(2), which we call

them the "shear-squeeze" and the "rotation-squeeze" representations.

In the sequel we will observe that the Iwasawa decomposition theorem [4] finds a worthy

application in constructing sheared states. The transformation matrices obtained from X1

and )(2 decompose as:

(0 1)=1 a (cos(_b_/2)sin(_b_/2) ea/20 0 -sin(_b+/2) j'_, (11)\ - sin(_b_/2) /2) \ sin(_b+/2) cos(_b+/2)cos(C_ )( e__,,) (cos(_+12)

and

1 0 cos(¢_/2)-sin(C_/2)
(fl 1)=(cos(qS+/2) sin(qS+/2)) (ed2 0-sin@5+/2) cos(qS+/2) 0 e-P/2)(sin(qS_/2) cos(¢_/2))' (12)

respectively. The shear parameters a and fl are related to the rotation and squeeze param-
eters in similar forms:

_b+= cot-'(o_/2),

4+ = cot-i(fl/2),

_b_ = rr - cot-'(a/2),

4- = rr - cot-l(fl/2),

A = cosh -1 (1 + c_2/2),

p = cosh-'(1 + fl2/2).

(13)

IV. SHEARED STATES

We are now interested in constructing sheared states in the Fock space. For this pur-

pose we shall make use of the "squeeze-rotation" generators of SU(1, 1), which are already

available in the literature [5,6]:

L =-_l(ataq-aa'), Ul =-4(aa- afar), B2 _---4(aa-l-ata' ). (14)

In view of Eq.(9) the "shear-squeeze" representation is written as:

Xl : --_1 (a -- at) 2 , X2 = -41(a + a¢)2 ' X3 = -2 i(aa - a?a*) " (15)

The most general sheared states in Fock space are constructed with the application of

the shear transformations to the vacuum state:

exp(-iozXi)lO>=exp{i4 (a-a')2}[O>,

(1_)
exp(-iflX2) }0 >= exp {i_ (a + at) 2} [0 _>

and they can expanded in power series as:

(4)" 1 (a + af)2n i0 >, (17)(o- o') °10>, Ev.,E7,



respectively. It is possible to construct the series, but it is not straight-forward to compute

(a 4- a t)2n 10 >. One easy way to look at this problem is to decompose the shear operator

into squeeze and rotation operators. For this purpose we refer to Eq.(ll) and Eq.(12), which

can be expressed in compact forms as

exp (-io_X1) = exp (i¢_L) exp (-i)_B1) exp (-i_b+L),

exp (-i_X2) = exp (i¢+ L) exp (-ip BI ) exp (-i¢_ L),
(18)

respectively.

With this preparation sheared states are expressed in a more revealing form:

exp (-ic_X1)

exp (-ifiX2)

= exp {ic_(a - at)_/4}

= exp {i/3(a + at)2/4}

-_
=exp(i¢+L)exp(-ipB1)exp .

(19)

If these operators are applied to the vacuum state, exp (-i$+L) and exp (-i_5_L) become

exp(i_b+/4) and exp(i¢_/4) respectively. Thus, the sheared vacuum states are

exp (-i_X1)I 0 >= exp(i_b+/4)exp (i_b_L)exp (-iA/)I)I 0 >,

exp (-i/3X2)]0 >= exp(i_b_/4)exp (i¢+L)exp (-ipB1)]0 >.

(20)

According to these equations, the sheared vacuum is a squeezed vacuum followed by a rota-

tion.
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Abstract

We consider the symplectic groups Sp(2n, R) of an n-mode system in quantum

mechanics and discuss, in particular, Sp(2, R) .._ S0(2, 1) for a single mode

and Sp(4, R) _ S0(3, 2) with some of its important subgroups such as SU(2)

and SU(1, 1) _ Sp(2, R) in quantum optics (squeezing, beamsplitter, light

polarization). The root diagrams, different realizations of Sp(2, R) and the

unitary and nonunitary irreducible representations are shortly discussed.

I. INTRODUCTION

The symplectic groups Sp(n, R) are the groups of homogeneous linear transformations

which preserve the structure of classical Hamiltonian mechanics as well as of quantum

mechanics of canonically quantized systems of n degrees of freedom (outer automorphism

groups). The group of inner automorphisms which are the displacement groups are differ-

ent in both regions because the quantum-mechanical displacement groups (Heisenberg-Weyl

groups) are, in contrast to the classical displacement groups, noncommutative ones which,

however, in addition to the noncommutative irreducible representation possess commutative

ones. This determines the relations between classical Hamiltonian and canonical quantum

mechanics. Since I have submitted a paper with some content of my lecture to the special

issue of JOPB [1], I treat here only some problems which mainly complement this paper.

II. SYMPLECTIC GROUPS IN QUANTUM MECHANICS

Quantum mechanics is very important for the treatment of symplectic groups Sp(2n, R) as

it provides a concrete realization by quadratic combinations of canonical or of boson operators

and in addition a natural basis of their Lie algebras for the construction of the fundamental

2n-dimensional representations. For an n-mode system with the boson annihilation and

creation operators (ai, a_)obeying the commutation relations [ai, a}] = ihSiJ,[ai, aj] =

[a_, a_] = 0, we consider the following n(2n + 1) quadratic combinations of boson operators



(ij) K (ij) aia} K (ij) a_aj, _(ij) t I n).K__ =_ aiaj, _+ - +_ - - (j > i = 1, (1), _++ aiaj, • . .,

The operators in (1) form a convenient basis of the Lie algebra sp(2n, R). The n operators

K_ i), (i = 1,..., n) commute with each other and can be taken as an n-dimensional basis

of the Cartan subalgebra (sp(2n, R) has rank n). Then one has the following commutation

relations with the basis operators of the Cartan subalgebra

0, K,,,] T.,j, T.,,,_- -- Oij 11_ , , = -_-Oij tt_+ ,

1

[LK_ i), K{__Jk)a] --=- ---_ __, ._++ J M(Jk)..++,

[I(_i) r((jk)] 1 K(_ ) = +-_ (6ij 6ik) _((jk)_-+ j --_ (Sij - 5ik) [.[(_i),K(jk)] 1, +- J -- ._.+_ .
(2)

The choosen basis operators are solutions of the root equations for the operators K_ i) and (2)

contains all informations of the root diagrams of these Lie algebras (see [1] for sp(4, R)). We

do not write down the remaining commutation relations. The symplectic groups Sp(2n, R)

contain interesting subgroups, for example, the n-fold direct product (Sp(2, R))" of groups

Sp(2, R) and the groups SV(n) and V(n) = g(1) x SV(n) (Jordan-Schwinger realization).

III. UNITARY IRREDUCIBLE REPRESENTATIONS OF TWO-DIMENSIONAL

SYMPLECTIC GROUP

The Lie algebra sp(2, R)_ su(1, 1)in the basis (K_,Ko,K+) is given by

[Ko, K_] = -K_, [Ko, K+] = +K+, [/(_, K+] = 2Ko, (K: F - K1 :F iK2). (3)

As a noncompact group, Sp(2, R) possesses only infinite-dimensional unitary irreducible

representations (irreps) but finite-dimensional nonunitary ones. The unitary irreps in the

basis Ik, n} of eigenstates of K0 with a lowest state Jk, 0} ('vacuum') which is annihilated

by K_ are constructed in [2] (slightly different notation there; our notation see, e.g. [3]).

The parameter k > 0 is a label of the irrep. In unitary irreps with the label k > 0, one can

construct SU(1, 1)-coherent states Jk, z}; z C C which are normalizable within the unit disk

Izl < 1 [1-3]. For integer I = 2k, they are states with negative binomial number distributions.

IV. SINGLE-MODE REALIZATIONS OF TWO-DIMENSIONAL SYMPLECTIC

GROUP

There are other realizations of sp(2, R) in comparison to the standard one contained in

(1). We give here single-mode realizations. With N - ata the number operator, there are

the following realizations with arbitrary fixed parameters k > 0 acting onto Fock states

Jsn + j}; (s = 1,2,... ;j = 0, 1,..., s - 1) (in general form represented in [1], see also [4])

1. applied to In}

K_ =__v/N + 2kI a, Ko - N + kI, K+=KI_, (4)



2. applied to 12n) and 12n + 1), correspondingly

l_/N + 4kI 1 2kI), K+ Kt_,
K_ = -2V N_-I a2, Ko :-_(N + =

_N+(4k-1)I 1( )K_-- N+2I a 2, K0=_ N+(2k-1)I ,

3. applied to 13n), 13n + 1) and 13n + 2), correspondingly

(5)

K+ = KI_, (6)

1 / N+6kI 1 3kI), K+ K IN _, (7)
K_--_ (N+2I)(N+I)a 3, K0=_( + =

1_/ N+(6k-1)I 1- N (3k 1)I), K+ Kt_, (8)K_ =_ 2 (N+3I)(N+I) a3, Ko=-_( + - =

1_ N+(6k-2)I a3 ' N (3k 2)I), K+ K tK_ = (N+ a±)(N+2I) K0= + - = _ (9)

The case k =
1

cases k = _ in (5)
of even and odd

SU(1, 1)-coherent

1
of (4) leads to coherent phase states as SU(1, 1)-coherent states. The

3 in (6) lead to the realization (1). It acts in the Hilbert spacesand k =

Fock states as different unitary irreps of SU(1, 1). The corresponding

states are squeezed vacuum states and Fock state I1} squeezed.

V. FUNDAMENTAL REPRESENTATION OF TWO-DIMENSIONAL

SYMPLECTIC GROUP

The fundamental representation of Sp(2, C) (we consider here the complexification of

Sp(2, R)) is two-dimensional and uses the basis (a, a t) for its construction. With the mapping

x ++ X = e ix _ exp @K_ + i2r/K0 - _K+) -+ 2 = ei_, (10)

one finds for the two-dimensional complex unimodular matrices J(

(_ _)#v (che_ir/She__ _she= (she e che+e' she , e-= -r/2, ecv-Ap=l. (11)

Together with its inversion (nonuniqueness due to multiplicity of Arsh(z) by ±i2_rl)

(._-v)Arshv_ _(__)2 _/(____)2(Cv, O= a,,T,_ _ , _- -1= +a_, (12)

it allows to solve all composition and decomposition problems, for example

exp @/£_ + i2r/K 0 - (K+)= exp (-_K+)exp (-2(log t_)K0)exp (_K_). (13)

The quantity -e 2 -= 7/2 - _( is coordinate-invariant (group scalar product, Killing form).

The inverse transition X -+ X fl'om the matrices X to the operators X brings an additional

nonuniqueness in dependence on the label k of the irrep (metaplectic groups). By using

(K_, K0, K+) instead of (a, a t) as a basis of the representation, one can construct the three-

dimensional regular (or adjoint) representation.



VI. FOUR-DIMENSIONAL SYMPLECTIC GROUP

The 4-dimensionalsymplecticgroup Sp(4, R) possesses 10 real parameters corresponding

to 10 basis operators of the Lie algebra sp(4, R) which can be chosen, for example, according

to (1) with i, j = 1, 2. There is a remarkable isomorphism to the pseudo-orthogonal group

S0(3, 2) (de Sitter group) [5]. By the substitutions in (1) (upper indices (12) can be omitted)

I(NI+N2+I), Ja--K_ 1)-K_ 2)- 1K0_= 1)+ 2)= - N2), (14)

and K__ -- K_, K++ --- K+, K_+ _-- J_,/(+_ - J+, one finds two interesting (genuine two-

mode) subgroups of Sp(4, R), the group SU(1, 1) spanned by the operators (Ko, K_,K+) of

its Lie algebra and SU(2) spanned by the operators (J_, J+, J3) of its Lie algebra. The root

diagrams of sp(4, R) together with some of their subgroups are given in Fig.1.

The subgroup SU(1, 1) of Sp(4, R) describes two-mode squeezing, whereas the subgroup

U(2) describes the unitary transformations between two inputs and two outputs of a device

with conservation of the total photon number (beamsplitter, light polarization).

O

sp(2,R) _ su(1,1), sp(2,R) ... su(l, 1), u(1,1), u(2)
su(2) su(2)

sp(2, R) × sp(2, R) sp(4, R) so(3, 2)

Fig.l: Root diagrams to Sp(4, R) ,,, S0(3, 2) and to some of their subgroups

VII. CONCLUSION

In addition to [1], we have considered here some special problems for the symplectic

groups Sp(2n, R) and their special cases Sp(2, R) and Sp(4, R).
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Klauder's coherent states in energy

degenerate systems: The hydrogen atom
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Abstract

Klauder's recent generalization of the harmonic oscillator coherent states is

applicable only in non-degenerate systems, requiring some additional struc-

ture when applied to systems with degeneracies. The author suggests how

this structure could be added, and applies the complete method to the hy-

drogen atom problem. To illustrate how a certain degree of freedom in the

construction may be exploited, states are constructed which are initially lo-

calized and evolve semi-classically, and whose long time behaviour exhibits

"fractional revivals".

I. INTRODUCTION

Due to the many useful mathematical and physical properties of the harmonic oscillator

coherent states [1], many generalizations appear in the literature. Each generalization tends

to preserve a small number of the properties of the original states in the general scheme

at the expense of the remaining properties. A recent generalization due to Klauder [2]

preserves many, at the expense of few. Klauder's generalization gives states which (a) are

continuously parameterized, (b) evolve in time among themselves, and (c) admit a resolution

of the identity. As such, no reservations are made for "semi-classical" properties such as

minimum uncertainty, though a certain degree of freedom to be discussed below remains

within the construction which may be optimized according additional concerns. Two studies

have since appeared [3,4] proposing fourth conditions which eliminate this degree of freedom:
These will not be herein considered.

As initially presented, Klauder's construction was appropriate for systems without energy

degeneracies: With no additional structure, the resolution of the identity fails for degenerate

systems. Energy degeneracies arise when independent operators commute with the Hamilto-

nian which suggests a Lie algebraic approach to imposing the necessary additional structure.

Thus in the presence of degeneracies, excepting those few cases of truly "accidental" degen-

eracies, the Perelomov approach to constructing coherent states for the degeneracy group is

an obvious and general path to take [5].

*E-mail address: mgacrawf@barrow.uwaterloo.ca



II. THE CONSTRUCTION

Readers are urged to consult the original paper [2] for a comparison with the non-

degenerate construction. In the degenerate case presented here, (in atomic units) the coher-

ent states are given by

_o s_ exp(_iTen)
Is,7, x} = N(J)_ V/-_]n,x),

n=O V_n

(1)

where s > 0 and 7 is real. The sum is over the bound energy levels of a Hamiltonian /-/ with

energy en, each with degeneracy dn. The states In, x) are the Perelomov coherent states for

the degeneracy group G, and N(s e) ensures normahzation. The factors pn are the moments

of a function p(u) > O, u > O. The choice of p(u) is the remaining degree of freedom up to

the following restrictions: All the moments p,_ exist and states must be normalizable for all

s. Such functions p(u) are known to exist: In the harmonic oscillator, p(u) = e-*' gives rise
to the standard harmonic oscillator coherent states.

Regarding properties, the states Is, 7, x} clearly are (a) continuously parameterized. The

states (b) exhibit temporal stability: exp(-iHt)]s,7, x ) = Is,7 + t,x}. Further, given p(u)

and N2(u), let k(u) be defined by k(u)N2(u) = p(u). Then, the coherent states (c) satisfy

the resolution of the identity,

i = f d#(s,% x)ls,%x>@,%xl, (2)

with

f+<.,%.)= fo= jr_.=r-+oo 2-( ds2k(s=) d7 vol(H) @(x), (3)F

in which H is the isotropy subgroup relative to the fiducial vector in the construction of the

Perelomov coherent states, X = G/H is the quotient space formed by the degeneracy group

with the isotropy subgroup, and the measure &/is induced from the Ham: measure on the

degeneracy group. The limit is necessary to accommodate possible incommensurabihties of

energy levels. These three properties in concert make these states useful in the representation

of arbitrary, bound, time evolved states.

A construction by Majumdar and Sharatchandra [3] also makes use of the Perelomov

coherent states for the degeneracy group, though dn is incorporated into the measure after the

summation of the state, an operation of questionable justifiability. Klauder's construction

[2], using an adaptation of SO(3) coherent states, incorporates d,_ into the states after,

and therefore affecting, normalization. This present construction suffers neither of these

problems.

III.SPECIAL CASE: THE HYDROGEN ATOM

The group theoretical treatment of the hydrogen atom is standard in the literature [6].

Here, the degeneracy group SO(4) is reahzed as the direct product of two SO(3) groups

generated by M d and Nj, the sum and difference of the angular momentum and the quantum



Runge-Lenzvectorsrespectively. Expressedas the direct product of two S0(3) coherent
states, the SO(4) coherentstatesaregiven by (n = 2j + 1 son _> 1)

j (2j)!£-_+ml £-_+m._IJ, ml }[j, m2}
I.,,£-1,6>-- E

ml,._2=-j [(J + _,),l)!(j - rrtl)!(j + rn,2)!(j -- T/'/,2)!]1/2(1 + 1£-112)J(1+ 1£-_12)J (4)

The direct product states may be related to the standard In,*,m) states with Clebsch-

Gordon coefficients as usual. Using the above states, the hydrogen atom coherent states are

given by

s_ exp(-iTe,+l)
1_,%6,6> = N(_-')E I_+ 1,6,6> (5)

n=0

which satisfy the resolution of the identi_y

1 i i "£'12

d 6
iB = _ @(s,7) (1+ 1£-112)2(1+ 1£-212)21_'%6'6><_'%6'61' (6)

where the subscripted B is included to emphasize that this is more appropriately regarded

as a projection operator into the bound portion of the Hilbert space. In the specific example

of p(u) = c -'_, with moments p,_ = n!, explicit form may be given to N(s 2) and k(u) by

N(s 2) = c-s_/2(1 -t- 3s 2 -4- ._4)-1/2, and k(u)= 1 + 3u -4-u 2.

IV. DYNAMICS

To illustrate how the above recipe may be adapted to one's purposes using the fl'eedom

granted by p(u), we now construct states which remain restricted to Keplerian orbits and

exhibit fractional revivals. Fractional revivals are a universal phenomenon exhibited by wave

flmctions with large quantum numbers provided corrections of order larger than two to a

polynomial approximation to the energy eigenvalues are not large over contributing states

to the wave function [7]. For the hydrogen atom, considering a Taylor series of the energy

level, expanding about n = _, one readily observes that states not satisfying An << {n}

will not be expected to exhibit revivals. Further, linear corrections to equal energy spacing

become multiples of 27r, signaling the occurrence of a revival, when t = T,. = 2_, ,4-5-tn2 . Note

that T,. = T,.¢,,/2 in Averbukh and Perehnan's notation.

With p(u) = e-", one obtains a distribution in eigenlevels characterized by

8 4 8 8

<_>_-: + 5._2+ 4 and (_): -- _: + 6'_ + 14.¢+ 10_2+ 4
.94 _]_382 -t- 1 S s _- 6S 6 -}- llS 4 -1-6S 2 + 1 ' (7)

so that, taking leading order behaviour, An _ (_. Hence, strong revivals would be

expected for very large (n}, and weak or non-existent revivals for small (n}. Considering

instead p(u) = exp(-u _) for some constant a > 0, the moments are p_ = F((n + 1)/a)/a.

Though the expressions for (n} and (An) 2 are not summable in closed form tbr general

a, they may be approximated by recognizing the scalings necessary to map expressions

with general a onto those with oL = 1: n+ 1 _ (n+ 1)/oL, and s --+ s _. Hence, one



obtains to leading order (large valuesof s will eventually be involved) (n} ,,_ as =_', and

An ,-, as _', so that An _ _. Clearly, a small a may permit the observation of revivals

for lower (n}. Without discussing the effect of changing a any further, there will be a tradeoff

between large and small a: Large a will introduce many significantly contributing energy

levels for a given (n) yielding good spatial localization but weak or non-existent revivals,

whereas small a yields strong revivals of poorly localized states. Numerical studies bear out

these conclusions. As a typical example, a state centred at (n} = 160 with a = 1/32 and

s = 2.23 × 1059 has a width of An = v_. The full revival occurs at t = Tr = 1.31 × 109

at which time the autocorrelation function peaks at approximately 0.83. No significant full

revival occurs for a state with (n} = 160 and a = 1.
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Abstract

In this paper we consider a one-dimensionM Morse oscillator and build a

set of creation and annihilation operators for this system. We also establish

the corresponding sqeezed coherent states. We also calculate also tile average

values of some observables in these squeezed coherent states.

I. INTRODUCTION

In the last years the properties and the squeezed states was intensively studied, due their

future applications [1-4], and due to their applications to the new coherent radiation sources

[2].

In this paper we consider the problem of sqeezed cohererent states for an anharmonic

oscillator, described by the Morse potential.

II. THE ALGEBRA OF THE MORSE OSCILLATOR

VVe consider the one-dimensional Morse oscillator described by the Hamiltonian [5-9]:

p2

H - 2rn + V°(e-2_'_ - 2e-'_x)' (1)

where t'0 represents the force constant of the oscillator, c_ a constant (V0 > 0, c_ > 0), x the

relative position, rn reduced mass, and p momentum operator of oscillator.

We will use the y variable and the notations:

_ exp(--ctx). (2)
"=V;W *=V

The eigenfunctions of the Hamiltonian are the discrete eigenenergy levels (E C [- 1.0: 0])

are written in term of confluent hypergeometric functions:

*E-MAIL: acalin@galileo.uvt.ro



(a)

Solutions are possible for 2s + 1 - u = -2}_, where n C N. The quantum number n can

takes values tt = 0, 1,2, ..., N,_ox = [it] where [bt] represents the entire part of p = (,, - 1)/2.

In a previos paper we have established a realisation of the creation and annihilation

operators b±. and b0 operator, with the aid of an analytical method [10,11,12].

The action of these operators on eigenfunctions are given by:

b_ V'_ = -V/',(' " - n)_,_-1, (4)

(.5)

l/ -- 1

bo_'._= (7, )_',_. (())
2

The conmmtation relations for these operators are:

[b_,b+] = 2bo [bo, b_] = -b_ [bo, b+] = b+. (7)

The Hamiltonian of the oscillator can be expressed in terms of these operators

H- 4Vo 2 2
u2 bo=-/iflb o, (8)

where fi = 41,_/# 2.

We can see that by hermitic conjugation results:

bt -b_ b*_ -b+. (9)

We can define also the "number" operator

zJ--1

N = bo + --, (10)
2

and the harmonic oscillator like operators:

1 1
a t (11)

a=-b___N - _b+,

which obey the commutator [a, a t] = 1.

The Hamiltonian of the system can be expressed in terms of {a, at}:

1//

H = -lif_(ata )2 (12)
l

2

and the "number"

of the observables is not identical to those of the standard harmonic oscillator.

operator is N = ata. Due to the Hamiltonian (8), the temporal evolution



III. THE SQUEEZED COHERENT STATES

With the aid of tile unitary operator

D(3) = exp[i(3b+ - 3%_)]

where o C C and with the squeeze operator

= e×p[i( Ab+-

where - C C. we build tile coherent states:

t3 >= D(3)I0 >,

and the squeezed coherent states:

[z,3 >= S(z)D(3)IO >.

(13)

(14)

(15)

(16)

We can calculate the average values of different observables of a system, corresponding

to the coherent states ]fl >.

Unfortunately the calculation of the average values of the observables in the squeezed
states can be not obtained in a closed form.

In order to establish calculable quantities we use the {a t, a} representation of the system,

given by (11).

We can to define the displacement operator

and the sqezee operator:

D(a) = exp[aa+ - a'a_], o' C C (17)

S(z) = exp[i(za2+ - z*(at)2]. (18)

The new set of coeherent states la > and new sqeezed coherent states Izo >, are:

la >= D(a')10 > Iz, c_ >= S(z)D(cQI0 >. (19)

The average values of the observables a and a t in a squeezed coherent sta, te are:

< a(t) >sc=< zcfla(t)lza >=

• 2

= cosh r o,¢ i(2lal2-1)fzt - e iO sinh r o*e -'(21cq +1)9.t., (20)

< at(t) >sc=< z_lat(t)lza >=

= cosh r a*e i(-21_?+l)at - e i° sinh r ae i(21'_12-x)nt. (21)

We obtain also the evolution of the average values of the observables a 2 and a *2 in a

sqeezed coherent state:



< a(0 2>so=<   la2(t)lz >=

= cosh 2 7"o2e i(21_12-1)2at + e i:° sinh 27- a*2e-iI21_'12+1)2at - sinh r cosh r ei°(2]o:] 2 + 1), (22)

< at2(t) >so=< >=

= cosh _ 1. (F2e: i(-2l'_L2+l)2ftt + e i'2° sinh _ 7-o2e/(21':_12-1)2ftt - sinh r cosh r (2]o 1_+ 1 ). (23)
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Abstract

111order to study strong vibrations of diatomic molecules we use the model

of three-dimensional Morse oscillator, of which dynamic group are {N±i, Koi}

(i = 1, 2, 3), where/_'+i represents the creation and annihilation operators.

For this system it has been builded the coherent states and calculated the

dynamic modifications of the refractive index of the molecules as the results

of interaction of a laser beam with them.

I. INTRODUCTION

The algebraic study of the one-dimensional Morse oscillator was suggested by Wybourne

[1] and has been obtained, by Gerry [2] using the SU(1,1) group. In a previous paper [3,4]

we have established a method of construction of the creation and annihilation operators for

one-dimmensional Morse oscillator, based on an analytical method and on the properties of

the confluent hypergeometric functions.

The aim of this paper is to consider a three-dimensional Morse oscillator model for which

will establish the creation and annihilation operators and construct the coherent states.

Also, we will establish the variation of the refractive index of the diatomic molecules due

to the interaction of the Morse coherent states with the coherent radiation field.

II. THE THREE - DIMENSIONAL MORSE ,OSCILLATOR

We consider a three-dimensioilal Morse oscillator obtained by superposition of three

one-dimensional isotropic Morse oscillators:

Ho = Hol q-/-/o2 q-/-/03

where:
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Hog= 27-_+ t o(e:-2_' - 2e-_')' (1)

where i = 1, ..., :3, xi - is the displacement from tile equilibrium position along the direction

i, m - the reduced mass, pi the i component of the nmmentun] operator. Tile eigenenergy

will be E,_ = E0t + Eol + E03.

\¥e use the notations and the variables yi:

/ - 2 m E0i
// = V _'-_-_- ' 8i _- V O'2]}'-----_ ' Yi = // exp(--oxi)

The eigenfunctions for the Hoi's Hanfiltonian will be:

1 /['(z: - ,_i).¢,_,_, yi
r(. :)"': (2)

where F(-ni,'2_i + 1; yi) is the confluent hypergeometric function. Solutions are possible

for:

2si + 1 - l/ = -2hi (3)

where n ¢ N, and for discrete energy levels E E [-t'_, 0], the quantum numbers must be:

ni = 0, 1,2,..., A_,_ = [#] (4)

where [#] represents the entire part of # = (l:- 1)/2.

The eigenfunctions for the Uamiltonian H0 will be tTZlTz2n3 >= _)nl _2 2 'h_'3' 7_3"

Ill. THE ALGEBRA OF THE MODEL

The operators of algebra for the model of three-dimmensional Morse oscillator are:

d ,Si(2Si- 1) //
K+i = (2si - 1)-7-- +

2ay_ yi

d si(2si -t- 1) u

K-i = (2si + 1) dyi yi + -2 (5)

2
d 2 d si yi 1

I(o_ = Y_dy--7+ dy_ y_ 2 n_ 4- -_

These operators have the properties

I_--i_'ni _---- k-il/'n,-1 = -_/?zi(/*'- '1"i)!['n,--1,

x� "h'+ig',_, = k+iWn,+l = (rt i + 1)(u - 7_i - 1)v_,+l, (6)

hoi _,,_,
L,-1

= koie,., = (hi )el'n,
2



and satis_; the commutation relationswill be:

[1\'-i,[_[+i] = 2I_0i, [I(0i, K_i] = -K_i, [[koi, I_f+i] = [\'+i.

The ttamiltonian of the system of diatomic molecules are

*t/o -- 4_2"° (/X_l q- [t'022 -t- A'o_.3)= -h.Q( 1(21 q- l,x'_2 q- Ix'03 ).

(fl = 4_0/(u2h) ) and the evolution operator is:

U(t) = exp[i(h'o21 + h'22 + Iio23)f_t].

(r)

(S)

IV. COHERENT STATES

Because the eigenfunctions space of the system is finite - dimensional in order to build

the coherent states we will define an unitary operator with the form:

3

D(A1, A2, A3) = exp[i _ ()_m[_.'+m -- Z_mI__m) ] (9)
m----1

where A1, A.2, As are complex valued parameters.

The coherent states can be defined in the parametrization A_, m = 1 ..... 3:

[/_1/_2,,_3 >= D(A1/_2A3)I000 > (10)

With the coherent states (10), we can obtain the mean values for the operators [x'+_,

I(:_,,_ and K0,_ and the temporal evolution of the observable. For example, we have

z_-I
</*'ore >_- cos(2l,Xml),

2
11)

< h°"_ >'\-- 4 [sin2(2iAm[ + (_ - 1)cos2(2[A._[)] 12)

D*A'+_D - itAml
_m

tA_I _-A B - 1

sin(2lAml)hOm + _[COS(21Am)[- 1]h'-m + 7) [cos(21Aml)+ 1]K+_
za_

< ['i'+m :>X =
L,- 1 ilAm[

2 Ag
sin(2lAm[), (1.'3)

-2
< Ix+m >.\-- Im_l_ (_,-1)(r,- 2) sin2(2lAml).

A2m 4

The temporal evolution of the K+m will be:

(14)



( +iftt (2/x'0m -t- 1)K+m(t) = I(±m _ •

The time dependent refractive index in the coherent states is:

lr

a=-I i=1 '/_/

(15)

t/--1

1
qA, exp[i.o.t(-2 ._ v- cos(2la, I) - 1)] + <_a; e×pjnt.-2'_r(

2z
-- ÷ cos(21Ail)J)]+ _,]'_

;< f-i._t __ C.¢}.

Results tile refractive index have an oscillatory manifestation with very fasl frequency.
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Abstract

In this paper there are established tile coherent stat.es for tile ra.dial wave-

function, corresponding to the su(2) algebra and for angular wavefunction.

We calculate also the average values of some observables.

I. INTRODUCTION

The problem of coherent states for the atom is of a great interest due to the fact that

are possibile to consider the spin effcts.

In the literature there exists a series of papers devoted to the coherent states of the

relativistic harmonic oscillator [1,2].

Due to the difficulties, the problem of coherent states for Dirac hydrogen atom is not

studied, but there exists algebraic studies of the Dirac hydrogen atom [3,4].

In this paper we use the creation and annihilation operator for the radial wavefunction

of the Dirac hydrogen atom established in [3,4].

II. THE ALGEBRA OF THE RADIAL WAVE FUNCTION

We consider the hydrogenlike atom, described by the Dirac Hamiltonian:

Ze 2

HD = o_p + rn,3 - --,
1"

where m represents the mass of the electron, p the momentum, r E R+ the radial variable,

Ze the charge of the nucleus, c_ _ and o" represents the Dirac matrix, and with kO the

eigenfunction (in (r, 0, ¢) variables):

(0 (10)o-0 ' 01 kO(r,O,4)= ( 1F(r)}im );O(r)l jm

*E-MAIL: ghed_quasar.uvt.ro



where })m, }i'_ are the spinor sphericalharmonicsof oppositeparity.
\,Veusethe dynamic group obtained in [3,4], and the notations:

qE
k = v/rn 2- E 2 q= Ze2 # = T4- 1,

where E is the energy level. The radial functions F and G can be written:

V = v47- E(V,_ + _,+), G = v_- E(e_ -._*,+).

In order to express the radial eigenfunctions we will introduce the the variable .r C f2:

p = kr = exp(x),

an extra phase variable (, and the quantities (quantum numbers) c_, and # [3]:

_o = j(j + 1) - q2 p _> _/-_. (1)

With the aid of these notations the radial functions _,+(z) can be expressed

_'+(2") = /O_/"(.F), 'g'_(32) = /Dw_--I(x ) (9)

and the eigensta.tes [w# >

where the particular polynomial 792; is:

1

- e{_'-_} ezp(-eX). (4)

x/r(2 - 1)

It must to prove that the minimal value of # is:

/zmi_ = =s+7_= j+_) _q2.

representing a real quantity.

It was found that the eigenfunctions verify, the orthogonality condition:

< u;#[_o'#' >= a_,_o,a,,,,.

For the radial wavefunctions can be defined the operators:

i 0 1I;+ = e*'_( T e_ :F -_ + _) (s)

o
I£_ = -i -- (6)

0_

The action of the operators {K+, K_} on the eigenstates [_o# > is given by" [3]:



Ix'+ I,.,# >= i _ftz(t.t -t- 1) - t-tmi,_(#mi,_ - 1)[cop + 1 > (7)

h= 1_# >=/_l _o# > . (s)

From (7) results that the states I_'it > can be obtained from 1_'_.' > (see (4)) as the result

of repeated action of (7).

These operators obey the comnmtation relations, corresponding to su(2) algebra:

[h=,h+] = +h+, [K+,h_] = 2I(_ (9)

it can be proved that to tile hernfitian conjugation operation of the operators becomes:

h_ = - a T hJ = h_ ( 10 )

Finally we must observe that the minimal value of the quantum number p is #mi,._ have
the value:

d 1#_i,_=P0 = =s+7_+n n = 0,1, 2, 3, ...

Results that # have one of the values:

p =/-t0, p0 + 1, P0 + 2, ..., #0 + k, ...

III. THE COHERENT STATES

We can to define the Glauber coherent states tz > as the states that are eigenfunctions

for the operator K_:

I(-[z >= zlz >, z c C, (11)

z being a complex variable.

We use the notation (a),_ = a(a + 1)(a + 2)...(a + n - 1).

From the calculations results, after normation

1 _' (-1)_z_IQ

Iz >= _/0U-o--Ft(2#o,lZl2) y_ n!(2#0)_. Iw'#°>' (12)

Results that the states [z > can be obtained from the state Iw,#0 >, applying the H

linear operator:

I: >= >, (13)

where the operator H is

H(2tlo, -zK+) =

x/oF (2 o, Izl
oF,(2#o,-=I(+), (14)



where we have denoted by oF1 the hypergeometricflmction of -zI'(+ variable, of form
vFq( al , a.,, ..., %; bl ..... bq; x).

\.Ve can calculate the average values of different observables corresponding to the coherent
states. Results after calculations:

< h_ >_=< zlh_lz >= z < K+ >_=< =[h+l_ >= z"

~2< 1( 2 >.= _. < I(+ >_= z "2

1 _' t:12_(,,0+,,)
< I,: >== }_ , (1._)

ot_1(2#o. 1212) n!(2llo)nU-o

1 ,x_i:l_._(,,o+ ,)2
< x,_ >:-- 05(2.0 l:l 2) Z _!(2.o),_

It. must be noted that the average values < h: >_ and < h_ >= can be also written in

terms of hypergeometric functions of higher p, q orders.
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Abstract

The SchrSdinger-Robertson uncertainty relation will be the starting point

of a classification of minimun uncertainty states associated with supermo-

mentum and superposition operators. These operators are connected with an

annihilator that generalizes the one of the supersymmetric harmonic oscilla-

tor. Such operators may be correlated and uncorrelated and give coherent

and squeezed states.

For two Hermitian operators X and P satisfying the commutator IX, P] = iC, we know

that the variances AX 2 and AP 2 satisfy the SchrSdinger-Robertson uncertainty relation:

AX2Ap2 > 1
_ _((C> 2 + (F)2), (1)

where F = {X-(X),P-(P>}. \¥hen there is a correlation between X and P, i.e (F) ¢ 0,

such a relation is a generalization of the usual one

1 2
_x_AP 2 > _(c> (2)

and gives new results when, for example, C is not a multiple of the identity.

The so-called coherent and squeezed states are obtained when the equality is realized

[1,2,3]. Let us recall that such an equality is satisfied for states which are solutions of the

eigenvalues equation

3
(X + i,\P)]{,) = _ [{J), A,fl E C. (3)

As a consequence we have the following relations:

1 1 {(C> 2 -4-(F>2" (4)Ax_ = IAIA' nP_ = IA--]A' with A =

Note that <C) and (F) can be expressed in terms of the variances as, for example,

<c>= .OaeaAp_ <_>= 2_maaP_. (5)

It is then clear from (4) that if IAI = 1, we have coherent states and if }A[-_ 1, they are

squeezed.



In this work, we start with a supersymmetric annihilation operator A = (l_a r )
k 0 #a ]

where #,r E C and a is as usual the annihilation operator for the harmonic oscillator.

Indeed A is the generalized form of an annihilator for the supersymmetric harmonic oscillator

which has been first considered by Aragone and Zypman [4]. It is then easy to see that the

Hermitian operators

1 i

X=-_(A+At), P=_(At-A)
(6)

satisfy the commutation relation IX, P] = i(]#[2c_0-I-1r12_3) = iC. Since C is not necessarily

a multiple of the identity, the SchrSdinger-Robertson uncertainty relation gives us a new

understanding of what are the coherent and squeezed states for the supersymmetric harmonic

oscillator. In the following, we will completely solve the eigenvalues equation (3), give a

classification of the corresponding coherent and squeezed states and compute the variances
AX 2 and AP 2 in those states.

To solve the eigenvalues equation (3) with X and P given by (6) it is convenient to use

d a t _ z. We then get
the Fock-Bargmann representation (see [5]), i.e a -_ dz

+ ((1 - A)_z -/3)_(z) + (1 + A)-r_(z) = 0,

+ ((1 - A)_z -/3)_2(z) + (1 - A)¢_l(z) = 0,

(7)

where I_/J) = k_b2(z)]" The resolution then deals with three different cases depending on

the values of the parameters.

1) # = 0, ,_ 7_ -1 and _- = 1: we get generalized spin-l/2 squeezed states based on the

a A)_+ (1 A)o'_ is a casesu(2) algebra since 2 + iAP = _((1 + + - ). This particular of the

general approach by Brif [6]. Taking

-- • 71- 71"

1 A _ e R +, ¢ ¢ [-7,35{ (s)l+A _'

we can write the normalized eigenstates as

1 ( 1 ) 1 ( -1 )I¢+)= lv#f___ 8,12ei+12 , _D_)-_ 8,12ei¢12 ,
(9)

with eigenvalues t3+ = v/_ - ,_2 and/3_ = -v/l - A2 respectively. Since we have [X,P] = icr a

and {X, P} = 0, it is easy to see that in these states

1 - 8 -2_

<C)+- 1 + 6' {F>+- (1 -t-6) 2 sin ¢ (10)

and

A = V84 - 262 cos 2¢ + 1
2(6 + 1) 2 (11)



Finally, we have

=_ 1 (5+1) 2 c°s2 , AP2=_ 1 (6+1) 2 sin2 " (12)

Let us ohserve that the coherent states appear for ¢ = ±_. For ¢ E]_,-_[, P is squeezed

while for ¢ El- _, _[, it is X that is squeezed. In [3], 5=1 so that (C) = 0.

2) /t = 1, A = 1 : the solutions of (3) are now coherent states (or supercoherent states

like in [4]) for which (F) = 0, so they satisfy

AX 2 = Ap 2 = 1(C). (13)

Those states may be written as a linear combination of the orthogonal and normalized states

(with c_ = _)

1 1

],4,0) = _-_ e-I_le_'_ (0)

z--_
e-I_le _z . (14)

[¢1) = V/7C(1 -t-1712) -1/;-

The mean value of (C) in these pure states is given by

<C>o= (1 + 1_12),
1 + I_1_

(C),=(_).l+[r (15)

It is interesting to mention that the state [*/_o)constitutes the more classical-like state for the

standard harmonic oscillator [4]. Indeed, for the usual position and momentum operators
i

x= _(a+a t) andp= _ (at - a), we have

1

(A¢2)o = (Ap2)o = :_. (16)

A new point is that [_/q) constitutes the rnore classical-like state for the supersymmetric

harmonic oscillator since, for It[ = 1, we get. froin (1:3) and (15)

1

(AX2)' = (AP2)' = 2" (17)

3) t L = 1, A 7_ +1: we will produce a completely new set of solutions which will give

squeezed and coherent states. The general solution of (3) can now be written as

) < j, 1( 1 )whore j,(_)- I+A fl_-_ (I-A)_ (is)

and v(z) satisfies the linear equation

,,"(_)+/_(_) = o for _ = - (Y-4-X)I- A 1_1_" (19)

The general solution of (19) is a linear combination of pure states given hy



( 1 )I#+)= N+_'_<') m_ <s_/__+I_ '

where N± is a normalization factor and

(20)

)i¢+(z)= _(l+Se_+)mlr1511%_i2 z-75eiCz2 , (21)

with 8 and q5given by (8) in terms of A. Note that the norm of I_m) is defined by

(22)0>±l,!,_)= lJV+i_(1 + _)i_+_'e×p [-I_?+ q_(z) + _±(e)] <lzde

and the integrability condition is Re k > 0 which is equivalent to 0 < 5 < 1. The limit case

5 = 0 (or equivalently A = 1) does not give the complete solution (14) and then must be

excluded. It is easy to compute the mean value of C and we deduce the one of F from that

of C using (5)

) )' (1 + 6)_ \_ + I_1_ ' (2a)

for normalized states. Finally, we have

and

(24)A = ,/_5"- 2<__cos2_ + 1 ( 1+ <5 )2(5+ 1) 2 rUT-g-_ +1_?

= 5 1 (_+ 1)_c°s_7 _ + 1_-I_' (25)

- 7 (<_+ 1)_si'_7 ----7 + I_-I_ " (26)
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Abstract

The factorization technique is shown to be a powerful algebraic tool to show

general properties of some integrable physical systems in Quantum Mechanics.

The method by itself gives rise to a wide set of raising and lowering operators

changing the azimutal as well as the principal quantum number used in the

study of radial hydrogenlike potentials.

I. INTRODUCTION

After the separation of the angular variables, the stationary radial SchrSdinger equation

for the Coulomb potential in N dimensions takes the form

{ d 2 (2g+N-3)(2g+N-1) 2}H eC tE = _rr e + -_r-_ ere = E ¢ _E, (1)

where the constants h, m, e have been conveniently reabsorved. The values of the orbital

angular momentum are positive integers 6 -- 0, I, 2... We shall henceforth consider exclu-

sively the two-dimensional case N = 2 that (together with N -- 3) is the most interesting

one. Therefore we shall think of the potential Ve(r) as given by

Ve(r ) = (26 + 1)(26- 1) 2
4r 2 r (2)

The computation of the discrete spectrum associated to the bounded states of H e can

be easily obtained by means of the conventional factorizations [i]

H e : Z_-(r)Z[(r) -- q(6) _- X;_l(T)Z;_l(r ) -- q(6--1),

d 26+ 1 2 -1

X[(r) = T_ 2r + 26 +-----/' q(6) - (6 + 1/2) 2.

(8)

(4)

*On leave of absence from Departamento de Fisica, CINVESTAV-IPN, A.P. 1_-7_0, 07000

Mdxico D.F., Mexico.



Some properties that can immediately be derived are enumerated below.

i) Spectrum. The lowest energy of the fundamental state is precisely Ee = q(g) =

-1/(6 + 1/2) 2. The corresponding eigenfunction, denoted by ¢_ is determined by the equa-

tion X[(r)¢_ = 0. The energy of the excited states ¢_ is given by En = -1/(2n + 1/2) 2,

with n = 6, g+ 1,...

ii) The operators X +. Let us design by _e ({¢e _+oo\ the Hilbert space spanned by-_- n J n=g /

the bounded states of H e, for g = 0, 1... The operators X_ connect these spaces as

_+1¢. Xg+(r)¢gn+l(7' ) o(¢_(7").
(5)

Remark that they preserve the label n, that is, they connect eigenfunctions with the same

energy En. We can define the free-index linear operators {X +, L} acting on the direct sum

®+__T{ e by means of

- e - e + e+l
X Cn _+o/,e+l L¢_ := _ ¢_n,X G:=x/G, , (6)

where one must have in mind (5). The action on any other vector can be obtained from (6)

by linearization, but we shall never need it.

Formally we can allow the label f to take also negative integer values since Ve(r) = v-e(r)

in (2). Therefore we shall henceforth assume _ = m+oo ,He_=-oo as the total Hilbert space. This

= _+oo_ where _-_n ({ n}£=--n)" Eachspace can be written as another direct sum 7-/ _,_=0 n, = Ce n

subspace T{n, of dimension 2n + i, is generated by eigenfunctions with the same energy En

and is invariant under the operators {X ±, L}.

Taking into account the previous considerations it is straightforward to arrive at the

following commutators,

[L,X +] = _:X +, [X+,X -] = q(L) - q(L-1). (7)

where, for the hydrogen potential the function q(L) was given in (4).

It is clear that the operators {X i, L} do not close a Lie algebra; at this level we can only

speak of an associative algebra. Of course, formally we could make a change of basis, inside

the enveloping algebra, so that the new generators {X ±, L} would close in fact an su(2) Lie

algebra. In the next section we will show that there can be more factorizations leading to

larger operator algebras exhibiting further properties of the wavefunction space.

II. GENERAL FACTORIZATIONS

Once the discrete spectrum En of H e is known, we propose a somewhat more general

factorization than that already displayed in (3). We shall write

B_,e(r)A_,e(r)- ¢(n,e)= h_,e(r) [H e- En] , (8)

d_,e(r)B_,e(r) - ¢(n,_) = hm[(r ) [H _- E_] . (9)

This must be understood as a series of relationships valid for all the allowed values of

the (n,g) parameters. Here Bn,e(r),An,e(r) are first order differential operators, hn,e(r)



design functions, and ¢(n, g) are constants. The problem of finding solutions to this kind

of factorizations becomes more involved because we have additional functions hn,e(r) to

be determined. The important point is that the operators Bn,e(r),An,e(r) share similar

properties with their analogs {X ±} presented in Section I:

An$ " 7-(_ --+ 7-(_

An,g(r)¢gn(r) c< _b_(r),

Bn,g " 7-(_ --_ 7-(g
eCAr). (10)

In this case the most important difference is that B_,e(r), A_,e(r) do not keep the energy

eigenvalue, so that they could change both labels: (n, g) -+ (g, g), where (g, g) = F(n, g):=

(Fl(n,e),F2(n,e)),being F an invertible function. Indeed, when n = g and hn,e(r) = 1 we

recover the conventional case. We can define the free-index operators {A, B, L, N} as before

(the latter is defined by N¢e = n Ce), satisfying the following commutation rules

[L,A] = L - L, [L,B] = _-1 _ L, [B,A] = ¢(N,L) - ¢(j_-1,__-1)

[N,A]=N-N, [N,B]='_-I-N, [N,L]=O. (11)

where N= FI(N,L), L = F2(N,L), N-1 = (F-1)I(N,L), and _,-1 = (F-1)2(N,L).

We must also notice that the equation An,e(r)¢e_(r) = 0 does not necessarily give an

eigenfunction of He; this happens to be the case only when ¢(n, g) = O. Finally we want

to remark that {A, B} are not shape invariant potential operators, they should rather be

called 'shape invariant eigenequation operators'.

III. APPLICATION TO THE HYDROGEN POTENTIAL

In this section the general factorization above introduced will be applied to the hydrogen

Hamiltonians H e of equation (1) with potential (2). We shall consider the simplest nontrivial

type of functions hn,e(r) c< r. In this way we obtain two independent solutions {A i, B_}_=1,2,

displayed in Table I.

TABLE I. Explicit expressions for first order operators.

{ BlAb)
Al,e(r)

= (2n + 1) 1/2 (rl/2 d...d_]_r 1/2 --I-J--_-' (2n+1"_ 1/2 (2n+2"_\ 2 dr--2n+l--2rl/2 \2n+2] D \2n+1]

(2n+1_ / 2n+2_ 1/2 ( r 1/2 2e+1"_= D \_-4-_2 \7h--4-72 (2n + 1) 1/2 r_ 2 adr 2n+l _)

{B_,e(r)= (2n+ 1)1/2/r'/2A4 _/2 e (2n+1_1/2D(2n+2 _

\ 2 dr" 2n+1 2rl/2 \2-'n-@-'2] \2n+1]

A2er  .,,= Z)(2n+1 (2n+ 1)1/2 2 +1\ 2n+2] \ 2"n-¥T ] dr 2n+1 "4-7i7 -ff)

The symbol D in Table I is for the dilation operator, D(p)¢(r) = ¢(#r). For the first

couple {A1, B 1} we have (g,g) = (n + 1/2, g + 1/2), while for the second pair {A2, B2},



(_,_) = (n + 1/2,6- 1/2). The general factorizations obtained from these solutions read as

follows

_ (2n + 1)r [He(r)_ _]
Bn,e(r)An,e(r ) + g + n + 1 - 4 L . (12)

2 2 (2n + 1)r [He(r)_ En]Bn,e(r)An,_(r) - _ + n + 1 - 4 - - (13)

The nonvanishing commutators among these operators are

[N, A1] : 1I_A, [N, B1] : _!B1, [L, A1] :1 I_A , [L,B 1] = -_B 1, [A1, B 1] = I,
(14)

[N,A 2] I_A,2 [N,B 2]=@B l, [L,A 2]=@A 2, [L,B 2]=_B1 2, [A 2,B 2]=I,

In other words, we have a set of two independent boson operator algebras. The problem with

these operators is that they change the quantum numbers (n, 6) in half-units, so that they

do not keep inside the sector of physical wavefunctions. To avoid this problem we can build

quadratic operators [2] {AiA j, BiA j, BiBJ}<j=I,2 satisfying this requirement; such second-

order operators close the Lie algebra sp(4, R) [3]. It includes the subalgebras su(2) (whose

generators connect eigenstates with the same energy but different g's) and su(1, 1) (relating

states with the same t_ but different energies E_). This is called a 'singleton representation'

of so(3,2) _ sp(4, R), where there is one lowest weight eigenvector ¢0° from which all the

representation space is generated by applying raising operators. A more evident situation

arises with the (radial) oscillator potential [4]. We have restricted our considerations to the

N=2 space dimensions which is the simplest one; for N_>3 the same treatment still holds

valid, but with some special features which will not be discussed here [5].

Starting from the so(3, 2) Lie structure of the second order operators one can build

coherent states from a group theoretical approach in a standard way [6]. However, the

physics is given by the Hamiltonian (which is not among the second order operators), its

spectrum and the degeneration labels. Therefore, in this sense, Klauder's construction [7] is

closer to physical requirements.

This work was performed under the auspices of CONACyT (Mexico) and DGES project

PB94-1115 from Ministerio de Educacidn y Cultura (Spain), as well as by Junta de Castilla

y Ledn (CO2/197). ORO acknowledges the ICSSUR'99 Organizing Committee for partial

finantial support.
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Abstract

The annihilation/creation relation and the number states related to the

minimum-uncertainty states between the position and the inverse of the too-

mentum are investigated. A non-linear type of the re-ordering relation be-

tween the annihilation and creation operator is derived.

The eigenvectos of the linear operator Q-ikP -1 [5-8] (Q: position op. and P: momentum

op., k:positive integer) are the minimum uncertainty states between Q and p-l, and their

eigenfunction system in the position representation is the over-complete wavelet system

made of Cauchy wavelets[5-8]. This relation is analogous to the coherent states which are

the eigenvector system of the boson annihilation operator. In this case, it is well known

that this operator is the step-down operator (down-ladder) of the eigenfunction of the boson

number operator.

In this paper, the similar relation to this will be investigated for the Cauchy wavelet case,

where the operator Q - ikP -1 itself is not but the Cayley transform of Q - ikP -1 is the

analogue of the annihilation operator. What is the analogue of the 'number operator' will be

shown there. Moreover, the re-ordering relation between the analogues of the annihilation

and creation operators will be investigated.

Let Q and P be the position-coodinate opertor and the momentum operator which satisfy

[Q, P] = i[ (I: identity op.). For a fixed positive integer k, define the operator

Ak :=Q-ikP -1. (1)

Because Ak is not hermitian, it has complex eigenvalues, and the eigenvectors are not or-

thogonal. The eigenvector [C_}Ak of Ak is a minimum uncertainty states between the Q and

p-1 in the sense that (AQ) 2. (Ap-1) 2 = (1/4) I < i[Q, P-l] > 12 is satisfied. It is easily

shown that the eigenfunction in the position-coordinate representation with the eigenvalue

c_ is

(2)



with the normalization constant G(_)k, and the eigenfunction system is over-complete[6,8].

For non-real c_, this function is a complex-valued square-integrable wavepacket localized

almost around z = Re c_.

Let b be the real part of the normalized eigenvalue c_ and a be the imaginary part of c_.

Then, we have

because x-c_ = a (x-b _ i) and G(k_) = lalk+l/2Ck(i). This relation shows that the eigenfunc-
a

tion system of the operator Ak defined in (1) is just a wavelet system [1-4] with continuous

parameters made from the basic wavelet h(k_)(x), This wavelet system is often called Cauchy

wavelet system. (NB: h(k_)(z) has the vanishing moments from 0-th to (k-1)-th order)

By making the Fourier transform of these eigenfunctions where the calculation is made

by residue calculus, we obtain the wavefunctions of them in the momentum representation

H(_)(P) := e(pl@nk (const.). lira c_]1/2 (-ip)ke -_p (if p Im c_ < 0)k _-

0 (if piracy_>0).
(4)

This shows that the Fourier tranform of the Cauchy wavelet has the support only in the

positive-momentum part (if a < 0) or only in the negative-momentum part (if a > 0).

From now, we are introducing the analogue of the annihilation operator. Define

ak± := (Ak _ ilr) -1 (Ak :]= i[) (_-,--). (5)

Because the Cauchy wavelets are the eigenfunctions of Ak as mentioned above, the eigenfunc-

tions (in the position representation) of the operator ak_: with the eigenvalue (c_ + 1)/(c_ :F 1)

is the Cauchy wavelet h__) (t). (NB. ak+/ak- is bounded for the positive/negative-momentum

component of a signal.)

The analogue to the number operator is defined in wavelet version as follows; Define

1
Nk± := T×(& ± iI)* P (& ± ii).

z
(6)

We restrict the domain of Nk+ to the positive-momentum components and the negative-

momentum components. Nk± is hermitian, and, as will be shown below, Nk± has the eigen-

values 0, 1, 2, 3, ... In the special case with k = 1, the operator 4-2Nk± +3I is mathematically

equivalent to the Hamiltonian given in p.41 of Daubechies' textbook[3]. For general k, the

corresponding 'Hamiltonian' in our notation is defined by Hk := QPQ + k2P -1 + P, and

the relation to Nk± is Nk± 1= -:F+t/k (k +
In the momentum representation, by defining (p(ke)(p) :=P (pl_)Kk± ' the characteristic

equation of the operator Kk± := c P p-k Nk± pk c-e is

ld2 (7)



Because this equation is rewritten into the associated Laguerre differential equation with

orders A, 2k by the change of variable _/= ±2p, this equation has polynomial solutions

_(p)(k±) = (const.) L_k(±2p) (if ±p _> 0)

0 (otherwise) (8)

only when A = 0, 1, 2, 3, .., where L_(x) denotes the associated Laguerre polynomial (or

Son±n± polynomial) with orders n, m. Since the momentum operator P is the scalar p in the

momentum representation, the above result shows that Nk± has the eigenvalues 0, 1, 2, 3, ....

and the eigenfunction _(k±)(p) (:= s(pln}xk±) with the eigenvalue A = n is

q2(k±)(p) = C (k±) c:rP(±p)kLp(±2p) (if ±p > 0)

0 (otherwise). (9)

(C (k±) is the normalization constant.) The eigenfunction in the position-coodinate repre-

sentation _b(_k±)(x) := #(xln}Nk± is the inverse Fourier transform of ¢(ki)(p). It is easily

shown that the eigenfunction in the position representation is

"_ (n + 2m - r)!
= + 1)!

r=0

(x ± i)-(n+-_-,+O. (10)

It is interesting that this expansion is made of a finite number of the cauchy wavelets

h_m_)(x) in (2) with varions g's. And the eigenfunction with n = 0 (in other words, the

vacuum) is identical to the basic wavelet h(kO(x), which is quite parellel to the relation

that the vacuum state of the boson number operator is identical to the coherent state with

the eigwnvalue 0 (Note that h(O(x) is the eigenfunction of ak- with the eigenvalue 0 as

well as the eigenfunction of Ak with the eigenvalue i). Since N_± is hermit±an and the

eigenvalues are not degenerated, the eigenfunction system {¢_k±)(x)ln = 0, 1,2, ..} in the

position representation is also orthogonal.

In the following, it will be shown that ak± defined in (5) and its adjoint are the step-

down and step-up operators of this eigenfunction system; From (1), (5),(6) and the relations

[Q,p-1] = _ip-2 [P, Ak] = -i[, [Ak, A_] = 2kP -2, we have

i

[Ak, Nk±] = ±kP-2P(Ak ± iI) 4- _(Ak ± iI)t(Ak ± i[) ± i i2 = ±i (A_2° + I) (11)

[ak±, Nk±] = ± (Akq=iI)-l(A_+I)q=-_(Ak:TiI)-2(A_+I)(Ak±i[)=ak±. (12)

By operating this relation on the eigenvector ]rt)Xk± of the operator Nk± (with the eigenvalue

n), we have

Nk±ak±ln)N_± -- akmNk±[n)xk± -- ak±ln)N_± = (n -- 1)ak±ln)N_±. (13)

This relation shows that ak±ln}Nk± is the eigenvector of Nk,± with the eigenvalue n - 1.

Because we can show a_±Nk±ak± = --Nkm and Nk± = --Nkm -- (2k + 1)I from (5) and

(6), we have a_±{Nt;± + (2k + 1)I}ak± = Nk±. From this relation and (13), we have



{(n- I) + (2k+ 1)} <nl4±a  In)Nk (14)

However, from (13) and the non-degeneracy of the eigenvalues of Nk±, by choosing the phase

factor of In)Ark± appropriately, we obtain the annihilation/creation relations

= - ak-_ln>_k:_ = In + 1)Nk±. (15)
n+2k n+2k+l

From the orthonormality of the eigenfunction system of Nk± and the relations (15), we have

afk±ak± = Nk±(Na± + 2_[) -1, ak:j:a__t_= (Nka: + I)(Na± + (2k + 1)I) -1, (16)

and hence, by eliminating N, the non-linear re-ordering relations

ak±a_4_ : (a_=t=ah_ = --(2]¢ ÷ 1)/)-1((2]¢ -- 1)a_4_ak± ÷ [) (17)

? (ak+a_± ÷ (2]¢ 1)I)-1((2,_ + 1)ak±aL: I)ak±ak+ = _ _ (18)

are drived. These relations are, different from the boson case ( ata = n, aa t = n + I, ata =

aa f + I), non-linear type of re-ordering relations.

These relations are special case of the su(1,1)-annihilation/creation relation [10] with

A = 2k ÷ 1, Eo = -i(PQ ÷ QP), E+ = iP, IF,_ = -i(QPQ + k2P-1)..
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Abstract

The over-complete eigenvector system of the operator Q-1p (@position,

P:momentum) consists of the squeezed states 10; #, 7J/ with various # and 9.

This eigenvalue problem is investigated from the viewpoint of the annihila-

tion and creation relations and the generalized squeezed states related to the

algebra su(1,1).

It is known well that the squeezed state is the eigenvector [a; #, lJ) of the operator

b,,, := #ab+lJa; ([p12--1_] 2 = 1) (where ab := (1/2)l/2(Q+iP), @position, P:momentum)

associated with the eigenvalue c_ [1]. The eigenvalue a indicates the center of the localiza-

tion of the wave packet in the phase plane, and the coefficients # and lJ do the squeezing

properties. By multiplying b,,,jl0; #, lJ) = 0 by Q-1 from the left, we have

Q-1p[0; #, p) _-/_10; _,-).
/_-//

(1)

This relation is another kind of characteristic equation of the squeezed states, which is very

convenient for investigating the uncertainty relation and the quantum estimation problem

only with respect to the squeezing parameters, because the operator _-ip itself does not

but the eigenvalue does depend on # and i/.

The operator Q-1p is not self-adjoint, and the self-adjoint part and the skew-adjoint part

of Q-1p are (Q-1p + pQ-1)/2 and Q-2/2, respectively. Therefore 10;#,lJ) is a minimum-

uncertainty state between these parts in the sense that it attains the lower bound given by

the following inequality called the uncertainty relation 1 [6];

(A(Q-1p + pQ-l))2 . (z_(Q-2))2 _ i i(_DI[Q-1p _t_ pQ-1, Q-2]I_) 2 (2)

1This uncertainty is concerning about the width of wave packet, not about the measurement error.



These eigenvector relations are closely related to the Lie algebra su(1,1), because the three

generators of the displament of the squeezing parameters satisfy the commutation relations

of this algebra. The above squeezed states { 10; #, u) [ #, lJ: complex, bl 2 - I, 12= 1} are

generalized coherent states[2] associated with the Lie group generated by these generators.

In this paper, by the M6bius transform of Q-1p, we will derive the annihilation/creation

relations and the number operators related to the algebra su(1,1).

First, we will start with more general algebraic formalism. If the triplet of the skew-

adjoint operators E0, E+ and E_ on a Hilbert space 7-{ satisfies the commutation relations

[E0, E±] = +2E± and [E+, E_] = E0, it is called the unitary representation of the Lie

algebra su(l,l). Define another triplet of the operators L0 := i(E_ - E+) and L± :=

(Eo ± i(E+ + E_))/2. (E0 = L+ + L_ and E± = +(L0 _ L+ ± L_)/2). Then the same type

of commutation relations [L0, L±] = +2L±, [L+, L_] = L0 hold, and these are another

basis of the same Lie algebra. However, in this basis system, L0 is self-adjoint while L± are

neither self-adjoint nor skew-adjoint, and (L±)* = -L T. In this paper, we investigate only

the cases where the representation is irreducible and is not trivial. Then the corresponding

Casimir operator should be a scalar by the Schur's lemma,

C := Lg + 2(L+L_ + L_L+) =/3 (= L_ + 2Lo + 4L_L_= = Eg 4- 2Eo + 4ETE± ). (3)

where the scalar parameter fl depends on the representation of the Lie algebra. If v is the

eigenvector of L0 associated with the eigenvalue value n, then Lo(L±v) = L+(Lo -4- 2)v =

(r_ 4- 2)(L+v), from the commutation relations. From this relation and the self-adjoint

property of L0, the eigenvector system of L0 is an orthogonal system, and the eigenvalues

of L0 are the real numbers spaced uniformly. The irreducibility and the unitarity imply

that the dimension of the kernel of L± should be not more than one and the dimension of

the kernel either of L_ or of L+ is zero. From now, we are investigating the case where

dim Ker L+ = 0 and dim Ker L_ = 1. Let v0 be the unit vector in Ker L_, from the

above relation, v0 should be the eigenvector of L0 associated with the minimum eigenvalue

I (otherwise the existence of a smaller eigenvalue were contradictory to L_vo = 0). Then

the characteristic equation

Lo((L+)nVo) = (t + 2n)((L+)_vo) (4)

holds. It is known well that this constant I determine the representation of the algebra

su(1,1) uniquely. In this case, the unitarity means that I > 0 [5]. From the irreducibility

and the self-adjointness of L0, the set {(L+)_v0}_°°_ 0 is a CONS of _. From the relation(3)

and L_v0 = 0 and Lov0 = Iv0, we have/3 = t(t - 2). Now, we define the su(1,1)-number

operator N and su(1,1)-number states vector In)N

1 ] F(A) rn
r

N := [(Lo- _), [n)N := Vn! r_)L'+ vo' (5)

Then, the equation (4) and the definition (5) imply that N[n)N = nln)N. The relations (3)

and L; = -L_ show that the vector In)N defined in (5) is an unit vector [8].



Next we will define the su(1,1)-annihilation operator a. The relation (4) implies that

(L0 - A)In)N belongs to the range of L+ for any n. Because dim Ker(L+) = 0, we can define

the annihilation operator a as the bounded operator

1 -1 n (6)

(where we mean alO)N = 0 by the second equality of (6) in the case of A = 1 and n = 0.)

The second equality of (6) is derived from (4) and (5). From the relations (5) and (6), we

have [a, N] = a. Thus the creation operator can be defined as the a joint operator a*, and

a*b>N= Is+ I>N.V_ (7)

Therefore, from the completeness and orthogonality of the eigenvectors of L0, we have

a*a = (N + A- 1)-iN, aa* = (N + A)-I(N _- 1) (8)

in the case of A _ 1. By eliminating N from these, we have the re-ordering relation between

the annihilation operator a and the creation operator a*

aa* = -(a*a + l - 2)-l(Aa*a - 1), a*a = (aa* - A)-l((2 - l)aa* - 1) (9)

in the case of A_ 1. In the case of A= 1, we haveaa* = 1, a'a= 1--10}N N(0[. These

relations are important for the calculating the quantum characteristic function.

With the unitary displacement operator D(_) := exp @L+ - _L_), define the su(l,1)-

coherent state

• 1+r¢1
v(¢) :=D(½e_rg;ln__-:_)lo)N=exp(¢L+)exp(1]n(1-1¢l 2) Lo) exp(¢L_)[O)N (I0)

(for [¢[ < 1). The latter "normal-order" form of the right hand side is obtained from

the relations given in pp.73-74 of [2]. Because exp (½ ln(1- [¢]2) L0)exp(¢L_)]0}N =

(1- 1¢12) /21o) and [a, exp(¢L+)] = ¢exp(¢L+)[8], we have

av(¢) = exp(¢L+) a IO>N 4. ¢exp(¢L+)lO)N ----¢v(¢). (11)

These relations show that the vector v(¢) is the eigenvector of a associated with the eigen-

value ¢. Thus we can denote v(¢) by [¢)a, and the set of eigenvalues of a is the unit disk.

From the relations (3),(6) and the relation [L0, L_ 1] -- L+I[L+,Lo]L+ _ = -2L+ I, we can

show the relation (E0 - A)(a - I) = -2iE+(a 4- 1) [8]. If the dimension of the kernel of E+

is not 0, then this representation becomes trivial by the relation (3) and the unitarity. Since

we can show that (E0 - A)In)N belongs to the range of E+ [8], we can define the operator

1 -1
A := fiE+ (E0 - A) = -i(a 4- 1)(a- 1) -1, (12)

whose domain is dense in _. Hence Alf}a = _i¢+1 F\wa, which shows that the vector [ff}a can

be denoted by _i(+1{2f }A" Since -i doesn't belong to the spectrum of A, the latter relation

in (12) indicates that



a=(A+i)-l(A-i). (13)

Since a is given by the Mhbius transform of A, the set of eigenvalues of A is the upper half

plane, and they are mapped to the unit disk by the Mhbius transform.

Next, we will interpret the eigenfunction problem (1) from the algebraic structure dis-

cussed above. For this, we have only to choose the representation

E0 = i(PQ + QP)/2, E+ = iQ2/2, E_ = -iP2/2. (14)

1
Then we have L0 =nb + _, L+ = -(1/2)a_2 L_ = (1/2)a[, where nb := 1/2(Q2 + p2 _ 1) =

aba; The Casimir operator is Z : C = -(PQ + QP)2/4 + (Q2p_ + P_Q_)/2 - 3 From
/3 = A(A + 2), A should be 1/2 or 3/2. These two solutions are corresponding to the two

function spaces of the representation. When we choose the function space with even parity

L2ven :_- {f(q) e L2(R)If(-q)= f(q)}, then _k= 1/2. From (5),(6) and (12),

A = Q-1p, a = a_-lab, N : _(QI 2 + p2 -- 1): [nb.1 (]5)

Then, from (13) and (15), the characteristic equation (1) for the squeezed states 10; #, u}

can be regarded as the characteristic equation of the su(1,1)-annihilation operator, and we

have 10;#,u} = I_>a : i_+'_ • Moreover, In)s = (-1)nl2n}_b, where In)nb denotes the
#-I_ /A

boson number state. From (6) and (7), we have the annihilation and creation relations

a*ln)N = V

a*a = (2aa* - 1)-1(3aa *- 2).

aIn}N = _ ]n- 1}s,

and the non-linear re-ordering relations

aa* = -(2a'a- 3)-1(a'a- 2),

(16)

(_7)

On the other hand, when we choose the function space with odd parity, then _ -- 3/2.

• -1 N 1) and the su(1,1)-coherent states areIn this case, A pQ-1 a aba b= , = = 1(__ ,
obtained by squeezing the boson number states with n = 1 [8].

Another example is the annihilation/creation relation related to the Cauchy wavelets[3,4],

with E0 = -i(PQ + QP), E+ = iP, E_ = -i(QPQ + k2P -1) (k > -1/2) [8].
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Abstract

For models with an Mgebraic structure, the classical dynamics is embed-

ded in the quantum model as a constrained subsystem. This result is applied

to the theory of quantization, and gives insight into what are the closest-to-

classical quantum states. Applications involving harmonic oscillator coherent

states and squeezed states are discussed.

If one holds the philosophy that quantum mechanics is fundamental, a classical model

must somehow be embedded in its quantal counterpart. The process of obtaining a classical

model from a quantum one is referred to as dequantization. It was Dirac [1] who noted

that classical mechanics provides a framework through which quantum mechanics can be

interpreted.

The coherent states of the harmonic oscillator exemplify how dequantization is envi-

sioned: the coherent states are minimum uncertainty states, and the expectation values

of the observables in these states evolve according to classical equations of motion. The

coherent state construction has been generalized to an arbitrary Lie group by Perelomov

[2], Gilmore [3] and Onofri [4], who also showed that some coherent state manifolds have

properties of classical phase spaces. These methods were combined with Dirac's theory of

constrained quantum mechanics [5] by Rowe, Ryman and Rosensteel [6] to show that, under

specified conditions, constrained quantum systems exhibit classical behavior. However, it is

known that there are situations when these methods do not work. Thus, despite the many

significant contributions, the theory of dequantization remains incomplete.

In this paper, it is shown how a classical model may be embedded in a quantal one as

a constrained subsystem. The examples used to illustrate these concepts include motion of

a particle in a Euclidean space (with the Heisenberg-Weyl algebra as the relevant algebra)

and breathing-mode vibrations or squeezed states (using an sp(2) algebra). Although these

models possess the same Hilbert space of square-integrable functions on the real line, they

each describe different dynamics and lead to distinctly different results when viewed as a

classical model. As a result, the concept of "closest-to-classical state" does not necessarily

satisfy the same criteria for both systems, and one is lead to the question of what quantum

state (or mixture of quantum states) is appropriate. Further details will be given in a paper

to follow.



I. EXAMPLE: A CANONICAL SYSTEM

Considerthe standard quantum mechanicsfor a particle moving in onedimensionon the
real line lk. The Hilbert spaceis N = £_(Ik;dx). This Hilbert space is the carrier space for a

unitary irrep of the Heisenberg-Weyl group HW(1), for which the infinitesimal generators
are the linear operators {2,/3, I}, where

[_¢](x) = x_(_), [/3÷](x)= -ih°_(x), [i_](_)= ¢(x). (1)

The Hamiltonian is the linear operator

/32
0 = 2-g + 9, (2)

where 9 is a function of 2 (and possibly/3). The full quantal algebra of observables consists

of Hermitian operators on H, with commutator as Lie bracket.

Let [¢} denote some chosen state vector with wavefunction ¢ C H. The coherent state

manifold J_ in the projective Hilbert space >1HI(where states equivalent to within a phase

are identified) is defined to be

.Ad= { [x,p}=exp(_(p2-x/3))]@}. (3)

This expression endows 3d with coordinates (x,p). A general state I¢) is an eigenstate only

of the operator ] C hw(1), and thus/_ does not appear in this expression. The generic orbit

34 is 2-dimensional with the geometry of _2, and is symplectic. It seems reasonable, then,

to associate a coherent state Ix,p) c 34 with the classical state (x,p).

The coherent state manifold Ad is embedded in the projective Hilbert space PN, and has

the properties of a classical phase space. However, under quantum evolution (following the

SchrSdinger equation), a coherent state will remain a coherent state only for exceptional

Hamiltonians (such as the harmonic oscillator Hamiltonian). By constraining the dynamics

[5,6] to M, classical mechanics is assured. For functions on Ad of the form

F(x,p) = (x,plFIx,p}, (4)

constraining the dynamics to Ad defines a Poisson bracket on Ad to be

(oFoa OFOG)
{f,a}(z,p)= \-07-_p Op 0:_] (5)

The resulting dynamics is given by the classical equations of motion

d
--r = {F,H}, (6)
dt

where H is the function on Ad given by the expectation value of the quantum Hamiltonian

H(x,p) = (x,pl[-Ilx,p). (7)

Thus, the quantum mechanics of this system constrained to any orbit of the Heisenberg-Weyl

group leads to classical dynamics.



II. EXAMPLE: "SQUEEZED" STATES

The Hilbert space IE = £2(I_; dx) given above is also the carrier space for an unitary

representation of the Lie group Sp(2,_). The Lie algebra sp(2) is spanned by the linear

operators {A,/), G'} which act on wavefunctions _b E H as

1 1bb](x)=[

(s)

It is straightforward to check that these operators satisfy the commutation relations for an

sp(2) algebra; they are

[/t,/)]=-ihC, [A,C]=ih/), [/),G']=ihA. (9)

It should be noted that, unlike the operators 2 and 15 of the Heisenberg-Weyl algebra,

the expectation values of these operators give information on the width and spreading of a

quantum wavefunction. By choosing this algebra for dequantization, the classical observables

will be different than those of the canonical system.

As with the Heisenberg-Weyl group of the previous example, a coherent state manifold

can be constructed using the representation of the group Sp(2, Ii_). Choose a state vector

]%) in the Hilbert space, and define the (generalized) coherent state manifold A,4' in the

projective Hilbert space I7I_ to be

M'= { la, b,c> =exp(_(aA + SB + cO))l@ }. (10)

The parameters {a, b, c} serve as coordinates on M'.

For a general state [_b), the coherent state manifold Ad' will be three-dimensional and

thus cannot be a classical phase space. However, for judicious choice of [@, one of these

dimensions can be made small or even degenerate.

state of the harmonic oscillator, one has the identity

For example, if Ib) = 10), the ground

AI0>= 10>. (11)

Thus, the coordinate a is only a phase term; the manifold 7t4'C PH corresponding to 10} is

a two dimensional manifold, and is in fact a phase space. The coordinates b and c become

canonical coordinates (as seen by the expectation value (0[[29, 0]10 )), and a Poisson bracket

for functions on M ' can be found to be

OF OG= 4 oF)0a (a2)
0c og

This Poisson bracket is proportional to that of eqno (5), with coordinates (b,c) replacing

(x,p).
However, the resulting classical model is not equivalent to that of the previous example.

Instead, it is the classical model of a "breathing mode;" the coordinates (observables) on

the phase space describe the width and spreading (the momentum associated to the width)

of a classical object (a compressible fluid, for example).



III. CONCLUSIONS

It hasbeen shown,for the simplest example, that classicalphasespacesare embedded
in a quantum model. This result is general. One can use the methods of Perelomov [2] to
createcoherentstate manifolds in a quantum Hilbert spacewhich havethe propertiesof a
classicalphasespace. The full quantum (SchrSdinger)evolution will in general causethe
systemto leavethe classicalmanifold; a coherentstate will remain a coherent state only
for exceptionalHamiltonians. However,by constraining quantum dynamicsto this coherent
state manifold, the resulting dynamicsis classical.

The coherentstate manifold, and thus the resulting classicalphasespace,dependscriti-
cally on the algebraof observableschosento generatethe manifold. This choiceof observ-
ableswill serveas coordinatesfor the classicalphasespace,and all other observablescan
beexpressedasfunctions of thesebasicones.As illustrated in theseexamples,the simplest
quantum model with Hilbert spaceIg = £2(II_;dx) can yield a classical model for a point

particle moving in one dimension, or a classical "breathing mode" system where the basic

observables are the width and its spreading. Note also that the classical manifold for each

example depends on the choice of base vector IgS}, and that different choices lead to different

results. The result is that the map from quantum mechanics to classical mechanics is not

one-to-one; many classical models can arise from a single quantal one.

Dequantization can be used to address the inverse process of quantization: how does one

construct a quantum model from a given classical one? The results given here imply that a

quantum model must carry a unitary representation of the algebra of "basic" observables.

These concepts can be defined rigorously using spectrum generating algebras (see [7]).

Finally, these results provide insight into the concept of "minimum uncertainty " or

"closest to classical" states. It is not a requirement of the dequantization process that the

coherent states satisfy any sort of minimum uncertainty relation; in fact, such a relation

would depend on what the chosen basic observables are.
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Abstract

The higher order susy partners of SchrSdinger Hamiltonians can be expli-

citly constructed by iterating a nonlinear difference algorithm coinciding with

the B£cklund superposition principle used in soliton theory. As an example,

it is applied in the construction of new higher order susy partners of the free

particle potential, which can be used as a handy tool in soliton theory.

Recent studies confirm that the higher order supersymmetric (susy) partners of

SchrSdinger Hamiltonians are most easily constructed by a simple algebraic tool named

intertwining technique [1]. One of the keys of this method is an algebraic nonlinear ex-

pression which links solutions of different Riccati equations (see, e.g. [2-4]). In a previous

paper [3], we have studied the application of this method to the free particle potential. The

'building blocks' of some of the resulting potentials are the well known soliton solutions of

the Korteweg-de Vries (KdV) equation: t_2sech2[_(x-a)] and t_2csch2[_c(x-a)]. In this work

we shall sketch the main steps of the approach in order to present some of the potentials

derived in [3].

First, consider the intertwining relationship H1A1 = A1Ho, where the intertwiner AI

is the first order differential operator A_ - d- _ + _l(X, e). All the available information
1 d 2 1 d 2

concerning the Hamiltonians Ho - 2 dx2 + Vo(x) and H1 - 2 dx_ + Vi (x, c) is encoded in

the beta function, which satisfies the Riccati equation

+ Z (x, = 2[Vo(x)- (1)

The arbitrary integration constant e plays the role of a factorization energy. It is very simple

to check that the potentials are related by the first order susy relationship

Vl(X,_) : V0(x) -t-/_'(x,()'l (2)

Equations (1) and (2) are necessary and sufficient conditions for the Hamiltonians to be

factorized as H0- e = (1/2)A_Ai, and Hi- e = (1/2)AiA_. Suppose now that Vo(x) is

a known solvable potential with eigenvalues E_ and eigenfunctions _p_, n = 0, 1, 2, ... Let

us assume that we have found a general solution of (1) for a given factorization energy

q ¢ E_, Vn. Then, the potential V_(x, el) is also given [1-3]. The iteration of this procedure



starts by consideringnow Vl(x, q) as the known solvable potential and looking for a new

one V2(x, el, _) satisfying the second order susy relationship

P2(x, (19 _ ) = Pl(x9 {1) +/_;(x, _19 _). (3)

Therefore, the new beta function must fulfill the Riccati equation

--/_;(X,(lgg) nt- /_22(X9{19 () = 2[Vl(X, gl) -- g]9 (4)

where e is again an arbitrary factorization energy. The corresponding solution is given by

/_2(X9(19(!)= --/_1(X,(_1)- 2({1- (_)
;_I(X,_1)- _,(X,_)"

(5)

The finite difference expression (5) is a nonlinear superposition of two general solutions of

(1), one for each factorization energy el and e, transforming equation (1) into (4) by the

change of V0(x) by VI(x, el), and/3_(x9 c) by/32(x, q, e). This transformation can be used to

link the higher order susy partners of V0(x) with the first order superpotentials ¢3_(x9 c), just

by solving (1) for different values of the factorization energy e. For instance, providing n

different general solutions of (1), one for each ek, k = 1, 2, ..., n, we are able to iterate n - 1

times the algorithm (5) acquiring a new beta function in each step, given by

2(___- _)
/_k(Zg_k)= --_k_l(X,{k_l)- _k_l(Zg{k_l)-- 9k_l(X,f.k)' k = 29 39 ...n. (6)

We have adopted here an abreviated notation making explicit only the dependence of/3k on

the factorization constant introduced in the very last step, keeping implicit the dependence

on the previous factorization constants (henceforth, the same criterion will be used for any

other symbol depending on k factorization energies). Therefore, given any initial potential

V0, the corresponding n-susy partner potential Vn can be writen as

n

Vn(_,_n)= Vo(_)+ Z _;(x9_k)9 (7)
k=l

provided that the master equations for/3k and Vk are given by

--_tk(Xg(_k) JI-/_(Xgf-k):2[Vk-l(X,{k-1)--6.k] , k = 1, 2, ...9 n9 (8)

Vk(Z,_k) = Vk_l(X,{k_l) +/_tk(2ggf.k) , k = 1,2, ...,n. (9)

Now, let us stress that every general solution of the Riccati equation (1), for a given c,

depends on an additional implicit integration parameter c_, hence, the process acumulates

as many of these integration parameters as many general solutions of (1) have been used.

Observe the coincidence of our nonlinear algorithm (6) and the Wahlquist and Estabrook

superposition principle expression (see equation (16) of [5]), derived from the B/icklund trans-

formation (BT) of the KdV equation wt = 6w_ - Wxxx; subscripts t and x denote partial

derivatives. The method has been typically used to generate new, multisoliton solutions

w12, ...9 w(n) of the KdV equation from a given one-soliton solution w -= w_ of the same



equation. It is thus quite interesting that the validity of the same algorithm in the in-

tertwining problem (supersymmetry) is much easier to demonstrate without worrying at

all about the nonlinear equations! Moreover, its physical applicability in susy seems much

wider. Thus, e.g., the singular solutions of KdV (singular water waves) would be of marginal

physical interest. The singular potentials in the Schrbdinger equation are not! Therefore,

the possibility of reducing the n-th intertwining iteration to the multiple applications of the

B_icklund superposition principle means that n-susy could be a universal method generating

the "multisoliton deformations" of any initial potential.

We shall now focus on the vacuum case, presenting some simplifications which the method

offers in deriving the n-susy partners for the potential V0(x) = 0. In this case, the Riccati

equation (1) has the general solution

/31(x, e) = -v/_ cot[v/-2-_ (x - a)], (10)

where a is an integration constant (in general complex). It is well known that the super-

potential (10) gives four different first order susy partners of V0(z) = 0 by taking different
values of c and a. This information is sumarized in Table I.

TABLE I. The four different real superpotentials /31 comming out

from (10), depending on the values of e and the integration parameter

a. In each case S means singular, R regular, P periodic, and N null.

The parameters a and b are arbitrary real numbers.

C&se ( v_ _ _l(X,()

< 0 ix/2JcI_ = it_ a -_ coth[t_(x - a)]S

R _ < 0 iV/_ = i_ -b _ tanh[_(x + b)]2_

c > 0 v/_ = k a -k cot[k(x - a)]P

1
N 0 0 a

x-a

As an example, notice that the regular case (R) leads to the well known modified P6schl-

Teller type susy partner VR(x, 6) = -t_2sech2[t_(x + b)], while the null case (N) leads to

the potential barrier VN(x, 0) = (x - a) -2. Now, in order to give an example of second

order susy partner potentials V2(x, 6), let us consider the superpotentials R and S as given

in Table I. By introducing them in (5) and (3) we get

t_ csch 2 [t_l (x + b)] + t_ sech 2 [n2(x - a)]

P2(x' 62) : --(t_21 -- t_22) ( --t_ 1 coth [_a (x + b)] + t_2 tanh [_2(x - a)] )2"
(11)

The potential (11) has two finite wells which can be modulated by changing the values of

t_a and _2 under the condition _2 < nl. A Taylor expansion of (11) shows a singularity at

x = a when _2 > _1. The case n2 = t_l gives a potential V2(x, 61) = 0.



Let us remark that, for the periodic superpotentials/31in Table I, equation (7) leadsto a
natural classificationof two kinds of potentialsdependingon the parity of n. For n even, the

periodic superpotential/31 does not appear as a separate term in (7), affecting only one of

denominators. The resulting susy partners have only a finite quantity of singularities. This

fact has been used by Stalhofen [8] by constructing potentials with bound states embedded

in the continuum. On the other hand, for n odd, the function/31 is a separate term in the

sum (7) and its global effect is not canceled by any similar term. The corresponding susy

partners become singular periodic potentials.

In conclusion, the nonlinear difference algorithm (6) allows the construction of higher

order susy partners of any initial potential V0 (x), provided that a certain number of solutions

of (i) have been given. This finite difference algorithm generalizes the superposition principle

reported in [5] extending its applications to the susy construction of new solvable potentials.

In particular, the higher order susy partners Vn (x, en) of the free particle potential represent

a wide set of transparent wells in the terms discussed in [7-9], as well as multisoliton solutions

of the KdV equation as given in [5].
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Abstract

Anharmonic oscillator potentials derived from the standard harmonic os-

cillator by means of iterations of the first order intertwining transformation

possess a natural pair of ladder operators obeying polynomial non-linear al-

gebras. Those operators can be partially linearized, and the coherent states

construction can be performed in the non-linear and linearized cases.

1. In supersymmetric quantum mechanics (SUSY QM) a realization of the SUSY algebra

with two generators Q1, Q2 [1-3]

[Qi, H_s]=o, {Qi, Qj}=Si3Hs_, i,j= 1,2, (1)

is constructed from supercharges Q1 = (Qt + Q)/x/_, Q2 = (Qt _ Q)/iv_, where:

o:(o (o° o) o)0 , H_={Q, Qt}= BB t = H- " (2)

If B and B t are first-order differential operators

H_becomeslinearinHP= (H 0)0 H :

[_ )]1 ___xx _I_OLI(X,e '

Hss = H p - _,

where H and H are intertwined to each other by B and B t [3-4]:

1 d 2
[-IB t= BtH, H- 2dx2 + V(x), [I-

There is a natural relationship between If, 17 and al"

_ (x, e) + a_(x, e) = 2IV(x) - _],

1 d 22_2 + v(x).

_(x) = v(_)-_i(x,_).

(3)

(4)

(5)

(_)



The value of the factorization energy s is crucial for the behaviour of l)(x). For the harmonic

oscillator potential V(x) = x2/2, in order to avoid singularities of IV(x) at some x C (-oc, ec)

we must have e < 1/2, where 1/2 is the oscillator ground state energy [4].

2. Now, if instead of the first-order operators A1 and A[ of (3) one substitutes B and B t by

the rnth-order operators Bm and B t resulting of rn iterations of the first-order transforma-

tion (3,5-6), one is led to the rn-SUSY QM in which H_s is a rnth order polynomial of H p

[5-9i:

Hs_ = (HP-el)...(HP-em), (7)

where the ei, i = 1,... rn are ordered as ei+ 1 < ei < 1/2. The final potential l)(x) is of kind:

X 2 m

- 2 E <(x,e,) (s)
i=1

The (i + 1)th superpotential c_i+l(x, e_+l) depends of the previous one at ei+l and ei:

ei -- el+l)
OLi+l(X, ei+l) = --OLi(X, ei)- 2 -- ei+ )'

i = 1,...,rn- 1. (9)

Thus, the main role is played by rn solutions cq(x, e;), i = 1,..., rn (preferably general) to

the initial Riccati equation (6). It turns out that for the harmonic oscillator it can be gotten

the general solution for an arbitrary e [10-11]:

__o

Ofl(X,e ) ---- --X -t- _X In F1 4 '2' x2)+2  x1 (3-2 3F(__T_ ) _,_;x 2) . (10)

The spectrum of l)(x) is composed by one infinite ladder of equally spaced energies starting

from 1/2 plus rn additional levels at arbitrary positions below 1/2.

3. There is a natural pair of annihilation and creation operators for the m-parametric family

of potentials (8), whose action is squematically drawn in figure 1 [4,12-13]:

D = BtaB, D t = BtatB, (11)

where a and a t are the oscillator annihilation and creation operators. It turns out that

D, D t and//close a polynomial algebra of (2rn)th order [13]

[//, D] = -D, [[t,D t] = D t, [D,D t] = N([t + 1)- N(H), (12)

where N(H) is a generalized number operator [14] given by:

i=1

(13)

The eigenstates I_q} of H associated to e_, i = 1,..., rn are annihilated by both D and D t.

The ones ]_} associated to E,_,n = 1,2,... are linked to two neighbours I_-_} and I*}_+_}

by D and D t. The extremal state I_0} is linked with I_l} by D t and it is annihilated by D.
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FIG. i. Schematic representation of the ruth order intertwining operators B, B t and the an-

nihilation and creation operators a, at, D, D _ for the Hamiltonians H and/_.

4. We notice that the nonlinear algebra (11-13) can be partially linearized, i.e., there is

a pair of creation and annihilation operators DL and D_ satisfying the Heisenberg-Weyl

algebra on the subspace associated to the levels En = n + 1/2, n = 0, 1,... [13,15]. Those

operators and their action onto {l_),n = 0,1,...} are given by:

Dc = B t [I'Iirn=l(N- _, + 1)(N- ei + 3)]-'/2aB,

rn 1 B,D_ = Bfa* [I-[i=,(N- ei + 7)(N- ei + 3)] -1/2

DLI_.) = v/_l_n-1), DIll,,)= v_ + lie.+,), [DL, D_]I_}.)= I_-).

(14)

(15)

(16)

We see that the explicit expressions for the nonlinear annihilation and creation operators (11)

are simpler than the linear expressions (14,15). However, the action of the linear operators

onto the states {l@n}, n = 0, 1,...} is simpler that the corresponding nonlinear action. This

characteristic will be seen once again in the coherent states construction.

5. It is quite natural to construct the coherent states (CS) as eigenstates of D and DL. In

the nonlinear case we have (D}z) = zlz)) [13]:

(17)

where r(x) is the gamma function, z • C, r = }zl, and pFq is a generalized hypergeometric

function. On the other hand, in the linear case we get (DLIz) = zlz)):

v2 Z ~

p) = •
r_=0

(18)



Due to the CS (17,18) involve just the eigenstates of H associated to the levels E,_ =

n + 1/2, n = 0, 1,..., they evolve in time as for the harmonic oscillator:

Iz,t) - e-_'_'lz)= e-"/21z(t)), z(t) -- _-"z. (19)

The resolution of the identity needs to take into account the existence of the atypical or-

thogonal coherent states ]_,)[12-13,15]: 1

z = g,% 1_{_)<6{_1+ f Iz)(_l@(z). (20)

In thenonlinearcasethemeasure@NL(z)takestheform[13]:

( 3. 2) h(r2)rdrd_, (21)d_NL(_)= 0F2m-< + ½,-..,-_ + 1,_q + 3,... ,__ + _,,

where h(x) is proportional to a Meijer G-function:

_2m+1 0 (xl0,_q_l * 1 1
rn 2" '""--errt -- 7'-- el -1- g '''"--(_m -1- 2" )h(x) - _ o _m+, (22)

_ l-L=1 r( -_I+1 •_)r(-_,+_)

In the linear case the measure d#L(Z) becomes the standard one:

d#L(Z) = rr-lrdrdgo. (23)

In conclusion, from both the algebraic and practical viewpoints it is convenient to work with

the linear annihilation and creation operators and their corresponding coherent states.
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Abstract

The supersymmetric problem related to the modified PSschl-Teller potential

is solved in closed form. Some of the new potentials present singularities,

but it is also possible to find some others free of singular points, and with

interesting physical features.

In the last years there has been remarkable progress in the study of new exactly solv-

able problems in quantum mechanics. The topic has been developed along different lines:

Darboux transformation, Infeld-Hull factorization, Mielnik factorization, susy quantum me-

chanics, and inverse scattering theory, among others [1]. All of them can be embraced in

the elegant algebraic approach called intertwining technique, which has been successfully

applied in the construction of higher order susy partners of the harmonic oscillator[2] and

hydrogen-like radial potentials [3]. Using the intertwining technique, we are going to analyze

the susy problem associated with the modified PSschl-Teller potential in order to determine

new families of susy partner potentials directly related to it.

Let us consider the well known one-dimensional two-parametric modified PSschl-Teller

potential [4], written in the following equivalent forms:

V(_,x) -_ ;_(;_ - _) g_= - , _>0, (1)cosh 2 ax 2 cosh e ax

where we take A > 1 or g > 0 in order to have an attractive potential. The parameters _, A

and g are related by

A=[ 1+ > 1. (2)

The bound states (E < 0) for this potential are

_b(x) = (cosh ax) ;_ [A2F1 (a, b; 1/2;- sinh 2 ax)

+B (sinhax)2Fl(a + 1/2, b + 1/2; 3/2;- sinh 2 gx)], (3)

*On leave of absence from Departamento de Fisica, CINVESTAV-IPN, A.P. 1_-7_fl, 07000

Mgxico D.F., Mexico.



f, ,_
with 2a = /_- _/]El/ct , 2b = A + _/I/_']/ct, and the discrete energy spectrum is given by

En =--C_ 2(/_-l-n) 2, n C N, 0_< n < A-1. Observe that the energy for n=0 always

belongs to the discrete spectrum of V(a, x). The corresponding normalized wave function

is precisely

/
ozF(_ I 1/2)

@0(x) = ,I
v_F()_ - 1) (c°shctx)l-'_" (4)

d
We look now for a first order differential operator A = _ + fl(x) and a partner potential

V(c_, x) such that the following interwining relationship holds:

[" j [" ]--_-_x2 + fz(a,x) A = A --_7x2 + V(a,x) . (5)

The new potential _'(c_, x) is related to V(c_, x) through the following susy relationships

f_(_,_) = v(_,x) + 29'(_), ft'(x) - f'(_) = v(_,x) - c, (6)

with e an integration constant, which turns out to be the factorization energy. We can find

two different particular solution of the Riccati equation (6) in the form

ft_(c_, x)= D=L tanhax, D + = -c_A, D- = -a(1- A), (7)

associated with two different factorization energies e± = -(D+) 2. The general solutions of

the Riccati equation (6) can be found to be

/36±+(a, x) : D± tanh(_x- ___xdin(l- C ± f'(cosh.y)2D'/'dy), (8)

where C i are two new different integration constants; when they are zero, the particular

solutions /30i(x) are recovered. We have two different families of intertwining operators

A++, Ac_ , generating two different families of susy partners of the potential (1). Since the

begining of susy quantum mechanics, it has been usual to consider only the susy partners of

a given potential constructed by using only particular solutions of the Riccati equation. We

are going to analyze now the results coming out when the general solutions (8) are taken

into account. The integrals appearing there can be expressed in a closed form as

/. ,-..-°.( )(cosh o[.y) q dy -- ozq 2F1 -q' -q;1 - 2;-e"" + constant. (9)

Let us analyze first the family of potentials _+ (c_, x). In this case the definite integral

(9) exists in the whole real axis, and we can define

fo x
M (A, a, x) = (cosh c_y )- 2_ dy -

22A e2aAx

2aA 2ar(_ + 1/2)"

This function is odd in the variable x, and it is monotonically increasing from its mini-

mum value M(A,a,-ec) = -v_r(a)/(2_r(a + 1/2)) to M(a,_,+oo) = IM(_,_,-_)I.

Defining now the function



(cosh ax)-2_' 1 d

_(A'a'x):=l-4M(A,a,x)- 4dx
ln[1-4M(A,a,x)], (10)

we can evaluate the associated susy partner potential, which turns out to be

_+(a, x) = -a 2
I+-_+V_+_

2oL a

cosh 2 ax
-4Aa4_-(A,a,x) tanhax+2(4_-(A,a,x)) 2. (11)

The typical features of these potentials can be seen in [5]. It can be proved that the function

_+(a, x) is free of singularities in the following range of values of the parameterr 4

1 2ar(A + 1/2)

[4[ < M(A,a,+oo) = v/-_r(k) (12)

Working in this interval, the potential (ii) corresponds to the following family of almost

isospectral Hamiltonians

N d 2 d 2

H_.- dx 2 +_+(a,x)=A_(A_() t +e+; H- dx 2 +V(a,x)=(A_-) tA_-+e +. (13)

Due to the fact that e+ = E-I is an energy level not allowed in the spectrum of the initial

Hamiltonian H, the eigenfunctions of Hf can be constructed by acting with the operator

A_- on the eigenfunctions _bn of H:

N+
_n(4, x)=(En-e+)-l/2A_bn(X), n=0,1,..., (14)

plus an extra "missing state" @+(_,x) satisfying (A_()'_@+(4, x) = 0, which is

1 1-4 2 M2(A, a, +oc)
_+(4, x) = _] (coshax) A _-(A, a, x).

2 M(A, a, +oo)
(15)

The non-singularity condition (12) appears here again, although in this case it is required

for the missing state to be normalizable. Note also from (13) that _+(4, x) is clearly the

eigenfnnction of H_- with eigenvalue c+. This is the reason why we named it missing state.

The spectrum of H_- is {En; n = 0, 1,...} plus a new level at e+ = E-1. The conclusion is

immediate: the family of potentials _'C+(a, x) is not strictly isospectral to its susy partner

V(oe, x): it has the same levels plus an additional one which is placed below all of them.

The study of the other family of potentials _-(a, x) arising from (8) can be done ac-

cording to the lines already followed, although there are important differences between the

final results. Let us introduce a function similar to M(A, a, x), let us call it L(A, a, x):

L( A, oe, x) =
e -2_(;_-1)x _ P(2 - A)

2Fl (1- A, 2-- 2A;2-- A;--e 2ax) -k
22(A-l) 20_(/_ -- 1) 2(x(A- 1)p(a_ A)"

This function is also odd and takes arbitrary positive values for x > 0 and arbitrary negative

values for x < 0. We use L(A, a, x) to define the function

(cosh ax) 2(:_-1) 1 d
ln[1-¢L(A,a,x)], (16)



from where wecompute the new susypartner potential

_-(a, x) = -a 2
1+_-1/_+_

cosh 2ax + 4a(l - 1)_ f/_-(A, a, x) tanhax + 2(_ _-(t, a, x)) 2.

Due to the behaviour of L(I, a, x), it is quite clear that for any choice of _ # 0 the potential

_-(a,x) presents a singular point, in contradistinction to the previous case of _+(a,x).

The presence of this singularity froces the results to be interpreted according to [6]: the

susy partner potentials are not directly related by isospectrality to the original potential

V(a, x), but to a different problem consisting of this modified P6schl-Teller potential plus

an infinite barrier potential placed precisely at the position where _-(a, x) has its singular

point.

The case _ = 0 is interesting enough to be considered separately. It gives just the

particular solution CV0-(a , x), which is free of singularities. The susy partner potentials are

directly connected to the factorization energy c- = E0 through (6). The eigenfunctions of

H o are given by

_n(X) : (m n -_-)-l/2AoCn(X ). n= 1,2,..., (17)

In the present case it can be proved that there is no missing state. The spectrum of H o

is given simply by {En;n = I, 2,...}. Remark that, like in the previous case, this new

Hamiltonian is not either strictly isospectral to H, although the reason is just the opposite:

now the susy process eliminates one state of H without creating a new one which can

substitute it, while in the previous situation a new state was created, but keeping the initial

spectrum.

More details on the results reported here and their connection with the Dirac delta well

potential can be seen in [5].
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Abstract

The principles of high-precision interferometry including the ellipsometry,

polarimetry based on the measurements with nonclassical polarization states

of light are discussed. Formation of polarization-squeezed light and descrip-

tion of the ultimate measurement procedure in the Mach-Zehnder and/or

Michelson interferometers are considered for the first time to make a precise

gravitational radiation detection. Another type of interferometric measure-

ment based on simultaneous measurement of the all four polarization Stokes

parameters in a special type of multichannel interferometer-polarimeter are

considered as well.

1.INTRODUCTION

At present the problem of nonclassical properties of light in polarization parameters has

been a subject of intensive study in quantum optics [1-3]. The discussion has generally/

focused on suppression of quantum fluctuations of the Hermitean Stokes parameters that

obey to the SU(2) algebra.. In our previuos papers [2,3] we discussed the procedure of

quantum nondemolition measurement of the Stokes parameters of light. From the standpoint

of application of nonclassical polarization light in high-precision measurements the SU(2)

interferometers have a special interest[4,5]. In fact, it is well known that such interferometers

play an essential role for gravitational radiation detection [5]. The problem is under our study

in the paper.

2.QUANTUM DESCRIPTION OF THE LIGHT POLARIZATION

Let us describe the polarization characteristics of quantized optical field by the Hermitian

Stokes operators S[i (j = 0,1,2,3):

+ + + (la, b)SO = a+x ax @ ag ay, S1 = acc ax -- ay ay,



where _/) is the classical phase shift (see Fig.i); ax,y and a+y are the annihilation and creation

operators, respectively, of two orthogonally polarized modes. In general case the operator a

of total optical field can be expressed via two operators as and ay for elliptically polarized

light as [1]:

a = %ax + %%, (2)

where complex c-numbers e_,y determine the polarization characteristics of optical field.

.They can be written in the terms of two phase parameters r/ and 0 in 3D-space of the

Poincare sphere:

e_=cosr IcosO-isingsinO, %=cosr/sin0+isinr IcosO. (3a, b)

in fact, the phase parameters 2rj and 20 determine the ellipticity and azimuth of the polar-

ization state of light, respectively. Formation of nonclassical polarization states of light in

different optical interferometers is the subject under discussion in our paper. The presence of

fluctuations of both phases and amplitudes for two orthogonally polarized modes, which are

unavoidable in quantum approach, results in principal uncertainty for light in polarization

Stokes parameters and also for the phase angles 7? and 0 in ellipsometric measurements [2].

3. FORMATION OF POLARIZATION-SQUEEZED LIGHT IN NONLINEAR

MACH-ZEHNDER INTERFEROMETER

The 3D-dependence for normalized variance o_ = ((AS3)2}//:t vs input polarization

state of light, i.e. vs the phase angels r! and 0 is shown in Fig.2. The quantum interference

of two polarization modes results in formation of polarization-squeezed light with suppressed

fluctuations of the Sa Stokes parameter at output of the Mach-Zehnder interferom&er. The

minimal value of cr2 corresponds to the case of circularly polarized light at the input of

optical fiber being used as a nonlinear medium to form the squeezed light. The suppression

of fluctuations of the Sa-Stokes parameter depends on the interferometer characteristics as

well (cf.[1]). In Fig.3 the normalized variance cr_ is shown a,s a function of the r' = "/2/%

parameter (where the % and % magnitudes depends on the nonlinearity and length of optical

fiber in two arms of interferometer, consequently). The value of cr2 is minimal for r = -1.

4. ACCURACY OF THE MEASUREMENT FOR MICHELSON

INTERFEROMETER

YVe have also considered an application of light in different polarization states for pre-

cise phase measurement in two interferometric schemes, i.e. based on the Mach-Zehnder

and Michelson interferometers. The best accuracy of the phase shift measurement can he

achieved with polarization- squeezed light at input of the measurement system, i.e. when

6&_/(5_ 1 __ _, where hq_ = 1/v/_ and 5_ i = 1/_ are the errors of the i;neasured

phase difference in the interferometer for coherent and polarization-squeezed states of light

at the input of interferometer, respectively, K, determine the squeezing parameter before the
interferometer.



Finally, the experimentalset up with polarization-squeezedlight for the precisegravita.-
tional radiation detectionusingthe Michelsoninterferometerhasbeendiscussedaswell.The
necessarypower requirements to reach a best sensitivity of the measurementsby such a
procedureis much smaller for polarization-squeezedlight than for coherentlight and/or for
quadrature squeezedlight being generatedby parametric oscillator being used at input of
the interferometer (cf.[5]).

5.QUANTUM ELLIPSOMETRIC MEASUREMENT

Another type of interferometric (ellipsometric) measurementsis connectedwith new
direction in quantum optics and ultimate measurementsbasedon quantum elliidsometry,
polarimetry and profilemetry [3] - seeFig.4. In the casethe procedureof tile measurement
of the matter characteristic(in condensedor atomic and/or molecular systems)is limited
by quantum properties(fluctuations) of the light polarization and ellipsometric parameters
as well. The basic schemeof quantum ellipsometer includes the source of polarization-
squeezedlight for precisemeasurementsof the phaseangelsq and 0. The original eight-port

polarization interferometer-polarimeter for simultaneous homodyne detection of both the

Stokes parameters of light and the polarization phase operators(ellipsometric parameters)is

proposed by us for the first time as a final step of the ellipsometric measurement.
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variance O-_ of the Stokes parameter for
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FIG.4. Scheme of the quantum ellipsometric
measurement. Here we denote: 1 - laser

source, 2 - generator of nonclassical
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is a nonlinear media both needed for
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sample, 4 - polarimeter for the all Stokes
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Abstract

We report on several which-way experiments performed with an atom
interferometer. The internal atomic state serves as a which-way marker. With
which-way information stored, the interference fringes are lost. It is a pecu-
liarity of this experiment that Heisenberg's position-momentum uncertainty
relation cannot explain the loss of spatial interference fringes. In addition, we
can vary the parameters of the experiment such that only incomplete which-
way information is stored. In this case, a reduced fringe visibility is observed.
For a given fringe visibility, the amount of which-way information which can
be obtained is limited by the recently discovered duality relation. With this
atom interferometer, we have performed the first experimental test of the
duality relation.

Introduction

The principle of complementarity refers to the ability of quantum-mechanical objects to
behave as particles or waves under different experimental conditions. For example, in the

famous double-slit experiment, a single atom can apparently pass through both apertures
simultaneously, forming an interference pattern which reveals the atom's wave nature. But
if a which-way detector is employed to determine the atom's way, the interference pattern is

destroyed. In this case, each atom passes through only one of the slits, just like a classical
particle. Complementarity expresses the fact that it is impossible to observe the wave and
particle properties simultaneously.

The usual explanation for the loss of interference in a which-way experiment is based
on Heisenberg's position-momentum uncertainty relation. This has been illustrated in fa-

mous gedanken experiments like Einstein's recoiling slit [1] or Feynman's light microscope
[2]. However, Scully, Englert, and Walther [3] have recently proposed a new gedanken ex-
periment, where the loss of the interference pattern is not related to Heisenberg's position-
momentum uncertainty relation. Instead, the correlations between the which-way detector
and the atomic beams are responsible for the loss of interference fringes.

We have performed a which-way experiment with an atom interferometer. A microwave
field is used to store the which-way information in internal atomic states. A careful analysis

of the experiment shows that Heisenberg's position-momentum uncertainty relation cannot
explain the loss of interference fringes. Instead, correlations between the which-way detector
and the atomic motion destroy the interference fringes.

The Atom Interferometer

We start with a brief description of the atom interferometer, which has been presented in
more detail in Refs. [4-6]. Figure 1 shows a scheme of the setup, which uses Bragg reflection



of atoms from standing light waves. A first standing light wave splits the incoming atomic
beam, A, into two beams, B and C, of equal atomic flux. After free propagation, a second
standing light wave splits each atomic beam into two components. Now two beams, D and
E, are travelling to the left, while beams F and G are travelling to the right. In the far field,
each pair of overlapping beams produces a spatial interference pattern. The envelope of the
interference pattern is given by the collimation properties of the incoming atomic beam.
For detection, the atoms are illuminated with laser light and the fluorescence photons are
observed. Figure 3(a) shows the experimentally observed interference pattern.

A

B C

le>

_ight

FIG. 1. Scheme of the atom interferometer.

Bragg reflection from a standing light wave
splits the incoming atomic beam, A, into two
beams, B and C. A second standing light
wave splits the beams again. In the far-field,
a spatial interference pattern is observed.

13> , [

12> +e_rnw--

FIG. 2. Level scheme. The ground state is
split into two hyperfine components, 12} and
13}. The light frequency is chosen midway
between the corresponding resonances to the

excited state le}.

Storing Which-Way Information

The experiment employs a beam of SSRb atoms, whose ground state is split into two
hyperfine components with total angular momentum F=2 and F=3, labeled 12} and 13},
respectively. In these long-lived internal states, which-way information can be stored. For
that purpose, the frequency of the standing light wave, CUlight , is tuned halfway between the

[2} _ le} and 13} _ Is} transition (see Fig. 2). Hence atoms in state ]2} (13)) see a red (blue)

detuned light field creating a negative (positive) de-Stark shift potential, corresponding to
an optically thicker (thinner) medium. In analogy to light optics one therefore expects [4]
that the wave experiences a 7r phase shift if reflected from an optically thicker medium, i.e.

if an atom is Bragg reflected in state 12}. However, a detailed calculation [5] shows that here
this 7r phase shift occurs if an atom is transmitted in state 12}.

This phase shift is converted into a population difference between states [2} and 13} by
applying a microwave field, at frequency C_mw, resonant with the [2} _ 13} transition. Two
7r/2-pulses of the microwave are required. They form a Ramsey scheme: one is applied before
and one after the first standing light wave. The internal atomic state is initially prepared in

state 12} and then converted to the superposition state (I 2} + 13})/x/_ by the first microwave

pulse. Next, the standing light wave splits the beam, so that the state vector is changed to

1¢) o<ICB) O (13) + 12)) + L_c} _ (13) -12}), (1)

where the minus sign is due to the 7r phase shift, and I¢B} and I¢c} denote the state vectors
of the center-of-mass motion for the reflected and transmitted beams (B and C in Fig. 1),



respectively. The secondmicrowavepulse, acting on both beams (B and C), convertsthe
state vector to

I_) _ I_s) o 13) - I_c) o 12), (2)

Obviously, the atom's internal and external degrees of freedom are entangled. This entan-

glement is the key point for the storage of which-way information. If later a measurement of
the internal state is performed, the result of this measurement reveals in which of the beams

the atom is: if the internal state is found to be 13}, the atom was Bragg reflected, otherwise
transmitted. Eq. (2) indicates that full which-way information is stored.

Interferometer with Which-Way Information

After considering a single beam splitter, we now return to the complete interferometer.
Sandwiching the first Bragg beam splitter between two microwave 7r/2 pulses stores the

which-way information in the internal atomic state, as described above. Figure 3(b) shows
the atomic distribution with which-way information stored. Obviously, the interference
fringes are lost. The mechanical effects of the which-way detection were analyzed in detail
in Ref. [4]. We found that Heisenberg's position-momentum uncertainty relation cannot
explain the loss of fringes.
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(a) Interference pattern obtained with the atom interfer-
ometer. (b) Storing which-way information destroys the interference fringes.

In order to investigate why the interference fringes are lost, we consider the state vector
for this interaction sequence. The state vector after the interaction with the first beam
splitter sandwiched between the two microwave pulses is given in Eq. (2). The second beam
splitter transforms this state vector into

I¢} oc I_bD}Q 13) -- I_bE)O 12) 4- I_bF)O 13) 4- I_bG)O 12) (3)

The sign of ICe} is positive due to the 7r phase shift during the transmission through the
second beam splitter.

In the far field the atomic position distribution under the left peak of the envelope is
given by

P(z) c< I_bD(Z)l 2 4-ICE(Z)l 2 - ¢_(Z)¢E(Z)(3[2) -- _b_(Z)¢D(Z)(213 ) , (4)

because here the spatial wave functions Cs(z) and Ca(z) vanish. The first two terms describe
the mean intensity under the envelope. Interference could only be created by the last two
terms, but they vanish because (213) = 0. Precisely the same entanglement that was required
to store the which-way information is now responsible for the loss of interference. In other
words: the correlations between the which-way detector and the atomic motion destroy the
interference, as discussed in Ref. [3].



Incomplete Which-Way Information

These correlations need not always be perfect. In our experiment, we can adjust the
degree of correlation by varying the pulse area _ of the microwave pulses. In general, a
later measurement performed on the which-way detector yields only incomplete which-way
knowledge. In order to quantify, how much which-way information is available from such
a measurement, one typically uses the distinguishability, D. With incomplete which-way
information stored, one obtains interference fringes with a reduced visibility, V, which is

limited by the so-called duality relation [7,8]

D 2 + V 2 < 1 (5)

This fundamental limit can be regarded as a quantitative statement about wave-particle
duality.

The first experimental test of the duality relation was reported in Ref. [9]: For various
values of _, D and V were measured independently. The results shown in Fig. 3 are in good
agreement with the duality relation.

100%

D

80% 8 V_

60%

40%

20%

0%
I

0 _4 n./2 3rE4

microwave pulse area

FIG. 4. Fringe visibility V (triangles) and path distinguishability D (dots) as a function of
the pulse area _ of the microwave pulses which are applied to store which-way information.
The solid lines display the theoretical expectations (see Ref. [9]).
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Abstract

We show that the generation of squeezed light from diode lasers is strongly

affected by spectrally asymmetric mode-correlation effects. The experimen-

tal results correspond closely to the predictions of a quantum-mechanical

Langevin multi-mode rate equation model. Using the squeezed diode laser

as a pump source the intensity noise of a Nd:YVO4 microchip laser was re-

duced to 0.5 dB above the quantum noise limit at low frequencies.

I. INTRODUCTION

In recent years there has been considerable interest in laser sources for applications in

laser-based high-sensitivity metrology and communication technologies. Examples are high-

precision interferometry, e.g. the detection of gravitational waves, high-sensitivity spec-

troscopy, and the transmission of information with the highest possible channel capacity.

The demand for a high signal-to-noise ratio in such applications requires laser sources with

a high output power and an intensity noise close to the standard quantum noise limit (SQL)

or even below. Diode lasers have been shown to offer the potential to reach and go below

this limit by a reduction of pump current fluctuations below the SQL [1,2]. Solid-state lasers

have been proposed to emit non-classical light with photon number squeezing if they are

pumped with a pump source which shows sub-Poissonian intensity fluctuations [3].

The major goals of our investigations are the realization and characterization of a diode

laser source of non-classical light with photon-number squeezing and the optical pumping

of high-stability, single frequency solid-state lasers with this pump source. The detailed

investigation of both the diode laser's and the solid-state laser's intensity noise characteristics

is an indispensable basis for the generation of non-classical light with diode-laser pumped

solid-state lasers, which has not been demonstrated by now.



II. INTENSITY NOISE MEASUREMENTS

Diode laser sources for non-classical light were realized with SDL 5410-C single mode,

quantum well A1GaAs diode lasers with wavelengths around 810 nm. The pump current

noise was reduced by driving the diode lasers with a high-impedance constant current source.

The generation of non-classical light required a suppression of the competing diode laser side

modes to a high degree (> 35 dB). A diode laser, which was stabilized by the technique

of injection-locking [4], emitted light with an intensity noise of 2.4 dB (42%) below the

SQL with an output power of 100 mW [5], whereas without injection-locking (free emitting

laser) the noise was 1-2 dB above the SQL. The stabilization of a second diode laser by the

feedback of an external Littrow grating [6] provided wavelength-tunable radiation with a

noise suppression of 2.2 dB (40%) below the SQL with an output power of 80 mW [7].

With these pump sources the intensity noise of a solid-state laser optically pumped with

non-classical light was investigated for the first time [5,8]. The extremely low intensity noise

of the diode laser pump source allowed for an observation of the solid-state laser's internal

noise sources, i.e. the quantum noise characteristics. Nd:YVO4 microchip lasers with a

low lasing threshold of less than 0.5 mW and a high quantum efficiency of up to 66% were

used for the investigation of these noise characteristics. By pumping with non-classical light

the intensity noise of the microchip lasers at low frequencies below the relaxation oscillation

resonance was reduced by more than 20 dB compared to pumping with a free emitting diode

laser. Fig. 1 (trace (i)) shows the microchip laser intensity noise spectrum, measured with a

balanced homodyne detector, for the case of pumping with squeezed light from the grating

feedback diode laser. The minimum intensity noise was 0.5 dB (12%) above the SQL in

the low frequency range (250 kHz). This is the lowest intensity noise of an optically pumped

laser in that range at present [8].

III. FUNDAMENTAL NOISE PROCESSES

The measured intensity noise spectra of the Nd:YVO4 microchip lasers were compared

with the predictions of a quantum mechanical Langevin rate equation model (see trace (ii)

of Fig. 1), whose parameters were experimentally determined in independent measurements.

The comparison shows that the microchip laser intensity noise is higher than the predictions

in the low frequency range below the relaxation oscillations and is lower than the calculated

values in the relaxation oscillation frequency range.

From the difference between experimental and theoretical data in the low frequency

range a noise source for the solid-state laser can be identified, which has not been taken into

account so far: The emission of photon number squeezed light by a diode laser results from

an anticorrelation between the fluctuations of the diode laser main mode and the fluctuations

of a large number of weakly excited side modes. As the solid state laser does not absorb all

the modes which participate in this anticorrelation, its effective pump noise is higher than

the total (spectrally integrated) diode laser intensity noise.

In order to investigate the mode correlation effect, the diode laser radiation was spec-

trally filtered with a grating spectrometer [7]. The results showed that the generation of

nonclassical light with the diode laser always results from a cancellation of the anticorrelated

fluctuations of the main mode and up to 150 side modes, where the latter number depends
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FIG. 1. Intensity noise spectrum of the Nd:YVO4 microchip laser pumped with the grating

feedback laser, normalized to the SQL. Trace (i): experimental data as measured with the homo-

dyne detector; trace (ii): spectrum calculated from the Langevin rate equation model; trace (iii):

theoretical spectrum with consideration of measured effective pump noise and enhanced damping

of the relaxation oscillations.

on the side mode suppression. Additionally, for the first time, an asymmetric contribution

of long- and short-wavelength side modes to the total intensity noise was demonstrated. The

experimental results could be modeled to a high degree of correspondence with a quantum

mechanical Langevin multimode rate equation model taking into account nonlinear gain

effects in the diode laser [7]. As physical origin for the asymmetric intensity and intensity

noise distribution we identified a nonlinear dynamic self saturation of each mode by its own

fluctuations as well as a nonlinear cross-correlation of the modes, introduced by mode beat-

ing effects and population pulsations. According to this model, the cancellation of the mode

fluctuations in the total intensity noise depends on the degree of mode anticorrelation and

subsequently on the nonlinear gain contributions in the diode laser.

In order to independently determine the effective microchip laser pump noise, the diode

laser intensity noise which is contained in the spectral interval of the microchip laser ab-

sorption bandwidth was measured by a spectral filtering with the grating spectrometer [8].

The measured effective pump noise agrees well with the theoretical noise obtained from a fit

of the Langevin noise model to the measured microchip laser intensity noise spectra. This

agreement directly proves that the effective microchip laser pump noise is determined by

mode correlation effects in the diode pump laser.

The difference of the experimentally microchip laser noise spectra and the data calculated



from the Langevin model in the relaxation oscillation frequency range can be explained by

nonlinear gain effects in the microchip laser which increase the relaxation oscillation damping

constant. As physical origin a gain saturation by the finite lifetime of the lower laser level

4Ill/2 of 620 ps and the resulting non-zero occupation of this level were identified [8].

Trace (iii) of Fig. 1 shows the microchip laser noise spectrum calculated from the

Langevin rate equation model taking into account the measured effective pump noise and

the enhanced damping of the relaxation oscillations. This calculated noise spectrum now

shows an excellent agreement with the experimentally measured noise spectrum (trace (i))

over the entire range of noise frequencies. This agreement proves that the quantum noise

characteristics of the microchip laser are understood completely now.

As a result, our investigations show that a diode laser pumped solid state laser offers the

potential for the generation of photon number squeezed light. The currently best possible

combination of a diode and a solid state laser is the diode laser with grating feedback and

the Nd:YVO4 microchip laser. Here, the generation of squeezed light from the microchip

laser is prohibited by an increase of the diode laser intensity noise above the SQL in the low

frequency range below 1 MHz, which is caused by mode correlation effects in the pump diode

laser. In order to generate squeezed light from the microchip laser, it has to be pumped

with a source which shows sub-Poissonian intensity fluctuations at low frequencies. This

can be achieved by a single-frequency emission of the diode laser, corresponding to a side

mode suppression of much more than 55 dB.

In summary, the presented results extend and clarify the picture of squeezed light gen-

eration in diode lasers and diode-laser-pumped solid-state lasers.



REFERENCES

[1] S. Machida, Y. Yamamoto, and Y. Itaya, Phys.Rev.Lett. 58, 1000 (1987).

[2] Y. Yamamoto, S. Machida, and W.H. Richardson, Science 255, 1219 (1992).

[3] Y.M. Golubev, and I.V. Sokolov, Soy. Phys. JETP 60, 234 (1984).

[4] H. Wang, M.J. Freeman, and D.G. Steel, Phys.Rev.Lett. 71, 3951 (1993).

[5] C. Becher, and K.-J. Boiler, Opt. Commun. 147, 366 (1998).

[6] M.J. Freeman, H. Wang, D.G. Steel, R. Craig and D.R. Scifres, Opt.Lett. 18, 2141

(1993).

[7] C. Becher, E. Gehrig, and K.-J. Boiler, Phys. Rev. A 57, 3952 (1998).

[8] C. Becher, and K.-J. Boiler, J. Opt. Soc. Am. B 16, 286 (1999).



Green lasing in microspheres

at very low pump powers

W.von Klitzing, E. Jahier, R. Long, F. Lissillour,

V. Lef_vre-Seguin, J. Hare, J.-M. Raimond, S. Haroche

Laboratoire KastIer Brossel de l'Ecole Normale Supdrieure

23 rue Lhomond, 75231 Paris 05, France

Abstract

A green room temperature up-conversion laser is being demonstrated in a

120 #m diameter microsphere of Er a+ doped ZBLAN. Lasing occurs around

540 nm with a 801 nm diode laser pump. The lasing threshold of only 30 #W

of absorbed power is over two orders of magnitude lower than the lowest

previously observed [1].

A low-cost green laser would have considerable impact on telecommunications, optical

data storage, and medicine. Here we demonstrate an Er a+ microsphere laser with an ex-

tremely low threshold. This type of laser might, by the virtue of its small size and ease of

fabrication, be an useful tool in the characterisation of laser glasses or as a highly mono-

chomatic seed source for fibre lasers.

Lasing in Er3+: The energy level diagram and pumping scheme can be seen in Figure 1.

A diode laser operating at 801 nm pumps the ions from their fundamental level 411_/2 to

419/2 , from where they decay rapidly by non-radiative processes to the meta-stable level

4Ill/2 and from there to 4113/2. A second photon transfers the ion to either 4F5/2 or 2Hn/2.

These levels decay very rapidly to the lasing level 4S3/2. Inversion can be achieved between

this level and the upper Stark levels of the ground state 4115/2. The splitting of the Stark

levels is only of the order of a few tens of cm -1 [2] thus guaranteeing a rapid thermalisation.

4Fs/2

2Hn _ "_

4S312

4F

pump ESA

4[

4] ' k

,I \

4115a --

801 nm pump

550 nm Laser

FIG. 1. Level diagram of Er a+ in ZBLAN



The laser resonators here are similar to our earlier experiments [3] microspheres of a di-

ameter between 40 #m and 120 #m made from Erbium doped silica or ZBLAN. Light within

such a dielectric spheres can be confined to so called whispering gallery modes (WGMs)

which are formed under the appropriate resonance conditions by successive total internal

reflections of the light at the surface of the sphere [4] and have the shape of a thin ring at

the equator of the sphere. In order to feed light into this modes one has use evanescent wave

coupling. This can be done by approaching a dielectric surface close to the sphere. Radiation

can then be coupled into such a mode by optical tunneling through the gap between the

sphere and for example a high refractive index prism. The rate of coupling of the WGMs into

the prism can be adjusted by changing the distance between the prism and the sphere, e.g.

with a PZT. The mode volume of the WGMs is about a thousand cubic wavelengths thus

leading to field strengths of 10 a V/m for a single photon in the mode. A quality factor of

109 corresponding to cavity damping times of one half of a microsecond are readily achieved

in non-doped spheres. [5] Clearly such a system is ideally suited to examine laser materials,

especially if taking into account the ease of production from very little material.

Spheres made from either ZBLAN or silica glass doped with Erbium are used here. The

ZBLAN spheres have a diameter of between 60 #m and 120 #m and are doped to 800 ppm

Er a+. At the Laboratoire dOptronique, Lannion, the ZBLAN glass [6] is ground to a fine

powder. This is then dropped through a microwave plasma torch where it is heated and

subsequently cooled in free fall. The spheres form due to the surface tension of the molten

material. For ease of manipulation the spheres are then attached to the tip of a glass fibre

using UV-curing glue.

The silica microspheres are formed by laser fusion at the end of a silica fibre to which

they remain attached. The final spheres have a diameter of between 30 #m and 100 #m and

are doped to 500 ppm Er 3+. In order to produce these an optical fibre [7] is eroded down

to its 20 #m diameter Er a+ doped core. Using a CO2 laser a length of fibre of 2 mm is then

fused onto a thicker silica stem which serves as a holder. Finally the tip of the doped fibre

is carefully heated near the focus of the CO2 laser so that the molten glass might form a

sphere due to the surface tension [8].

Experimental set-up: The pump radiation from a 801 nm, 40 mW diode laser is coupled

into a monomode fibre guides the light to the launching optics. A coupling efficiency of

25%, i.e. a few milli Watt of absorbed power, is readily achieved. The part of the light

reflected by the prism and the light coupled out of WGMs of the sphere is collimated using

a high aperture lens. Once a sphere has been coupled a Si-diode can be used to measure the

absorbed pump power and the quality factor (Q) of the pump mode. The green radiation

created in the upconversion of the pump radiation can be investigated by a monochromator

[Jobin Yvon HR230; Resolution _ 0.08 nm] followed by photo-multiplier.

Experimental results: The width of the pump modes is about 300 MHz in doped silica

and 400 MHz in doped ZBLAN and agree with the ones calculated from the respective bulk

absorption coefficients. The lifetime of the population of the 4Sa/2 state has been investigated

by mechanically chopping the intensity of the pump beam and measuring the exponential

decay of the green fluorescence. The measured values of 0.55(5) ms for ZBLAN is close to

the value of 0.43 ms measured in fluoindate glass doped to 1 mol% [9]. In silica the 4Sa/2

level is known to relax in about 700 ns [10]. The large difference in the life times between

the two glasses originates in the lower energy of the phonons in ZBLAN as compared to
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silica [11]. This explains why lasing in Er 3+ doped silica can not be achieved at the pump

powers available here.

Lasing in the ZBLAN spheres has been achieved in one sphere of 120 #m diameter.

Figures 2-3 show the intensity the 547 nm radiation coupled out of the WGMs as a function

of the pump intensity at 801 nm. At each point of the measurement the wavelength of the

pump laser was adjusted to coincide with the resonance of the WGM. The width of the gap

between the sphere and the prism and thus the coupling rate between the pump beam and

the sphere was verified to be constant throughout the experiment.

Figures 2-3 show the intensity of the green light coupled out of the mode via the prism

versus the absorbed pump power. Upon starting with a virgin sphere (Fig.2a) one finds that

at first (I) on increasing the pump intensity the green intensity follows a quadratic curve, as

one might expect for a two photon process. However, at higher intensities a time dependent

component appears. Most notably the green intensity increases even without an increase in

pump intensity (II). After a few minutes of 'apprenticeship' the green emission stabilises. If

one now reduces the pump power the green emission follows a linear regime (III). Decreasing

the intensity further makes the lasing threshold of only 30 #W apparent. Upon increasing

the intensity again one stays in the linear lasing regime, even if starting again from zero

Watt (Fig.2b). The exceedingly low lasing threshold has its origin in a combination of small

mode volume and high finesse. Taking into account the strong confinement of the pumping

radiation in the WGMs it agrees well with the thresholds measured elsewhere [12,13]. It

should also be noted that the laser output remains linear with respect to the pump power

even ten times above threshold. The green emission returns to the quadratic regime only

after a period of about two hours of absence of pump radiation. In fibre lasers this effect

has been observed [14,13] before, albeit at far higher pump powers.

It is interesting to observe that we have not observed this temporary transition between

the quadratic and linear regime in absence of lasing. Figure 3 shows the radiation from a

virgin sphere exhibiting no 'apprenticeship' at all. Even after absorbed 2200 #W power into

the pump mode for a duration of twenty minutes the green intensity retraces the original

curve. One possible interpretation of the 'apprenticeship', put forward by D. Piehler [13], is

photo darkening observed in rare-earth doped fibres.
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Conclusion : We have succeeded in demonstrating an Erbium doped green microlaser

with a threshold of only 30 #W which is about 300 times lower than the lowest in Er 3+

[12] and i00 times lower than the previous lowest IR to visible up-conversion laser in any

material [I]. An apprenticeship' of the green laser emission has been observed.
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Abstract

The main objective of the work is the discussion of the physics of the undu-

latory radiation sources and parametric free-particle lasers. Some features of

such sources based on ion beams will be considered.

According to Maxwell electrodynamics a particle nonuniformly moving in the external

electromagnetic field emit the electromagnetic radiation. The properties of the emitted

radiation are determined by the trajectory <ff the particle. Monochromatic radiation is

emitted in the external field which perform a periodic (undulatory) trajectory along some

axis. The broadband radiation is emitted when the particle trajectory has a single bend or

a system of bends of the opposite polarity irregularly located along a straight line.

Electromagnetic radiation sources based on the emission of charged particles in unduta-

tors are named undutator radiation (UR) sources. UR sources can be classified to sponta-

neous incoherent, spontaneous coherent and induced UR sources. Spontaneous coherent and

induced UR sources are named free-particle lasers (FPLs) as well. The nature of radiation

emitted in the undulator is determined by quality (emittance) and features of the particle

beam (homogeneous, prebunched), availability of the external wave, feedback (resonator).

Spontaneous incoherent UR sources and FPLs are devices made of an accelerator or

storage ring and an undulator (wiggler). The accelerator and storage ring are devices which

produce relativistic charged particle bunches. The undulator is a device which make particles

go along specially periodic trajectories relative to some axis. The most typical undutators

produce spatially periodic magnetic fields. Different electromagnetic fields can perform the

same trajectories. For example, helical trajectory can be performed by either homogeneous

magnetic field produced by solenoid or by helical magnetic field produced by a helical undu-

lator. Helical trajectories are performed by circular polarized electromagnetic waves as welt.

Sine-like, helical, elliptical in the transverse plane and more complicated trajectories can be

used. When an optical resonator storing the produced radiation is inserted in the undulator

of a FPL then the successive particle bunches periodically enter the undulator such a way

that they copropagate with the stored optical wavepackets.

In ordinary FPLs the particle bunches are not bunched on the scale of the emitted

wavelength at the entrance of the undulator. Then under the action of the combined fields of

the undulator and the stored wavepacket the particle beam is continuously sdf-microbunched

on the scale of the enfitted wavelength and emit coherent radiation. In the parametric FPLs

(PFPLs) the previously microbunched particle bunches r,re used.



The generatedwavelengthof the spontaneousUR sourcesand FPLs is a contbmous
function of the electron incoming energyand the undulator field amplitude which are the
operating parameters.That is why suchsourcesare intrinsically tunable devices.

Particle beamin undulator is a systemof moving excited oscillatorswhich is the active
mediumof the UR sources.Particle bunchesthat isactivemediumarecontinuouslyrenewed,
so that FPLs areexpectedto support high power devices.

All particlesof microbunchesin PFPLs emit in definite directionselectromagneticwaves
of the samephase. The power of the emitted radiation in this caseis proportional to the
squareof the number of particles in one microbunch or the squareof the bunch current.
Such lasers does not need in the external or stored in optical resonator electromagnetic
wave. That is why they can work without resonators(mirrors) both in the longwavelength
and in a hard X-ray region. It followsthat PFPLs representthe ultimate in the capabilities
of FPLs. The main problem of PFPLs is the problem of buncherswhich produce beams
microbunchedon the scaleof the emitted wavelength.

When the external field is a special periodic transversemagnetic field of an undulator
then this field can be consideredas an equivalent electromagneticwavefield which shake
the particles with the samespecialperiod and the samevalueof strength asthe undulator
field. From this point of view any periodical real electromagneticwave (in general case
non-monochronlatic)canbe consideredasa kind of an undulator.

A complex chargedparticle (not fully stripped ion, nucleus)emit UR the sameway as
a simple one when the frequencyof the equivalentwavein a coordinate systemconnected
with the particle is far from the resonancefrequency of the particle correspondingto any
transitions betweenlevels of the particle. The scattering (elnission) cross-sectionof the
electromagneticradiation in this caseis determinedby Thompson (Compton) crosssection
crT = 37rr_/8, where r; = q'2/mpc2 is the classical particle radius, q and mp charge and mass

of the particle, c light velocity. The charge q = -e for electrons and q = en + for ions, where

n + is the number of the ion charge state. When the frequency of the particle oscillation

is near to resonance one then the cross section is highly increased and determined by the

Rayleigh scattering cross section err = ,k_g1/27rg2 , where A,. is the transition wavelength

between two electronic states in the particle rest frame, gi the degeneracy factor of the state

i. The ratio o-R/o- _, _ (_/r_) "__ 10 m + 10 _5. This means that sources of the electromagnetic

radiation based on Rayleigh scattering of equivalent or real photons by not fully stripped

ion beams in undulators or in backward directed laser waves can appear on the level with

UR sources based on electron beams.

The foundations of the theory of UR sources and PFPLs are in [1] - [3]. Below we will

consider some features of such sources based on ion beams.

1. Backward Rayleigh scattering sources. Depending on the energy of a storage ring and

type of ions the energy of backward Rayleigh scattered monochromatic polarized photons

can lie in a wide range of energies of X-Ray to hard 7-Ray regions. The power of such

sources can be very high [4], [5].

A scheme of a short period relativistic multilayer ion mirror can be produced in the

form of a series of narrow flat layers transverse to the direction of beam propagation [6], [7].

This geometry is similar to that of a dielectric stack mirror. Such mirror can reflect both

spontaneous incoherent and spontaneous coherent radiation with high efficiency and in a

such a way to transform monochromatic IR or optical radiation to monochromatic X-ray



radiation with low divergence.
2. Free-ion lasers (FILs). Under conditions of equal relativistic factors which define

the hardness of the emitted radiation, ion beams possess many orders of magnitude higher

stored energy and much less emittance then electron beams. For example, the electron

beam of the Advanced Photon Source (APS) possess two orders higher emittance and five

orders less stored energy then proton beams of storage rings LHC and SSC (project). The

relativistic factors of electrons and protons are nearly the same in this cases [8]. The beam

stored energy of the LHC wilt exceed the value 500 MJ. It follows that under conditions of

optimal deflecting parameters of undulators used in free-particle lasers and equal efficiencies

for both electron and ion beams the limiting power of FILs wilt be many orders higher then

that of FELs. Possible parameters of the FILs are presented in the paper [3].

3. Particle accelerators. Cooled Super-high power high current ion beams of the energy

10 Gev and based on such beams era-to mm FILs can be used for the excitation of

accelerator structm'es of Linear Colliders [6].

4. Grasers and axion sources. By analogy with the emission of the electromagnetic

radiation the ion beams of FPLs emit gravitational radiation with the same energy of gravi-

tons and angular divergence. The efficiency of the graviton production is proportional to

the square of the ion mass. The transformation of gravitons into photons in the magnetic

fidd can be used in detectors of gravitational radiation. Some schemes of gravitational

experiments based on stimulated emission of gravitons by ion beams in undulators (under

conditions of suppression of the photon emission at the same time) are presented in [9].

The transformation of axions into photons and back in the magnetic field takes place as

well [10]. It means that the same or similar schemes can be used in experiments on search

of axions.

UR sources, backward Compton scattering sources based on electron beams and free-.

electron lasers (FELs) are widespread sources now [11]- [13]. The UR of ions is more hard

then synchrotron radiation (in contradiction to UR of electrons). This feature permit to

produce ion beam diagnostic in accelerators and storage rings [14], [t5].

UR sources and FPLs based on proton and ion beams [t6], [17] are based on the same

principle as UR sources based on electron beams and the Free-Electron Lasers (FELs) [18],

[19]. However they have specific peculiarities that can lead to their adoption as superhigh

power and/or ultrashort wavelength sources of the electromagnetic radiation. The pecu-

liarities are connected with unique parameters of the proton and ion beams in existing or

planned storage rings. The spontaneous radiation of proton and ion beams in undulators

installed in straight sections of rings would be diffraction dominated as particle beam emit-

tances in the rings are smaller then light beam emittances, tn the case of protons and ions

of the energy more then 10 TeV/nucleus the synchrotron radiation will lead to decrease of

emittances and hence to more unique quality of proton and ion beams. Similar effect can be

obtained by using three-dimensional laser cooling of not fully stripped ion beams [20], [21].

FILs can be next generation machines which will offer performance levels significantly

beyond that which are available now. These performance levels follow from the fact that

up-to-date technology can make ion beams that possess much smaller emittances and much

greater total stored energy then tlhe electron beams of the same relativistic factor.
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Abstract

We study nonlinear media (nonlinear oscillator) located inside a one mode

cavity and interacting with the cavity field. We assume, that the cavity

is permanently kicked by a series of ultra-short coherent pulses. We show

that for some values of the parameters describing the system its evolution is

restricted to a finite set of n-photon states.

Quantum engineering of the electromagnetic field states has been a subject of numerous

papers during the past years. Among a large variety of the systems discussed, models

involving nonlinear oscillator are of the great importance ([1-12] and the references quoted

therein). This paper is devoted to such kind of system that comprises nonlinear oscillator

located inside a one-mode, high-Q cavity that is irradiated by a series of ultra-short coherent

pulses. This system is governed by the following Hamiltonian (in units of h = 1):

where

and

//= f/NL+ Hp, (1)

O(3

/2/p = e(a, + 5) Z 5(t - nT) . (3)
k=0

The parameter X appearing above denotes the nonlinearity parameter, e corresponds to the

strength of the cavity - external field coupling, whereas T denotes the time between two

subsequent pulses.

We neglect all damping processes form the model discussed in this paper. It seems that

due to the lack of damping the permanent excitation by external pulses should lead to the

quantum dynamics with higher and higher mean number of photons. However, for some

values of the parameters describing our system its evolution can be practically restricted to

finite set of number states.

In this communication we are interested in the short-time regime, i.e. we assume that the

time T << 1/X. For this case we perform numerical calculations enabling us to investigate

X_t2_2HNL = (2)



dynamics of our system. Our calculations are based on the method applied in the papers

[8,10-12]. Assuming that the damping processes are absent we are able to describe the

evolution of our system using the following wave-function ( in n-photon basis):

oo

I_(t) >= _ an(t)ln > (4)
n:0

The history of the system can be determined by the unitary evolution operators. They

are defined using the Hamiltonians HNL and/:/p. One can notice that the whole evolution

can be divided on two stages. The first one is the evolution during the times between two

subsequent pulses. For these times the wave-function evolution is governed by the operator:

/)NL = e -i_(at)2a: (5)

Owing to the fact that external excitation is modeled by the series of Dirac delta functions

we are in a position to determine the unitary evolution operator acting on the wave-function

during the pulse in the following form:

(lp = e-i_(_t+_) (6)

In consequence, the evolution of the system from the time just after j-th pulse to the time

just after (j + 1)-th pulse is determined by the operator U =/)J-/NL. Hence, assuming that

the system was initially in the vacuum state 10 >, the state corresponding to the time just

after k-th pulse can be written as:

oo

Ikok >: E an(k) : (_fp_fNL)klO > (7)
n--_O

Applying this formula we determine the evolution of the wave-function and hence, the time

dependence of mean values of various operators. In Fig.la we plot the mean number of

photons < n >=< _l_t_l_ > as a flmction of time. We see that < n > oscillates in a

regular way between 0 and _ 85 exhibiting the periodic behavior of the oscillations. Fig.lb

shows the evolution of the probabilities lan(t)12 corresponding to the times just after the first

200 subsequent pulses. It is seen that the field state starts its evolution from the vacuum

state l0 >. Then the wave-packet in the space of n-photon states is formed. This packet

moves toward higher and higher Fock states reaching the states corresponding to n _ 95.

After that the packet comes back to lower values of n and for t _ 0.12 transforms itself

to its initial form corresponding to the vacuum state. Next, the probabilities evolve in a

similar way as for the times between t = 0 and t _ 0.12 exhibiting periodic character of the

dynamics of the system.

This behavior can be explained on the basis of the well known Q-function. Thus, Figure

2 depicts contour plots of this function corresponding to the times just after the first 25

subsequent pulses. We see that for the time t = 0 the Q-function corresponds to the

vacuum state and is located at the origin of the coordinate system. Then, after ,-_ 5 pulses
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FIG. 1. Mean number of photons (_l_t&[_,> (Fig. la) and the probabilities for n-photon states

(Fig. lb) as a function of time. The time between two subsequent pulses T = 0.005, the other

parameters are: e = 1 and X = 1.

this function is translated on the complex c_ plane toward negative values of Im(a). As

the parameter Ic_21 =< n > reaches sufficiently high values, the Q-function changes its

character from that reminding a coherent state to that of a crescent type. For those times

the unitary operator (TNL starts to play a significant role in the whole evolution operator

( UNL contains a factor proportional to n 2 and becomes dominant when we compare it with

the factors proportional to _ and n). In consequence, the nonlinear evolution takes the

leading role and the @function peak is rotated around the center of the system. Due to this

rotation the peak is shifted above the point (0, 0). Then, subsequent pulses shift it down,

toward the point of the initial position. Moreover, during the last stage, the Q-function is

transformed close to its initial form corresponding to the vacuum state. This mechanism

leads to evolution of the system within a finite set of n-photon states and, in consequence,

to the generation of states with finite energy. Moreover, the field state, and the mean values

plotted in Fig. 2 have periodic character.
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Abstract

The frequency of a 1393-nm distributed feedback diode laser was stabilized to a

high finesse Fabry-Perot cavity by means of the Pound-Drever-Hall method. Short

term stability was determined through measurements of the Allan variance for
different integration times. We found a minimum root Allan variance of about 20

KHz, for an integration time of 1 ms.

Line narrowing in diode laser is always a topic of big interest. This is due to the fact that

in several fields, such as high resolution spectroscopy, optical communications, optical

precision measurements and laser cooling, improvements of the diode laser coherence are

often required. Recently, new diode lasers have been developed, namely distributed feedback

(DFB) and distributed Bragg reflector (DBR) diode lasers [1], operating in the relevant

spectral region between 1 and 2 gm. They offer improved performances in terms of spectral

purity and frequency tuning, with respect to previous generations of diode lasers.

Nevertheless, the emission line width still ranges from few MHz up to few tens of MHz. Line

narrowing is possible using a mirror-extended cavity configuration [2]. A further stabilization

can be achieved by using a FM sideband technique [3]. This method has been successfully

applied to 1.5-gm DFB [3] and 1.08-gm DBR [4] diode lasers.

In this work, we have reduced the frequency noise of a DFB diode laser at 1393 nm down

to few tens of KHz. Our motivation is the sensitive detection of water vapour roto-vibrational

lines using an optical cavity as a common gas cell. Direct measurements of absorption losses

inside the passive resonator can be performed through measurements of changes in the cavity

transmission [5]. For the best signal-to-noise ratios, a stable coupling of the laser radiation

inside the resonator is necessary [6]. This requires a narrowing of the laser emission. For these

proceedings, we will emphasise the experimental results concerning frequency-noise
reduction of our laser source.

We mounted a 1393-nm DFB diode laser (Sensors Unlimited mod. SU1393-DFB-TE) in

a mirror-extended cavity configuration, by using a 50% beamsplitter. In this configuration the

laser line width was reduced from 20 MHz down to about 2 MHz. Continuous frequency

scans were possible by varying the injection current and the extended cavity length by means

of a piezoelectric actuator. The reference cavity is a confocal Fabry-Per6t resonator formed by

an invar tube and two identical concave 10-cm-radius mirrors, with a reflectivity of 99.7 %,

for this spectral region. We facilitated the mode matching into the cavity using beam-shaping

optics to partially correct the astigmatism and the asymmetry of the spatial mode, and a 30-cm

focal length lens. The resulting coupling efficiency, measured on cavity reflection, was about

30 %. The laser source was frequency locked to the cavity using the Pound-Drever-Hall

method [7]. Small sidebands at 24 MHz were impressed on the laser beam through an electro-

Also at Dipartimento di Scienze Ambientali, Seconda Universit/t di Napoli, Caserta, Italy.



optic modulator.As shown in Fig. 1, heterodynedetectionof the cavity reflected beam
furnisheda dispersionsignal,with a sharpzero in correspondenceof a cavity resonance,
which was usedas an error signalto actively control both the diode injection currentand
extendedcavity length.A two pathservoloopwasbuilt: a slow loop, acting on the extended

cavity length within an electronic bandwidth of about 1 KHz, and a fast loop, controlling the

injection current in a 150-KHz wide band. The integrators of both loops have the same

electronic design, similar to that reported in ref. 8.

First, we analyzed the

performance of our

frequency-locking system

recording the Fourier

spectrum of the error

signal in different

situations. Fig. 2 shows

the noise spectrum of the

error signal for different

values of the fast loop

gain. The electronic

bandwidth, in which

corrections of the servo

take place, increases with

the gain. At these Fourier

frequencies, the AM noise

imposed on the error

signal is drastically
reduced.
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Fig. 1. Trace "a" is the spectrum recorded on cavity

transmission during a cavity scan around a resonance

frequency. Trace "b" is the error signal used to feed back

the diode laser injection current and extended cavity

length.
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Fig. 2. Noise spectral density of the error signal for increasing servo gains.



At the maximumgain, the systemstartsto auto-oscillateat a frequencyof about 150 KHz.
Whenthelaseris locked,thenoisespectraldensityof theerror signalprovidesinformationon
phaseandfrequencyfluctuationsof the laserwith respectto the cavity resonancefrequency.
In otherwords,theAllan variancecanbe evaluatedfor different integrationtimes "c. At time

scales longer than the optical storage time of the high finesse cavity (_150 ns), the Allan

variance quantifies laser frequency fluctuations. At shorter time scales, it is possible to get

information about the laser phase variations and laser line width.

In general, the average angular frequency fLc(t ) of a simple oscillator is defined as [9]:

n (t)= 3 [_(t + 3) - ®(t)].
T z"

Here "cis the integration time. So the Allan variance cy2('c) is given by:

or2 (r) = (f2r (t)2) - (f2r (t)) 2

The experimental procedure, which we adopted to measure the Allan variance, is as

follows. With the laser locked to the cavity, we low-pass filtered the error signal and recorded

its variations as a function of the time, using a digital oscilloscope. Calibration of the error

signal in terms of frequency was possible from Fig. 1. Near resonance, the error signal is

proportional to the laser frequency offset from the resonance frequency. Hence, the

calibrating factor is immediately deduced from a comparison of the error signal around the

zero line with the trace "a".

0
"i-

v

co -1

-2

weak lock tight lock
,_ pq m,,
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Fig. 3. Time trace of the error signal while the laser was weakly and tightly locked to the

cavity. The integration time is 1 gs. Frequency fluctuations are about 3 times greater in the
case of a weak lock.

Examples are reported in Fig. 3, in the case of a loose lock (at low gain) and a tight lock (at

the maximum gain). The root of the Allan variance is furnished by the root mean square of the

trace. Note the larger fluctuations in the case of a loose lock. These measurements, for a tight

lock, were repeated at different integration times, ranging from 40 ns to 3 s. The results are

reported in fig. 4. A minimum of about 20 KHz was found for -c = 1 ms, while for "c = 40 ns,

i.e. below the cavity storage time, we measured about 320 KHz.



The results above reported will be of great importance for our experiments of ultra-high

resolution spectroscopy of H20 roto-vibrational lines.

Possible improvements of the system efficiency, actually limited by the current driver

bandwidth, could be achieved if high frequency servo corrections were fed back directly to

the diode laser cathode, through a bias-tee connection.
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Fig. 4. Experimental values of the root Allan variance for different integration times. Below

150 ns, we found a value of about 320 KHz.
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Abstract

The quadrature-phase suqueezed states satisfying the detailed balance condi-

tion on the photon number state is suggested as the ansatz for the Scully-Lamb

laser master equation. In a laser cavity with the extremely high quality factor Q,

the squeezed states are shown to be kept squeezed long compared to the observation
time.

In steady-state laser operation above threshold, the laser field is known to become

a state quite similar to the Olauber's coherent state spontaneously. In the quantum

theory of the laser in density operator approach , the field state is expressed by the

density matrix on the photon number basis, where the detailed balance condition on the

photon number state is satisfied [1]. But the laser field suggested by M. O. Scully and W.

E. Lamb, Jr. in their original paper [1] is not the only field state satisfying the detailed

balance condition. The squeezed states satisfying the detailed balance condition are

newly suggested by using the phase order parameter, and time evolution of those initially

squeezed states is numerically calculated in this presentation. The suggested squeezed

states are the quadrature-phase squeezed states whose photon number statistics is just

the same as that of the Scully-Lamb field. It is shown that those initially squeezed states

are kept squeezed long compared to the observation time (assuming of the order 10 -3 )

in a laser cavity with extremely high Q quality factor.

In density operator approach developed in [1], the master equation for the single-

mode laser field is given by

1 dpn,n_ k

C dt

k
(n +1--$ + _)(-_)^ v/n(n- k)(a_c)

k -'_ Pn,n-k -t- "__ "_-Pn-l,n-l-k

(1)

In Eq.(1) a is variable on pumping rate, fl is a constant related to decay rates of the lasing

levels, given as f_ = 3 x 10 7 and C is the decay constant given by C = v/Q = c(1 -R)/L,

where y is the mode angular frequency, L is the length of the one-dimensional laser

cavity, c is light velocity, and R is reflectance of mirrors at the ends of the cavity [2]. For



the ultrahigh Q laserwhereL = 3 x 103m, R = 0.9999 and u = 27r x 1015Hz, Q is given

as Q = 3 x 1014 and C is given as C = 1 x 101s -1.

From the steady-state solution of diagonal elements for Eq. (1), off-diagonal elements

with the phase factor is given as

p.,.-k(t) = exp(--/_--_)(fl + n)_+"-}e_O"-e"-_)T,_,k(t) (C > I) (2)
v/(_+ n)!(_+ n_ k)!

T,_-k,-k(t) = Tn,k(t)* (t _> 0), (3)

T,,k(0) = 1. (4)

The pumping parameter a is fixed so that the average photon number _ is given as

= 1 x 10 s. The initial photon state is determined using the "phase order parameter"

A, defined by

A - (0.+_- 0.+1)- (0.+1- 0.). (5)

A is a squeezing parameter which determines the degree of squeezing and the argument

of the phaser in the range of IAI <_ g-1. The solution for (1) is found in the form

T.,k(t) = exp[(-p.,k+ iq.,_)t], (6)

where

Pn,k { n+l-g+_ (fl+_)__ k__2_2 + n-
C fl+n+l 7+ 1_

v/n(n - k)(_+ _)(_ + _ - k)
k k 2

_+n-_+ _-_

(n+ 1)(n+ 1 - k) ]

+ \ (Z+ n+ 1)(/_+ n+ 1-k)(/3+ _) Jco_(k/',)} (7)

and

[_ (n + 1)(n + 1 - k)%,k = C (fl + n + l)(fl + n + l - k) (_+_)

v/n(n--k)(_ + kn)(_+_ - k)] sin (kA), (8)

when Tn_ l, k "" Vn,k _ Tn+ l,k.

For the Hermitian amplitude operators 2 --= (& + &t)/2 and l? -----(5 - fit)/(2i), we

find

<(Axy>(o,t)

= 1 + 2 _ exp(--fl - _) (fl + ,_,)fl+n+l
.=o (_ + _)! (_

(n + 2)(n + 1)

+n+ 2)(/3+ n + 1)



x exp(-p.+2,2t)cos[20 + A(2n + 1) + q_+2,2t]

+ 2_

_4[r. exp(C__n )(¢_+ _)_+'_ (¢_+ _)(n+ 1)
_ -(_---+'_) i /3 + n + 1

exp(-p,+ljt) cos(O + Art + q,+l,at)] 2}, (9)
x

<(Ay)2>(O,t) = {(AX) 2) (0-- 2,t), (10)

where O ---- 01 - 0 0 is an arbitrary phase constant. O0(t) is defined to satisfy

((AX)2)(@o(t),t) <_ ((AX)2)(O,t), (11)

for all (9. If V/((AX)2)(6)o(t),t) < 1/2, the field is a squeezed state at time t. Fig.1.

shows that the squeezed state at the initial time is kept squeezed for times 0 _< t << C -1.

0.i

O-O_t

(i0 -8 rad)
2
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SQUEEZED LIGHT PUMPED
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The optically pmnped Cesium (Cs) atomic lwam Clock is the Primary Time

and Frequency Standard. Tile frequency stability of the optically pumped

Cs standard is uhimatels_ limited by the atomic shot noise. However. the

frequency fluctuations due to the quantum noise in the laser light used for the

optical pumping (F = 3 -4 F' = 3, ;; F = 4 _ F' = 4, o) and detection

(F = 4, my = 0 --_ F' = 5, my, = 0) also affect the performance of the

standard. We shall discuss in this paper the appfication of the squeezed light

for obtaining higher optical pumping rate and narrmver resonance fluorescence

lineshape. The opticM pumping is used for the particle preparation, which

plays an important role in determining the S/N and the frequency stability

of the standard. In the detection region the application of the squeezed light

results in line narrowing of the resonance fluorescence of the Cs atom-squeezed

light interaction. \\_ have theoretically fmmd that the resonance fluorescence

signal linewidth may be reduced by i/5th on squeezing the light. The use

of the _tueezed light for optical pumping and detection may improve the

frequency stability of the optically Immped Cs Clock ahnost by one or, ler of

magnitude.

1 Introduction

The optically tromped Cs atomic beam clock [1-3] is being used as national Time and

Frequency Standard in several countries. Even after controlling the technical noises and

evaluating the deterministic frequency shifts, the frequency stability of the Standard is

affected by several factors like laser frequency fluctuations and the photon detection noise.

However, the ultimate frequency stability is restricted by the atomic shot noise [4].

In this paper we shall discuss the application of the squeezed light for reducing the

laser frequency fluctuations arising due to the quantum noise. The application of thr

squeezed stat_ will be both for the optical pumping and resonance fluorescence detection.



Tile schematicdiagram of tile optically tmmt)ed Cs atomic beam Time and Frequency

Standard is shown in Fig. 1. We shall briefly describe in Section 2 the Cs atomic bemn

tube of the Cs atomic beam clock, on which critically depends the performance of the

standard. Section 3 describes the interaction of Cesimn atoms with the _tueezed light. In

Se,.'tion 4, the frequency stabili D" of the Cs clock with squeezed light is discussed. Finally,

we summarize our results in Sec..5.

2 The Cs atomic beam tube

The Cs atomic beam tube of the optically pumped Cs atomic beam frequency standard

has three distinct regions. In tile first region we have a Cs oven at temperature of about

90" C which produces the ribbon shaped Cs atomic beam. The beam is collimated by

multi-channel array of crinkled nickel foils. The oven is followed by a Ramsey microwave

cavity.In the region between the oven and Ramsey caviD_ optical pmnping of Cs atoms

takes place. The'two lasm.'s are used for obtaining large pol)ulation inversion. The optical

pumping transitions between F = 3 --+ F' = 3, 7r and F = 4 + F' = 4. rr yield

large population in the desired gromM state hyperfine sublevet F = 3, m_, = 0. The

population of this optically pumped sublevel is a flmction of tile light intensity, interaction

time and tinewidth of the pumping light. In the second region Cs atoms undergo tile

microwave transition in ttle tlamsey cavity. The Ramsey cavity is of copper and works

in tile transverse ma_mtic field mode. Tile cavity length is 1 m and its Q = 5000." (_l

the both sides of the cavity, holes are drilled for the Cs beam to pass through. After

the microwave interaction in the RaInsey cavity, Cs atoms arc traalsferred to the ground

state hyperfine sublevel F = 4. mr = 0. The length of the field free region or the time of

interaction betw(mn the microwave and Cs atoms determines the linewidth of the Rmnsey

fringes on which depends the frequency stability of the clock. In the third region which

is the detection region these atoms intera(:t with tile orthogonal optical beam of intensity

3roW cm -2 tuned and locked, using _turation ab.,_orption cell, to F = 4 _ F' = 5 cyclic

transition for detecthlg the number of Cs atoms which m_dergo the microwave transitions.

The resonance fluorescence signal of the atom-light interaction is collected and focussed

onto a silicon photodiode by the means of a spherical mirror and two aspherical lenses.

The collection efficiency of tile detection system is about 50%. The frequency fluctuations

due to the quantum noise-in the detection laser light get coupled to the atomic beam via

lightshift and _:attering. The linewidth of the resonance fluorescence signal is determined

by the quantum noise in the probe or detection light. However. The non-classical source

of the detection light may improve the S/N and thus narrow down the linewidth of the

resonance fluorescence signal [5].



3 Interaction of Cs atoms with Squeezed light

We consider the interaction of tile Cs atomic beam with a squeezed light. Tile schematic

diagram of the e×pefimental set-up is shown ill the Fig. 2. While colLsidering tile atom ....

squeezed light interaction we make the following w_sumptions:

1. The collisions between the Cs atoms are very small and neglected. Cs atoms tu'e

mono-kinetie. As the Cs atomic beam and the squeezed detection light are at right angle

to each other, the first order Doppler shift, is absent. Howew_r, the second order Doppler

or the relativistic frequency shift is still present. The squeezed light will be generated

using the optical parametric oscillator (OPO) [6]. The correction for the second order

Doppler frequency shift is applied hv suitably shifting the OPO pump frequency.

2. The squeezed light tinewidth is of the order of the natm'al linewidth c_f the frequency

of transitions between Sl!.)_ --+ Pat2 levels of the Cs atoms.

3. The intensity of the squeezed light for optical tromping and detection is small.

4. We consider the Cs atom to be a two level atom for the detection of the cyclic

transition between the levels SI/._F = 4 --) Pa/.,.F' = 5. While for the optical pumping

with two lasers, we take a three level (S1/,,,F = 3, F = 4: P:_/2F' = 3 and Sl/2F = 4, F =

3: P.,_/_F' = 4.) appro.-dnlation with the tambda configuration.

\\'e shall describe the optical pumping of the Cs atoms, and the detection of the atoms

undergoing the microwave transitions.

3.1 Optical Pumping of Cs Atoms with Squeezed light

In the conventional optically pmnt)ed Cs atomic beam frequency standard two diode

lasers of wavelength 852nm and intensity 3row cm-'-' are used for the efficient optically

pumpin_ of atoms to the ground state sublevel F = 3. mF = (1. The diode lasers are

tuned to the levels F = 3 --> F' = 3._ and F = 4 -+ F' = 4, or respectively. The

particle preparation has significant impact on the S/N of the clock sigmd. If the particle

preparation is not perfect then the laser frequency fluctuations may add to tile atomic

shot noise and the S/N of the clock signal in the detection region is degraded for a

particle flux above i0 s atom/see. The effect of the laser frequency fluct:uations on the

l)artic[_' preparation aim hence on the clock S/N may l)e r_'duced by t h_ use of squeezed

light. It has been shown IT] that the use of the squ('ezed light enhances the tromping

rate, compared to the eros,( when cobb'rent light, is use(l, leading to the better t)article



preparation. While using the squeezedlight for the part,icle preparation it is _ssumed
that it has low intensity, tile coupling between tile atmns and squeezedlight is weak
except in the cavity enviromnentand the baudwidth of the Immp light is comparableto
the natural linewidth of the atomic transitions. The enhancementin the immping rate
largely dependson the coupling coetticient.Theimprovementin the S/N will dependon
tile squeezefactor.

3.2 Detection of the Resonance Fluorescence Signal

We shall now discuss the interaction of the squeezed light with tile Cs atomic beam

in the detection region of the atomic beam tube. We shall assume that the squeezed

light is of linewidth comparable to the natural linewidth of tile atomic transitions so that

leakages to neighboring levels is negligible and we have effectively two-level atomic system

approximation for the cyclic transition F = 4 --+ F' = 5. The correction for the second

order Dopph_r fr(Nuency shift due to the X[axwellian velocity distribution of the moving

C.s atoms is incorporated by shifting the frequency of the OPO pump. For the cyclic

transition F = 4 -+ F' = 5 the stationary line shape of the resonance fluorescence signal

is given by the expression [5.8] "

1 ._F+fl 1 :'lit (-- _V + A(X- ½F+A_ (½r + t,)' + z ½r+ + _>' (it

where ? is the spontaneous decay rate into the normal va('umn modes of the Cs atoms,

_X = --'L - _-'a is the detuning. -'l. is the secomt orCDr Doppler shifted Dequency of the

squeezed radiation and -,-'0 is the Cs atomic transition frequency (F = 4 -e F' = 5). _\: and

:'il are the parameters pertaining to the squeezing. They are related to the parameters/i

and )_ which determine the Iinewidth of the squeezed firm and also determine the degree

of squeezing. The relationship among these parameters is given below.

A_ _/t 2
.V- __r = -- %\---7_,- (2)

A_ _ 11_

.\'+ .U = 21---V--" (3)

where fL = 1/2",, - e,A = 1/2", + E: q is th.e damping constant of the OPO and _ is its

amplification I)arameter. It is observed from the E(I. 1 that tile resonance fluores('eh't-e

line shape is made up of two terms. For M > N the contribution of the second term in

the equation is negative. This results in tile narrowing of the line shat)e of the resouance

fluorescence. Our theoretical cah'ulations [8] have shown that with squeezed light, un-

(let _he Ol)tinmm exl)erimental conditions, lhe resonance ttuorescence line width may |to



narrowedbv about 1/5th of the Lorentzianlinewidth (1/2") + p) (Fig.3). The narrowing

of tlle linewidth will be reitected in the improvement in the frequency stability of the

optically pumped Cs atomic frequency and time standards because of the higher clock

s/x.

4 Frequency Stability of Cs Clock

The frequency stability of a optically pumped frequency standard is given by [9]

(4)I, (s/x)"

here v is the microwave clock _ransition frequency (9.192 GHz), 6v is its linewidth, r is

the sampling time and S/X is the clock signal to noise ratio. The clock S/N represents the

effect of all noise processes including the atomic shot noise, laser frequency fluctuations.

photon shot noise and the noise ()f the detection system. Theuse of the squeezed light for

the t)article preparation reduces contribution of the immping light frequency fluctuations

to the atomic shot noise. In the detection region, use of the squeezed light, as a probe.

reduces the noise bandwith of the detection system because of narrowing of the resonance

fluorescence signal. The overall enhan_enwnt in the clock S/N and the lowering of the

minimum detectable signal level due to the use of the squeezed light fl)r the oprii-gl

•pumping and detection will depend on the squeeze factor and degree of coupling between

the squeezed mode of light and the Cs atoms. The optical cavity environment will increase

the coupling coefficient [7]. An improvement by one order in the frequency stability of

the standard may be eN_ected with the application of the squeezed light. However, nmch

depends on tile couplhlg of the squeezed light to the Cs atoms.

5 Conclusion

In this paper we have studied the application of the squeezed light for the optical pumping

of tile Cs atoms and their detection. We expect that frequency stability of the Cs atomic

clock may be improved by an order. Howew,r, it depends on the coupling of the squeezed

light with atoms. The ultimate frequency stability will depend on the atomic shot noise

or the projectiott noise. The atomic shot noise can also Iw manipulated by the squeezed

light [10]. However, the experimental realization of the tunal_le source of the squeezed

light is a prerequisite for its succc.'ssful application to the Cs clock.
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Figure Captions

Fig. I. $<h('n)atic diagram of lh(' opti<ally l)Unq>(,(l C('simn fr('(lu('n('y s)andard.

Fig. 2. S,h,matic (liagram _I the ._(ineezo(l light Imml)('d Cesium frequency standard

Fi,:;. 3. Narrowing of the stationary lineshal>(, (solid (:urve) a.s a lunc(ion of ..X/F for

.V = i/S. 3,[ = 3/8. _/_,,. = 0.0858 and _.,/F = 1.0. The dotted curve is the

Lorent/ian of width g/2 + lt.
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Abstract

In our proposal two different kinds of homodyne arrangements are applied

in cascade, in order to locally sample the phase-space distribution of a one
mode radiation field.

I. INTRODUCTION

Optical homodyning [1], both in balanced [2] and unbalanced [3] form, has recently

been used in experiments to reconstruct the quantum state of a single mode travelling light

field. In the unbalanced scheme the phase space is scanned locally. The point of interest

is chosen by the complex amplitude of the local oscillator. A technical difficulty in the

unbalanced scheme stems from the lack of proper photon counters. On the other hand, very

sensitive reconstruction of the photon statistics is possible with a phase randomized balanced

homodyne detector [4]. In order to combine advantages of both methods we have recently

proposed a cascaded scheme [5], where balanced and unbalanced arrangements are employed

one after the other. In this way one can keep the local nature of the reconstruction, which

means the point in phase space to be measured is selected by a physical process and not

by an indirect numerical algorithm. The second part may seem to be a rather complicated

photon counter, however, in recent experiments [6] balanced homodyne detection was proven

to be the first method sensitive enough to measure the fine structure in the photon statistics

of a single mode weak squeezed vacuum field.

II. THE SCHEME

The cascaded optical homodyne scheme is depicted in Fig. 1. The working principle of

the scheme can be understood in two ways. One may think of it either as an unbalanced

homodyne reconstrunction scheme with a special photon counter or as balanced homodyning

with an additional preparation step.



i

cc
FIG. 1. Setup for cascaded optical homodyning. The first beam splitter BS1, with high transmis-

sion and low reflection, mixes the signal with the first local oscillator L01. Then the transformed

signal SL enters a phase-randomized balanced homodyne detector consisting of the beam splitter

BS2 and the second local oscillator L02 with random phase. The difference signal of the two linear

photodiodes D1 and D2 provide the measured data p(x; a, _?).

In the first approach one may start from the reconstruction formula [3]

2 oo

w(_; s) - _(1 - s) _(--_)nPn(_'_)" (1)
n-----0

Here Pn(a, r]) is the photon statistics of the intermediate signal SL, and the reconstructed

quantity W(c_; s) is the s parametrized quasiprobability of the signal. The c = R/T << 1

parameter characterizes the first beam splitter BS1, where R is the coefficient of amplitude

reflection and ]T]2+ ]R] 2 = 1. The complex amplitude /_ of the first local oscillator LO1

determines the complex variable (a = -c/3) of the quasiprobability function. The parameter

= #(s,_]) accounts for the detection losses and the ordering parameter of the desired

quasiprobability distribution, it is given by #(s, 7) = (2- 7(1 -s))/(7(1 - s)). The overall

quantum efficiency 7 includes transmission losses at BS1 and other linear losses due to

inefficient detection and e.g. mode mismatch. The photon statistics of the intermediate

signal is provided by the theory of balanced homodyne detection [7] which requires an

averaging of the measured difference photocurrent signal of detectors D1 and D2 p(x; (_, 7)

with phase randomized local oscillator LO2 with respect to a so-called pattern function

SPn(_,7) = d_A_(_);(_; _, 7)•
oo

(2)

The pattern function fi, n(x) is characteristic for the given Fock state n, and has a non-

trivial expression with the regular and irregular stationary solutions of the corresponding

SchrSdinger equation fnn(X) = O [¢n(X)_n(X)]. Combining equations (1) and (2) the inte-

gration and summation can be interchanged (if convergence is kept) and one arrives at the

expression

w(_; _)= f__dz S(x; _,7);(_; _,7), (3)

where S is a sampling function, given by the infinite sum of the pattern functions



c_

- (4)
n=O

The limit of this series can be determined, and we have found a surprisingly simple analytical

expression by exploiting the properties of the pattern functions [5]

1)jS0o(x/ij i,- (5)

where the scaled zeroth pattern function occurs, which can be evaluated quite easily by

using Dawson's integral F(x) [8], as f00(x)=2-4xF(x).

The second way to look at this scheme is to realize that the effect of the first beam splitter

BS1 is essentially a displacement in phase space with an additional small smoothing due to

the deviation from unit transparency [3]. The second part, a balanced homodyne detector,

effectively measures the value of the transformed signal Wigner function in the origo of the

phase space WsL(O) = W(a). The phase averaged quadrature distributions measured by an

ideal balanced homodyne detector p(x; o_, 7) = _-f_ pr(x, O)dO are related to the marginals
7r

of the Wigner function (with real variables) pr(q, O) = f-_oo WsL(q cos 0 -- p sin 0, q sin 0 +

p cos O)dp (for simplicity, we do not include here in the derivation the detector efficiency, it

can be treated as part of the overall quantum efficiency r/). The Radon transformation in the

previous expression may be inverted by filtered back projection. By Fourier transforming

both sides with respect to q, inverting the occurring two-dimensional Fourier transform of

the Wigner function and changing to polar coordinates, one derives the basic formula of

filtered back projection

1 _dO_ d E _ pr(q',O)e-i_(q'-qc°s°-psine)f(_),W(q,p)- - f_ dq' (6)

where f(_) = I_1. In order to cut the high frequencies it is usual to introduce a filter

function of the form f(_) = I_l(I)(_) where (I)(_) is a low pass window. In optical homodyne

tomography it is advantageous to use a Gaussian window function, (I)_(_) = e s_2/4 with which

the filter reads f_ (_) = I_le s(2/4, 8 is a small real negative parameter. The Gauss filtered back

projection yields the s-parametrized quasiprobability [9], i. e. a smoothed version of the

Wigner function. Collecting the above results we find for the s parametrized quasiprobability
OO (X)

in the origo WsL(O;8 ) = f dxp(x;a,_)S(x;s) where S(q';s) - 1-- _ f d_e-i@'fs(_). We
--OO --_

have here inserted the definition of the phase averaged quadrature distribution, measured

by the phase randomized homodyne detector. The Fourier transformed filter function serves

as sampling function denoted by S(x; s), which can be calculated by evaluating the above

integral, yielding the same expression (5) as in the previous paragraph. The overall quantum

efficiency can be included in his formula in a similar way as previously. By setting s = -1

we can reconstruct the Q function of the intermediate signal in the origo, which is nothing

else than the vacuum Fock state probability QsL(O, 0) = (01p]0 }. This fact explains why

the scaled zeroth pattern function serves as the sampling function for the cascaded scheme,

since the zero Fock state coincides with the zero coherent state.

It is interesting to note that the point-by-point reconstruction of the quasiprobability

functions can help to directly find the density operator. For example, from the Q function



one can find the Glauber's analytic R function. The R function is defined by the relation

R(a*,_) = e½(l_12+l_J2)(alt_l_ }. It can be expressed through the Q function as an analytic

continuation by exchanging the two real variables by complex ones with the rule: q -+
i * I *

_(c_ +/_), p -+ i-_(-c_ + _). The density operator is then obtained as

>= l f d%_d2_e__(,_,_+l_,2)+_,_lc_>Q( l_ , I )+ (7)

The analytic continuation of a function requires its knowledge in an analytic form, which

can be achieved by interpolating with some algorithm between reconstructed points of the Q

function. This can be particularly useful if the general structure of the Q function is known,

and thus the interesting regions in the phase space can be scanned systematically.

III. CONCLUSIONS

The cascaded homodyning scheme seems to be an experimentally feasible method for the

local measurements in phase space. The sampling function we calculated analytically has

a simple structure and is universal in the sense that it does not depend on the particular

point where the quasiprobability function is reconstructed. Our simulations indicate that a

rather low number of measurements is enough to check for negativities of a quasiprobability,

distinguishing the superposition of two coherent states from a statistical mixture.
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Abstract

The non usual behavior of an Michelson interferometer with phase conjugate

mirrors (MIPCM) when classical and quantum light states impinge into the

apparatus is described and discussed. Starting from the limits of the theoret-

ical and experimental analysis of this device, a research program is presented

whose attempt is to perform a more complete study of this interferometer.

Moreover, the connections between the unexpected behaviors of MIPCM and

the foundations of quantum mechanics will be careful investigated.

I. Introduction

In the recent years the behavior of a Michelson interferometer with phase conjugate mirrors

(MIPCM) has been investigated both theoretically and experimentally. This apparatus

consists of a Michelson interferometer (Fig. 1) in which one metallic mirror is substituted

for a phase conjugate mirror (PCM). A PCMis a non linear medium that performs a complex

conjugation on the spatial part of the complex amplitude of an impinging electromagnetic

field. The effect is to reflect the impinging wave back in the direction of propagation while

changing the phase from a to -c_. Consequently, the PCMmaintains the polarization state of

the incident wave and, more precisely, a linear polarized wave is reflected as a linear polarized

wave, while a circular polarized wave is reflected with identical circular polarization [1]. This

behavior (different from that of a conventional mirror) has an interesting consequence on

the visibility of the interference in the phase-conjugate interferometer as we will show in

the next sections. Another interesting property is the so called "phase compensating effect"

which consists of the independence of interference pattern of the length of the arm of the

interferometer in which the PCM is placed.

Many of these effects are a function of the impinging state of light and therefore the

MIPCM has attracted the interest of the researchers working on foundations of quantum

theories. In this contest, a recent proposal[2] to use a such a device to test the intrinsic non-

locality of quantum mechanics has given rise to an interesting discussion on the possibility

to produce interference when impinging states of light with few and well defined number of

photons are used.
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FIG. 1. The modified Michelson interferometer. One of two metallic mirrors is replaced with

the phase-conjugate mirror PCM.

In the next section we will briefly resume the results of a classical analysis of a MIPCM

and the results of experiments confirming these predictions, while the section III will be

devoted to present the main results of a quantum study of this device.

In section IV we will present the main topics of a research program on this subject that

our group is planning to perform in the next year.

II. Michelson interferometer with PCM: a classical analysis.

Let us consider an electromagnetic wave with wave vector kz and frequency co/2rr incident

upon the beamsplitter BS of Michelson interferometer (Fig. 1) along the positive direction

of z-axis E(Q(r, t) = eA exp[i(kz • r - _ot)], where e is the complex unit polarization vector

satisfying the condition e. e* = 1.

The reflected beams at the two mirrors PCM and MM are:

E'(t)(rpcM,t) = #e*t*A* exp[i(-kz "rpcM -cot - SPCM)],

E'(r)(rMM, t) = -erA exp[i(-ky "rMM --wt + SMM)].,

(I)

(e)

were SPCM and SMM are the phase shifts due to the two arms, t and r are the complex

transmission and reflection coefficients of the beamsplitter satisfying the conditions t. t* + r-

r* = 1 and t. r* - r. t* = 0, and # is the complex reflectivity of the mirror which depends on

the intensity of the pumping beams, the strength of the coupling between pumping beams

via the nonlinear susceptibility, and the length of the PCM. In general l#lis less than 1, but

it can be equal to or greater than 1 under well defined conditions[l].

The superposition of the two field after the second reflection in BS results in a total field

traveling in the direction of detector De with a total light intensity at the detector

I(r,t) = le121A(i)[2(1 + bl2)/4 + 2l_lle211A(i)[ 2cos([ky-rD_ + 2SMM]- ¢ + 5 + 2a)/2, (3)

where we have assumed that # = bl exp[i¢] , A = IAI exp[ia] ,e 2 = le l exp[iS], t = 1/

and r = il/v_.

The visibility of the interference results in V = _ and it exhibits a maximum when
i+bP '

hi-- 1 and levi -- 1. If we make bl -- 1, and if the impinging wave is linearly polarized, we

have 3 = 0 and the scalar product e 2 equal to 1; therefore the visibility of the interference V

is equal to 1. Vice versa, if the impinging light is right-handed [left-handed] polarized, the



polarization vector is e = (i + ij)/v'_ [e = (i + ij)/v'_], and the scalar product e 2 is equal

to zero. Consequently V = 0 and the interference effect vanishes.

Moreover, it is worth to note that formula (3) depends on double of the phase a of the

impinging field, on the phase shift 2SMM introduced from the length of the arm with the

metallic mirror, but does not depends on the length of the arm with the PCM. However,

this "phase compensating propriety" holds only for perfect monochromatic waves[3].

Mandel, Wolf, and co-authors[4] confirmed these predictions with an experiment in which

a linearly polarized laser beam was sent in the interferometer and a phase shifter was intro-

duced in different positions in order to vary the phase of the incident and pumping waves.

Unfortunately the experiment did not check the property of MIPCM to cancel any inter-

ference effect when a circularly polarized beam impinge on it.

III Michelson interferometer with PCM: a quantum analysis

The behavior of aMIPCM changes dramatically when the impinging state is a photon

number state. In order to see better this different behavior it is necessary to perform a

quantum analysis of the apparatus.

A
, El

,,_
i

E_(O) _

L'" Y E2

FIG. 2. The nonlinear medium,of length L, is pumped by two classical beams of the same

frequency as the impinging wave and with opposite directions.

Let us consider a nonlinear material with high susceptibility X (3) and length L pumped

by two classical fields E1 and E2 (see Fig. 2). If i = 2, _) are the two possible state of linear

polarizations for the impinging and conjugate fields, the annihilation operators are:

a}t)(L) = Ikl ^,(t)t+:, ^,+ _^,(t) k* :(t,+:,
k aai _") +/alt)(O)' (0) = pa i (L) + -_]aa i (,), (4)-- a i

where a= -itan(Ikln), Z- ' V/_X(3)E1cos(NL), andK* = 0+/2 E2. It is easy to see that the

PCM preserves the propriety to reflect circular polarized light with the same polarization

if the impinging field.

Inserting this description of a PCM in a quantum analysis of the interferometer, the
main results can be resume as follow:

- When a coherent field impinge into the interferometer, the field at the detector is a

superposition of a coherent field and a chaotic field depending on 2 [5];
- The "phase compensating" propriety holds only if the impinging beam is a plane

wave[3];

- The minimum theoretical number of photon in the impinging beam must be at least 2

in order to distinguish the signal from the noise[6];



- If the impinging field is a Fockstate, the field in the two armsof the interferometerare
statistically uncorrelated and no interferenceoccurs[5],[7].

IV Conclusions
We would briefly comment the last result of previoussection. The operator electric field
E"(rD2) at D2 can be written as a sum of two field. One is the field reflected on metallic

mirror E"(r)(ro2), which is proportional to _j=12 gijaj,A , where 5j is the field operator as-

sociated with the incident field of polarization j, and the complex number _rij allows for a

possible polarization change of this field inside the interferometer. The other is the field

E"(t)(rD_) reflected in PCM, which is proportional to Ej=12 rija_ , where rij accounts for

polarization and phase changes in the arm with the PCM. Then, the intensity of photon

detection in D2 (E"(rD2)tE"(rD2)) will result proportional to

2 2

• ^t^ . At^t • ^ ^ • ^ ^t_-_[_riSrik(akaj) + _rikvij(akaj) -t- crijTik(akaj) + wikrij(akaj) ].
j=l k=l

(5)

The second and third terms of (5) express the interference modulation in photon count-

ing and vanish for any input state of the field with a well defined number of photons. This

however does not mean that the apparatus does non exhibit any interference when a well

defined photon number is injected, because it is possible to prove[8] that there are some phys-

ical optical states, as the photon pairs produced in degenerate parametric down-conversion

process, which produce in a MIPCM interference with maximum visibility.

Moreover, even if the MIPCM has been studied theoretically both from a classical

and quantum point of view , not all the unexpected behaviors of this object have been

experimentally tested, therefore a more accurate experimental analysis of the apparatus is

worth to be performed.

On the other side, most of the theoretical analyses and the experimental tests of the

behavior of a PCM assume that the pumping beam is a coherent state (classical field)

produced in a laser and the possibility to use different pumping states (as squeezed or

number states) has not been jet investigated.
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Abstract

Fisher's measure of information is compared with the usual measure of sensi-

tivity of the SU(2) interferometer. The states of optimum Fisher measure of

information and prescribed mean photon-number difference are defined and

properties of these states are studied in this interferometer.

I. INTRODUCTION

The optical interferometry is known to provide high precision measurements of various

physical quantities. The enhancement of precision can be connected with the use of strong

input fields, but this could damage the device. Therefore, in the framework of quantum

optics, the optimization of the input state has been considered with the subsidiary condition

that the mean total number of the photons on the input is prescribed. The phase-shift

measurement scheme was devised by Caves [1, 2].

The SU(2) group representation of the Mach-Zehnder interferometer has been shown

to be advantageous [3]. A phase sensitivity measure has been introduced to assess the

precision of the measurements. In the course of time, the assumption of the input coherent

states has been replaced by that of the input squeezed light and special quantum states.

In the connection with the group theoretical approach, the constraint of the prescribed

mean photon number has been simplified to the assumption that the total photon number

is prescribed.

In this paper, we utilize the Cram_r-Ra_ lower bound as an alternative of the usual

sensitivity measure. As usual, we concentrate on the Fisher measure of information, which

is an important constituent of the lower bound. Even though the question of the attainment

of the lower bound is left open and the usual regularity assumptions are reformulated, the

main result of this paper is seen in the study of special states which render the Fisher measure
of information maximum.

II. SU(2) INTERFEROMETER, STANDARD SENSITIVITY MEASURE, AND
GENERALIZED COHERENT STATES

Yurke, McCall, and Klauder [3] were first to emphasize the importance of the Mach-

Zehnder interferometer as well as the role of the Heisenberg and SchrSdinger pictures for



its description. The Heisenberg picture resembles the classical description in that it relates

the output annihilation operators fijout, j = 1,2, to the input ones _jin, j = 1,2, leaving

the state of physical system unchanged. The equivalent SchrSdinger picture consists in a

transformation of the input state to the output state, whereas the operators which are to be

averaged do not evolve.

The beam splitters and the phase-shift imparted by the measured medium as well as the

detectors can be described using the following operators

J1 _-_ _(a_a2Ji - a_al), Y2 : 1 (ctla2-ct_Ctl), J3 _--_ _(aIl_l-6t_ct2), (1)

= ala,+a;a2. (2)

In the Mach-Zehnder interferometer the output state lout) is related to the input state lin)
as follows

lout) = U2U(¢)&lin), (3)

with

_)-1 : exp (-i2Jl) , _]_(q_)m_ exp (-iCa[_ll) , 52 _--- _rl"t , (4)

where the unitary operators _rj, j = 1, 2, describe operation of beamsplitters and the unitary

operator U(¢) describes the phase shift ¢ imparted in one arm of the interferometer. Using

the relation fiI_l = ½N + J3 and exploiting the group formalism, we can rewrite (3) in the
form

lout} = exp (-i_/V) exp (-i¢J2) ,in}. (5)

On the output the operator J3 is measured. Naturally, it means that the photon-number

difference is measured. The assumption that the total photon number is known is then equiv-

alent to the knowledge of photon number on both the output ports. The phase sensitivity

or the minimum detectable phase shift (the uncertainty of the phase measurement) depends

on the unknown phase shift (to be measured), and on the assumption of small phase shifts

which are most interesting it can be restricted to the value for ¢ = 0. It is then determined

by

_ , (Yl)¢ O, (6)
(J P

where the expectation values are computed for the input state. Assuming that the in-

terferometer is fed with the Glauber coherent state Ich/11_2)2, it can be found that the

optimal choice among the coherent states with Ic_jl, j = 1, 2, fixed is a coherent state with

Im(c_a2) = 0.

Among the eigenstates of the total photon-number operator belonging to the eigenvalue

2j, the SU(2) generalized coherent states IJ, _) are the most important [4]



(_; + i)]j,_) = (2j + 1)lj, _}. (7)

Slightly more refined calculations than in the case of ordinary coherent state show that the

phase uncertainty is minimum for Im _ = 0 when minimized under the constraint that I_l is

fixed.

For any input state

2j

lin} = _ cn, ln_)ll2j - n_)2 (8)
n 1 =0

from the SU(2)-irreducible invariant space of the states I_b) obeying the equation

+ = (2j + (9)

we can formulate a criterion of optimality. It holds that the expectation value (¢1(AJ3)21¢}

comprises only the products ICkl Ictl, whereas (¢1Jl1¢) 2 depends only on Re(c_ck+l). It can

be derived that these are terms with the sign plus each. Therefore, among the states which

have the moduli ]ck] fixed the optimum ones have real ck, such that Cl > 0, c2 > 0,..., c2j > 0

for 2j even and c2j > 0 for 2j odd if Co > 0 is chosen. This rule relates to a phase difference.

Invoking the theory of quantum phase, we can call such states partial phase states with the

preferred phase either 0 (the upper relation) or 7r (the lower relation) [5]. Similarly as in the

above case of the input coherent state, this phase is rather the phase difference.

III. FISHER'S MEASURE OF INFORMATION

The Fisher measure of information [6] is a good alternative measure of sensitivity since

it measures directly the rate of change of the probability distribution in dependence on a

parameter. Mathematically this measure of information is introduced as a constituent of

the Cram6r-Rao lower bound for the variance (sometimes mean-square deviation) of any

estimate of the parameter. Since the number of photons N1 on the first output port is a

discrete random variable, we assume a discrete random variable which takes on the values

0,..., 2j. The Fisher measure of information on the parameter ¢ contained in the photon

number N1 is

2j

i(¢) =
"n=0

c*(n, ¢) t[ _\

c(n,¢) c'*Cn, ]2Ic( ,N( ' ¢) ' (10)

where

c(n,¢) = 1(nl2(2 j - nlout), c'(n,¢) _= £c(n,¢). (11)

We try optimal input states with real coefficients. From the fact that the operator (-i J2)

has real matrix elements, we have, up to a common phase factor, real coefficients c(n, ¢).

Among the states which have the Ickl fixed, the optimum states have real ck such that co > 0,

c2 <0, c4> O,...,c2j >0for2j--0 (mod4),c2j <0for2j-2 (mod4),c2j_t >0for

2j- 1 (mod4),c2j_l<0for2j--3 (mod4) ifc0>0ischosen, whereascl >< O, C3> O,

>

c5 < O, etc.



As we have mentioned above, it is reasonable to optimize the sensitivity of measurement

under the constraint that the mean photon numbers on both the input ports are known.

Making use of the optimality of the input states with real coefficients, we may reduce the

relation (10) to the form

2j

I(¢) = 4 _ [c'(n, ¢)] 2 . (12)
n._-0

Employing further the assumption of a compensation measurement [3], we obtain that

I(0) = 4(J_}. (13)

Assuming that the input states are related to a representation of the group SU(2) and that

the constraint can be formulated in terms of (,]a), we arrive at the eigenvalue problem

(J3- ale) (14)

by a standard variational argument. The real parameter 3' is to be determined as a function

of the quantum expectation 1Ja). All the eigenvalues )_}J)(3`) are real and they are numbered

from zero to 2j in increasing order.

We have compared the values of Fisher's measure of information for the Yurke-McCall-

Klauder quality state and the optimum state of the same mean photon-number difference,

(J3} =7"1 The former is described asymptotically by 4t_YMKj 2 and the latter behaves asymp-

1 The optimum input states have l = 2j andtotically as 4noptj 2, with 1 = nopt > nYMK = 7"

3` values negative.
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Abstract

The problem of formation of macroscopic (mesoscopic) coherent superpo-

sition of polariza,tion states of boson-like systems are discussed tbr the first

time. The quantum interference of two (and/or more) orthogonally polarized

coherent states in such systems results in non-classical behavior of the po-

larization states of light being described by different parameters: the Wigner

quasi-distribution fllnction, the boson statistics and the entropy of quantum

states. The phase transition from classical to quantum state occurs in such

a correlated ("frozen") mesoscopic system. The Wigner flJnction in the area

of the phase transition demonstrates the fractal-like structure. The appli-

cation of considered coherent superposition of quantum states and induced

pha.se transition in mesoscopic systems to construct the optical quanturn logi- .

cal controlled-NOT gates for quanturn computation are discussed as well. For

that non-local quantum properties of the entangled coherent states resulting

in quantum bits are studied.

1.INTRODUCTION

At present, the study of non-classical states of many-body boson-like systems are very

rapidly developed area in quantum and atomic optics. Here we are speaking about experi-

mental observation of the Bose- Einstein condensation [1], and also about the demonstration

of quantum computation in the ion traps and some other electronic and optical systems [2].

In our previous papers [3] we developed the theory of forma.tion of non-classical polar-

jzation states and also discussed the accurate measurement procedure (i.e. qua.ntum non-

demolition, simultaneous, continuous etc. measurements) for polarizatiorl characteristics of

such quantum system. \7_,'e have obtained that this type of quantum states demor_strates a

new non-classical behavior as a result of quantum interference in optical field.

In present paper we consider tbr the first time the possibility to formate the coher-

ent superposition of two selected quantum states for orthogonally (linear and/or circular)

polarized optical wa,ve packets (the Schroedinger cat states) in boson-like systems (under



condition of boson condensate). In contrast with previous considerationnamely the po-
larization non-classicalmacroscopic(mesoscopic)states of light is a principal item of our
discussion.

2. QUANTUM INTERFERENCE OF MACROSCOPIC LOCALIZED
POLARIZATION STATES

First, we have examined the superposition of two coherent circularly polarized states
If,} = I( ([+} + {-)), where .t( is determened by the state normaliza.tion conditior_ (cf. [4]).

The polarization characteristics closely depend on two phase angles 0 and r! those are az-

imuth and ellipticity of polarization state correspondingly. The probability to detect the

rn particles in a single polarization mode is described by the sub-poissonia.n distribution

furiction of photons being strongly oscillated vs rn. For linear polarization (when 0 = "rI = O)

the distribution function is the Poissonian. Both the wave functions and the distribution

functions of two hermitian quadratures demonstrate the two well separated a,reas of local-

ization as a result of interference of the condensates that corresponds to two quai,tum states

of different (orthogonal) polarizations. The distance between two maxima of them is deter-

mined by the phase parameters 0 and r/. The quantum et[_ct of tunneling for boso_ls takes

place due to quantum interference. The similar result we obtained for the Wigner quasi-

distribution functions, h_ last case we deal with the polarization interference in' a phase

space. The computer simulation demonstrates the areas with purely qua.ntum (ltega.tive)

behavior of the Wigner functions being variated vs the parameters 0 and 7/.

For qualitative description of the measurement procedure in Hermitian quadratures (co-

ordinate and momentum of the wave packets) for such a mesoscopic system we introduce

the entropy parameters 5'Q =- f2_ We? In (WQ)dO, Sp = -ffl_o_ Wp In (l/_)dP of the po-

larization states, where I'VQ and Wp characterize the probability function distribution of

localization for coordinate Q and momentum P of the wave packet. Physically two parame-

ter_ SQ and Sp can be interpreted a.s a degree of the information loss due to the rnea.surement

procedure. These quantities demonstrate the "squeezing" ef%ct :for information about the

object during the measurement procedure vs rI and 0 - see Fig.1.

3.CRITICAL PHENOMENA IN MESOSCOPIC BOSE-SYSTEMS

We have considered the phase tra.nsition in optical mesoscopic systems, i.e. irl. analogy

with superfluid and/or superconductor boson-like systems. For these states o1' the matter

the number of particles is a large enough but the degrees of fl'eedom are frozen at the same

time as a result of their quantum correlation. The main characteristics of similar systems

are connected with spontaneously broken g_uge symmetry [5]. The phase tra.nsition in such

a mesoscopic system demonstrates the linear superposition IN} = t_l'n_:)+ _ei6{r_,_ + [} of the

Fock states with neighborhood values of the boson numbers n_:; u, t/> 0, 6 are tlne some real

parameters of the problem, no >> 1 is a critical average number of particles which results

in phase transition - see [5]. The sharp switching effect fl'om positive to negative values of

the quasi-distribution (Wigner) function can be associated with the phase transition - see

Fig.2a,b. The intermediate values being both positive and negative describe tl_e intrinsic



structure of the phasetransition (Fig.2c). For this casethe projection of the Wigr/er [unction
onthe coordinate-momentumphaseplanehasafractM-likestructure and the averagenumber
of particles is essentiallyfractional. Physically the fact can be interpreted asa macroscopic
trahsition from quantum (classical)to classical(quantum)behavior of the mesoscopicsystem
in the phasespace. In this approachthe negativevaluesof the quasi-distribution [urmtion
corresponddirectly to quantum domains in contrast with the positive values which are
associatedwith classicalstates.

4.ENTANGLED POLARIZATION COHERENT STATES IN QUANTUM
LOGIC XOR-GATE

We haveproposedthe quantum logical XOR-gate using the mesoscopic(macroscopic)
systemsunderconsideration. Weshowedthat for ]inear coherentsuperpositionof two modes
the XOR-operation isreducedto entanglementof the coherentorthogonalpolarization states
being the two qubits in polarization parametersof the boson system. We also introduced
the first- andsecond-ordercorrelationfunctions for the qubits. Their behavior demonstrates
the stronganticorrelation betweentarget and control qubits vs variation of the polarization
phaseanglesof control mode - Fig.3. The Einstein-Podolsky-Rosencorrelatioi_effect can
be analyzedfor suchan entanglementof coherentqubits.

For practical realization of predictedeffectsfor quantum computation weareconsidering
the multiparticle boson-like systemsin quantum and atomic optics. For these purposes
the non-linear Lipkin model with standard spin-spin interaction is using to describe the
mesoscopicpropertiesof the systems.The problemof decoherencefl)r suchconsiderationis
discussedas well.
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Abstract

Recent proposals for realizing a quantum logical gate by entangling neutral

atoms via cold controlled collisions are presented. The possibility of im-

plementing them with present-day experimental techniques is quantitatively

discussed. The examples of optical lattices and magnetic microtraps, to be

loaded with atoms from Bose Einstein condensates, are analyzed.

Entanglement is one of the most intriguing features of Quantum Mechanics. It leads to

paradoxes, like the Einstein-Podolsky-Rosen one, and has certain applications, like quantum

cryptography or quantum computing [1]. However, there are very few physical systems

in which entanglement can be systematically studied in a controlled way. Those systems

include ion-traps, cavity QED, photons, solid state systems, and molecules in the context

of NMR. Very recently, we have identified a new way of entangling neutral atoms by using

cold controlled collisions [2]. Given the impressive experimental advances made so far in the

fields of neutral atom trapping and cooling, and in the studies of Bose Einstein condensation

(BEC) of ultracold gases, that proposal opens a new perspective to several experimental

groups who so far have concentrated their efforts in other fields of Atomic Physics. In this

paper we review some of the basic concepts of this method to entangle atoms, and analyze

them in two different scenarios: atoms in dipole traps and in magnetic micro-traps [3].

Consider two neutral atoms 1 and 2 with two internal states confined in traps. We will

show how by changing selectively the trapping potentials one can implement a fundamental

two-qubit gate of the form

Io)_lo)2 --+ 1o)11o>,Io) llh -_ Io}111>,[1)11o)2 _ I1>11o),Ii> llh -_ -I1)_11h. (1)

Here, 10) and [1) denote two internal states of the atoms, and the phase-shift is obtained as a

consequence of the atomic collision. If one can additionally perform single-qubit rotations,

that is, change the internal state of each of the atoms independently (using a laser, for

example), then by concatenating such operations with the fundamental gate (1) one can

manipulate the quantum state of the atoms at will [1]. In particular, one can create arbitrary

entangled states. Note that instead of changing the sign of the state I1)11) one could change

the sign of any other state (see below).

We consider two bosonic atoms 1 and 2 with internal states 1@1,2 and Ib}1,2 trapped by

conservative potentials V_(xi, t) whose functional dependence on the coordinate xi, with



i = 1, 2 the particle index, depends on the internal state of the particle 31,2 = a, b. Initially,

the two particles are in the ground state of the trapping potentials and the centers of the

two potential wells are sufficiently far apart so that the particles do not interact. Then the

form of the potential wells is changed such that there is some overlap of the wave functions

of the two atoms; the particles interact with each other, and then the potential is restored to

the original situation. We describe the interaction between the atoms in two given internal

states/3_ and/32 by a contact potential

 ZlZ (xl- x2)- 4   lz h253(xl- x2), (2)

where as31_2 is the s-wave scattering length for the corresponding internal states describing

elastic collisions and rn is the mass of the particles. We treat the interaction perturbatively.

The phase accumulated due to the interaction in the time interval [-T, 7-] is

h
(3)

where 1_ga_2(t)} is the symmetrized state for two particles in internal states /3_ and /32 in

the time dependent potential V _ ® V _.

One way of controlling the interaction between the particles is to move the center posi-

tion of the potentials V 9_ (xi, t) = V (xi- X/_(t)) towards each other in a state-dependent
way while leaving the shape of the potential unchanged (left part of Fig. 1). By moving the

potential we get two kinds of phase shifts: a kinetic phase which is a single-particle phase

due to the kinetic energy of the particles and an interaction phase due to coherent inter-

actions between two atoms. The first one can be easily calculated by ignoring the effects

of collisions to lowest order. The second one is responsible for the entanglement. If the

motion of the potential is slow enough such that the atoms always remain in the ground

state, depending on the initial internal atomic states we have: la>11 >2
la}llb}2 --+ e-i(O_+Ob+O_b) la}llb}2, Ib}lla)2 -+ e-i(°_+ob)lb}l[a}2, 15}11b}2 _ e-i2Ob[b}llb}2, where

the motional states remain unchanged. The kinetic phases 0 n and the collisional phase Oak

can be easily calculated. The 0 n are (trivial) one-particle phases that, as long as they are

known, can always be incorporated in the definition of the states [a} and [b}. If we identify

the states 10} and I1} appropriately, this realizes the fundamental two-qubit quantum gate

(1) for 0ab = 7C (but with the change of sign in the state I1>10>).

The interaction between the particles can be controlled also in another way, for example

by changing with time the shape of the potentials depending on the particles' internal states

(right part of Fig. 1). We consider two atoms initially trapped in two displaced wells. At a

certain time the barrier between the wells is suddenly removed in a selective way for atoms

in state [b}, whereas it remains unchanged for atoms in state [a}. The atoms are allowed

to oscillate for some time, and then the barrier is raised again suddenly such as to trap

them back at the original positions. As before, during the process they will acquire both a

kinematic phase due to the oscillations within their respective wells, and an interaction phase

due to the collision. These phase-shifts will depend on the number of oscillations and the

initial conditions. On the other hand, if the effect of the deformation of the wavefunctions

due to the interaction is negligible, we will have that after the atoms come back to the
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FIG. 1. Configurations at times iT (a) and at t (b) for moving (left) and switching potentials

(right). The solid (dashed) curves show the potentials for particles in the internal state la) (Ib)).

original situation. If the phases are known and the phase difference _bbb - 2¢ ab is adjusted

to +7c by a proper choice of the trap parameters, we obtain (1).

A physical implementation of the scenarios described here requires an interaction which

produces internal-state-dependent conservative trap potentials and the possibility of manip-

ulating these potentials independently. The choice of the internal atomic states la) and Ib)

has to be such that they are elastic (i.e. the internal states do not change after the collision).

We consider first that the atoms are trapped in an optical lattice (one can similarly

consider trapping in other optical fields), and we show how to move the optical potentials

[3,4]. We consider the example of alkali atoms with a nuclear spin equal to 3/2 (szab, 23Na)

trapped by standing waves in three dimensions. The internal states of interest are hyperfine

levels corresponding to the ground state $1/2. Along the z axis, the standing waves are in

the linZlin configuration (two linearly polarized counter-propagating traveling waves with

the electric fields E1 and 1_2 forming an angle 20). The total electric field is a superposition

of right and left circularly polarized standing waves (a ±) which can be shifted with respect

to each other by changing 0. The lasers are tuned between the Pt/2 and P3/2 levels so

that the dynamical polarizabilities c_im of the two fine structure $1/2 states corresponding

to rns = 4-1/2 due to the laser polarization a m vanish (c_+_ = c__+ = 0), whereas the

polarizabilities c_±± due to a ± are identical (a++ = c__ - c_). We choose for the states la}

and Ib} the hyperfine structure states la) - IF = 1,rnf = 1) and Ib} - IF = 2, mf = 2).

Due to angular momentum conservation, these states are stable under collisions. On the

other hand, by varying the angle 0 from 7c/2 to 0, the corresponding potentials V b and V a

move in opposite directions until they completely overlap. Then, going back to 0 = ¢c/2 the

potentials return to their original positions.

We now consider the implementation of a switching potential by means of electromagnetic

trapping forces. The interaction between the magnetic dipole moment of an atom in some

hyperfine state IF, rnF) and an external static magnetic field /? entails an energy Uma_n

9F#BrnF[BI depending on the atomic internal state via the quantum number rnF (here #B is

the Bohr magneton and gF is the Land_ factor). On the other hand, the Stark shift induced

on an atom by an electric field /_ gives a state-independent energy gel _ [dt[E[ 2 where

c_ is the atomic polarizability. The interplay between these two effects can be exploited in

order to obtain a trapping potential whose shape depends on the atomic internal state. As



an example, we consideran atomic mirror with an external magnetic field [5], providing
confinementalong two directionswith trapping frequencieswhich can rangefrom a few tens
of kHz up to someMHz. Microscopicelectrodescan bepluggedon the mirror's surface[6],
thus allowing for the designof a potential with the characteristicsdescribedabove. In order
to pertbrm the gates,wechoosefor the statesla) and Ib}the samehyperfinestructure states
of 87Rbconsideredbefore,which are low-magneticfield seekers.

We use the minimum fidelity F to characterize the quality of the gate F =

min_ {trext [@[L/S ([_}@l ® Pext)StL/t[q3}] }, where [q;} is an arbitrary internal state of both

atoms, and 1_5}is the state resulting from [_}. The trace is taken over motional states, 5/is

the evolution operator for the internal states coupled to the external motion (including the

collision), S is an operator expressing symmetrization under particle interchange, and Pext is

the density operator corresponding to both atoms being at a temperature T at time t = --T

[2,3]. In both the schemes considered here we obtain a F _ 0.99 assuming reasonable values

for the trapping parameters.

We have shown how to perform quantum gates between neutral atoms using cold con-

trolled collisions. We have analyzed two different setups, one based on optical lattices and

the other on magnetic traps. It is clear that, at the present time, most of the experimental

requirements have yet to be realized, before one can implement quantum intbrmation pro-

cessing. There are, however, recent achievements in cooling and trapping of atoms in optical

lattices and in magnetic microtraps which make it seem possible that some of these elements

could be implemented in the laboratory in the near future. There are short-term and long-

term perspectives. Essential for all quantum information experiments is a successful cooling

of the atoms to the ground state of a three dimensional lattice. Under these circumstances,

one could perform interesting Ramsey-type spectroscopic studies of the fidelity of multi-

particle entanglement as discussed in Ref. [3]. To do this, neither single-atom addressability

is required nor are regular filling structures. When the latter requirements can be realized,

on the other hand, coding experiments can be done and a quantum memory be implemented.

Finally, if one can find three-level schemes with different scattering phases for the logical

states, universal computations can be performed. The parallelism of the lattice could then

be exploited for efficient implementations of fault-tolerant quantum computing.
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Abstract

An experimental demonstration of the Deutsch-Jozsa quantum computation

algorithm of 3-qubit using linear optics is described. The quantum algorithm

was implemented by use of linear (passive) optics which acted as unitary trans-

formations on the polarization and modes of photons as quantum registers.

The result was given by 'a single quantum computation' in the experiment.

Quantum computation is a new concept which utilizes quantum superposition states for

ultra-fast parallel processing. There have been several proposals for the actual realization

of quantum computers. Among them, only the nuclear magnetic resonance(NMR) quantum

computation[l] has played the role of a test-bed for the algorithms. Some mechanisms for

quantum computation, however, cannot be tested by the NMR quantum computers because

the result of the NMR computation is always given by the average of the huge number of

quantum computations. Here we report an demonstration of the Deutsch-Jozsa quantum

computation algorithm[2] of 3-qubit using linear optics and single-photons, which has been

proposed as an alternative test-bed for quantum computation[3].

Our quantum computer solves the problem with 4-bit inputs, for which three qubits are

required in the Deutsch-Jozsa algorithm; two qubits are used as the address register and one

as the accumulator for the given oracle. The schematic experimental setup is shown in Fig. 1.

In our computer, four optical paths are used for the address register and the polarization

of the photon is used for the accumulator. Our quantum computer was used by following

procedure. First, the optical length of each path was adjusted one by one to have suitable

phase parameters. Second, 'the oracle' (a 4-bit digit) was given to the computer and is

converted to the appropriate voltage signal applied to the E/O modulators in the system.

Then, we put a single-photon with vertical polarization to the input port of this 'quantum

computer'. In the experiment, we used weak coherent light which was attenuated to 0.hpW

so that the each detection signal was given by single photon interference. Then, we observed

the detector at the output port to find whether it detects the photon or not. When the

photon was detected, it meant the answer was that 'the given oracle {f(i)} is not even.'

When not, the answer was 'the given oracle {f(i)} is not uniform[4].' We emphasize that

the answer was given by a single quantum computation (a single event of photon detection)
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FIG. 1. The schematic diagram of the experiment.

in this experiment[5].

The detailed explanation of the transformations given by each optics was given in the

reference[3].The first three beam splitters, the E/O modulators, the wave plates, and the

last three beam splitters correspond to the unitary transformation A, U(f), S,and A t used

in the reference[2] respectively. The details of the experiment is given elsewhere[6].

As the experimental result, we could determine whether the statement 'the given oracle

{f(i) } is not even' or 'the given oracle {f(i)} is not uniform' is correct with the small average

error rates of 2.7% and 4.0% respectively by the observation of a single-photon. These errors

might be caused by the imperfect initialization and the decoherence caused by the wave front

distortion caused by the optics.

On the quantum computation using linear optics, Reck showed that the any unitary

transformation can be realized by linear optics[7]. After the first proposal of the quantum

computation using linear optics[3], Cerf described the method to realize any quantum logic

by linear optics[8]. This was the first experiment of 3 qubits using linear optics. The weak

point of linear optics quantum computation is that we need 2 N modes to implement an

algorithm with N qubits. However, the algorithm with small number of qubits(say ten

qubits, which is supposed to be a limit for NMR quantum computation) will be possible

with today's experimental technique. In addition, it is possible to demonstrate an algorithm

in which the result should be given by a single computation. Quantum computation using

linear optics will be an alternative test bed as shown here.

We thank Dr. Toshiro Isu for his helpful comments.
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Abstract

We derive bounds on the efficiency of approximate cloning transformations

for two-dimensional quantum systems. We consider three different types of

cloners and compare the corresponding fidelities.

The laws of quantum mechanics do not allow the realisation of a perfect cloning machine

for quantum states that are a priori unknown [1]. It is intuitive to expect that perfect cloning

transformations can be approximated with increasing efficiency by increasing the amount of a

priori information on the set of allowed input states. We analyse here approximate cloning

for two-dimensional states and show bounds on its efficiency for three possible classes of

inputs. We study the efficiency of a cloning transformation in terms of the fidelity F --

(¢ ]Po_tl ¢) of the density operator po_t describing the state of each output copy with respect

to the original pure input state I¢).

We will first consider the most general case where the input state is completely unknown

(the class of allowed input states corresponds to the whole two-dimensional Hilbert space of a

qubit). We will investigate universal cloning transformations, namely tranformations whose

efficiency does not depend on the form of the input state. Universal N --4 M quantum cloning

is a unitary transformation acting on an extended input which contains N original qubits

all in the same unknown pure state ]¢), M - N "blank" qubits and K auxiliary systems in

an arbitrary state, and giving M output clones together with the auxiliary K systems. We

describe the state of each qubit in terms of its Bloch vector representation p = (11÷ _'. _)/2,

where 11is the 2 x 2 identity matrix, g is the Bloch vector (with unit length for pure states)

and cri are the Pauli matrices. By requiring that all input states must be treated in the

same way (universality condition) it has been shown [2] that the reduced density operator

of each of the M output qubits is related to the input one by a shrinking transformation

in the Bloch vector representation, namely po_t = (_ + _(N, M)_. _)/2. Notice that the

shrinking factor is simply related to the fidelity as F_(N, M) = (1 ÷ 71_(N, M))/2.

In order to optimise the fidelity F_ (N, M), or equivalently the shrinking factor zj_(N, M),

universal cloning has been related to state estimation [3] by the following equality

opt
F;s _ (N) = F_t(N, oc) (1)

opt
Fis t (N) is the fidelity corresponding to optimal state estimation of N unknown pure input

opt
qubit states and was found to be F_st (N) = (N + 1)/(N + 2) [4].

Moreover, it can be shown [3] that the shrinking factors of universal cloning machines

multiply, namely the shrinking factor of a universal N -+ L cloner composed of a sequence



of an N -+ M cloner followed by an M -+ L cloner is the product of the two shrinking

factors: r/u(N, M) • r/u(M, L). By exploiting the above concatenation property and Eq. (1)

the following upper bound for an N -_ M cloner can be derived [3]:

_?u(N,M) < _t(N'°°)
- rl_t(M,c_)

N(M + 2)

M(N+2) "
(2)

The above bound is achieved by the cloning transformations proposed in [5].

We now start restricting the class of input states and consider only states of the form

I¢_) = (]0} + ei¢[ 1))v_, where ¢ e [0,21r). We are interested in cloning transformations

that treat each input state belonging to this class in the same way, namely whose efficiency

does not depend on the value of the phase ¢. Cloning transformations satisfying the above

condition will be called phase covariant.

It can be shown [7] that phase covariant cloning transformations for input states ]¢,)

correspond to a shrinking of the Bloch vector by a factor _pc(N, M) and that the sequence

of two covariant cloners, the first taking N states [¢¢) and giving M output copies, and the

second taking the M output copies as input and generating L output copies, can be viewed

as an N --+ L phase covariant cloner with shrinking factor r/pc(N, M) • r/pc(M, L).

Moreover, similarly to the case of universal cloning, the following link between phase

covariant cloning and phase estimation on qubits of the form [¢¢) can be proved [7]

opt
F_c (N, c_) = F_t(N) , (a)

where F_t(N) is fidelity of the reconstructed reduced density operator after performing

optimal covariant phase estimation on N qubits in the pure state I¢¢)- The fidelity for

optimal covariant phase estimation for qubits in state I¢¢) takes the form [6]

F_t(N) 2 + 2N+----T Y_ l + 1 " (4)
l=0

As for phase covariant cloners, the fidelity of covariant phase estimation is simply related to

the shrinking factor as Fph(N) = (1 + _?pn(N))/2 and therefore the equality (3) holds also

for the corresponding shrinking factors.

By concatenating an N --+ M and an N --+ oe phase covariant cloners and exploiting

Eq. (3) we can find the following upper bound on the fidelity of an N -+ M phase covariant

cloner [7]

rl_t(N, M) < 2 (M-N)

r,__o
(5)

Note that while in the case of the universal cloning we know the explicit form of the

cloning map which achieves the bound (2), in the case of phase covariant cloners we know

that the above bound can be achieved for the simplest case of the 1 -+ 2 cloner [7], but we

do not know yet whether it can be achieved for any values of N and M. Notice that the

bound (5) is always greater than the optimal shrinking factor for the universal cloner (2),

as expected.



Finally, we further restrict the classof input statesand considerthe smallest non trivial
one,namely a set of two nonorthogonalpure states,parametrisedas

tal=cosglOl+sing]ll, Ibl--singtOl+cos8111, (6)

where 9 E [0, Ir/4]. The set of the two input states can equivalently be specified by means

of their scalar product S = (a]b) = sin 29.

We will present here a lower bound for the fidelity of an optimal N --+ M cloning

transformation that operates on N input states of the form Ix) ®y, with x - a, b, generalising

the results presented in [2] for the 1 -+ 2 case. The resulting transformation is also called

state dependent cloner, because its form depends explicitly on the form of the initial states,

namely on the parameter 9. We will consider a unitary operator VNM acting on the Hilbert

space of M qubits and define the final states I OINMI and I_NM> as

l aNM) = VNM(I a) ®N ® I o)®M-N), I /_NM) -- VNM({ b) ®N ® [ 0)®M-N). (7)

Unitarity gives the constraint (_NMI_NMI -- SN on the scalar product of the final states.

As a convenient criterion for optimality of the cloning transformation, we maximize the

global fidelity Fg(N, M) of both final states IaNM) and IflnM) with respect to the perfect

cloned states l a M) -- t a) ®M and Ib M) - I b) ®M, namely

1Fg(N, M) -- -_ + [(_NMIbM)I2) . (8)

It can be easily shown [8] that the above fidelity is maximized when the states I {:_NM) and

I_NM) lie in the two-dimensional space 7"laM,bM which is spanned by vectors {I aM), IBM)}

and the maximum fidelity takes the form

Fg(N,M) = 1(1 + SN+M + _/1- $2N_/1- S2M) . (9)

We can also derive the fidelity of each output copy to compare it with the previous cases

and it turns out to be [8]

Fsd(N,M)-<alp_Ia)=A2(I+S2+2sM)+B2(I+S2-2SM)+2AB(1-S2), (10)

where p_ is the reduced density operator corresponding to input state Ia) and A 1 fi--+sn= _V l+--y_s,
1 lf-ff_---SN

B = _ V _--:-_rs- (By the symmetry of the transformation the fidelity of the output state p_

with respect to the input I b) leads to the same result.)

Notice that the fidelities for the cloner of nonorthogonal states (10) are just a lower

bound. Actually, in order to find the optimal state dependent cloner to be compared with

the universal and phase covariant ones, the fidelity Fsd(N, M) should be maximised explic-

itly, and in general additional auxiliary systems interacting with the M qubits should be

considered in the definition of the cloning transformation VNM. In Ref. [2] it was shown that

for the 1 --_ 2 case the maximisation of Fs4(1, 2) leads to a different cloning transformation

than the one considered here, where the global fidelity is maximised. However, the value

of the resulting optimal fidelity is only slightly different from the fidelity reported corre-

sponding to Eq. (10). It can be easily verified that the fidelities (10) always correspond to

considerably higher values than the ones for universal and covariant cloning.
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Abstract

We ask the existence of a novel quantum cloning machine which can pro-

duces a linear superposition of multiple copies of the input state. We show

that a novel cloning machine can exist if and only if the states are linearly

independent. Unlike the other cloning machines the novel cloning machine

treates the 'number' of clones as a quantum variable. We derive a general

bound on the success probability of the novel cloning machine.

In one hand quantum mechanical principles enhance the possibility of information pro-

cessing and on the other they put some limitations. That an unknown quantum state can

not be perfectly copied is a consequence of linearity of quantum theory. This was realised

by Wootters-Zurek [1] and Dieks [2]. After the seminal paper on quantum "no-cloning" the-

orem there is an ongoing interest [3-15] in the investigation of the problem of approximate

and exact cloning of non-orthogonal quantum states.

In the literaxtue various authors have asked the question: If we have an unknown state

I¢.) is there a device which will produce either I¢) --_ I¢} ®2, I¢) --_ [¢)®3, I¢} -+ [_/))®M

or ]¢)eN __+ ]¢)®M copies of an unknown state in a deterministic or probabilistic fashion.

This is a "classicalised" way of thinking about a quantum cloning machine. With a classical

Xerox machine if we feed a paper with some amount of information we can either get 1 -+ 2,

or 1 --+ 3, or 1 _ M copies by pressing the number of copies we want. In the light of

above remark I feel that all the quantum cloning machines discussed so far are not "fully

quantum". If a real quantum cloning machine would exist it should exploit one basic feature

of the quantum world and it should produce simultaneously [¢) -_ [¢)®2, [¢) __+ [¢)®3, and

[¢) --+ I¢) ®M copies. A more general question to ask is if it is possible by some physical

process to produce an output state of an unknown quantum state which will be in a linear

superposition of all possible multiple copies each in the same original state, i.e.,

I ')1oo....o) + + .....+ (1)

*email:akpati_sees.bangor.ac.uk



A device that can perform this task we call "novel quantum cloning machine" (NQCM). We

[16] have recently shown that an ideal novel cloning machine based on unitarity of quantum

theory which succedes all the time cannot exist.

Here we discuss the state-dependent exact novel cloning machines. Consider an unknown

input state [¢i) from a set S which belongs to a Hilbert space 7/A = C _a. Let IE)B be the

state of the ancillary system B ( analogous to bunch of blank papers) which belongs to a

Hilbert space 7-/B of dimension NB = N M, where M is the total number of blank states each

having dimension NA. In fact we can take IE)B = ]0) ®M. Let there be a probe state of the

cloning device which can measure the number of copies that have been produces and IP)

be the initial state of the probing device. Let IPt), ..., IPM), .... IPNc) are orthonormal basis

states of the probing device. The set {IPn)} E 7-/c = C Nv such that Nc > M. If a novel

cloning machine exist, then it should be represented by a linear, unitary operator that acts

on the combined sates of the composite system.

We find that if the cloning machine fails some time and the failure branch is described by

a state independent of the input state [17] then it is possible to create a linear superposition

of multiple clones. Our theorem says:

Theorem : There exists a unitary operator U such that for any unknown state chosen

from a set S = {1¢i)}(i -- 1,2,..k) the device can create a linear superposition of multiple

clones together with failure copies given by

M _c i)
U({¢i)IE)[P)) = E P_i)I¢i)®("+UI0)_(M-'_)[P'_) + E V_t ]_,)ABIPz),

n=l l=M+l

(2)

if and only if the states I¢1), [¢2), .... {¢k) are linearly independent. In the above equation

p_) and f_i) are success and failure probabilities for the ith input state to produce n exact

copies and to remain in the lth failure component, respectively. The states [q't)As's are

normalised states of the composite system AB and they are not necessarily orthogonal. The

proof can be found in [17].

Since this machine produces exact clones the local fidelity in each branch of the out put

state is unit. However, the global fidelity may not be unit. If the non-orthogonal states are

chosen with certain probability Yi, then the global fidelity can be defined as

F = 2= E,,P:,
i i

(3)

where I_iaeat) = _,n:l_ _p(_)l¢i)®(n+t)[O)®(_-_)}P_) and [_I'°'t) is given in (2). The probabil-

ity Pi - _n P(_)- One may try to optimise the global fidelity and see if one can do better (in

terms of information gain) with a novel cloning machine in contrast to universal, optimal

cloning machines.

After the input state chosen from the set S undergo unitary evolution in order to know

how many copies are produced by the novel cloning machine, one needs to do a von Neumann

measurement onto the probe basis. This can be thought of as a measurement of a Hermitian

operator. We introduce such an operator, which is called "Xerox number" operator Nx,

defined as

M

Nx = _ nIP,_)(P. ]. (4)



The probestatesIPn) areeigenstatesof the Xerox numberoperator with eigenvaluen where

n is the number of clones produced with a probability distribution p(_). The novel cloning

machine would produce 1 --+ 2 copies with probability pl, 1 --+ 3 copies with probability p2,

...and 1 --_ M + 1 copies with probability PM in accordance with the usual rules of quantum

mechanics.

Our result is consistent with the known results on cloning. In the unitary evolution if one

of the positive number in success branch is one and all others (including failure branches) are

zero, then we have U(I¢i)IE)IP)) = I¢i)®(n+l)lO)®(M-n)lPn). This tells us that the matrix

equation would be G (1) ---- G (n+l) since An = I. This will be possible only when the states

chosen from a set are orthogonal to each other. Thus a single quanta in an orthogonal state

can be perfectly cloned [4]. An interesting result also follows from our proposed cloning

machine. If the state are orthogonal and all p(_)'s are non-zero, then unitarity allows us to

have a linear superposition of multiple copies of orthogonal states as the matrix equation is

always satisfied.

The tight bound on the individual success probability for cloning of two distinct non-

orthogonal states is given by

21_(p(d) + p_))(1 -I<¢,ICj)W +1)_< (1 - 1(¢,1¢5)1). (5)

The above bound is related to the distinguishable metric of the quantum state space.

Since the "minimum-normed-distance" [18] between two non-orthogonal states [¢i) and [¢5)

is De ([¢i), [¢5)) = 2(1 -[(¢i [¢5)1) and the "minimum-normed-distance" between n + 1 clones

is D2([¢i) ®n+l, [¢5) ®n+l) = 2(1 - [(¢i[¢5)[n+1), the tight bound can be expressed as

Ep.D2([¢i) ®"+1,1¢5)®"+1) _ DU([¢i), 1¢5)),
n

(6)

_i(.(i) + p_)). Thewhere we have defined total success probability Pn for nth clones as p_ = z u-n

above bound can be interpreted physically as the sum of the weighted distance between

two distinct states of n-4- 1 clones is always bounded by the the original distance between

two non-orthogonal states. Our bound is consistent with the known results on cloning. For

example, if we have 1 --_ 2 cloning, then in the evolution we have p?) and p_) are non-zero

1 (p_i)+ p?)) < 1 whichand all others are zero. In this case our bound reduces to _ - 1+1(¢_1¢_)1'

is the Duan-Guo bound [12]. Similarly if we have 1 --+ M cloning, then in the evolution we

have p(_ and p0Q are non-zero and all others are zero. In this case our bound reduces to

_(p(_) +p(_) < 1-1(¢,t¢_)1 which is the Chefles-Barnett [14] bound. Both these bounds can
2 I, M -- l_l(¢ilCj)lM,

be interpreted as the ratio of the distance function between two non-orthogonal state before

and after (ideal) cloning operation.

It would be interesting to construct a novel cloning for unknown mixed states. We con-

jecture that if one can consruct such a machine, then the success probabilities of producing

superposition of multiple copies of the mixed states chosen from a set {pi} would obey the

bound given by

i EGo(d)+- [tr(p,pb)] ) < (i -[t,-(p,pb)]½).
2 -

I'L

(7)



We show that the probabilistic cloning machine discussed by Duan and Guo [13] can

be considered as a special case of the general novel cloning machine. To see that from our

machine Duan-Guo machine follows as a special case, let us take one of the p_) is non-

zero and all others are zero in the unitary transformation (_.). Then we have the following

evolution for the non-orthogonal states

U([O,)[_)IP)) -- p_2°lO,)®2lP2) + _ V_z(0I_z)ABIP_). (8)

where we have assumed that there is only one blank state. This is nothing but Duan-Guo

type of probabilistic machine for producing 1 -4 2 copies. If one does a measurement of the

probe with a postselection of the measurement results, then this will yield two exact copies

of the unknown quantum states. Since all other deterministic cloning machines are special

cases of Duan-Guo machine, we can say, in fact, that all deterministic and probabilistic

cloning machines are special cases of our novel cloning machines.

In conclusion, we have asked an important question: whether it is possible to create a

linear superposition of multiple clones. We proved that unitarity allows us to create linear

superposition of multiple clones of non-orthogonal states along with a failure term if and only

if the states are linearly independent. We derived a tight bound on the success probability

of passing two non-orthogonal states through our novel cloning machine and shown that all

known bounds follow from our tight bound. The present idea can be applied to universal

cloning machine, state-dependent, approxiamte quantum cloning machines and so on. We

hope that the linear superposition of multiple clones will have potential application in the

easy preservation of important quantum information, quantum error correction and parallel

storage of information in a quantum computer.

I thank S. L. Braunstein and L. M. Duan for very useful discussions. I thank A. Chefles

for useful comments. I gratefully acknowledge financial support by EPSRC.
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Abstract

We evaluate the limiting sensitivity of imaging of a two-dimensional faint

phase object, placed into an interferometer. We consider the case when

both input ports of the interferometer are illuminated by spatially-multimode

quadrature squeezed light. In optimum case one can minimize both noise con-

tributions to the observed signal: the beatings between the coherent and the

squeezed components of pump and the self-beatings of squeezed pump. We

demonstrate that this provides the Heisenberg-limited sensitivity of the mea-

surement of the spatial phase distribution in the object. The optimum choise

of space-time scales of the system and the resolving power of the measurement

in space and time are discussed.

The measured phase shift is introduced by a two-dimensional faint phase object, placed

into the Mach-Zehnder interferometer. The observed signal is the spatial variation in the out-

put light power. If the interferometer (the pump port) is illuminated by classical monochro-

matic wave, the minimum measured phase shift 5q_(sh) is limited by the photon (shot) noise,

5_(_h) = 1/V/-ff. Here n is the mean number of photons, detected during the measurement

cycle. For n >> 1 this estimate is far from the ultimate Heisenberg limit to the minimum

measured phase difference 5_(H) _ 1/n.

The shot-noise-limited estimate is significantly improved when the quadrature squeezed

states of light are used. This was shown in a number of papers (see e.g., a comprehen-

sive paper by Caves [1]). By the illumination of the normally unused (idle) port of the

interferometer with quadrature squeezed light and for the optimum choise of the phase and

the degree of squeezing the sensitivity of the phase measurement is limited by the value

5qo(*q) _ 1/n a/4. For n >> 1 these estimates are ranged as Aqo (H) << At2 (_q) << Aqo (_h). A

clear physical explanation of the improvement in the signal-to-noise ratio is based on the

wave picture. The main noise source for n >> 1 and not very large degree of squeezing is due

to the beatings (interference) between the classical wave from the input port 1 (pump port)

and the in-phase quadrature component of the squeezed light from the input port 2 (idle

port). With the decreasing amplitude of the in-phase quadrature component the observed
noise also decreases.

The first phase measurements beyond the shot noise limit were done in [2,3]. The possi-



bility to improve the sensitivity of measurements for two-dimensional phase objects (images)

was demonstrated theoretically in [4,5] for the objects with faint phase modulation in space

and time and in [6] for the case of phase modulation of any amplitude. The sensitivity

predicted in [4 - 6] is limited by the estimate similar to 5q_(sq).

The problem of Heisenberg-limited phase measurements attracts now significant interest.

One can mention the proposal to use for such measurements the de Broglie wavelength

Mach-Zehnder interferometer [7], the discussion of the phase properties of the entangled

(equipartition) states of two electromagnetic oscillators [8,9] etc.

(a)

FIG.1. (a) Schematic diagram of

the optical scheme for imaging of

a faint phase object; (b) optimum

phase matching of classical and

squeezed components of the illu-

minating light fields.

The optical scheme for imaging of a faint phase object is shown in Fig.1. A two-

dimensional phase object is placed into Mach-Zehnder interferometer with plane mirrors.

The input port 1 of the interferometer is illuminated by the light wave in a spatially-

multimode squeezed state, generated in non-linear crystal NC1. The light field amplitude

has an average (classical) component b_. This component describes a plane wave, which

produces the average responce of the device to the phase shift _(fi, t) << 1 in the object

(here fi = (x, y)). The input port 2 is illuminated by the light wave in the state of spatially-

multimode squeezed vacuum, produced by the non-linear crystal NC2.

The squeezing transformation of the field amplitudes, performed by non-linear crystals,

is given by

bp(q,a) = Up(q, ft)ap(q,a) + Vp(q,f_)ap (-q,-f_), (1)

where q, f_ are the Fourier arguments, iT, t --4 q, f_. The coefficients U, V of the squeezing

transformation determine the standard parameters of squeezed state:

Cp(q.a) = -_arg{G(q. fl)Vp(-g,-a)}, e+rp(q'a) = IG(q.a)l q-IG(q,a)l, (2)

where _bp(_, f_) is the orientation angle of the major axis of squeezing ellipse in the complex

plane of field amplitude, and e-4-rp( q- f_) gives the degree of stretching and squeezing of the

uncertainity region.



The state of the light fields at the inputs of non-linear crystals is coherentfor the plane
wave,propagatingin z direction at the input 1, and vacuum for all other degrees of freedom.

We assume that in absence of the object the interferometer is precisely balanced and is

equivalent to the 1:1 beamsplitter.

The output light fields are detected with the use of dense arrays of effective photon coun-

ters with quantum efficiency r/<_ 1. The measured quantities are the output photocurrent

densities i_(fi, t) (without multiplication by the elementary charge), where n = 1,2.

The observed quantity is the difference photocurrent density i_(t_, t) = il(p, t)- i2(p-*,t).

The responce of the scheme to the phase shift in the object (i.e. the signal) is found in

the form (i_(fi, t)) _ 1b_12_(£ t). Since both the signal and the quantum fluctuations are

assumed to be small, we evaluate quantum noise of the observable in absence of the signal.

With the use of Glauber's photodetection theory we relate the photocurrent correlation

functions to the correlation functions of the input fields ap. The spectral power of space-time

fluctuations in the observed difference photocurrent density is found after some calculations

in the form

- ¢,a _ *-Je,a" (3)

Here r/is the quantum efficiency of a pixel. There are three main contributions to the noise

spectrum (3):

1. The term, proportional to the sum of the mean photocurrent densities (i+) = (il) +

(i2}, is responsible for residial shot noise in the case of non-ideal photodetection, r/< 1.

2. The contribution

= ÷ (- (4)
- 0",a

proportional to the surface power [b_12of the classical plane wave (in photon units), is related

to the beatings between the classical wave at the input port 1 and the in-phase quadrature

component of the light wave in the spatially-multimode squeezed state at the input port 2.
0 -*The power of the beatings is determined by the difference angle 12(q, f_) = _2(0', Ft)-argb_

between the main axis of the squeezing ellipse and the complex amplitude of the classical
0 -* _-_wave. This contribution to the noise power is minimized by the phase matching 12(q, _)

+_/2.
3. The term

(5i2-)(sS)=r/_ 1 f -*' -_,o',a (2zr)-------_ dq'da'{sinh2(rl(q-q'a-a')q-r2(q'a')) x

co_(_(g-q,a-a ') ¢_(q, ))+ (5)

gives the spectral power of the cross-beatings betwen two multimode squeezed light waves.

This term is determined by the space-time spectral convolution. Here one can easily identify

contributions, proportional to exp(+rx -4- r2), each due to the cross-beatings between given

pair of squeezed or stretched quadrature components of input light fields. The power of each



contribution is determinedby sin or cos of the difference angle ¢1 (q--q', a--a t) --_)2(q', _')

between the main axes of squeezing ellipses for the input light waves.

The major contribution to the noise power (5) due to the beatings between the stretched

quadrature components of two squeezed light fields is eliminated by the relative phase shift

_1 - _2 = :t:7r/2. The optimum matching of the degrees of squeezing of two zqueezed input

light waves rl = r2, eliminates the noise contribution (5) completely.

Consider the low-frequency value of the noise power in the case of degenerate and collinear

phase matching in the non-linear crystals. Assume that the photons are collected by the

effective (r/= 1) elementary detectors (pixels) of area Se > Scoh during the sampling time

Td >_ Tcoh, where Scoh = (2zr/Aq) 2 and Tcoh = 27r/Af_ are the coherence area and the

coherence time of squeezed light at input port 2. Here Aq and Aft are the widths of the

frequency bands of effective squeezing. In the case of large degree of squeezing, r2 >> 1, we

arrive to the estimate

5p(fi, t) _ 1 ( SdTd _ 1/2
2 nx/-n--_-_\ S_o-_--_oh] ' (6)

where n c and n _q are the mean numbers of photons in the coherent and the squeezed waves.

Let us evaluate the limiting sensitivity of phase measurement by given overall number of

photons n in the classical and the two squeezed light waves, detected during the measurement

cycle n = n ° + 2n _q. In the case SeTa > ScohTcoh we obtain, up to a numerical factor, the

Heiseberg-limited value. But if the time-space scales of the detection procedure and the

squeezed input light waves are not matched, SeTe >> S_ohT_oh, the limiting sensitivity is

degraded by the factor (SdTd/ScohTcoh) 1/2 _>>1.

Physically this can be explained in a following way. Since the mean number of photons in

squeezed lihgt waves per measurement cycle is limited by n, the number of photons collected

at the coherence area during the coherence time is limited by the value nS_ohT_oh/SdTd. The

smaller coherence volume ScohT_oh, the smaller is the number of photons in elementary field

degree of freedom, the amount of squeezing in illuminating light and the noise suppression.
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Abstract

We consider the problem of the measurement of very small displacements

in the transverse plane of an optical image using a split-photodetector. We

show that the standard quantum limit for such a measurement, equal to the

diffraction limit divided by the square root of the number of photons used

in the measurement, can be overcome, not by using "ordinary" single mode

squeezed light, but by nonclassical transverse multimode light. We present

an experiment aiming at producing such states.

Up to now, Quantum Optics has been mainly interested in measurements involving the

total intensity of light beams. But classical optics is not limited to the study of a single

information extracted from light : it is mainly interested in images, which are now recorded

by very efficient detectors such as CCD cameras or photodetector arrays, which sample

the transverse variation of the light intensity on their pixels. Improving the quality of

image recording is of paramount importance in many areas, such as astronomy, microscopy,

holography, .... According to the Rayleigh criterion, the resolution in optical images is

limited by diffraction. This classical criterion, based on the capabilities of the human visual

system, is violated when one uses modern photodetectors which are able to resolve image

details much smaller than the size of a diffraction spot [1]. The quality and resolution of

image recording is then limited by the quantum fluctuations of the light affecting each pixel

[2]. We will here recall the standard quantum limit in image recording, and then determine

what are the best nonclassical states of light which can allow us to go beyond it.

Let us first assume that the incident beam is described by a single mode quantum state in

a given transverse mode ul (x, y) (where x and y are the coordinates in the transverse plane).

Let NA and Ns be the photocurrent measured on two photodetectors A and B of areas SA

and SB, expressed in units of number of photons recorded during the measurement time.

A straightforward calculation based on standard photodetection theory gives the following

result for the quantity CNANB = (NANB)-- (NA) (NB) , equal to the correlation function

when A _ B, and to the intensity noise variance AN_ when A = B

(AN ot- (1)
CNAN. ----Ns.4ns. + (Ntot)2

where NsAns_ is the mean intensity measured by a photodetector covering the intersection

between the two areas SA and SB. (Ntot) and AN2ot are respectively the mean and the



varianceof the total photocurrent, measuredby a detector covering the entire transverse
plane. If the quantum state describingthe singlemodebeamis a coherentstate, formula (1)
showsthat the photocurrent fluctuations areat the shot noiselevelonall the pixels, whatever
their sizeandposition, and that the fluctuations at two different pixelsareuncorrelated. This
result is consistentwith the simple picture that a coherent state is 'composed'of photons
which are randomly distributed not only in time, but alsoin the transverseplane inside the
beamarea. If the beam is in a sub-Poissonianstate, like the onesproduced by somesemi-
conductor lasers,one can easily showfrom this formula that there is lessnoisereduction in
partial photodetection than in the entire beam. When the pixel sizeis decreased,the noise
increasesexactly in the sameway as when one insertsan absorbing medium in a squeezed
beamwhich reducesthe meanintensity by the samefactor. For a singlemodebeam,a partial
detection is thus equivalent to a lossmechanism. This property can be simply pictured by
assertingthat a singlemodesub-Poissonianbeamis composedof photonswhich aresomehow
antibunchedin time, but still completely randomly distributed in the transverseplane, like
in a coherentstate : transverserandomnessis therefore associatedto the singlemode nature
of the field, and not to its coherentor quasi-classicalnature.

Let us now considera two-mode state, spannedon two transversemodesul and u2. It

is also possible in this case to derive a formula giving the local noise and correlations of

the different pixels. We will not give here its lengthy expression, which can be found in

[3]. Let us simply say that in this case, partial photodetection cannot be assimilated to a

simple loss mechanism, as in the single mode case. In the case of multimode laser beams

having excess noise, for example, one can find in [4] and [5] examples of nontrivial noise

variations in partial photodetection, providing a precious information on the laser used in

the experiment.

In order to give precise assessments of the quantum limits in transverse measurements,

we will focus our attention on a precise problem, namely the measurement of very small

displacements in an optical image. Let us consider more precisely a configuration which is

very often used by experimentalists, for example in atomic force microscopy [6] or in single

molecule tracking in biology [7] : the photodetector array is a two-pixel photodetector (" split

detector"), delivering two photocurrents NA and NB proportional to the light intensities

integrated over the two halves of the transverse plane (A: x > 0; B: x < 0). A light beam

of intensity I (x, y), assumed symmetrical with respect to the pixel boundary, is incident on

the split photodetector. If the beam is initially centered on the detector, the mean value of

the photocurrent difference N_ = NA -- NB is directly proportional to the relative lateral

displacement D of the whole beam with respect to the initial symmetrical configuration, at

least for displacements small compared to the beam size. The noise affecting this quantity,

sometimes called "position noise", limits the accuracy in the measurement of D. When the

light beam is in a coherent state, the displacement Dsql providing a value of (N_ / equal to this

noise is the standard quantum limit in the measurement of a small transverse displacement.

One finds from Eq(1)

A

D sql -- 4< Ntot > (2)

where A is an effective beam width, equal for example to 0.63w0 for a TEMoo Gaussian beam

of waist w0. Within some numerical factor of order one, A gives the Rayleigh, or diffraction,



limit in this specific measurement.The fact that the standard quantum limit can be much
smaller than the optical wavelengthevenwith light beamsof moderate intensities, is often
usedin optical transversemeasurements.

Let us now use nonclassicalstates of light and seewhether they can improve this kind
of transversemeasurement. As already stated, it will not be useful to replace the single
mode coherentbeam by a single mode nonclassicalbeam. It is easy to show from For-
mula (1) that the minimum measurabledisplacement is still given by expression(2) for
any single mode state of light. The standard quantum limit can be overcomeonly if one
usesa multi-transverse mode nonclassicalstate of light. Ref([3]) gives an example of a
two-modestate allowing us to reduceby a large amount the variance in the measurement
of the intensity differencebetweenthe two half planes. This state is neverthelessdifficult to
propagateover somedistance becauseit contains high spatial Fourier components. Other
non-classicalstates, lesssensitiveto propagation effects,can beenvisionned.They consistof
appropriate superpositionsof many different transverseTEMBqmodesin nonclassicalstates.
In this respectparametric interaction in an optical cavity with a great number of degen-
erate transversemodes seemsa very promising sourceof nonclassicaltransverse states of
light. In particular the quasi-planar configuration has been shown in [8] to produce below
threshold a field with almost identical quantum intensity fluctuations at points symmetrical
with respectto the cavity axis. This device is indeedlikely to increaseby a large factor the
ultimate sensitivity in the measurementof a small displacement.

We have developped an experimental set-up to produce such multimode nonclassical
states of light. It consistsof a non degenerate,c.w., triply resonant Optical Parametric
Oscillator pumped by a high power (1.8W) sourceof light at 532nm of high spectral purity
and stability [9]. The OPO cavity is operated closeto its confocal position, so that many
different transversemodesof the signal and idler modescan be coupled by the parametric
interaction. Figure 1 showsthe pump threshold for the OPO oscillation as a function of
the resonator length. For lengths longer than the confocal configuration, the threshold is
roughly 40mW, correspondingto a single mode OPO. For lengths smaller than this value,
the threshold dramatically increasesby more than a factor 5. The different pictures inserted
in the figure show the correspondingnear field transversedistribution of the signal mode.
In the region where the threshold is high, the signal near field exhibits a ring structure,
consisting of a bright small center, surrounded by wide concentric rings and thin fringes.
This is the first experimental evidenceof a pattern formation in OPOs. We haveshownthat
in this experimentalconfiguration, the OPO oscillateson a coherentsuperpositionof roughly
25transversemodes. This highly multi-transversemodeconfiguration is agood candidateto
generatelight fields with nonclassicaltransversedistribution of quantum fluctuations likely
to increasethe transverseresolution in optical images.We are currently studying the noise
propertiesof the observedoptical patterns.

We thank L. Lugiato, A. Gatti and M. Kolobov for many enlightening discussions.This
work hasbeenpartially funded by anE.C. TMR network "QSTRUCT". Laboratoire Kastler
Brossel,from Ecole Normale Sup@rieureand Universit@P.M. Curie, is associatedto CNRS.
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Abstract

Considerable interest is growing around self homodyne techniques. Such techniques allow
to avoid non unitary detection efficiencies due to inefficient mode matching of the local oscil-
lator. As proposed by Galatola et al. (Opt. Comm. 85 (1991)p.95-103), one possible scheme
of serf homodyne detection of a field with a strong coherent component involves the use of a
Fabry-Perot cavity with a perfectly reflecting mirror. We extend the theory to arbitrary cavi-
ties, and we observe a remarkable qualitative agreement between the theory and the observed
data. Using the same setup we performed a tomographic measure of the Wigner function of
the field emitted by a laser diode

Aim of the present work is to study the self homodyne scheme proposed by Galatola et al.

(Opt. Comm. 85 (1991)p.95-103) in presence of losses and to explore the possibility of using such

scheme for a tomographic analysis of the field emitted by a laser diode. The set-up used in our
experiments is shown in figure 1. The laser is a Mitzubishi ML5415N diode emitting at 830 nm

externally feed-backed with an holographic grating. The heart of the experiment is a confocal 10

cm F.P cavity with an high-reflectivity back-mirror (T < .1%) and a measured finesse of 150. We

also measure the modulus of coupling coefficient of the cavity ]xl-----0.85 and infer the negative
sign of the coefficient. The homodyne detection system is based on two EG&G FND100 detectors

mounted on home made low noise amplifiers followed by passive power combiners which allow

to sum/subtract currents from the amplifiers. A photodiode detecting the transmission of the

interferometer is used for alignment..

The self homodyne analysis of fields with a strong coherent component used here is based on the

possibility of varying the angle between the noise ellipse and the coherent component of the field.

This allows to transform any quadrature of the field in the amplitude quadrature thus permitting

a direct detection of its fluctuations. As in FM spectroscopy the phase noise is transformed in

amplitude noise using a dispersive medium. In our case the dispersive medium is the F.P. cavity.

Each Fourier component of the fluctuations undergoes a different phase rotation depending on the

ratio f_ of its frequency to the cavity half-linewidth.

Galatola et al. already pointed out that the key feature of the F.P. cavity is the coupling

parameter defined as
T2- TI+ $1+$2

_=
T2 A- T1 -4-$1 A- $2

In their work they assumed a cavity with a perfectly reflecting rear mirror and loss-less front

mirror. For commercial mirrors typical losses are of the order of 0.2 % mainly due to residue

reflections on the mirrors' first surfaces. It is easily demonstrated that the effect of losses is

dramatic especially for high finesse cavities. In our cavity we measured a coupling factor of-0.85

and a finesse of 150 which are consistent with total losses of a few tenths of percent.
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Figure 1: Experimental setup, see text for details

To show the effect of losses on expected signals we plot in figure 2 the variance of the amplitude
noise of the field reflected by the cavity as its resonance frequency is scanned for different values of

_, putting _-=-6, 0 is the detuning normalised to the half linewidth of the cavity. We suppose that

the input field of the cavity has shot noise limited amplitude fluctuations and phase fluctuations

100 times greater and normalise the variance to the shot noise.

As a check of our extended theory we make a comparison between the theoretical predictions

using independently measured parameters and the variance of the amplitude fluctuations mea-

sured with a spectrum analyser. We found a remarkable agreement between the theory and the

measurement. A systematic deviation is observed on the tails of the curve. This is probably due
to a feature of the laser itself.

We explored the possibility of using this self homodyne technique to make a tomographic

reconstruction of the Wigner function. The experimental setup is shown in figure 3, we use

the mixer and a sine generator (@60 MHz) which allow to analyse the fluctuations of the sum

(amplitude fluctuations of the input field) or difference (shot noise calibration) of the photo-

currents at a given frequency. The intermediate frequency (IF) signal is amplified and filtered

(low pass filter, cutoff frequency 300 kHz) to remove RF components, then it is sent to a Lecroy

6810 CAMAC waveform recorder, which acquires up to 106 12-bit points at 5 Msamples/s. The
CAMAC is connected via GPIB to a PC for data analysis.

From the data registered by the CAMAC we calculate the variance and fit the variance curve

to obtain an experimental evaluation of the cavity and laser parameters (coupling parameter,

amplitude and phase noise). The fitted parameters are used to infer the rotation of the quadratures

and to obtain the experimental marginal distributions P(x,0). The marginal distributions are
inverted using a filtered backprojection algorithm to give the Wigner quasidistribution which is

plotted in figure 3.

This experiment is still in progress we are willing to demonstrate that also non classical sources

of light (i.e. amplitude squeezed laser diodes) maybe successfully analysed with our detection

scheme. Moreover some light should be cast on the features appearing in the variance registrations

which are shown here. Nevertheless we think that this scheme of self homodyne detection can be

useful in all the cases where a strong local oscillator coherent with the field under analysis is not
available.
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Figure 3: Experimental Wigner function of the fluctuating part of the field emitted by the laser
diode
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Abstract

Some properties of the fractional Fourier transform, which is used in informa-

tion processing, are presented in connection with the tomography transform

of optical signals. Relation of the Green function of the quantum harmonic

oscillator to the fractional Fourier transform is elucidated.

Analysis of signMs (electromagnetic, acoustic, seismic, etc.,) is based on studying the

properties of a complex time-dependent function f(t) (called "analytic signal") which de-

scribes a signal. Signal analysis is an essential ingredient of information processing. The

conventional method for studying a signal is Fourier analysis which provides a function fF (w)

describing the frequency structure of the signal. Fourier anMysis is equivalent to applying

invertable map f(t) _ fF(_) of analytic signal on the Fourier component of the signal.

Other methods to study signals, in which invertable maps of the analytic signal function

onto a function of two variables (time-frequency quasidistributions, for example, the Ville-

Wigner quasidistribution [1]) f(t) _ W (t,_) are used, were introduced to describe a joint

time-frequency distribution of the signal. If one makes the replacement f -_ _; t --_ x,

formally complex analytic signal f(t) is equivalent to the complex wave function _(x) de-

scribing a system's state in quantum mechanics. In view of this, results of quantum theory

can be applied to signal analysis and vice versa.

Recently, in quantum mechanics and quantum optics the invertable tomography map of

the wave function on the probability distribution function of a random variable (depending

also on extra parameters) was introduced. The application of this map to signal analysis

(called "noncommutative" tomography of analytic signal) was developed [2]. Advantages

of the proposed tomorgaphic methods of signal analysis consist in the fact that they map

a complex function (analytic signal) on the probability distribution that provides the same

information on a signal but elucidates the signal properties in more visible appearance.

Fourier transform of optical signals plays an important role in describing the shape and

frequency content of optical pulses (for the particular case of interferometric methods of the

investigation of output signals in semiconductor lasers, it was successfully applied in [3,4]).

Other transforms can be used for an analysis of optical signals for describing both their

amplitude and phase; thus, the fractional Fourier transform [5] was intensively employed

in optical measurements and information processing [6]. In quantum optics, the symplectic

tomography transform was introduced [7] to describe a quantum state, which as well can

be conventionally described by the Wigner quasidistribution function. This transform is an



extensionof Fourier transform whichwasalsousedin the optical tomographyprocedure [8]
to describea quantum state. The cited transforms can be determined by a kernel of the
integral operator. Analogously, in quantum mechanicsthe Green function, for example,of
the quantum harmonicoscillator is the kernel of the quantum time-evolution operator. The
aim of this contribution is to discussthe similarity of the Green function of the harmonic
oscillator and the kernelof the fractional Fourier transform. We also establisha connection
of the fractional Fourier transform to the tomography method suggestedfor measuring
quantum states [7].

The wavefunction of the harmonicoscillator _P(x, t) satisfies the SchrSdinger evolution

equation (in the coordinate representation)

0_ (z, t) h2 02_ (z, t) inca%2
ih ot - 2._ Ox2 + _ ,r (x,t). (1)

The Green function G_ (x, y, t) of the Schr6dinger equation (1) determines the wave function

q_ (x, t) in terms of the initial wave function _P (y, O) by the relationship

f a_(x,y,t)_(y,o) _y (2)_ (z,t) =

The initial value of the Green function is G_ (x, y, O) = 5 (x - y). The Green function of the
harmonic oscillator reads

27rih_:_sin cat 2h- x2 + y2 cot cat sin cat " (3)

By inserting (3) in (2) one provides the explicit form of the integral transform of the initial

wave function kO(y, 0)

q_ (x,t) = 27r ih sZlncat 2-h x 2 + Y2: c°t wt sin cat

One can see that for time t satisfying the condition cot cat = 0, the integral transform (4)

coincides with the usual Fourier transform of the initial wave function, i.e., for cat = (Tr/2) +

27rk, k = 0,-t-1, +2,..., one has sincat = 1, and Eq. (4) reads

( 1 [2 ]) rn_f { irnca }• ,t=- +2_k = _(y,0)exp _y dy (5)
ca h

For arbitrary time t, relation (4) is the integral transform of the initial wave function with

the Gaussian kernel, periodic in time.

In signal analysis and information processing, the fractional Fourier transform (_aq) (u)

of analytic signal q (u) is used (see, for example, [6])

(._aq)(u) = [Ba(u,u')q(u') du'. (6)
J

The kernel of the transform reads

.--': )]sin(I) + cotq_ , (7)



wherethe anglevariable is determinedby the real parametera, (I) = an�2, 0 < lal < 2, and

_) = sgn (singP). For a = 0 and a = 2, B0 (u,u') = 5 (u - u') and B2 (u,u') = 5 (u 4- u'),

respectively. The fractional Fourier transform is the linear transform. For a = 1 (the

first-order transform), it corresponds to the usual Fourier transform.

Let us now compare relations (6), (7), and (4) using the change of variables

-v_ , u v/_ -- , _t=¢,

and the replacement

q2 u, _ (.Taq)(u), \_/ q2 0 _ q(u).\v m_ \v m_

We see that (6), (7), and (4) coincide up to the factor exp (i(I)/2) = exp(icat/2);this means

that the identity of the oscillator's Green function and the kernel of the fractional Fourier

transform takes plase, i.e.,

Ba(u,u') =exp(iWt)G_(x,y,t),
\row�

2_ 2_h _ _aX= --U, y= U, t--
V m_ V mw 2_

The other phase factor in the kernel of the fractional Fourier transform is equal to the

constant phase factor of the Green function exp (-i_/4) = i -1/2.
\ /

In [2], the procedure of noncommutative tomography of analytic signal was suggested

which uses the symplectic tomography approach for measuring quantum states in quantum

mechanics proposed in [7]. Below, we show the relation of the fractional Fourier trans-

form to the noncommutative tomography approach. The marginal probability distribution

w (X, #, u) is connected to analytic signal q (u) by means of the relationship [2]

1/ (i# u 2w(X,p,u)- 2_lul q(u)exp _ ---

iX \ 2

) d_ . (s)//

For arbitrary real parameters # and u, the probability distribution is normalized

f w (X, #, u) dX = 1, if analytic signal is normalized f Iq (u)12 du = 1. If one knows

w (X, #, u), analytic signal can be reconstructed, in view of the relationship

1/ [(q(u) q*(u')=27 ¢ w(X,#,u u')exp i X # 2 dX d#. (9)

After inserting (8) in (9), one obtains that the product of the analytic signal functions

1/ [(q(zt) q* (_1) (271-) 2 exp i X -- # 7 [#2 4- (,u .u/)2] -1/2 dX d#

1 #

_ 2x y q(y)
V/# 2 + (u - u') 2 sin [arctan (u - u')/#1

y2

(lo)



is expressed in terms of modulus of the fractional Fourier transform. In fact, let us compare

(7) and (10). One can see that the change of the variables ¢ _ arctan [(u- u')/#] in

(7) and y _ V_-_v'; X _ v V/# 2 + (u- u') 2 in (10) reduces the term in the two last lines

of (10) to the form IfBa(v,v')q(v') dv'l 2, with a = (2/_)arctan [(u-u')/p]. Thus, the

connection between the noncommutative tomography approach of [2] and employment of the

fractional Fourier transform is established. The important aspect of applying the fractional

Fourier transform in this context is that, in order to reconstruct analytic signal (up to the

constant phase), one needs only the modulus of the transform and this modulus has the

meaning of the probability distribution function depending on two real parameters.

In conclusion, we would like to point out that we have demonstrated the formal simiP

iarity (better to say even identity) of the fractional Fourier transform used in information

processing and signal analysis and the time-evolution transform of the wave function of the

quantum harmonic oscillator. The kernel of the fractional Fourier transform is mathemati-

cally equivalent to the Green function of the quantum harmonic oscillator. This observation

gives the possibility to use physically obvious properties of the Green function, like unitarity

of the evolution operator, to describe the properties of the fractional Fourier transform. The

experimental realization of the fractional Fourier transform can be done in optical fibers

(selfoc) where the signal propagation is described by a SchrSdinger-like equation in the

Fock-Leontovich approximation [9,10].

We have shown that the fractional Fourier transform is connected with the symplectic

tomography approach of measuring quantum states and with noncommutative tomography

of analytic signals. The observed relations of quantum problems to some procedures used

to analyze different (for example, optical) signals provide the idea to use Green functions

of quantum systems with other potentials as kernels of transforms of analytic signals; the

kernels being different from the kernel of the fractional Fourier transform related to the

harmonic oscillator potential. All these Green functions have the property of unitarity and

by inverting time one has the kernel of inverse transform related to the Green functions.
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Abstract

The operational theory of homodyne detection by nonideal detectors, used

in quantum tomography, was recently modified in order to incorporate the

preamplification (before homodyne detection) of the input signal, thus en-

abling to beat the handicap of the lower than 0.5 detector efficiency. In the

present work we set an expression for the signal-to-noise ratio in terms of the

operational (measured) moments of the preamplified homodyne detection for-

malism. We illustrate the theory by considering some kinds of fields (for the

input signal) and determine the effects of the preamplification on the output

signal-to-noise ratios.

I. INTRODUCTION

The operational theory of balanced homodyne detection consists in inserting conveniently

the efficiency of the detection directly into the measured observables such that the statistical

properties of the field can be extracted with the help of the generating operator [1]

Z(X; O, e) = exp --T(1 - e) + ixv/7 Xo (-oo < X < oo) , (1)

where X0 = Q cos 0 + P sin 0 (0 < 0 < 27r) is the so-called rotated field quadrature operator,

0 is the phase of the local oscillator and e is the efficiency of the photodetectors (0 < e < 1).

The derivatives of Z(X , 0, e) at X = 0 define the operational observables

I [,_/21 n! (1- e'_k X__2k1 d'_Z =e_/2Ekl(n_2k)! \ 4e ,] ' (2)x_'_) -- i'_ dxn x=0 k=O

where each one is expressed as a polynomial of the intrinsic observable X0 of the signal.

Consequently, this expression permits us to establish a relation between the operational and



the intrinsic moments for a given state of the field represented by the statistical operator

p, i.e., M(_)(0, c) = Tr [px_ _)] and J_4(_)(0) = Tr [pX_]. Note that in an ideal measurement

(c = 1), the operational and intrinsic moments coincide.

Formally, a degenerate parametric amplification of a signal is represented by a unitary

transformation of the statistical operator p ---* St(_) p S((), where S(_) is the generalized

squeeze operator with 4 -- ye io. Applying the same transformation in Eq.(1), one obtains a

new generating operator,

Z(x;0, e,A,¢)=exp --T(1-c)+ixx/_ AU2cosc_X_+A-1/2sinaX+2_z_ (3)

which takes into account both the effects: efficiency and amplification [2]. Here a _ 0 - ¢/2,

A _ e -2y is the gain parameter for quadrature Q with y < 0 (A -1 is also a gain parameter,

y > 0, but now it is for P), and y is proportional to the amplitude of the pump field. So, the

operational observables are obtained by a similar procedure [see Eq. (2) for a comparison]

[_/2] n' (l-e) ( ) . (4)x_")(A'¢)=e'#2E k!(n-2k)! _ )_I/2coso_X_ + A-1/2sinaX_2+_ n-2k

k=0

Now, our aim is to obtain the generating operator for a preamplified homodyne detection

with measurements in a random local oscillator phase, which is useful to determine the

statistics of both the signal and the difference in photocounts. In order to include the effects

of an amplified parametric signal in this framework, we consider initially Eq. (3) with c_ = 0.

The generating operator for homodyne detection with random phase is obtained by averaging

Z(X;0, c,A) over 0 [3],

/0 ( )Z_(_; c, A)= dO
2"--_ Z(_;0,5,/_):e-X2[l+e(A-1)]/4• Jo __ • (5)

where Jo(z) is the Bessel function of the 0th order and : : denotes normal ordering of

the creation and annihilation operators. This expression allows to calculate a family of

operational observables by means of the derivatives of Zn(X; c, A) at X = 0,

2cAata )xn(2"_)(A) -- [1 + e(A - 1)]ram! L_nl/2(0) " Lm 1 + e(A - 1) " , (6)

where L_(z) is the generalized Laguerre polynomial• In order to obtain an expression that

relates the normal ordering of the moments coming from photocounts to the operational

observables x(_m) (A), it becomes necessary to invert Eq• (6),

eAat a ) k (_l)k(k!)2 k (_4) m x(n2m)(A)• 1 +c(A-- 1) "-- 2 k Z (2m)!(k-m)! [1 -_e---_---])] "_" (7)
m----0

This result permits to calculate not only the Q parameter but the signal-to-noise (SNR) too

[3]. In the following section, we set an expression for the SNR in terms of the operational

moments with random phase.



II. THE SIGNAL-TO-NOISE RATIO

The calculation of the signal-to-noise ratio in experiments of homodyne detection repre-

sents an important tool for experimental data analysis: It provides a quantitative information

on the measured signal and the noise inherent to the experiment. Thus the SNR for the out-

put photocount-difference (OPD) is defined in terms of the mean values of the operational
(2m)

observables x n (A),

1I
(8)

We can figure out what will be the fflo_t for different kinds of signals by writing (8) in terms

of the photon-number operator

o_tt_, , (9)

V/ 1-¢ x-1 [2 + c(A- 1)]((zxn)2)+ -a- +

where (An} -- [(n 2} - (n}2] 1/2 is the respective variance. The first term in the numerator is

due to the input signal (IS) whereas the second one is due to the pump field, representing

the spontaneous parametric emission. With respect to denominator, the first term is the

signal noise, the second one is the extra noise introduced due to the nonideal detection, and

the third term is the noise associated to the pump field. In the absence of pumping A = 1,

one has a SNR where the numerator is the input signal (IS) and its noise increased due

to the nonideal detection. In (9) we see that the deleterious effect coming from a nonideal

detection vanishes in the extreme situation eA >> 1, i.e., high values of A reduce drastically

the handicap e < 1.

III. APPLICATIONS

(n)
In Fig. 1 fflo_t (e, A) vs A is depicted, where there are two separated sets of lines with

three lines each; the upper (lower) set stands for e = 1 (e = 0.4). The dashed, solid and dot-

dashed lines correspond to the even-coherent, coherent and odd-coherent states, respectively.

Analysing first the coherent-state signal (solid line), the SNR is given by [3]

,_('/_,c)/ / CA (n)c ___ A-1
A) 2_ (10)

:ao_ t it, =Vl+e(A 1) V'/(n)c
-- _-1 2+_(_-1)+

4A 1+e(A-1)

m(ra'c) (c, A) _ C(e,A)(n>_/2 where C(c,A)Note that for a strong signal (n)c >> 1, one has -'_o,t

is the first factor in the RHS of Eq.(10). At A = 1, the SNR shall depend on c and on

the signal amplitude; otherwise, for A >> 1 both curves have the same asymptotic value

fit (7a'_)' A)out [e, ((n)c + ½) / ((n}_ + 1)1/2, without dependence on e. An interesting feature

of the amplification is that it is more effective for the lowest value of e. Otherwise, the



quantum nature of the odd-coherent state (dot-dashed line) makes itself evident through the

higher values attained by the SNR in comparison to the coherent and even-coherent states,

independently of the value of c. This important feature corroborates with the quantum

signature of the field. Moreover, for intense fields the SNR for the even- and odd- coherent

states go to Eq.(10) since <n)e(o) _ <n>c.

1.8
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0._

°_°_°_._°_°_°_o_°_°_._°_°_.j ...... °_°
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FIG. 1. Plot of _(7¢)Q A) vs A with (n) = 2, where the upper (lower) set of lines stands for

e = 1 (q = 0.4). The dashed, solid, and dot-dashed lines correspond to the even-coherent, coherent

and odd-coherent states, respectively.

IV. CONCLUSIONS

The present work is an extension of the state reconstruction process of the Husimi function

for coherent and number states studied in [2]. Here we also used the operational theory of

homodyne detection introduced in [I] to establish a relation between operational and intrinsic

observables of a preamplified signal when the local oscillator phase is completely random.

The preamplification permits to overcome the deleterious effects of a low efficiency detector.

For further details, see the reference [3].

ACKNOWLEDGMENTS

MAM acknowledges financial support from FAPESP, S£o Paulo, Brazil, project number

97/14551-4. This work has also been partially supported by Conv_nio FINEP/PRONEX

Grant number 41/96/0935/00.

REFERENCES

[1] K. Banaszek and K. Wddkiewicz, Phys. Rev. A 55, 3117 (1997).

[2] M. A. Marchiolli, S. S. Mizrahi and V. V. Dodonov, Phys. Rev. A 56, 4278 (1997).

[3] M. A. Marchiolli, S. S. Mizrahi and V. V. Dodonov, Phys. Rev. A 57, 3885 (1998).



Realistic pattern functions for tomography revisited

and direct sampling of smoothed Wigner function

Th. Richter

Arbeitsgruppe "Nichtklassische Strahlung", Insitut fiir Physik, Humbotdt-Universitfft

Invalidenstr. 110, D-10115 Berlin, Germany

Abstract

We present two new representations for the pattern functions fkt needed to

reconstruct the density matrix Qkl in Fock basis from data measured with an

imperfect homodyne detector. We show that smoothed Wigner function and

moment generating function can be directly sampled. The sampling functions

are shifted and scaled versions of f0o and fok, respectively.

1. INTRODUCTION AND BASIC RELATIONSHIPS

Let us denote by W(Xe, O, r/) the probability distribution of the quadrature component Xe

measured with a balanced homodyne detector of overall efficiency r/and belonging to a signal

field described by the density operator _. O is the reference phase of the local oscillator.

The density matrix elements Qkt in Fock basis follow via the formula

ff f02"__1 dxe dO w(xe, O, 77) fkZ(Xe, 77) exp[i(k - /)O] ,
_kl -- 27r oo

(i)

where for the so-called pattern function fkz(x, rl), in particular, for the case r/= 1 different

but identical representations exist [1-6]. In this paper we concentrate on the case r/ < 1

and present a unified approach to all of them. Moreover, we derive a new expression for

the realistic pattern function in the form of a finite weighted sum over scaled ideal pattern

functions fkt(x) - fk_(x, rl = 1) and establish a useful sum relation. With the help of it we

show that both smoothed Wigner function and generalized moment generating function can

be directly sampled using shifted and scaled versions of f00 and fok, respectively.

The search for the pattern function is facilitated by looking first at the Fourier transform

h(u) = f-_oo h(x) exp (-iux)dx of the relevant quantities. In Fourier space (1) reads

1 oo 27r

Ok'= _ f-oo du fo dO_(u,O,'r/) exp[i(k - l)O] ht(-u, _l) , (2)

where _(u, O, _?) is the symmetric ordered characteristic function, i.e. the Fourier trans-

formed Wigner function expressed in polar coordinates. A straightforward generalization of

our approach [3] to the case _? < 1 yields for I >_ k (note the extra factor _ compared to [3])

h,(,,,,7)= _(-d -kv'_-'+_ _V_ I=1='-'_e_p[-(2,1- 1)_/'_1LZk-k(_u2/2). (3)



Here L_(x) denotes the generalized Laguerre polynomial. Obviously, fkl(u, 77) is a well be-

haved function which, however, is bounded only for _ > 1//2. We note that this intermediate

result is of importance by itself since experimental schemes have been devised which allow

to measure directly the characteristic function [7,8].

2. ALTERNATIVE REPRESENTATIONS OF THE PATTERN FUNCTION

We now derive several but identical representations of the pattern function itself which

result from different ways of evaluation of the inverse Fourier integral fkl(x,_?) --

(1/2r) f_oo ]kt(U, 77) exp(iux)du. First of all we note that we can rederive the representation

of the realistic pattern functions found in [2] by substituting in it the explicit expression of

the generalized Laguerre polynomials and integrating term by term.

2.1 fk_(x, 17) -- infinite sum over Hermite polynomials

Next we derive a representations of the realistic pattern functions as a series over even or odd

Hermite polynomials. To this end we make use of the generating functions for the Hermite

polynomials (Ref.[9], 5.12.1.6) and obtain with l = k + 2p + a and a = 0, 1

fk,(x,,) =y(_om)(x,_)+ __1 _,v-' (-1) "+p (n + p + a)! F(k + p - n)
H2,+¢(x), (4)

where fk'_(x, 77)

fk rn°m) l _.o (_ ___) '* (k + n)! (l + n)! Hk+l+2n(x ) .' (_") = _/(2,1_%!l! = _!(k+ l+ 2n)!
(5)

This generalizes the result found in [5] to the case _? < 1. Interestingly f(_om)(x, _?) coincides

with the form of the pattern function following from a reconstruction of the density matrix

via normally ordered moments as proposed in [10] and can be used as pattern function just

as well. This is a consequence of the general ambiguity of the pattern functions. Note,

however, that f_°_)(x,_)is not bounded even for _- 1.

2.2 flcl(x, _7) - infinite sum over fkI(x)

We proceed to derive a representation of the realistic pattern functions as an infinite sum
l-k

over the ideal ones. To this end we express Llk-k(zx) as an infinite sum over Lk+,_(x ) (R.ef.[9],

5.11.2.8) and find (fk,(X,_ = 1)---- fk,(X))

n0k x/
This representation corresponds to the procedure proposed in [6].



2.3 fkl(x,_/) --finite sum over scaled versions of fkl(x)

Most interesting, however, in particular from the numerical point of view is a representation

of the realistic pattern functions as a finite sum over the ideal ones. This time we utilize a

finite sum relation for L'_(zx) ( Ref.[9], 4.4.1.7) and arrive at

(7)

In particular, the realistic pattern functions f0_(xe, _7) are just scaled versions of the corre-

sponding ideal pattern functions

, ff---_ l+2 X (8)

3. DIRECT SAMPLING OF SPECIFIC EXPECTATION VALUES

Equating the right hand sides of Eqs.(6,7) obtain the following identity for l >_ k

(1 + t_ k+z+l _ ztv/_\_] _ (kn)('n)(t-l_ .

valid for t > O. As a result expectation values of the form

can be determined from quadrature distributions via pattern functions which can be ex-

pressed as finite weighted sums of the scaled ideal pattern functions.

3.1 Smoothed Wigner function

We recall that any s-parametrized quasi probability distribution W(x, p, s) can be expressed

as an infinite weighted sum in terms of the diagonal density matrix elements (o_, n)
with c_- (1/x/_)(x + ip) in the displaced Fock-state basis la, n)

W(x,p,s) -- 1W(a 1 7r(ll- s) oo \_- l](S+ 1_ '_= + ip),s) - ( ,nlOl ,n) • (11)

These matrix elements can be directly sampled according to [11] (note the extra factor 70



( ,nl01 ,n) = 2-_ dxo dOw(xo, O) f_,(Xo-XcosO-psinO). (12)
O0

Using this in Eq.(11) and in view of Eq.(9) for k = l = 0 we readily find for s < 0

if/ fo 2'_ (xo-xcosO-psinO) (13)
W(x,p, -]sl) - 4_2]s[ ¢_ dxo dO W(Xo, O) foo _ •

Thus any smoothed Wigner function W(x,p, s < 0) can be directly sampled via formula

(13). The needed sampling function is just the shifted and scaled ideal pattern function foo

[11,12].

3.2 Generalized moment generating function

We introduce the generalized moment generating function Mk(g), 0 _< g < 2, [13]

Mk(p)=_Tr{Oatk(1-p)a*a}=V_._'_ (1 - tt)_ 0_,n+k, (14)
n=O n

which for k -- 0 reduces to the widely used ordinary moment generating function M0(#).

Mk(#) can be directly determined from the quadrature distribution via the formula

(1/? )Mk(#) = dxo _ dOw(xo, O) exp(-ikO) Sk(Xo,#) , (15)
O0

where Sk (Xo, g) is given by

= 2 o •

We note that Mk (#) completely characterizes the quantum state of the system. Indeed, the

derivatives of Mk (#) evaluated at # - 1 and # -- 0 are related to the density matrix elements

and the normally ordered moments.
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Abstract

A technique for filtering thermal noise in Wigner tomography is presented.

The method uses the measured Radon transform of the Wigner function of a

quantum state with thermal noise and produces the Wigner function of the

corresponding 'clean' (noiseless) state.

There has been a lot of activity recently in the field of Wigner tomography and its use in

measuring quantum states. In practice, quantum states always contain some noise and for

this reason superpositions of quantum states with thermal noise have been studied. Here

we propose a filtering technique which takes the measured Radon transform of the Wigner

function of a noisy state and produces the Wigner function of the 'clean' (noiseless) state.

Let us consider a quantum signal described by the density matrix Ps. The corresponding

noisy signal is known [1] to be described by the density matrix

Ps_ = _ (NT} exp (NT) D(A)p_Dt(A)' (1)

where (NT) is the number of thermal ("noisy") photons and D(A) is the displacement

operator with A = 2-1/2(x + ip). Throughout the paper we use the indices s, n and sn for

signal, noise and signal with noise, correspondingly.

The Wigner function [2] of a state described by a density matrix p is defined as:

-_1 f_ + x Ip[xl zlx )W(x,p) = .] dX(x - exp(-iZp)

2--_1fj __p[p[p _l 1p) exp(iPx)"= . dP(p+ (2)



The Weyl function is defined as [3]:

1 1X) exp(-iPx)w(x,P) = f dx(x +  Xlplx -

1= / alp(p+ _PlPlP- exp(ipX)

= Tr[pD(X,P)]. (3)

The X, P are position and momentum increments and are dual in the Fourier transform

sense to the x, p which appear in the Wigner function.

It can be proved that the Weyl function of the noisy signal 17v's_(X, P) is related to the

Weyl function of the clean signal 17_s (X, P) through the relation

The Wigner function can be derived as the two-dimensional Fourier transform of the

Weyl function

17V(X,P) = f f W(x,p)exp[-i(Px - pX)]dzdp; (5)

therefore Eq.(4) implies that the Wigner function of the noisy signals Ws,_(x, p) is related to

the Wigner function of the clean signal through the convolution

1 ,, 1 [ (x-x')2+(p-p')2]dx,dp,"exp= Ws(x,p)-(-_ 2(NT)
(6)

L .2

We now consider an arbitrary quantum state for which the noisy Wigner function

Wsn(x, p) is measured in Wigner tomography experiments, and explain how we can clean it

from noise. The quantity measured is the Radon transform of the Wigner function along

the line x sin 0 - p cos 0 = q, defined as

Psn(q,O) = f / Wsn(x,p)5(xsinO- pcosO-q)dxdp

f W_n(qsinO + u cos 0, -qcos0 + usinO)du, (7)

where q is a real variable and 0 _< 0 < _r. From the P_n(q, O) we can evaluate the Weyl

function using the Fourier transform

= _cos0, P = _sin0) = f Psn(q,O)e-i_qdq. (8)

Knowing the 'noisy Weyl function' we can use Eq.(4) to calculate the 'clean Weyl function'

as

(9)



whereX = _ cos 0 and P = _ sin 0. In order to proceed we need to know the amount of noise

(AFT}. For a signal in a pure state, we use the relation

1

2---_/ /112Vs(X'P)I2dXdP = 1, (10)

which in conjunction with Eq. (9) and in polar coordinates _ = [X 2 + p2]l/2,tan 0 = P/X

gives

1
27r /f II?Vsn(_c°sO'_sinO)12exp[<Nr>_2] _ d_dO = 1. (11)

This equation can be rewritten as

1 E[<NT)IN#N 1
27r (12)

where

1 / f Ii_Vsn(_cosO,_sinO)12_2N+l d_dO#N = _. (13)

The moments #N can be calculated from the data, and Eq.(12) can be solved to give (NT).

We can then find the 'clean' Wigner function, using Eq.(9) and a two-dimensional Fourier
transform.

We finally point out that we have assumed ideal detectors with unit quantum efficiency.

In a realistic experiment we have non-ideal detectors and techniques which correct this error

have been studied in [4].

In summary, the method presented in this paper is suitable for filtering noise from noisy

signals in Wigner tomography experiments. It uses the measured Radon transform P_n(q, O)

of a noisy quantum signal, and produces the Wigner function of the clean signal. We

first calculate the noisy Weyl function using Eq.(8); then calculate the moments #N using

Eq.(13); and then we solve Eq.(12) to find the average number of thermal photons (NT}.

The two-dimensional Fourier transform of the 'clean' Weyl function (Eq. (9)) will give the

Wigner function of the clean signal.
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Abstract

The new tomographic formulation of quantum mechanics is used to develop a

method which can reconstruct the entire density matrix of a 2-particle spin state

in terms of positive classical destributions of probabilities of the values of certain

observables. It is shown that to obtain a complete description of the mixed spin

state it is necessary to know not only the probabilities of the spin projections

as functions of the coordinates of the points on a unit sphere but also the prob-

abilities defining the contributions of the pure states to the mixed ones. With

the help of this method the Einstein-Podolsky-Rosen paradox is analysed. It is

shown that to remove the paradox the observer must strictly fix at every moment

the set of observables and describe the transformation of one set into another.

Such a description is performed with the help of the technique of selective and

nonselective measurements defined by J.Schwinger.

A generic 1-particle j-spin state is described by a (2j + 1) × (2j + 1) Hermitian density
matrix

P = I1_,._,11. (1)

The diagonal elements of the density matrix are nonnegative values and their sum is

equal to unity. The physical meaning of these elements is that they are the probabilities of

observing the value of spin projection on the fixed axis in space. Therefore we introduce the
abbreviation

= w(m,0,¢). (2)
The angles 8, ¢ define the axis in space. The function w(m, 8, ¢) is the marginal distri-

bution, i.e. the probability to find the spin projection m on the axis defined by the angles

8, ¢. If we know the positive, normalized marginal distribution w(m, 8, ¢), then the matrix

elements PJmm' carl be reconstructed both for pure and mixed states [1,2].

The situation is different in the case of 2-particle spin states.

We shall analyze the density matrix of 2-particle states with spins j = 1/2

11

p = • (3)

When we go to a different coordinate system, its elements transform as

II I 1 II

(¢,e,¢) (¢,e,¢)P(_,_=)(_ _) _ D _- D __ --= P(_, m2)(_ _)lrn 1 E_, W$ 2 lrn 2



I* I *

(¢,0,¢) (¢,0,¢) (4)_"_ _2"-2 "

The densitymatrix (3) contains 16 elements. Using the diagonal elements ofthe transformed

matrix (4) one can reconstruct only 6 elements and 5 linear combinations [3,4]

i 1 I_1 I_.i__ 11_

_" 22 22 22 (5)

i£ LL __ii £I_
22 22 22 22

p__t__)(_____) -- 7/,P(l_i)(_l__i_222 2, ' P(-½-½)(½½) ' Pcl--l-)(-tt_,22 _2, + , 22 2 2 --

L! Li i! it_
22 22 22 22

P(LI_(1 it _" -- ( I I'_{ 1 I)P(l!)c __,__ - _, P(___)(____) + = fl,2 g,,_'-_' _'2 _-22' P--_'_"_-_'-_"

!l i_L !i l i_
22 22 22 22

- P__________t_ = V, P(_.½)(_1_ - •_) p(_l_)(___½)
•,2 2;"2 2_ "2 2/" 2 2 I

For pure 2-particle spin states this information permits us to restore the whole density

matrix. But if the state is mixed, then in order to reconstruct all the elements of its density

matrix one must know three additional quantities [3,4]

II __1 1 11 1_1_

22 _ - i_ !) 22- -- p(_________) (6)P___!___)P(___!__ ____) P}_,_)(__ , •
2 2 I" 2 2 _" 2 2_x2 2 "2 2 2 2 2 2 j_' 2 2

These quantities contain three independent real unknown parameters. These parameters

can be found as functions of probabilities wi, w2, wa, w4 of the pure states, forming the mixed

state. In the case of w_ -- 1, w2 - wa - w, = 0 we have a pure state and therefore formulas

(5) give us the whole density matrix.

The result is that for mixed 2-particle spin states, using only the diagonal elements of

the density matrix examined merely in terms of a single reference frame common to both

spins is inadequate for a complete description of the state. They must be supplemented by

the probabilities w_, i - 1, ..., with which the pure states appear in the mixed one.

The additional parameters (6) can be found with the help of the spin correlation operator

a ® = ® (7)

.._ --_ , , • ,

Here a, b axe some umt vectors. They determine the axes in the configuratmnal space and

S(_), S_(2) are the spin operators of 1-particle spin states, composing the 2-particle spin state.

The measured quantities are the mean values of the spin projections to these axes. The

average value of the observable described by the operator (8) at the state defined by a

density matrix p is

E(_, b) = S,(a ® b)- (8)

If _ = g then the average (8) contains information only about the diagonal elements of

the density matrix p, but in the case of _ ¢ b" the average (8) contains information about

the offdiagonal elements of the density matrix p too. So with the help of some special

measurements of the values E(_, b) one can find the unknown parameters (6) and restore

the whole density matrix p.



All 2-particle spin states can be divided into two classes - the factorisable states and the

entangled states. The density matrix Pf of a factorisable state can be presented as a sum of

direct products of the density matrices of the 1-particle states

= ® (9)
i

The density matrix p_ of an entangled state can not be presented in a such form. It can be

proved that for the factorisable states the Bell's unequality is valid and for the entangled

states it is violated.

In the framework of the tomographic formulation of quantum mechanics a quantum state

is described by the set of probability distribution functions. This set corresponds to the full

set of the independent observables such that their values can be measured simultaneously. A

1-particle 1/2-spin state is described by one probability distribution function (2) w (1/2; (7, ¢).

The 2-particle factorisable spin state is described by the set of two 1-particle probability
distribution functions

w I = {w,(1;/_,¢), wb(1;O,¢) }. (10)

The 2-particle entangled spin state is described by the set

1

w_ = { w(i,j;tg, d_); i,j=-4--_ , wl,w2,w3,w4}. (11)

The functions in the set (11) satisfy the conditions

4

_w(i,j;O,¢) = 1, y_w, = 1. (12)
i,j i=1

The quantities forming any probability distribution function can be measured simultane-

ously. In the case of factorisable spin states one can measure simultaneously the projections

of the spins of 1-particle states composing a 2-particle state. In the case of entangled spin

states it is possible to measure the common spin (triplet or singlet) of the pair of particles, but

it is impossible to fined simultaneously both projections of spins of the individual particles

and the common spin of the pair. The corresponding measuring procedures are performed

by different types of experimental equipment and can not be carried out simultaneously.

We want to stress that according to the principles of quantum mechanics any set of

observables can be connected with a given quantum state only after performing the mea-

surements of the values of these observables. The type of a state (either it isfactorisable or

entangled) isn not the property of a state by itself, but the characteristic of the method of

measuring observables that describe the state.

According to J.Schwinger an each quantum mechanical measurement can be devided

into two parts - the nonselective measurement and selective measurement. In the process of

nonselective measurement we choose the set of observables to be measured and prepare the

appropriate measuring equipment. In the process of the selective measurement we carry out

the measuring procedures and find the values of chosen observables.

The nonselective measurements describe the subject of measurement and the selective

measurements describe the object of measurement.



The nonselectivemeasurementsgive us the form of a probability distribution functions
and the selectivemeasurementsprovide the valuesof these functions.

The tomographicformulation of quantum mechanicsisadequateto treating the Einstein-
Podolsky-Rosenparadox. The essenceof the paradox is asfollows.

At the moment to we prepare aa entangled 2-particle spin state described by the proba-

bility distribution function (11). The particles A and B, which compose it, move in opposite

directions so that at the moment tl they are separated by a macroscopic space interval.

During that period the particles A and B form the entangled state and the projections of

their individual spins are not defined. Let us measure at the moment tl the projection of

the spin of the particle A. As the particle B is far from the particle A it does not feel the

process of this measurement. Nevertheless after this measurement we know the projection

of the spin of the particle B too. The question is whether the particle B had the definite

projection of the spin at any moment t < tl ?

If the answer is - "YES", then we can construct the Bell's unequality. But this unequality

contradicts the assumption that at any moment t < tl we deal with the entangled state.

So the answer must be - "NO".

The rigorous analysis shows that the measurement of the of the spin of the particle A

defines the projection of the spin of the particle B only for the observer connected with the

particle A. In order for the observer connected with the particle B to know the projection

of the spin of the particle B too, some information must be sent to him from the observer

connected with the particle A. Only after this moment the projection of the spin of the

particle A and the projection of the spin of the particle B are defined for both observers.

In the framework of the tomographic formulation of quantum mechanics the process of the

defining of the projections of the individual spins of the particles A and B can be described

as the transformation from a probability distribution function (11) of an entangled state

to a probability distribution function (10) of a factorisable state. So at any moment t we

know the probability distribution function by which the state is described and know what

information about the state it contains and what information it does not contain. We also

can connect the transformation from one kind of probability distributions to another with

the concrete measuring procedure.

Therefore in this approach the Einstein-Podolsky-Rosen paradox is not present at all.
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Abstract

Cold damping is an active method which bypasses the usual thermodynam-

ical limitations on the sensitivity of measurements. We present a quantum

treatment of this technique.

We present in this paper a quantum treatment of the sensitivity of a cold damped

capacitive accelerometer designed for fundamental physics experiments in space [1-4]. The

central element of the capacitive accelerometer is a parallelepipedic proof mass placed inside

a box. The walls of these box are electrodes distant from the mass off a hundred micrometers.

The proof mass is kept at the center of the cage by an electrostatic suspension. Since a three

dimensional electrostatic suspension is instable, an active suspension has to be used. In the

cage reference frame, an acceleration is transformed in an inertial force acting on the proof

mass. The force necessary to compensate this inertial force is measured. In fact, as in most

ultrasensitive measurements, the detected signal the error signal used to compensate the

effect of the measured phenomenon.

The essential elements of the accelerometer are presented in figure 1. The proof mass

and the cage form two condensators. Any mass motion unbalances the differential detection

bridge and provides the error signal. In order to avoid low frequency electrical noise, the

electrical circuit is polarized with an AC voltage operating at a frequency of a hundred

kilohertz. After demodulation, this signal is used for detection and as an error signal for a

servo control loop which allows to keep the mass centered in its cage.

Furthermore, the derivative of this signal provides a force proportional to the mass

velocity and simulates a friction force. This active technique is called cold damping since it

may be noiseless [5]. More precisely, the limiting fluctuations can be manipulated so that the

effective noise temperature of the devices is reduced well below the operating temperature.

The analysis of sensitivity limits in these devices rises questions related to fundamental

processes as well as experimental constraints. How far is it possible to reduce the measure-

merit temperature? How are these process related to the fluctuation dissipation theorem?

Are there quantum limits to this noise reduction? What about the quantum constraints

in sensitivity enforced by Heisenberg inequalities? How do the experimental constraints

interplay with the fundamental processes in the ultimate sensitivity?

We show here that quantum network theory allows to address these questions within

a rigorous thermodynamical framework able to withstand the constraints of a quantum

analysis of the measurement. In the same time, it makes possible a realistic description of
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FIG. 1. Scheme of the capacitive sensor. The proof mass is placed between two electrodes

formed by the inner walls of the accelerometer cage. The position dependent capacitances are

polarized by an AC sinewave source which induces a mean current at a frequency of a hundred

ktlz in the symmetrical mode. The mass displacement is read as the current induced in the

antisymmetric mode. An additional capacitance is inserted to make the antisymmetric mode

resonant with the pump frequency. The signal is detected after an ideal operational amplifier with

capacitive feedback followed by a synchronous demodulation. The impedance of the detection line

plays the role of a further resistance. The detected signal then feds the servo loop used to keep the

mass centered with respect to the cage.

real measurement. In such an approach, the various fluctuations entering the system, either

by dissipative or by active elements, are described as input fields in a number of lines. The

in towards outputmeasurement process is described as a scattering of input quantum fields a_

o,t with a unitary S matrixfields a n

a TM = S a in (1)

Here, X = a in, a °ut denotes the column vector with components X_ .

The input fields a in as well as the output fields a TM obey the same commutation relations

[a in [02], a in [aJ]] : [a °ut [02], a °ut [_#]] _-_ 271- (_ (o2 @ aJ) C (02) (2)

in
<a in [co]. a in [aJ]> = 27r o¢ (co + aJ) O'aa [_2] (3)

where c (co) denotes the sign of the frequency aJ. The fluctuations of these noncommuting
inoperators are characterized by the correlation function cr<,_[aJ]. The dot symbol denotes

a symmetrized product for quantum operators. In the case of a thermal bath, the noise

spectrum is

= 7 coth-- (4)2kBT_

Dissipation due to the coupling with the environnement is described with single lines.

Operational amplifiers can be described with two noise lines [6]. Finally, the accelerometer

can be described as a network as depicted on Fig 2.

The detection is performed with the output detection signal r_ ut. It is a linear combina-

tion of the external force F_:t multiplied by some coefficient and of input fields in the various



Servo Control

Signal
Transducer

Demodulation Adreasure

Environment Amplification

FIG. 2. Description of the accelerometer as a quantum network. The essential elements of

the network are represented in this picture. The signal F_xt enters the accelerometer with a

line and is coupled to the electromechanical transducer. The coupling of the accelerometer with

the environment is described with an other line entering the transducer and corresponding to

the Langevin force associated with mechanical dissiaption. The signal is then amplified with an

ideal operational amplifier described with two noise lines. The demoduator provides two output

corresponding to the quadratures of the electrical signal, one of them is used for the measurement

and as an input to the servo control.

out is normalized so that the coefficient of proportion-noise lines. When the expression of r 1

ality appearing in front of the external force F_:t is reduced to unity, a force estimator -fleet

is obtained which is just the sum of the true force F_t to be measured and of an equivalent

input force noise. In the absence of feedback, the force estimator reads [4]:

_-_ O in= + (5)
(2

where c_in denote the various input fields corresponding to the active and passive elents in

the accelerometer.

With the feedback, the servo loop efficiently maintains the mass at its equilibrium posi-

tion and the velocity is no longer affected by the external force Fe_t. The residual motion is

interpreted as the difference between the real velocity of the mass and the velocity measured

by the sensor. This means that the servo loop efficiently corrects the motion of the mass

except for the sensing error. However the sensitivity to external force is still present in the

correction signal. In fact, a quite remarkable result is then obtained. In the limit of an

infinite loop gain and with the same approximations as above, the expression of the force

estimator Fe_t is the same as in the free case [4].

The added noise spectrum EFF is obtained as

c_

We have evaluated whole noise spectrum EFF fbr the specific case of the instrument proposed

for the #SCOPE space mission devoted to the test of the equivalence principle. In the



operating conditions of this accelerometer, the added noise spectrum is dominated by the

mechanical Langevin forces. This corresponds to a sensitivity in acceleration

-- 1.2 X lO -12 in S-2/N_Z (6)

M

Taking into account the integration time of the experiment, this is consistent with the

expected instrument performance corresponding to a test accuracy of 10 -15.

In the present state-of-the-art instrument, the sensitivity is limited by the residual me-

chanical Langevin forces. The latter are due to the damping processes in the gold wire used

to keep the proof mass at zero voltage [3]. With such a configuration, the detection noise is

not a limiting factor. This is a remarkable result in a situation where the effective damping

induced through the servo loop is much more efficient than the passive mechanical damping.

This confirms the considerable interest of the cold damping technique for high sensitivity

measurement devices.

Future fundamental physics missions in space will require even better sensitivities. To

this aim, the wire will be removed and the charge of the test mass will be controlled by other

means, for example UV photoemission. The mechanical Langevin noise will no longer be

a limitation so that the analysis of the ultimate detection noise will become crucial for the

optimization of the instrument performance. This also means that the electromechanical

design configuration will have to be reoptimized taking into account the various noise sources

associated with detection.
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Abstract

We show that entanglement swapping may be induced by dissipation in

Optical cavitites. An analytical calculation is done in the dispersive approx-

imation of the Jaynes Cummings model with dissipation. We start with an

initially entangled atom-field state and show that in the weak coupling (high

Q) regime three very distinct time scales are present: firstly a rapid decoher-

ence takes place, followed by the entanglement swapping regime and finally an

essentially dissipative dynamics dominates. In the end tile initial atom-field

entanglement is transferred to atom-cavity system.

It has recently been pointed out that entangleinent needs not necessarily arise after some

interaction between quantum subsystems [1]. Fundamental aspects of Quantum Mechanics

[2,3] which are presently under investigation make use of this phenomenon. Enviromental

entanglement effects have been shown to play a major role on the discription of decoherence

[4]. In the past years there has been many proposals tbr the generation og entangled states

of subsystems that have never interacted [5,6]. Crucial for the generation of such states is

the phenomenon of entaglement swapping: an auxiliary subsystem is used, entagled with

one of the subsystems of interest, and this entanglement is the swapped to the other one.

The conception of this mechanism was first put tbrth in ref. [7]. In ref [8] a possible scheme

for the generation of a cavity QED entangled atom-field state was devised. In particular the

entangled state made up of a (controlled) coherent superposition of even and odd coherent

states as follows

*tcunha@mat.ufmg.br



where lec_) and Iooz} stands for even and odd coherent states of complex amplitude c_:

(2)

and Iu} and Id} refer to the two Rydberg atomic states considered in tile two level atom

approximation, can be achieved. The parameters _/and c_ determine the degree of entangle-
ment of the state.

In the present work we consider the above initial condition ew:Jving according to the

dynamics of the dispersive Jaynes Cummings Model (JCM) with dissipation [9]. We show

that, once the initial state is prepared, the present experimental device [10] can be used to

monitor the transfer of coherence fl'om atom-field state to the at;om-cavif;y system. This

process is somehow complement ar to cavity loss induced generation of entangled atoms [11],

where a pair of disentangled atoms is entangled to a field mode, and dissipation makes the

atoms entangle.

The dynamics of the atom-field system is described by the tbllowing Liouville-Von Neu-

man equation

h:cp, (3)

with

: -i[m 4 + >p, @)

where H is the dispersive approximation to JCM

n_ Q tile vaccum Ra.bi frequency and 6 thewith a t and a being field mode operators, w = T,

detuning (we use k = 1), and/9 is the zero temperature R;¥A dissipator

Z_ = k(2J- M-P), (@

where k stands for dissipation constant and the above (super)operators are defined as

Jp = c_p(_t,

A,4p = atap,

79p = pata.

(7)

If we decompose the atom-field density operator as

(8)

where pij are operators on field variables only (caution: they are not density operators,

despite of our notation). Each p._j obeys a Liouville-V()n Neuman like equation



pij= £ijpij, (9)

with

G_ -- -i_ (34 - 7))+ v,
£dd = icJ (Ad - 7)) + :D,

£d_ = -ic_ (34 + 7) + 1) + 7),

and we can solve these equations as is done in [9]. Considering initial condition

p(O) = IZOC (_, % _)) (ZOC (_._,%01,

we obtain

(lO)

(11)

(].2)

where c_ (t) = oze -(ix+k)t and

zl ( e_2(l_12 [_(t)12)) 1 + e-2k_(t)P (13)0.._o(t) = ×cod v 1+
1 + ¢-21c_12 '

pu_oo(t) =

_(_) =

_oo(t) =

_,u._o(t)=

_u_o_(t)=

( )- cos2 7 1 - e-i(1_12-[a(t)12) 1 - e -21_(t)12
2 l+e 21(_12'

1 sin2"/(1- e-2('c_l_-l_(t)12)) 1 + e-2k_(t)12

_ sinU 7 e-2(lal2-1a(t)l_)) 1-e -2l_(t)lu

1

1 -i{ • e_(lal:_l_(t)l _) (1 : e-4i_(t)12_ _

I

[e sin (27)e-(@,-['_(')P) _ 1 - e-4k_l_ ]

cosh Li_ + m:

sinh L i_' ÷ ]c

With this complete solution in hands, some important fhatures become clear. First of all,

the atomic density operator defined as

PA = trFp, (14)

where tVF denotes partial trace over the field mode variables, remains constant

_ (t) = cos__yI_>(_l + sin=_/Id><dl, (15)

and so the degree of entanglement of atomic state with the rest of the system is conserved.

In the initial state all this entanglement is shared with the field mode, with cavity degrees



of freedom factorized, but asymptotically the situation is inverted: :field state (vaccum)

factorizes out, and all entanglement is shared between atom and cavity.

Now we can investigate how this phenomenon occur ill time. As solution given in eq. (12)

shows, the density operator has at most fbur positive eigenvalues, and the maximal cavity-

(atom-field) entanglement occurs when all this eigenvalues are equal, l_xplicit expressions

for eigenvalues are given by

(_6)

Their behaviour depends strongly on the initial state parameters c_ and/, and on the ratio

q = _. We will tbcus on the initially maximal entanglement (7 = _) and ':large c¢' (]c_I > 1)

case, but varying q. In case q >> 1 (experimentally feasible, since in Paris experiment [10]

q= gQa __ 10 r), three distinct time scales can be observed: firstly., a rapid decoherence

takes place, rather independently of the parameters used; secondly tile tripartite system

atom-field-cavity evolves and maximally (atom-field)-cavity entangled states takes place; the

third and last regime is essentially governed by dissipation alone, and as tile field approaches

-caecum state it factorizes out and the initial atom-field entanglement is swapped to atom-

cavity subsystem. This is ilustrated in figure 1, where tile second regiine is characterized by

the flat part of the graphic, and the third by the decay of a pair of eigenvalues.

As dissipation grows, the second regime can be supressed. No maximally (atom-field)-

cavity entangled state take place, but even in this situation entanglement swap is achieved.

In figure 2 we show a sequence of intermediate cases.

It is important to emphasize that such behaviour depends dramatically on the model

we choose. If atom were allowed to spontaneously decay, or even if a small temperature

component were added, the situation would change and entanglement swap would not be

complete as in this simple case.

K. Furuya and M.C. Nemes acknowledge tile support of CNPq. M.O. Terra Cunha

thanks the organizers of 6th ICSSUR tbr hospitality, and J.G. Peixoto de Faria tbr fruitfull

discussions.
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Figure captions:

Figure 1: Eigenvalues of p fbr 7 = 4, c_ = 3.1 and q = 1.2 × 10 7 (parameters taken from

[10]).

Figure 2: Eigenvalues of p tbr 7 = 4, a : 3.1 and (a) q : 1(?,• (b) q = 10., (c) q = 1 and

(d) q = lO-<
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Abstract

A perturbative treatment of reduced density operator of quantum subsys-

tems is implemented in the same spirit as Fermi's Golden Rule tbr scattering.

Analytic expressions for linear entropy (a mesure od coherence loss) and sub-

system's energy variation (dissipation) are given. They are applied to the dy-

namics of a superposition of coherent states in a dissipative cavity. We show

that in this example characteristic times for thermalization (Tth), dissipation

(7-dis) and decoherence (7dec) can be formally defined. Explicit expressions

for them are obtained in the Markofrian limit and relations among them are

explored in several situations.

One of the most remarkable properties of the quantum mechanical description of inter-

acting systems is the entanglement process. It is in the root of a large class of "quantum

mysteries" [1]: EPR "paradox", SchrSdinger eats, Bell inequalities and non-locality. Given

the remarkable achievements with recent experiments in Quantum Optics [2] and the inter-

est in Quantum Communication [3] we have now the possibility of exph)ring the dynalnics

of the entanglement process and its consequences. Theoretical description of parties of large

systems, aside from a short list of exactly solvable models [4], is basically given in terms

of Master equations [5] which preclude the description of short time regimes, where the

dynamics of quantum correlations play decisive roles. Recently a pertnrba, tive description

of decoherence time scales has been proposed [6], but, to the a,,thors' knowledge, a well

*tcunha_mat.ufmg.br



founded and practical framework Ibr decoherence and dissipation is still lacking, although

many generic arguments on the role of both are available in tile literature [7]. Tile purpose

of this contribution is to construct a pragmatic tool to investigate these processes. We work

a Dyson Series like expansion tbr density operators and obtain tile Fermi's Golden Rule

analog for the quantum interaction of two subsystems in tile regime of weak interaction. We

also work out a particular example taken from quantum optics (a superposition of coher-

ent states in a dissipative cavity), where similarities and peculiarities of both processes are

discussed.

Let us consider a general Hamiltonian (with discrete spectrum) of the ibrm

H = Ho + H12, (1)

where H0 = H1 +/-/2, with

and

H,, = _ _mrn_I-_><<o I',><,-_l. (4)
7Y_T_T_S

In the above expressions E_[) stands for the eigenenergies of system i whose autonomous

dynamics is governed by the Hamiltonian Hi, and %,.,,_ are the interaction matrix elements

in the tensor product basis.

We further assume that the time scales associated with Ht2 are larger than subsystems

characteristic times (i.e.: small coupling limit, _/<< c,i) and the initia,] state is a factorized

one

(o)= _, (o)o p_(o). (s)

It is in this case convenient to use the interaction picture, ill which density operator is given

by (we use h = 1)

pr (t) = exp (iHot) p (t) exp (-iHot), (s)

and the time dependent interaction Hamiltonian becomes

H12 (t) --exp (iHot)H,2 exp (-iHot)

= _ >_(t)>_><,,Io I_><,,[,

(r)

where

%2 (t): %nrnsexp [i(g_)- s_')+ C_.2)--G_2])t].

It is important to stress that the symbols 712 (t) are strongly dependent on m, n, r', .% but

we omit such indices tbr notational convenience. For later convenience we also define the

symbols



where the same tacit dependence occur.

Von Neumann's equation takes the form

ifir (t) _-- [H12 (t),p[ (t)]. (8)

From now on, we drop the subscript I, but interaction picture must he implied.

A Born like expansion,

/j f//o(t)=p(O)-i dt'[H,2(t'),p(O)]- dE' dt"[H,2(t'),[H,,2(t/'),p(O)]]+... (9)

where we identify

p = pOth + plSt + p2nd 4- ... (10)

In this sense we will obtain second order (in interaction) expressions for the reduced density

operators

pi =Trjp, i #•J, (11)

which defines the states of subsystems, in the sense that every prediction about observables

of one subsystem alone can be obtained from 11, but says nothing about %on-local" Bell-like
observables•

From reduced density operators we can obtain linear entropy (or idempotency deficit)

for each subsystem

5i = 1 - Tr (p_), (12)

which indicates how far from pure states pc = I_/_}(V_'Idensity operators p, and p2 are, and

gives an idea of how entangled 1 and 2 are (in case the whole 1 - 2 system is in a pure state).

Also subsystem's energies

Ei = Tr (HiPi), (13)

are obtained. These quantities will allow us to compare the pro(csses (_t' dissipation (energy

variation) and decoherence ("purity" variation).

Straight forward calculation gives

: . dT_/12 (7-),, i ¢ ,j, (14)

and

a,,,<1 S' I,•>[I-,>(<, I,_,,'><'_'1p?"]+ }= ,,,,,,,,E,,,,,, ] ×

X d7- _[2 (7-) _/12 (7.') ,



At this point the main ingredients of the subsystem's dynamics up to second order become

apparent: first notice the manifest symmetry in the subsystem's indices. Moreover, it is

easy to see that results will be strongly initial condition dependent. Furthermore the terms

involving the integrals will be responsible for the contribution of tile particular chosen inter-

action and tbr the available phase space just as in Fermi's Golden t-{,ule tb_ scattering. This

will become more concrete in the example below.

General expressions tbr first and second order contributions in i_ (t) and Ei (t) can be
written as tbllows

since it involves a trace of a commutator,

52nd(t) = -Tr (p_St (t)) 2-

E__(t)= Tr(Hip__(t)),
F_n"(t)= T_(H__a(t))

(_6)

(_7)

(18)

(19)

In order to gain deeper physical insight into the energy an cohe_ence loss processes we

work out an important example in the context of quantum optics. Let _s consider two very

different subsystems: the first, which we now call S is a harmonic oscillat.o_ (i.e. a radiation

field mode) of frequency _ initially in the so called even coherent state [8] with amplitude

Og_

pOth
----I_) (_I, (20)

where lea) = N (a)(la) + I-a)), N (c_) being a normMization constant a.nd let) Glauber's

coherent state [9].The other subsystem will represent a dissipative cavity, as modelled by a

set of independent harmonic oscillators of frequency _P in thermal equilit_rium

pOOh= _) pj_Oth, (21)
J

where pOth = ZT* exp (-flHj), fl = (kuT) -1, k, being Boltzmann's constant,, T the temper-

ature and Zj = Zj (fl) partition function of the jth harmonic oscillator.

For the Hamiltonian coupling we consider the Rotating Wave Approximation (RWA)

for the interaction between the main oscillator and each j oscillato> In ore notation this

amounts to consider the following explicit form for tile matrix elements

J : _/J_nrns (_r,s+lt_rn+l,n _ + (_r÷ l,s (_m,n+ I _) " (22)

In this case first order corrections to energy vanish due to commutativity between pOthR

and Ha. Second order contributions, given by eq. 19 becomes

15_2n d F 2n d--,h (t)----d_ (t).

+ (%)_-,_J { [:xJt,]}J_2snd (f) _--- OJ (1 + _ -2]a'2) E 1 = _--_glJ (q/j)2 sin 2

j AJ

j [ A.J



In the above expression all the essential ingredients previously discussed are present. The

initial states of both subsystems (through amplitude (_ a,nd tempera, ture T), the coupling

strength (TY) 2 and

sin [AJt] }_5; , (24)

I.

where A a = _ (fP - co), which teach us something about very short times when correlations

are established. Note that tile time-energy uncertainty relation appea.rs in this calculation

in the following way: in a time t uncertainty in energy must be of order t-_ and all modes

with AJ up to this order give significant contribution in the summations involved in eq.

23. As times grows a narrow set of oscillators become significatiw'_ _m(t e_w,rgy conservation

(suitably modified) is achieved. Asymptotically in time, the enery transfer between the

system and the reservoir depends just on the later's density of states of frequency co.

We have separated the energy variation of subsystem S into l:wo parts: one which is

temperature dependent /_Tth and the other which will be present even in the T = 0 case.

We called this the "dissipative" part of E_ _e. The reason for this will 1)ecome clear in the

sequel.

In the above expression, if we further assume a continuum smooth spectrum for the

reservoir and a sufficiently smooth j dependence of 7 .j we can convert summations into

integrals, change variables to frequency integrals by using the density of states 9 and the

following approximation to such integrals

fo_d_2,qF{Sin(At)} 2 _ {sin(At)} 2A _ _02-[-1 dgZqF. - (25)
2t

1

2t

where, the first aproximation follows from the above discussion on time-energy uncertainty

relation and the last one from the required smoothness of9 and/. It is important to stress

that the sense of smoothness we are using for 9 and 7 is subtle. For now it means that there

is no ubiquitous behaviour like the absense of states in the interva.l of width t -1 around co.

This allows us to consider each term in eq. 23 as defining time scales _-_h and Tdis:

(26)

(27)

But we must drop out the dependence on t on the right hand side of these equations.

There seems to be two ways of doing it: one is to consider both as selfconsistent equations,

substituting t by the appropriated r and solving; the other is to consider asymptotic case

t --+ o% which corresponds to the Markoffian approximation. The first way would be a

nice way to go beyond Markoffian approximation, necessary in cases in which 9 or 7 vary

drastically around the frequency co. We will adopt the second, which permits us to obtain



I<
_(_) (_(_))_,

I=d_S,M 4c_12+

"F-' (1 ÷ e-2laP) e-_ o_
th,M I_,i_+ _ g(_) 1_ e_,,_ (7 (a:)) _

which give us the general time scale relation

(28)

(29)

Tth,M

Tdis,M
e_3W ' )- I<=th I_1= 1- e-o_

G_I<=th lal 2 ,

-I

(3o)

(31)

where the last expression in valid tbr the large temperature regime da_ << 1.

The expression tbr the idempotency defficit of S is given by

_52Snd (t) =2 (1 + e -21_12) _--_1. C _-_m (?0 2 [_1']_-_,, _-'
3 '2

2

(32)

and the same reasoning defines tile time scale rdec, which in the Markotfian approximation

is given by:

-1
Tdec, M = 2 ( e-_c°1 + e -21'_1_) 1 - e-_-_ +I< (*- +

As is clear, in the expressions 23 and 32 the ingredients are the same, but tile results are

quite distinct. The grater difference is the relative sign and it is ca.sy i;o understand it in

this example. In both cases, the first term is the temperature contribution and the second

is still there even for zero temperature. The first term tends to increase E_. (it is a ':hot"

term), while the second to decrease it (it is a "cold" one), but both add to decoherenee. This

difference in sign reflects in tile difference in behavior and time scales of these processes.

In case T = 0 only "cold" terms contribute, and we obtaill the relation

_d_,_= 2 I<_+ 1, (33)
Tdec,M

and there is no thermalization in the sense which we are using this word. In this ease,

the time scales are tile same tbr small I<, but can be very diflerem for large [o_[. This is

essentially the relation obtained in [10, eq 2.15], with the extra term +1 given by tile zero

point energy.

For temperature T we have

rth,V _ 2 lal2+ 1+ I<_th I_._l=_7-_ J'
Tdec,M



which shows that decoherence is even faster than thermalization, unless (,t = 0, in which

case they are equal. In the same way

1 e -G_ 1 + _: 'Tdis,M _ 2 IOzl2 q- ÷
 dec,M th - 1 -

where lal plays its crucial role, and for large temperature we obtain the expected behaviour

of linear increasing of decoherence rate with respect to temperature, in complete agreement

with expression (20) of [7] and also with [111, but obtained in a very (litti_rent flamework.

Some general consequences of this framework must be pointed. Expressions 13 are also

linear in p and this has important consequences: subsystem's energy may decrease or may

increase, as discussed in the example. In this sense, dissipation is uot an adequate term,

because a low excited particle in contact with a _:hot" reserw:)ir will im:rease its energy, by

the same process that an excited particle will decay. We pret>r to (:all it thermalization.

So, by the linearity of 13, interaction will allow energy transthr amo_g subsystems, but not

necessarily subsystem's energy variation. On the other hand, expression 12 is nonlinear in

p. Even more, it has a minimum for pure states. This minimum is generaly very unstable.

General interaction takes p out of pure states. Again in the sense of energy-time uncertainty

relation, the equal population of all attainable levels in times extremely short can make

energy increase or decrease, but all this terms sum up through decoherence, if we start in a

pure state.

In the case that one of the subsystems is a reservoir, the number of levels (density of

states, in the continuum limit) allowed in the prekinetic regime grows, a,_d decoherence and

thermalization occur even faster. As recurrence times also grow, both processes attain their

characteristic irreversibility.

Just as a final word, we point out that it is very striking that entanglement be at the

same time in the root of most quantum mysteries, such as EPR "paradox", Schr6dinger

cats, Bell inequalities and Quantuln Communication, and also in t.h_'_way how classicality

emerges from Quantum Mechanics when we insist in treating a part of a whole system as a

system itself.
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Abstract

We show that the dynamics of a classical dissipative charged-particle fluid in a

quadrupole-like device (harmonic potential well) can be described in terms of

a one-particle SchrSdinger-like equation for a complex function. The squared

modulus and the gradient of phase of this function are proportional to the

fluid density and to the current velocity, respectively. In this quantum-like

equation, Planck's constant is replaced by the time-dependent emittance. In

this framework, we fully recover the Thermal Wave Model (TWM) description

that has been recently applied to the dynamics of an electron bunch in a

storage ring in the presence of radiation damping and quantum-excitation.

I. INTRODUCTION

It is well known that a 1-D motion of a dilute charged-particle beam can be described

by a fluid model, given by the following set of equations:

(CqpCq) OUI_II_+ _ P- Ox ,_ax ' (1)

On 8

0--7 + _(nP) = 0 , (2)

where s = ct (c being the speed of light), P = P(x, s) is the current velocity, n = n(x, s) is

the particle number density, II = nkbT/mc 2 (kb is the Boltzmann constant, m is the particle

mass, and T = T(s) is the temperature of the system), and the quantity U = U(x, s) is a

dimensionless effective potential acting on the system.



In the next section wegive a quantum-like description of a dissipative charged-particle
fluid in the framework of TWM [1],by assumingthat the fluid evolution is governedby a
SchrSdinger-likeequation where insteadof h we havean arbitrary function of the timelike
variable s. We show that, in the ease the fluid is in a quadrupole, this equation is equivalent

to the above set of equations (1) and (2) for a classical fluid.

II. QUANTUM-LIKE DESCRIPTION

In the TWM framework, let us assume, in absence of collective effects, that the dynamics

of our system is governed by the following Schr6dinger-like equation [1]:

9¢ _ a 2 92¢
i_o_ 2 o_2 +U(x,s)¢ , (3)

where a = a(s) plays the role of a dispersion parameter and U, z and s have the same

meaning as in the previous section. If we write

¢(x,s) = M (x, s) expi_(x, s) , (4)

and if we substitute the (4) back into the (3) we can easily derive the following dissipative

Madelung-like fluid equations, namely

+ ox oz + --P + (5)a 2 Ox Ox 2 ] '

OM 2 O

+_(M2p) =0 , (6)0---_-

where

0_
P_OL--

Ox

Note that we can define the fluid density

n(x,s) = I¢(x, s)l 2 = M2(x,s)

(7)

(s)

Consequently, under the following condition

a__._p _l On a 2 O 02M+ + ,
a -_-O-_x 2 Oz Ozz =o , (9)

the (5) reduces to the following classical-like form

9 P 0 _ OU rl On (10)+ -_z/P- Oz nOx '

where _ = rl(s ) = OH�On. It is clear that (6) and (10) together with the quantum-like

interpretation (8) formally coincide with our starting classical system as given by (1) and

(2).



Now we show that a classical-like solution for the dissipative Schrhdinger-like equation

(3) satisfying (9) can effectively be determined in the case of a quadrupole-like potential, i.e.

U = K(s)x2/2, where K(s) is the quadrupole strength. Indeed, in this case the (3) admits

the following solution

(1)= )
exp x 2 ix 2 ]_2(s) + 2a(s)p(s) + iX(s) (11)

From (11) and (7) we obtain the following expression for the current velocity

X

P(s) - (12)

a(s), p(s), and X(s) are real functions satisfying the following set of differential equations

1 1 da

p o ds ' (13)

ds 4 2(s)
(14)

d2o 1 da da a 2

ds2 + K(s) - 0 (15)ads ds 4a 2

Up to this point the function a(s) is quite arbitrary in a purely quantum-like context.

However, we point out that, by substituting (11) into (9) through (4),(7) and (8), the

previous equations (12)-(15) are exactly obtained, provided that the following condition for

a(s) is satisfied:

o- da da a 2

_(s) - a ds ds + 47 (16)

This condition clearly shows that a(s) is essentially determined by the temperature T(s) of

the fluid through _(s).

On the other hand, within the quantum-like framework, the r.m.s of the momentum

distribution o-p is defined as:

O¢(x,s) dx = + (17)
ox

Consequently, in agreement with the physical meaning of the TWM description, we assume

that

,(s) = a_(s) (18)

Furthermore, in the classical-like interpretation, ap(s) is r.m.s, of a Maxwellian-like (Gaus-

sian) distribution in the momentum space, and, consequently, it is proportional to the tem-

perature of the system (see Eq.n (10)). By using (16) and (17) into (18) we obtain the

following condition

1 d_ 1 d_
- (19)

ads a ds



III. CONNECTION BETWEEN _ AND THE BEAM EMITTANCE e

In the classical framework, it is well known that the beam emittance _ can be obtained

by the relation [2]:

= <x2><;2)_ <x;>2 , (20)

where @2) _- a2, (p2) = a2 and (xp) 2 = o.2(da/ds)2; the average operators are taken with

respect to the classical phase-space Gaussian distribution whose configuration projection is

I¢ 12. Taking into account the above relations, the (20) can be written as

o.g= + 4o.-z (21)

Consequently, by comparing (21) and (17) we obtain the following equality:

and the envelope equation (15) becomes:

ds--z+K(s)o. \ ds/
do- $2

ds 4o. 2

(22)

(23)

IV. CONCLUSION

We have proven that a dissipative classical fluid, moving in a quadrupole-like focusing

device, can be fully described in terms of a SchrSdinger-like equation for harmonic oscillator

where the Planck's constant is replaced by the time-varying beam emittance. This result

justifies the main assumption of Ref. [3] where the longitudinal dynamics of an electron

bunch in a storage ring in the presence of radiation damping and quantum excitation has

been described by Eq.s (3) and (22).

Remarkably, note that, in absence of dissipation (e = const), all the results of Ref.

[4], concerning with coherent states of charged-particle beams, are fully recovered by the

present fluid treatment. In a forthcoming paper, we investigate the existence of coherent

states within the above treatment by taking into account the dissipations.

Finally, we point out that the fluid treatment presented in this paper can be also applied

to the e.m. traps [5] with the inclusion of the dissipation.
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Abstract

We introduce a decoherence parameter which is proportional to the 'linear entropy'

at the initial stage of the quantum relaxation process, but goes to 1 for the thermo-

dynamical equilibrium states of any quantum system with an equidistant spectrum,

for any temperature T > 0. We condider the time evolution of the new parameter in

the process of thermal relaxation of the harmonic oscillator, for various initial states:

Fock's, coherent, squeezed, 'cat'.

Recently, a significant interest to the decoherence processes in quantum mechanics is

observed, in particular, due to the problem of stability of quantum superpositions under the

influence of an environment. Frequently, a quantitative measure of decoherence is put in

a one-to-one correspondence with a degree of 'purity' of the quantum state, expressed in

terms of the 'canonical entropy' S = -Tr (/_ In _) or the 'linear entropy' s = 1 - Tr_ 2 [1-3].

Although such functionals yield a good insight for high-temperature reservoirs, they seem to

suffer from some drawbacks in the low temperature case.

Indeed, let us consider the evolution of an initial pure quantum state [s(0) = S(0) = 0]

due to a weak interaction with a reservoir at low temperature. For t > 0, s(t) and S(t)

assume positive values, so the initial rate of increase of s(t) or S(t) is often used to give a

quantitative measure of the decoherence time [1-3]. However, tracing the evolution of the

entropies for the long time interval, we discover that for a small enough temperature of the

environment, the entropies, after reaching some maxima, finally decrease to very small values

which tend to zero when T --_ 0. A typical example is given in figure 1.

Thus one has to make a choice between two possibilities. The first one is to continue to

identify the measure of quantum mixing (given by some kind of entropy) with the measure

of decoherence. However, in such a case one should accept a strange result that the degree

of decoherence of the final equilibrium state is almost the same (close to zero) as it was

initially, despite that the thermal states are usually believed to be the most 'decoherent'

ones, in which no quantum interference effects can be observed. Another possibility is to try

to find a more adequate definition of the decoherence parameter, which would practically

coincide with, say, s(t) for high temperature reservoirs, but will not return to the initial

zero value in the low temperature case. Our aim is to show that such a better definition

really exists (at least in the special case of systems with equidistant spectra, like a harmonic

oscillator). Moreover, it provides a deeper understanding of the final stage of the decoherence

process, which appears more diverse and interesting than it was thought before.

The origin of the troubles at low temperatures is connected with the double nature of

the ground state, described by the density operator P0 = ]0)(01- On one hand, this state



is pure, with Trjb02 = 1. On the other hand, it is the limit of the equilibrium states, which

are conceived to be completely decoherent. It seems reasonable to exclude the state/5o in

some way. Our idea is to take as a basis a simple expression for the linear entropy, but to

divide it by a time-dependent factor which would ensure a nonzero limit at t --+ c_. This

goal can be achieved, for instance, if one chooses the normalizing factor in the form of the

Hilbert-Schmidt distance between the states _(t) and P0- Then the measure of decoherence

as _ -----(1 - Tr_ 2)/_(fi- rio) 2 = (1-#)/(1 + #- 2pO) I/2, where #could be written Trp 2

is the 'purity' of the quantum state, and P0 = Tr (/5_0) = (01 10)is the occupation probability

of the ground state. In the low temperature case T --+ 0, the equilibrium statistical operator

is close to p010)(01 + p]ll)(11 (where I1) is the first excited state), while the contribution of

other states can be neglected (we consider the systems with discrete energy spectra). Then

2 2 2p0 2p]2. As T 0, Pl << 1,i00 +Pl = 1 (up to higher order terms), # = P0 +Pl, and 1 + #- = --_

so 1 - # _ 2p]. As a result, as T --+ 0, the parameter/) tends to the finite value vQ which

has the same order of magnitude as the equilibrium value in the high temperature case.

Moreover, for the systems with equidistant spectra we can make the equilibrium value of

the decoherence measure to be equal to 1, independently of the temperature, introducing an

extra normalizing factor and defining the 'measure of decoherence' as

_= 1-_ (1)
((1 + # -- Pl)(1 +/_t -- p0)) 1t2

where PI is the occupation probability of the level with the maximal energy. For such systems

the equilibrium occupation probabilities read p, = {"(1 - {)/(1 - _M), n = 0, 1,..., M- 1

(where M is the total number of levels, and _ < 1 is some factor which depends on the

temperature). Then #_q = (1 - {)(1 + {M) /[(1 + {)(1 -- {M)], p(o_q)= (1 -- {)/ (1 -- {M),

p(eq) = {M-a(1 _ _)/ (1 -- _M), so that _)eq _-_ 1 for any value 0 < _ < 1.

To study a time dependence of the decoherence measure (1) we consider the relaxation of

the harmonic oscillator (M = c_, therefore Pl = 0 for all states with finite energy) described

in the framework of the standard master equation (we assume h -- 1)

where & and &t are the usual bosonic annihilation and creation operators, u is the mean

photon number of the reservoir, and "f > 0 is the damping coefficient. Omitting the details

of calculations we bring the formulae for #(t) and po(t) for some interesting quantum states.

For the initial M-photon Fock state ]M) we have

[u(t)(1 + u)]M I1- 2u(1+ .)1M ( (1- u) 2 + u2(1 + 2u) 2 )
po(t) = [1 + pu(t)] M+I' #(t) = (1 + 2_t/]) M+I PM ,(1 + 2uu)I1 - 2u(1 + u)l/'

where P_(x) is the Legendre polynomial, and u(t) =- 1 -e -2_t. The plots of the linear entropy

and the decoherence parameter for different initial Fock states are given in figure 1.

For the initial pure squeezed state, defined as an eigenstate of the canonically transformed

operator /_ = coshp5 + sinhp& t with a complex eigenvalue a -------[a[exp(i¢) and a real

'squeezing parameter' p (called sometimes as the 'two-photon state' [4]) we obtain

# = [(1 + 2uu) 2 + 4u(1 - u)(1 + 2u) sinh 2 p]-a/2 , po = A -112 exp(-B/A),
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Figure 1: The 'linear entropy' (a) s =- 1 - Tr/3 2 and the deeoherence parameter (b) 79 versus

the 'compact time' u = 1 - e -27t for u = 0.01 and different initial Fock states M = 1, 5, 20.

A = (1 + uu) 2 + (1 -u)(1 + u + 2uu) sinh 2 p,

B = 1 12(1- u){1 + uu + (1 + u + 2uu)sinhp [sinh p - coshpcos(2¢)].

As the last example we consider the family of the initial 'Schr6dinger cat' states [5,6]

Ioz;(p) = ./V'(l_l,_p ) (Is)-F ei_°I - oz)) , ./_(]oz],_)= (2 [1 -4-cos(pexp(-2t_12)]) -1/2

The special cases of this family are even (9_ = 0) and odd (_ = 7r) coherent states [7], and

the Yurke-Stoler states (_ = 7r/2) [8]. The functions po(u) and #(u) read

-- 2"/V'2(°z' _) [ _2(]-_)1 {1 -['-COS(pexp [ -2ai'u'(l+v)
Po 1 + uu exp L- '+'_'-' J '+_'-' JJ

# -- 1 + 2uu

Figure 2 demonstrates the dependence 79(u) for the squeezed states and for the even coherent

states with different values of lal. If a2(1-u) >> 1 and a2u >> 1, we observe 'plateaus', whose

widths practically do not depend on a (and u), although they depend on the parameter p

(but not ¢) in the case of squeezed states. However, for the 'cat' states we have (for u << 1)

a universal (independent on _, a, u) 'plateau' 79(u) _ !3"

We see that the decoherence process consists of three distinct stages for highly excited ini-

tial states. The first stage is rather short, its characteristic time is determined completely by

the initial energy of quantum fluctuations, tl ,,_ (7E)-1. However, the decoherence parameter

does not assume its equilibrium (unit) value at the end of this stage, but it stays approxi-

mately constant for a rather long period of time. And only after some 'ultimate time' t2 >> ta

the coherence is completely destroyed. This time can be evaluated as t2 _ (2"7) -1 in (E/u_),

where E is, approximately, the total initial energy, u is the mean number of thermal photons,
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Figure 2: The decoherence parameter _(u) for (a) the squeezed states with p = 1 and ¢ = 0

at, = 0.1, (b) the even coherent states at, = 0.01; for [al 2 = 0.1, 1, 10.

and fl is a positive constant which depends on the type of the initial state. In particular,

/_ = 2 for the coherent states, fl = 1 for the 'cat' and vacuum squeezed states, and/3 = 1/2

for the initial Pock states. The value of the 'ultimate time' t2 enables ordering different

families of quantum states with respect to their robustness against the decoherence (while

the 'primary time' tl is the same for all states with equal values of the energy of quantum

fluctuations). The coherent states are the most robust ones, then follow squeezed and 'cat'

states, whereas the Pock states, being 'the most unclassical states', lose their coherence much

faster than all the others (at low temperatures).

We may conclude that the new measure of decoherence permits a sound analysis for the

'standard' thermal relaxation of a quantum harmonic oscillator. Moreover, it sheds new

light on the details of the decoherence process and shows that this process has three distinct

stages for highly excited initial pure states. In particular, we see that at low temperatures

the 'ultimate decoherence time' may be essentially greater than the relaxation time.
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Abstract

To meet recent experimental advances, we develop a quantum theory of excess

noise where the dynamics of the gain medium is completely described for the

first time. We apply it to the recently discovered colouring of excess noise

and to lasers with relaxation oscillations.

Excess quantum noise is an intriguing effect that has been demonstrated recently in

several types of lasers [1]. In 1989, Siegman proposed a seiniclassical theory that derives

excess noise as a universal consequence of mode nonorthogonality [2]. This theory was

developed for class A lasers, where the atomic variables relax much faster than the field,

within the linear isotropic gain approximation [2]. However, the presence of relaxation

oscillations in the lasers (HeXe and Nda+:YVO4) where excess noise was observed so far [1]

shows that none of them are strictly class A. Moreover, although Siegman's theory derives

excess noise as white noise, it was recently found to be coloured [3]. Here, we present a

fully quantum theory that incorporates the dynamics of the gain medium to meet these new

experimental challenges.

We adopt a microscopic model consisting of a system of homogeneously broadened two-

level atoms embedded in a dielectric host and interacting with the quantized electromagnetic

field in a cavity. The atoms are also coupled to reservoirs yielding the decay rates 3'11for

the inversion and 3'j_ for the polarization together with their associated noise fluctuations.

Equivalent c-number Langevin equations are obtained from the Heisenberg-Langevin equa-

tions by choosing the normal ordering and neglecting thermal noise in the field as in Ref. [4].

This procedure retains quantum correlations but only up to second moments of the dynam-

ical variables [4]. Our c-number Langevin equations describe excess quantum noise in any

laser where the inversion can be assumed not to depend on position. When both the inver-

sion and the polarization can be adiabatically eliminated, our theory reduces to Siegman's

theory [2]. If only the polarization can be adiabatically eliminated, we obtain rate equations
for a class B laser.

It has been discovered recently that the dynamical evolution of the noise-driven nonlasing

modes also plays a role in the generation of excess noise. The signature of this dynamical

contribution is the colouring of excess noise recently demonstrated in an experiment [3].

Reducing our c-number Langevin equations to a Lamb third-order equation for the electric

field, and taking into account the nonlasing modes, we can calculate analyticaly the non-

Lorentzian spectrum due to the colouring of excess noise. In the figure, we plot this spectrum

for the case where all but one of the nonlasing modes have a loss rate much larger than
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FIG. 1. In (a), we plot the dimensionless spectrum (full line) in a log scale for _nL = 10 and

AnL = 1. In (b), in a linear scale for 7nL = 0.2 and AnL = 0.8. Where AnL is the detuning

between the lasing and the nonlasing modes. All rates and frequencies are in units of DLL/r 2.

The dotted line corresponds to the ordinary Lorentzian spectrum that one finds in the absence of

coloring.

the ordinary K-enhanced laser linewidth, so that only one nonlasing mode contributes to

the lineshape. In Fig. (a), the net loss rate, %L of the nonlasing mode has been chosen

as ten times the ordinary K-enhanced laser linewidth DLL/r 2. Then deviations from the

normal Lorentzian spectrum only start appearing as one moves towards the wings of the

spectrum [Fig. (a) is in logarithmic scale] in agreement with the time-domain argument [3]:

large frequencies mean small times before the fluctuations in the nonlasing mode become

completely damped. One way to bring these deviations closer to the central part of the

spectrum is to increase the cavity lifetime of the nonlasing mode. In fact, as we can see

from Fig. (b) where we have decreased 7nL by a factor of 50, deviations from the Lorentzian

shape become visible even in a normal linear scale in the central part of the spectrum.
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Abstract

It is known that the Lorentz group is the natural language for a given two-

beam system if there are no decoherence effects. This aspect of the two-

beam system formulated in terms of the six-parameter representations of the

Lorentz group. It is shown that these transformations do not Mter the degree

of coherence. Thus, the decoherence matrices do not come from the Lorentz

group. It is shown therefore that a larger group is needed to accommodate the

decoherence effects in the two-beam system. This larger group is isomorphic

to 0(3, 3) or the Lorentz group with three space and three time dimensions.

In our earlier papers [1-5], we have formulated polarization optics in terms of the two-

by-two and four-by-four representations of the six-parameter Lorentz group [6,7]. It was

shown in our recent paper that this formalism is directly applicable to two-beam interfer-

ometers [4,8]. It was shown there that the two-component Jones vector is like the SL(2, c)

spinor while the Stokes parameters constitute a four-component Minkowskian four-vector.

The two-by-two and four-by-four transformation matrices are formulated from the physical

processes of rotations, beam mixtures, phase shifts, and attenuations.

It was noted further that the two-by-two coherency matrix serves also as the density

matrix for this two-beam system [9,10]. Let us start with the Jones spinor of the form

_= (_:)= (aexp{i(kz-wt)}bexp ) " (1)

It was shown in our earlier publications that beam mixtures, phase shifts and attenuations

are all combined into the two-by-two matrix of the form [3,4]

V

applicable to the column vector of Eq.(1), where all four elements are complex numbers with

the condition that the determinant of the matrix be one. The group of these matrices is called

SL(2, c) and is locally isomorphic to the Lorentz group applicable to the four-dimensional

Minkowskian space. This matrix starts with four complex or eight real parameters. However,

there are only six real parameters because of the restriction that their determinants are

always one. We call these matrices "unimodular" matrices.



The four-dimensional algebra for the Minkowskian parameters can also be reduced to a

two-dimensional algebra. For this purpose, let us introduce the coherency matrix defined as

$11 S12 )C: $21 $22 , (3)

with

Sll =< ¢1¢1 >, $22 :< ¢_¢2 >,

(4)

We have shown previously [2] that the four-by-four transformation matrices applicable to

the Stokes parameters are like Lorentz-transformation matrices applicable to the space-time

Minkowskian vector (t, z, x, y). The Minkowskian four-vector can be written as

x=( Z+t x-iy)x + iy z - t " (5)

Instead of writing the Lorentz transformation as a four-by-four matrix applicable to the

four-component column vector whose elements are t, z, x, and y, we can write it as

x' = a x a*. (6)

Thus, the C matrix is transformed as

C'=GCG* (S_1 S_2 ) (_ _)(Sll $12)(_* "/*)= S_I S_2 = ")' S21 S22 fl* (5" ' (7)

where U and G are the density matrix and the transformation matrix given in Eq.(3) and

Eq.(2) respectively. As we noted before, the two-by-two G matrix is unimodular. This

means that the determinant of the density or coherency matrix has to remain constant.

This concept is quite different from the requirement that the trace of the density matrix be

one.

Let us start with a pure state with the density matrix with vanishing second component:

The trace of this matrix is one, but its determinant is zero. On the other hand, if the

phase relation is completely random, and the first and second components have the same

amplitude, the density matrix becomes

1/20

0

1/2) (9)

Here is the question: Is there a two-by-two matrix which will transform the pure-state density

matrix of Eq.(8) into the impure-state matrix of Eq.(9)? The answer within the system of

matrices of the form given in Eq.(2) is No, because the determinant of the pure-state density

matrix is zero while that for the impure-state matrix is 1/4.



This is preciselythe reasonwhy weneedfour-by-four transformation matricesapplicable
to the Stokesparametersdefinedas

_0 = $11--I-_22, Sl = $11--_22, S2 = S12-_--_21, _3 -_- --i(S12-- S21). (10)

It is possible to construct four-by-four transformation matrices applicable to these four

parameters. We can compute S_1, S_2, S;1, and S;2 using Eq.(7), and tabulate them in

a four-by-four matrix form [11]. Since, as given above, the Stokes parameters are linear

combinations of these parameters, it is straight-forward to construct the transformation

matrix applicable to the Stokes parameters [11]. It was repeatedly emphasized that resulting

four-by-four matrix is like a Lorentz-transformation matrix applicable to the space-time

coordinate of (t, z, x, y), which does not change the determinant of the density matrix.

We are interested in a transformation which will change the density matrix of Eq.(8) to

Eq.(9). The corresponding Stokes four-vectors are (1,1.,0,0) and (1,0,0,0) up to constant

factors respectively. By rotating the coordinate system around the first axis by 45 ° , it is

possible to change the pure-state vector (1,1,0,0) to (1,0, 1/x/_, l/v/2). Is it then possible

to change this vector into the impure state (1, 0, 0, 0)? The answer is No if we insist on
Lorentz transformations.

Indeed, we are interested in the mechanism where the off-diagonal elements $12 and $21

become smaller due to time average or phase-randomizing process [12]. If this happens, we

can apply to the Stokes four-vector the following decoherence matrix.

1000) / 000)0 1 0 0 = e_ a ea 0 0

0 0 e-2_ 0 [00 0 e-_ 0 '0 0 0 e -2_ 0 0 e -_

(11)

where e -_ is the overall decoherence factor. For convenience, let us call the four-by-four

matrix of the right-hand side the decoherence matrix. This matrix appears to have enough

symmetry to fit into the Lorentz group. However, it does not.

If we combine this decoherence matrix with the Lorentz group, the result will be a fifteen-

parameter group of four-by-four matrices isomorphic to 0(3, 3) which is beyond the scope

of the present paper [13]. The two-by-two matrix cannot accommodate more than eight

real parameters, while the four-by-four matrix can be decomposed into sixteen independent

elements. This is how the symmetry group is enlarged, and the Stokes parameters play a

much wider role than the Jones vector.

This paper creates a number of new problems. The first problem could be whether

the formalism can be extended to three-beam or four-beam systems. This will require

mathematics more powerful than the Lorentz group [14]. Another problem could be to

examine how the beam dynamics can be formulated in an-isotropic media. This is also a

challenging problem in group theory and optics [15].

The word "decoherence" is relatively new in physics. We need a clear understanding of

the subject with the most precise mathematical device available to us.
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Abstract

Quantum Channels are endowed with features which are completely absent in

a classical scenario, like the possibility to use entangled transmissions. Having

in mind to explore the benefits of the use of entanglement in encoding classical

information we analyse the depolarising channel. We will show analytically

for the first time that in this case the complete isotropy of the action of the

channel prevents the users from gaining by entangling consecutive uses of the
channel.

The possibility to use quantum states of a physical carrier to encode bits opens new

prospectives in the field of transmission of information.This is true not only in circumstances

in which one is concerned with the transmission of quantum information, as in the case of

quantum teleportation or of quantum cloning, which will be discussed in other proceedings

of this conference, but also when the interest is in the efficient transmission of classical

information. It is on this setting that we will concentrate our attention in this communication

[i].

In our scenario the sender uses quantum states of a channel - non necessarily orthogonal

- to encode its bits and sends these states to the receiver who will decode the message using

the most general form of quantum measurement. During the transmission the channel is

exposed to the action of the environment which will in general spoil the unitarity of the



time evolution of the signal states. In the following we will assume that the channel is

memoryless, i.e. that the noise affects each use of the channel separately.

If the channel were classical the best the sender could do to achieve reliable transmission

is to send its information via block coding of consecutive independent uses of the channel.

In the quantum case however it is possible to entangle multiple uses of the channel. For this

more general strategy it has been shown that the amount of reliable information which can

be transmitted per use of the channel is given by [2,3]

1
G -- -supd_(£) (1)

n

where £ = {Pi,_ri} with p_ >_ 0,_pi = 1 is the input ensemble of states _r_ of n -

generally entangled- signal qubits, I_(g) = S(p)- E_p_S(p_) is the mutual information

and S(X) = -tr(xlogx) is the yon Neumann entropy (here p_ are the density matrices

of the outputs, p = _iP_P_ and logarithms are taken to base 2). The advantage of the

expression (1) is that it includes an optimisation over all possible POVMs at the output,

including collective ones. Therefore no explicit maximisation procedure for the decoding at

the output of the channel is needed.

The interest for the possibility of using entangled states as channel input is that it

cannot generally be excluded that I_($) is superadditive for entangled inputs, i.e.we might

have I_+,_ > I_ +Im and therefore C_ > C1.

The channel we will consider here is the depolarising channel. If a Bloch vector repre-

sentation of the signal states is adopted the action of such channel can be easily described

as an isotropic shrinking of the Bloch vector of each individual signal qubit by a factor U,

known as shrinking factor. For the depolarising channel a lower bound on C is given by the

one-shot capacity C1 (see [2]), while upper bounds are given in [4]. In this communication

we will restrict ourselves to the simplest non-trivial case, namely n = 2, and we will find the

maximal mutual information I2($). We will consider as input states the following set, with

equal a priori probability [1]

Izq>= cos_9[00>+ sin0I11>
17r2>= sin_9[00>- cos_111}
I_-_>-- cos91Ol)+ sin flllO)
[;T4>= sinill01>- cos#110> (2)

where angles 0, fl parametrise the degree of entanglement between the two qubit states.

To evaluate explicitely/2 we have to evaluate the eigenvalues of the output density operators,

and plug them into the expression for the VonNeumann entropies. This straightforward but

lengthy procedure leads to the conclusion that the maximal mutual information is obtained

for tensor product signal states (0 =/3 = 0) with the following expression

I_ nax = (1 + _/)log(1 + U) + (1 - _)log(1 - ,). (3)

which it twice /1. We have shown in [1] that our choice signal states does not lack of

generality. In particular we have shown that no larger /2 can be achieved with a larger

number of signal states or with non orthogonal ones.



Direct inspection of (3) confirms what we have anticipated: the isotropy of the noise

of the depolarising channel prevents the users from gaining by encoding information in

entangled double uses of the channel. To evaluate the capacity C it would be necessary to

evaluate the general expression for Cn for n possibly entangled signal states. This remains

still an open problem.
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Abstract

Interference of entangled two-photon states generated in a short nonlinear

crystal pumped by femtosecond pulses is investigated using the polarization

analog of the Hong-Ou-Mandel interferometer. The effects of the pump-pulse

profile (pulse duration and chirp) as well as those originating in second-order

dispersion both in the nonlinear crystal and in the optical elements compris-

ing the interferometer are described. The characteristics of the pump pulse,

along with the dispersion, influence the visibility and the symmetry of the

coincidence-count interference pattern. Nonlocal dispersion cancellation oc-

curs in some cases.

I. SPONTANEOUS PARAMETRIC DOWN-CONVERSION

A great deal of attention has been recently devoted to the process of spontaneous para-

metric down-conversion [1] in nonlinear crystals pumped by ultrashort laser pulses. The

main reason is that ultrashort pumping may provide time synchronization of several two-

photon entangled states and this enables the construction of multiphoton entangled states

[2] (GHZ states and their generalizations). The use of femtosecond pump pulses also led

to the observation of quatum teleportation [3]. It has been shown that ultrashort pumping

causes a loss of visibility of the fourth-order (coincidence-count) interference pattern at a

beam splitter [4-6]. Narrowband frequency filters are then required to restore the visibility

*e-mail: perinaj @sloup.upol.cz



[2,5]. The effects of pump-pulse chirp and second-order dispersion (in both the pump and

down-converted beams) on the visibility and shape of the fourth-order interference pattern

produced at a beam splitter [1] have been studied in [7]. In the contribution we extend the

analysis given in [7] to short nonlinear crystals of the length of hundreds pm. Spectra of

the down-converted fields are broader in such crystals and thus the influence of intermodal

phase changes originating in dispersion on the interference patterns is stronger.

We consider a typical coincidence-count setup, the polarization analog of the Hong-Ou-

Mandel interferometer [7]. The fourth-order interference pattern in this setup is described

by the normalized coincidence-count rate Rn:

where

Rn(1)= 1 - p(1), (1)

p(l) = _ oodtA oodtsRe AX2,1(tA, tS)JtX2,1(ts,tA) ,

1/_ _ /?Ro = -_ dtA dts [A12,1(tA, tS)[ 2 . (2)
O0 O0

The two-photon amplitude A12,_(tA, tB) describes the entangled two-photon state after it

propagated through the delay line of length 1 (for details, see [7]); Re denotes the real part

of its argument.

A Gaussian pump pulse with duration 7D and chirp parameter a is assumed. The non-

linear crystal (delay line) is characterized by the inverse of group velocity 1/vj (1/gj) and

the second-order dispersion coefficient Dj (dy) for j = p (pump), 1 (signal), and 2 (idler).

The symbol ay denotes the width of the jth frequency filter.

II. SHORT-LENGTH CRYSTALS

The profile as well as the visibility of the interference pattern described by R_(l) is

determined by the overlap [7] of the two-photon amplitudes A12,t(t,T) and .A12,t(t,-_-)

[t = (tA + tB)/2, _- = tA -- ts] which may serve as a measure of photon distinguishabil-

ity [5]. When the overlap is complete, the detected photons cannot be distinguished and the

interference pattern has maximum visibility. Incomplete overlap means that the photons

can be "partially" distinguished and thus the visibility is reduced.

A. Role of pump-pulse parameters

The coincidence-count rate R_(1) forms a triangular dip of width DL [1] (D = 1/vl-1/v2)

and with 100% visibility if a cw-pump field is considered. The fourth-order interference

pattern depends on the pump-pulse bandwidth Amp [Agtp = _/2(1 + a2)/_-D]; the larger the

bandwidth Am;, the lower the visibility V (see FIG. 1), but the width of the dip does not

change [7]. The fact that the interference pattern is determined only by the pump-pulse

bandwidth implies that dispersion between the pump-pulse source and the nonlinear crystal

does not change the interference pattern. Frequency filters inserted into the down-converted

beams lead to broader dips with higher visibilities; the narrower the spectrum of frequency

filters, the wider the dip, and the higher the observed visibility.
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FIG. 1. Visibility V [V = p/(2 - p)] decreases

with an increase of the pump-pulse bandwidth

A_p; L = 100 #m, al = a2 = c_ nm, values of the

other parameters are zero. In FIGS. 1--3, BBO

crystal at the pump wavelength )`p -_ 397.5 nm

and down-conversion wavelengths ),1 = ),2 = 2)`p

and delay line from quartz are assumed [7].
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FIG. 2. Coincidence-count rate Rn(l) for var-

ious values of the dispersion parameter D1;

D1 = 0 s2/mm (plain curve without symbols)

D1 = 2 × 10-26 s2/mm (*), and D1 = 1 × 10 -25

s2/mm (A); T D -_ 100 fs; L = !00 #m;

gl = g2 = 500 nm; values of the other parame-

ters are zero.

B. Role of second-order dispersion in the nonlinear crystal

An increase of the dispersion parameter Dp of the pump beam results in a lower visibility;

the width of the dip does not change. On the other hand, dispersion in the down-converted

beams leads to broader dips. They become asymmetric and oscillations occur at their borders

(see FIG. 2). Frequency filters suppress asymmetry.

C. Role of second-order dispersion in optical elements comprising the interferometer

Second-order dispersion in an optical material (dl, d2) through which the down-converted

photons propagate leads to asymmetry of the dip. The dip is particularly stretched to larger

values of 1 as a consequence of the deformation and lengthening of the two-photon amplitude

A12,l in a dispersive material. The higher the difference dl -d2 of the dispersionparameters,

the higher the asymmetry and the wider the dip; moreover its minimum is shifted further

to smaller values of 1 (see FIG. 3).

Asymmetry of the dip caused by second-order dispersion in an optical material can be

suppressed in two cases. In the first case, for a pump pulse of arbitrary duration, dispersion

cancellation occurs when the magnitude of second-order dispersion in the path of the first

photon (given by dll) equals that of the second photon (given by d21). When the pulse

duration is sufficiently long (in the cw regime) dispersion cancellation occurs for arbitrary

magnitudes of second-order dispersion present in the paths of the down-converted photons.

Dispersion cancellation has its origin in the entanglement of photons.
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FIG. 3. Coincidence-countrate Rn(1) for vari-

ous values of the dispersion parameter d = dl - d2;

d = 0 s2/mm (plain curve without symbols)

d = 1 × 10 -26 s2/mm (.), and d = 5 × 10-26 s2/mm

(/_); T D ._- 100 fs; L = 100 #m; al = 02 ---- 500 rim;

values of the other parameters are zero.

III. CONCLUSION

The fourth-order interference pattern in the polarization analog of the Hong-Ou-Mandel

interferometer is determined by the pump-pulse bandwidth; the larger the bandwidth, the

lower the visibility. Dispersion between the pump-pulse source and the nonlinear crystal

does not influence the interference pattern. Dispersion in the nonlinear crystal and optical

elements of the interferometer leads to asymmetry of the interference dip; also oscillations

may occur at its borders. These effects can be used for the measurement of dispersion

parameters. Dispersion cancellation has been revealed in some cases.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant Nos. ECS-

9800300 and ECS-9810355. J.P. acknowledges support from Grant No. VS96028 of the

Czech Ministry of Education and Grant No. 19982003012 of the Czech Home Department.

REFERENCES

[1] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press,

Cambridge, 1995).

[2] A. Zeilinger, M. A. Home, H. Weinfurter, and M. Zukowski, Phys. Rev. Lett. 78, 3031

(1997).

[3] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature

390, 575 (1997).

[4] T. E. Keller and M. H. Rubin, Phys. Rev. A 56, 1534 (1997).

[5] G. Di Guiseppe, L. Haiberger, F. De Martini, and A. V. Sergienko, Phys. Rev. A 56,

R21 (1997).

[6] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627 (1997).

[7] J. Pe_ina, Jr., A. V. Sergienko, B. M. Jost, B. E. A. Saleh, and M. C. Teich, Phys. Rev.

A 59, 2359(1999).



Quantum Decoherence in the

Trapped Ion

Motion of a

C. Di Fidio, S. Wallentowitz, Z. Kis, and W. Vogel

Arbeitsgruppe Quantenoptik, Fachbereich Physik, Universitgt Rostock, Universitgtsplatz 3,

D-18051 Rostock, Germany

Abstract

The problem of quantum decoherence is studied in the Raman-driven quan-

tized motion of a trapped ion. Using a stochastic wavefunctions approach it

is demonstrated that rarely occurring electronic transitions, that are usually

ignored, may already cause significant decoherence effects.

In the experimental generation of SchrSdinger-cat superposition states of a trapped ion

the desired coherent displacements have been performed by a Raman-type drive of the

quantized motion of the ion 1. Generally the two lasers are chosen to be close enough to

resonance in order to get a significant coupling strength, but also far enough in order to

avoid excitations of the upper electronic state. If these conditions are fulfilled, the upper

level of the dipole transition can be adiabatically eliminated and the lasers only affect the

quantized motion associated with the electronic ground state. However, the more one wants

to use this configuration on a larger time scale, the more important become the rarely

occurring electronic transitions, or quantum jumps, for the dynamics of the system.

In this contribution we examine the effects of the rarely appearing electronic transitions

on the motion of the ion. We intend to present a master equation that includes the effects

of laser induced transitions and spontaneous emissions. In the scheme under consideration

the strong dipole transition I1) ++ 12) (of dipole moment d) is driven by two laser fields far

detuned by A from the electronic resonance frequency _o21. The frequency difference of the

laser fields, £o, can be adjusted to the vibrational frequency y, so that a Raman vibrational
transition is realized.

To derive the desired master equation we start from the standard master equation for

the trapped two-level ion under the influence of the two laser fields,

0_ 1 1 . ^

0t- ih[/_/(t)' _] "_-_ [- _22_- _22"A1- 2/dqw(q)_x2_$qk21xoe-iqk21_21]" (1)

-1

Here _(t) describes the vibronic quantum state, including the motion in x direction and

the electronic degree of freedom. The last term in Eq. (1) describes the recoil effects of

1C. Monroe, D.M. Meekhof, B.E. King, and D.J. Wineland, Science 272, 1131 (1996).



the spontaneouslyemitted photons of modulo wavevectork21 = w21/c with radiation char-

acteristics w(q) = ga(1+q2) and dipole relaxation rate 7 = wa21d2/(37cCaeo h), where k is the

center-of-mass position operator of the trapped ion. The Hamiltonian/;/(t) =-f/0+ fIL(t) is

given by the free Hamiltonian,/;/0 = hu_ta + hcolAll + hw2A22 , and the laser interaction,

_IL(t) = --42t d/)(+)(k, t) + h.c.. Here a and a t are the annihilation and creation operators

of vibrational quanta, respectively, and Aij = li)(J[ (i, j = 1, 2) describe electronic transitions

IJ} --+ li} • The electric field reads

_?(+)(_,t) = Eei(k_-_t)+ E'ei(k,_-_,,), (2)

where g, g t are the electric-field amplitudes of the laser beams. Moreover, k, k I are the

x-projections of the laser wavevectors and w, cJ are the laser frequencies that obey 5w = v

and w_w'_w21-A (&o = co-cJ). For the further treatment it is convenient to change to

a frame rotating with the laser frequency w21-A by transforming to the interaction picture

with respect to/2/0+hAAll. In this picture the master equation (1) reads

1

c3_ 1 ^ 3'
Ot -- i-h [Hint(t)'O]+ 3[-- 4220- 0422+ 2/dqw(q)412e _qk_(t) Oe -iqk212_(t) A21], (3)

-1

where now the operator 2(t) evolves under the free time evolution governed by the free

Hamiltonian/2/o, and /2/int (t) is given by

/2/int(t ) = -hAAll - [421 0(t) -t- A_2 0*(t)]. (4)

The operator 0(t) is defined as O(t) = h lax e_k_(t)+ f_2eik'_(t) d_t], with hal = d$ and

hf22 =dg _.

In the differential equations for the electronic density matrix elements (ilSlJ) we insert

the adiabatically solved off-diagonal elements (0t_12 = 0t_21 = 0) into the equations for

the diagonal elements. This yields the following master equation for the density operator

/}=All _11"_-422 _22,

Ot ih

where the non-Hermitian Hamiltonian /;P (t) reads

fz'(t) = ,422 zx+i_/2 fle,(t)- ih -- 41_a--iT�2 Hob(t),

(5)

(6)

with _Ieff(t)=O*(t)O(t)/hA=O(t)Ot(t)/hA. The three different jump operators are defined

by

Jq(t) = V/T w(q) 4_ exp[iqk212(t)],

where F_, = F_ = 7/{h_[A _ + (7/2)_]}.

rotating-wave approximation as _

J,(t) = _/V_,,4_O*(t), J,(t) = v_4_ O(t), (7)

The effective Hamiltonian can be expressed in the

2S. Wallentowitz and W. Vogel, Phys. Rev. A 55, 4438 (1997); ibid. 58, 679 (1998); S. Wallen-

towitz, W. Vogel, and P.L. Knight, ibid. 59, 531 (1999).



1 [hf_(i_itt)f(_tgt;rl ) + h.c.] + hAAC,He = (S)

where _ is the Lamb-Dicke parameter describing the localization of the ionic center-of-mass

wavepacket with respect to the effective wavelength of the beat note of the lasers. The AC

Stark shift is given by AAC = h(l_l 12+ 1_212)/A, and _ = 2_1 ft_/A. The operator function

f can be expressed in terms of the generalized Laguerre polynomials LO)(x) as

f(&*&;r])= E In><nl(n + I)'L(1)O72)e-'#/2"
n----O

(9)

It has been formally shown a that the solution of the master equation (5) can be repre-

sented as a sum over all possible realizations, also called stochastic wavefunctions or quantum

trajectories, of jump and no-jump evolutions. For the special choice of jump operators (7)

we may decompose this solution into conditioned state vectors that evolve with the non-

Hermitian Hamiltonian (6) interrupted by these jumps. From the structure it is clear that

the non-unitary time evolution between two jumps takes place exclusively in the ground or

excited electronic states and the electronic state is only switched by the jumps. The corre-

sponding jumps operators are given in Eq. (7), where dq(t), J_ and Jt describe spontaneous

emission, induced emission and absorption, respectively.

Starting with an odd coherent state, 1¢)ec ([a)-l-a)), the time evolution for the case

3' ¢ 0 is shown in Fig. 1 (a). It is readily seen how the initial state with strong interference

fringes between the two 4-a peaks evolves towards a state with two incoherent peaks. The

initial interferences between the peaks are gradually washed out. The effect of only a few

quantum jumps (__ 5) is already quite significant. If the transitions would have been ignored

(setting 3' = 0), strong interference fringes would remain. This can be clearly seen in Fig. 1

(b) where we show the Wigner function for a state that starts with the same initial conditions

as the state in Fig. 1 (a), but in the absence of electronic transitions.

A particular property of the dynamics of the system when the quantum jumps are in-

eluded is its non-symmetric character. In Fig. 1 (a) it is seen that the two wings are not

symmetric. This phenomenon is in contrast to the perfectly symmetric evolution shown in

Fig. 1 (b) where the quantum jumps are ignored. This can be qualitatively understood by

looking at the non-Hermitian damping parts of the Hamiltonian, Eqs. (6, 8), that determine

the jump probabilities. From the fact that (-xl[teffl-x) - --(xl/:/e_lX ) + 2hAAC, it is im-

mediately seen that the x-representation F(x)= (xlF]x) of the damping operator occurring

in (6), F = Re(i/2/'/h), is not symmetric with respect to x. The combined effects of this

asymmetric damping and the action of the associated jump operators are responsible for the

observed asymmetric evolution of the Wigner function.

3G.C. Hegerfeldt and T.S. Wilser, Procs. of the II. International Wigner Symposium, 1991 (World

Scientific, Singapore, 1992), p. 104; C.W. Gardiner, A.S. Parkins, and P. Zoller, Phys. Rev. A

46, 4363 (1992); J. Dalibard, Y. Castin, and K. M¢lmer, Phys. Rev. Lett. 68, 580 (1992);

H.J. Carmichael, An open systems approach to quantum optics, Lecture notes in physics (Springer,

Berlin, 1993); K. M¢lmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).
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FIG. 1. Wigner function of the time evolved state for an initial odd coherent state, with a = 2, (x, p are

dimensionless). The dimensionless time _-= ]_]t is 500, U = 0.2, _ = I_]ei_, v/l_ ] __ 40. Figure (a): "y _ 0,

A/7 __ 100. Ensemble average of 10,000 trajectories. Average number of transitions ground-excited-ground:

5.2. The interference fringes between the two peaks have almost completely disappeared. Figure (b): "y= 0,

no transitions are possible between the two electronic levels. Strong interference fringes remain between the

two peaks.

In the weak field limit 4 it is possible to obtain a single equation describing solely the

nonlinearly driven and damped quantized motion in the ground state. Keeping in Eq. (5)

only the leading terms in the Rabi frequencies _1,2 and adiabatically eliminating _22, we

obtain a master equation of the form

+ Ho )

+___7 /11dq _w(q) e_(t) _ _ (f)._e__k_(t )

(10)

describing the quantized motion in the electronic ground state. In this equation the re-

laxation part is again of the Lindblad form, so that the norm of _ is preserved and the

solution can be obtained by a quantum trajectory method. The results we get from solving

Eqs. (5) and (10) are in good agreement for the chosen parameters.

In summary, we have studied the effects of rarely occurring quantum jumps in the dy-

namics of a Raman-driven trapped ion. We have shown how the electronic transitions give

rise to important effects such as quantum decoherence and an asymmetric evolution of the

system. For situations in which one is interested in studying the dynamics of the motional

quantum state on long time scales, the effects of these quantum jumps become important.

This research was supported by the Deutsche Forschungsgemeinschaft. Z.K. and S.W.

acknowledge support from the National Research Fund of Hungary (OTKA) and from the

Studienstiftung des deutschen Volkes, respectively.

4j. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. B 6, 2023 (1989).
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Abstract

Equating the expression for average values of dynamical variables, in co-

herent states, in Wigner representation of quantum mechanics which is classi-

cal in structure with Wigner function playing the role of classical phase space

probability distribution, and standard quantum mechanical expression for av-

erage values of corresponding Weyl quantum operators, matrix elements of

the operator corresponding to phase of the oscillator by Weyl procedure, are

obtained in the In) basis.

As the only mathematical technique necessary in the proposed procedure

is simple change of variables to polar coordinates in corresponding integrals,

this way to introduce Weyl phase operator, and some other operators in Weyl

quantization, greatly simplifies necessary derivations and calculations.

I. INTRODUCTION

In Wigner phase space formulation of quantum mechanics every quantum mechanical

state is represented by a corresponding function in phase space - its Wigner function. In

calculations of quantum mechanical averages the Wigner function plays a role analogous to
that of classical distribution function.

More precisely, quantum mechanical average values in some state ¢ of the operator

F(iS, _)) which is obtained from a classical function f(p, q) by WeyI procedure may be repre-

sented in the form which is classical in structure [1]:

(¢IF(P,O)[¢) = f f(p,q)W(p,q)dpdq (1)

where W(p,q) = f ¢*(q- x/2)¢(q + x/2)eiP*dx is Wigner function of the state ¢. (Planck

constant is taken to be one.)

The essence of Weyl quantization is described by its originator, in Chapter IV of his

book [2], as follows: "A quantity f is consequently carried over from classical to quantum



mechanics in accordance with the rule: replace p and q in the Fourier development of f by

the Hermitian operators representing them in quantum mechanics."

The great majority of results regarding different aspects of operators in Weyl quanti-

zation, is obtained using this characterization of Weyl quantization. In such works the

corresponding tools of mathematical analysis, which may be not very transparent, are used.

In the present work it is shown how the derivations of some of these results may be greatly

simplified using the characterization of Weyl quantization contained and represented in Eq.

(1). This will be clone for the operator of the quantum phase and operators of other physical

quantities, especially those whose classical expressions in polar coordinates depend only on

polar radius or polar angle.

II. THE QUANTUM PHASE OPERATOR

It is well known that an operator is completely defined when its average values, i.e. its

diagonal matrix elements, are known in the overcomplete coherent states basis IcJ . Wigner

function for one such state , say Ifl), may be represented in the form W_(a) = e -21_-_1_,
1

where c_ = -_(q + ip) so that (1) becomes

<_1__1_>= f f(p, q)e-_._-"'_d=o_. (2)

For the phase operator q_ the integral in (2) simplifies in polar coordinates since then

f(p,q) =¢.

Expressing the coherent state I¢_) through the In} states, the left side in Eq.(2) becomes:

e-1_12E _ _m.v (mlF@, O)ln).
mln

Developing now the exponential function on the right side in Eq.t2 ) and identifying the

factors multiplying flmfl,,_ on both sides, taking into account that F = ¢ and f(p, q) = ¢

we get

1 min(m,n) a.m_ k o__ k (_l)k2m+n_ke_21_12d2_.
4-_.',/_.' <ml_l'_) = f ¢ _ (m- k)! (n- k)! k! (3)

• " k=O

As a = pe i¢ and d2a = lpdpd¢ the integration is trivial in polar coordinates.

After integration we obtain the matrix elements of the phase operator:

in-m-1

<ml_l_>= [a - &,n] Cm,_ (4)
(n m)

where

-m_.(m,_) F(T+ -
gm,n : V/-_m-Iv '_n.l E (m- ]g)!(Tt _ (5)

k=o

The obtained result for matrix elements of the phase operator is algebraically identical

with the result obtained in [3] in a very rigorous but quite a long way.



III. OTHER QUANTUM OPERATORS

Another interesting result may be obtained representing Wigner function of the coherent

state I/3) in the form, which follows directly from the definition of the Wigner function:

/3m/3.n /w_(p,q) = _ _-L_'2 h.(q - x/2)hm(q+ x/2)_P_d_, (6)
_,n v_. v_.

where hn(z) are Hermitean functions.

Specifying Eq.(2) to this representation of Wigner function, proceeding in the same way

as before, and using the known integral [4]

/2 _ c2 _2
C

where Jar9 c I < 7r/4, rn _< n; and L_(z) is the generalized Laguerre polynomial, we can

write

<mlF@,O)l_>= f f(P,q)(-1)n2'_+lv'_ra!(q- iP)'_-'_e-('_+q2)L_-_(2(q 2 + P2))dpdq • (7)

The last result is general, it gives matrix elements in the In} basis of any operator F(Ib, q)

obtained from the classical function of the dynamical variables p and q, f(p, q), using Weyl

quantization procedure.

When f(p, q) is such that in polar coordinates it becomes the function of the polar radius

or the polar angle only, the integration simplifies and in some case may be done analytically.

So, when the classical dynamical variable is of the form f(_) the matrix elements

of corresponding operator F become:

(_l_kL_)= _,.,,_fo_ f(v_)_-°L,,(2_)du (S)

where Ln(u) is the Laguerre polynomial.

For the special case when f(v'_) = (v_) k the integration may be carried to the end and

we obtain:

f0_ _/_¢-°L_(_)d_ = r(k/2 + 1)P.(°'_-_)(-3).

Here P(_P'¢)(z) are Jaccoby polynomials and [Rep, Recr> -1].

The case when the function f is function of the polar angle only, may be treated in the

same way as for the simple phase angle, the only difference is that corresponding Fourier

coefficients should be replaced.

IV. DISCUSSION

Departing from Weyl quantization procedure represented by corresponding Fourier trans-

forms two ways are open [3]. The first is more symbolic approach with bras, kets, delta

functions, on more physical level of rigor. Pure mathematicians prefere to recast Weyl's

prescription into the form of an integral transform. Both ways may be rather involved.

The point of departure chosen in the present work may make Weyl quantization more

broadly accessible, and some related derivations, as the above examples show, much simpler

and more transparent.
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Abstract

The effect of a Kerr medium on the photon number and phase properties of

a single-mode field are examined using the number-phase Wigner function.

This function provides a novel description of the Kerr effect in terms of the

underlying classical evolution together with a discrete number spectrum.

The study of non-classical states of light has been a topic of great interest for more than two

decades and much effort has been focused on their generation and detection. "Schrhdinger

cat" states are one such class of states exhibiting many non-classical features such as squeez-

ing and sub-Poissonian photon statistics. Non-linear optical interactions can give rise to the

production of Schrhdinger cat states. For example, a single-mode field that begins in a co-

herent state can evolve in a Kerr medium [1,2] into a superposition state comprising multiple

coherent-states and exhibiting rich phase properties. In contrast, the evolution of the anal-

ogous classical system, in simplest terms, exhibits phase diffusion. One notable difference

between quantum and classical systems is the nature of the intensity of the field, which is

essentially a discrete and continuous quantity, respectively. Taking account of this difference

is a key to understanding the origin of the non-classical behaviour of the Kerr medium.

Here, we present the dynamics of a single-mode light field interacting with a Kerr medium

in terms of the number-phase Wigner function WNp(T_ , 0) [3]. This function gives a direct

graphical representation of the photon number and phase properties of the field. Indeed the

marginals f2_ WNp(n, O)dO and _-_-n WNp(Tt, 0) are the photon number and phase probability

distributions, respectively. Number-phase Wigner functions [4,5] have the distinguishing

feature of representing photon number as a discrete variable and thus accommodate, in a

transparent manner, the fundamental feature that sets the quantum intensity variable apart

from its classical counterpart.

The number-phase Wigner function is defined as the expectation of the number-phase

Wigner operator WNp(n, 0), which, in the number state basis, is given by [4]

1 e2_k°]n k)(n k In+ k}(n- k- 11 (1)wNp( ,o) = + - ]+ Z e °(2k÷l)
k=-n k=-n



where n = 0, 1, 2,... and 0 is real. The second sum above is ignored for n = 0. WNp(n, 0)

can be represented graphically in cylindrical coordinates (r, 0, z) as the points z(r, O) =

WNp(r, 0); since n is a non-negative integer this leads to a set of closed curves which lie

above circles of (integer) radius r = n in the the x-y plane. We refer to the curve for a given

value of n as a "ring".

The action of a Kerr medium on a single-mode cavity field can be conveniently described

in the interaction picture by the following Hamiltonian

where hX is the third-order nonlinear susceptibility, and 5 (fit) is the annihilation (creation)

operator of the electromagnetic field sustained in the cavity. The evolution of the cavity

field after a time t is given in terms of the number-phase Wigner function by

= + Wo( ,o,t) (3)

where, for convenience, we have separated the expression for WNp(n, O, t) into the "even"

WE(n, O, t) and "odd" Wo(n, O, t) parts:

1 (_ 2_k(o+2_xt) +k)(n k]} WE(n,O+2nxt, O)WE(n,O,t) -- -_ _k=_,e n -- =

1 n-1 )( Z i(2k+l)[O+(2n-1)Xt] q_ k)(n k 11
Wo(n,O,t) -- _ _k=_ e n - -

= Wo(n,O + [2n- 1]xt, O)

(4)

(5)

(6)

In comparison, the evolution of a classical field in a Kerr medium, written in terms of

the analogous intensity-phase probability P(r, O, t), is given by [6]

p(r,o,t) = 0 + 2rxt, o) (7)

which describes a rotational shear. A sufficiently-peaked initial Gaussian distribution

P(r,O,O) will shear into a "whorl" structure [6]. This classical evoluton is clearly evi-

dent in Eq. (4) but not Eq. (6). We can recover the classical rotational-shear evolution in

the quantum case by re-expressing the phase-space representation of WNp(n, O, t) so that

effectively Wo(n, O, t) is moved to half-odd integer values of n. That is, we re-express the

number-phase Wigner function as the function W_Np(n, 0):

WE(n, 0), for integer n > 0W_Np(n, O) = Wo(n + ½, 0), for half-odd n > 0
(8)

where now n ranges over 0, ½, 1, 3, 2, ... This form of the number-phase Wigner function

has been derived by Luks and Perinova [5] using independent means. We should point out

that it is only the phase-space representation that has changed and not the Hilbert space of

states. Specifically, the half-integer values of n in Eq. (8) index rings (curves) in the phase-

space representation of the state of the field whereas the calculation of Eqs. (4) and (5) are

based on the photon number states ]m) for non-negative integer values of m only. Also, the

half-odd values of n do not contribute to the photon number distribution since the marginal



distribution f2_ Wive( n, O, t)dO is equal to the photon number distribution (In)(nl} for integer

n and is zero otherwise. Moreover, all the defining properties of WNp(n, O) discussed in [4]

also apply to W_Np(n, 0).

The time evolution of W[ve(n , O) is just the classical evolution:

w' p(n, o,t) = w' p(n, o + 2 xt, o) (9)

In contrast, the position-momentum Wigner function does not give classical evolution for

the Kerr-medium [7]. There is clearly an advantage in using the number-phase Wigner

function rather than the position-momentum Wigner function for studying the dynamics of
the Hamiltonian _.

We now show how the nonclassical SchrSdinger cat states emerge from this classical

evolution. Imagine that the cavity is initially in an intense coherent state Ic_} with mean

photon number _ = Ic_[2. The number-state amplitudes of this state can be approximated

by (nla) _ e-(n-_)2/4n(27c_) -1/4, where, for convenience, we have set a = I_1. Using this

approximation we find W]vp(n , O, t) is a periodic Gaussian:

! e (,__n)2 e_(O+2nxt_mTr)22 _

I 27r 2n _meC___oo for integer n > 0
W'_p(n,O,t) _ ' - (10)

!e2_ (__.)22.Em=_o_(-1)_ k_-(O+2nxt-rnTr)22n_ , for half-odd n > 0

At t = 0, W)p(n, O, t) has narrow (positive) peaks at both 0 = 0 and 0 = _r for integer n,

whereas it has it has a narrow (positive) peak at 0 = 0 and a narrow (negative) trough at

0 = 7r for half-odd n, as depicted in Fig. l(a). The peaks at 0 = 0 in each ring [i.e. in the

curve z(r, O) = W'Np(r , O) for a fixed value of r = n] line up to form a (non-negative) "hill"

at a position (r, 0) = (_, 0) in the x-y plane; this is the position where one would expect

to find the maximum in the corresponding classical phase space distribution. In contrast,

the (positive) peaks and (negative) troughs at 0 = 7c form interference fringes. Such fringes

are usually associated with SehrSdinger cat states, i.e. superpositions of distinguishable

states, and typically occur at a position which is halfway between the superposed states [8].

Their occurrence here is due to the periodic nature of the phase variable: one can regard

the coherent state Ioz} as a superposition of the two states [c_} and Ic_ei2=) with the fringes

occurring at the half angle 0 = 7r for real c_.

For small t > 0 the rings of radius n rotate at the angular frequency 2nx inducing a

rotational shear and the beginnings of a whorl structure. However, for xt of the order of

1/v_ the peaks and troughs in adjacent rings no longer overlap and the function appears

chaotic. Nevertheless at specific later times the peaks and troughs partially or fully realign.

For example, at xt = 27r each ring has rotated an integral number of 27r radians and the

function returns to its t = 0 value. At half this time, xt = 7c, each integer-n ring has rotated

an even multiple of 7c whereas each half-odd-n ring has rotated an odd multiple of 7r radians

and the function, as a whole, is a 7c-rotated version of its t = 0 value. This is the time of

the first "revival" where the state evolves to e-ia*a_lc_ } = ] - c_}. At xt = 7r/2 the peaks of

the integer-n rings lie along the directions 0 = 0 and 0 = 7r having rotated by a multiple of

7c radians. This gives rise to the two (non-negative) hills at (r,O) = (_,0) and (r,O) = (f_,Tc)

shown in Fig. l(b). In contrast, the peaks and troughs of half-odd-n rings have rotated

by 7r/2 plus a multiple of 7r radians. These peaks and troughs line up along the directions

0 = +_r/2 and form the interference fringes seen in Fig. l(b). The net result is consistent



z
0•5

x

Y

5

(b)

5

FIG. 1. Polar plots of WtNp(n, O) at (a) xt = 0 and (b) xt = _r/2 for a field initially in the

coherent state Is} with a = 3. The "rings" z(r, O) = W'Np(r , O) for fixed half-integer r = n are

connected with radial lines to help clarify their features.

with the evolved state being the SchrSdinger cat state e-iata_/2la> o< (1 -/)In> + (1 +i)1- c_).
Similarly, at )it = re/4 another alignment occurs and W_,e(n, O, t) displays the characteristics

of a four component cat state.

In conclusion, we note that classical evolution alone would lead to a whorl structure;

it is the gaps in phase space from the discreteness of the radial variable n in W)p(n, O, t)

that leads to re-alignments and the emergence of SchrSdinger cat states. In other words,

non-classical states emerge from the classical phase-space evolution of the Kerr effect and the

discrete photon number spectrum• This confirms that the number-phase Wigner function, in

its various forms [4,5], is a valuable tool for studying the differences between quantum and

classical statistics in the spirit that Wigner intended for his celebrated function [9].
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Abstract

Uncertainty relations between the correlations in the x-direction and the quan-

tum noise in the p-direction (or vice-versa) are studied. They show that small

quantum noise is intimately related to large correlations. An extended Wigner

function which shows simultaneously the quantum noise and the correlations

in the system, is introduced and its properties are studied. The formalism

reveals deep connections between correlations and quantum noise.

I. INTRODUCTION

Phase space methods[I] have been used extensively in Quantum Optics. In particular, the

Wigner function W(x,p) (where x,p are position and momentum) and the Weyl function,

I/;V(X, P) (where X, P are position and momentum increments) have been used in many

problems.

In this paper we show that the two-dimensional Fourier transform between the Wigner

and Weyl functions, leads naturally to the introduction of an extended phase space x - p -

X - P, in which (x, P) and also (X, p) are dual variables. In this extended phase space we

prove uncertainty relations for 6xSP and for 5pSX and show that the formalism provides a

nice description of correlations in the wavefunction. We also introduce an extended Wigner

function which is quartic function of the wavefunction and describes simultaneously the

quantum noise and the correlations in the system. It can be used for a deeper understanding

of the interplay between quantum noise and correlations. The results are a continuation of

the work presented in ref.[2].

II. WIGNER AND WEYL FUNCTIONS

The Wigner function of a state described by a density matrix p is defined as:

11 f dX(x + -_XIplx - X)exp(-iXp)w(x,p) =

1 fdP(p+ 1=,,  g)exp(iPx)= --2_ z P'p'p - (1)



Another related function is the Weyl function which is defined as:

1 1p)exp(ipX)= / dp(p+ _Piplp -
= Tr[pD(X,P)] (2)

The Wigner function is related to the Weyl function through the two-dimensional Fourier

transform

I/_V'(X, P) = f f W(x,p)exp[-i(Px - pX)]dxdp (3)

X, P are position and momentum increments and are dual in the Fourier transform sense

to the x, p which appear in the Wigner function.

III. UNCERTAINTY RELATIONS

We emphasize that the first power of W(x, p) and the density matrix p, appear in these

uncertainties.

In a recent paper [2] we have introduced the uncertainties:

5X = ((X2)) 1/2 , 5P = ((p2))1/2 (4)

where

1 / X[l;V(X,p)12dXdP = 0((X))--_
1

((X2)) = _ f X21ITV'(X,P)]2dXdP = 2Tr[_2p2]- 2Tr[(_p)2]

(5)

(6)

and ((P)) = 0 and ((p2)) are defined in an analogous way. We emphasize that the second

power of W(x,p) and the p2, appear in these uncertainties, in contrast to the usual uncer-

tainties where these quantities appear in the first power. We have proved in [2] that for pure

states 5X = 21/2Ax and 5P = 21/2Ap; and that for mixed states the uncertainties 5X, 5P are

different from Ax, Ap. The quantities 5X, 5P provide a measure for the correlations in the

quantum state p. Indeed we have explained in [2] that the Weyl function can be interpreted

as a generalized correlation function and we have given several mathematical relations that

led to interpretation tha II/_ds(X, P)] _ is a probability density for the correlation function.

Therefore the widths 5X, 5P which associated to the II/_ds(X, P)I 2 quantify the correlations

in the quantum state p.

We have also introduced the uncertainties:

(_X = [((X2)/- <(X)/2] 1/2 , (_p : [((p2)/- ((p))2] 1/2 (7)

where



((x)) =--27rf x[W(x,p)]2dxdp = Tr[_p 2]

(@2)) =__27r f x2[W(x,p)]2dxdp = 1Tr[yc2p2] + 1Tr[(Ycp)2]

(s)

(9)

and ((p)) and ((p2)) are defined in an analogous way. The [W(x,p)] 2 and the density matrix

squared, appear in these uncertainties. The symbol ((.)) is used to distinguish the above

uncertainties from the ordinary uncertainties which we denote as Ax, Ap. The quantities

5x, 5p describe quantum noise, like the Ax, Ap. We have introduced them because they play

dual role to 5X, 5P in the sense that they obey the uncertainty relations. We have proved

in [2] that for pure states 5x = 2-1/2Ax and fp = 2-1/2Ap; and that for mixed states the

uncertainties 6x, 5p are different from the uncertainties Ax, Ap.

The uncertainties _X, 5P, 5x, 5!9 have been shown to obey the uncertainty relations

fiXfip > ½TriP 2] ; 6xfP > 1Tr[p2] (10)

They show that small quantum noise (i.e., small fix, 519) is intimately related to large corre-

lation:

Trip2] Trip2] (11)
5X > 2f----p-- ; _P> 2fx

IV. EXTENDED WIGNER FUNCTION

The extended Wigner function is defined as

1 I 1, 1 I 1 I
We(x,p,X,P) = (27r) 2 / / dx'dp'W(x + -_x ,p + -_p )W(x - -_x ,p- -_p )

× exp[i(Xp'- Px')] =

-_xl, _p,)ITV(X_I ,1p,)__X[ f dx'dp'w*(x+ ,P+ ,p-
x exp[i(X'p- P'x)] (12)

where the index "e" indicates "extended". It is a quartic function of the wavefunction

and it is easily seen that it is a real function. The extended Wigner function describes

simultaneously the quantum noise and the correlations in the system and provides more

detailed information than the uncertainties (fx, 5p) and (fX, 5P). It can be used for a

deeper understanding of the interplay between quantum noise and correlations.

We can prove the following properties:

1

4_r' i S We(x,p,X,P)dxdp

1
167r 4 / f W_(x,p,X,P)dXdP

1

= IW(X,P)l 2 (13)

=[W(x,p)] 2 (14)

= Trip_1 (15)



The extended Wigner function can be constructed from Wigner tomography experimental

data. The quantity measured is:

Q(q,O) = / f W(x,p)_(xsinO - pcos0 - q)dxdp

= / W(q sin 0 + u cos 0, -q cos 0 + u sin O)du

From the Q(q, O) we can evaluate the extended Wigner function as:

W.(x,p,X,P)= f f f f dX'dP'dqldq2Q[ql,tan-l(P+_-_,jj

_ lp, ]
× Q[q,,tan-l(P_lx,]jexp[i(X'p-P'x)]

× exp{iql[(Z + _-X') 2 + (P -t- _pt)2)]1/2}

× exp{-iq2[(X - _X') 2 + (P- IP')2)] U2}
X, L,

(16)

(17)

V. DISCUSSION

We have introduced an extended phase space x - p - X - P and we have proved the

uncertainty relations of Eq(10). We have also introduced the extended Wigner function

of Eq(15) and studied its properties in Eqs(16)-(18), and its construction from Wigner

tomography measurements in Eq(20). The formalism provides a deeper insight into the

connection between correlations and quantum noise.
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Abstract
The generalizedWigner function is derived by consideringthe Fourier-transform of the
probability density in the p-representation. This derivation leads to a natural emergence
of the ordering parameter s. Some features of the s-parameterizedWigner function are
discussed. The double-parameter associative functional product is introduced and
applied to time-independent generalized Wigner function. As an explicit example the
generalized Wigner function and the respective eigenvalues are found for the
harmonic oscillator.

PACS number(s): 11.15.Tk, 03.65.Db, 04.20.Fy

The generalized Wigner function W(q,p,s) emerges in a very natural way by simply asking the following
question: since the wave function in p- and q-representations are Fourier-transforms of each other, what are the

respective Fourier-transforms for the probability densities in p- and q-representations? Since the momentum
probability density is

leo(p)l2=_] i dq'e-_Pq"h_(q')i dq"e'Pq"'h • ,, ]
2_h _ (q)= 2-_ jjdq'dq"I-'(q')_I-'*(q")eiP(q"q')'_ (i)

we introduce new variables q and z ( q" = q+ (,z, q'= q + 13_)such that the respective Jacobian is h and get

from (1)

,,,.,,IO0¢n_l2=---] _dz e -'p_ _ dqVF(q+ h(1 + s) z)W,(q_ h(1 - s) "C),
2rt 2 2

(2)

where we replace c, = (l-s)/i/2. It is clear that [_(p)]2 is the Fourier-transform of the convolution of the wave

function VF(q).

On the other hand, I_(p)] 2 can be written differently by changing the order of integration in (2)

I_(P)l 2 = -_-I Idq [I d_ e -'p_ _(q+ h(l+ s) %)W,(q. h(1- s) %)1= IdqF(p,q,s)
2_ 2 2

From this relation follows that function

jd%e_,p_W(q+/K1 + s) h(1 - s)F(p,q,s)= %)LI_*(q- %)

2_ 2 2
(3)

can be viewed as a mock joint probability distribution (generalized, or s-parameterized Wigner function) in p-q-

space whose marginal distributions are ]_(p)]2 and ]_(q)l 2. Interestingly enough, we do not introduce the
generalized Wigner function ad hoc ( as, for example in Ref.1) but arrive at its formulation by using for the

Fourier-transform of a product of 2 functions which is equal to the convolution of the originals.
It is easy to see that the generalized Wigner function F(p,q,s) is complex-valued and has the following

properties :

1) F*(p, q, s) = F(p, q,- s), 2)F*(p, q, s) = F(p, q, s), Re s = 0. Following Moyal [2], one can consider the
space-conditional momenta ( Wigner averages) based on F(p,q,s): <pn>w = _F(p,q,s)pndpl W(q)VF*(q). The

values of these momenta for n =1 and n=2 provide an intriguing insight into a transition to a classical regime, W =

exp(iS/h ) and a possible relation of the s-parameter to the information transfer at the quantum level:



<P>w_ gradS - is h grad (Lnp)/2 _ grad S,

<p2>w _ m[-c_S/_ +(gradS) 2/2m -V] - ms2pS/_ +(gradS) 2/2m +V],

where p = _'*, S is the classical action, and V is the potential energy. From the second of these expressions
one can see that <p2>w becomes the classical momentum if the last term disappears yielding the Hamilton-

Jacobi equation. If s = + 1 then the Wigner average <P>w corresponds to a complex momentum grads +

i h grad(Lnp) where the imaginary part h grad(Lnp) can be presumably interpreted as the "information
momentum".

Returning to (3) we see that the Fourier-transform M(0,_,s) of the generalized Wigner function is

M(0,_,s) -- _ dq e ioq_(q+ h(t + s) _)_£.(q h(! - s)
2 2

r)=_dpe jp_÷i °q F(p,q,s)

This in turn is nothing more than a quantum average of the s-displacement operator in p-q-space

D(q,p,0,_,s) = e-'"''°/2 e i(eq*_p) , (4)

where the bold print denotes an operator. Relation (4) is the generalization of the operators _*(s=-l), _- (s=l),
and A (s=0) introduced by N.Balazs & B.Jennings [3]. Using (3) and the relation between _Y(q) and (I)(p) it is

easy to demonstrate that the alternative expression for F(q,p,s) is

F(p,q,s) = e _,oo [_*(q)d#(p) e 'pq/_1,

where c_=(1-s)/2. Interestingly enough, by capitalizing on the Dirac's idea [4] we get the same operator
exp[-c_ h _/apc_q] by considering the following formal expansion

g(oc__h._+p+(l__)h. 0) e-_,_,_,,, (cz-1),io_ C-cdli_po_= gtP,q) c "= g(P,q)lp=p
1 1

where _ acts to the right of itself, _ acts to the left of itself, and p - _ / c_ p.

If we use the creation at =(q+ip)/_/_ and annihilation a=(q-ip)/_-

following

s(_z: -(1.2 )/4

D(a, a "t,cc,oc*,s)= e e_,-=*a

operators in (4) we arrive at the

(5)

where oc= (q+ip)/_/_, o_*= (q - ip)/_/_, we measure q and p in the same units, and set h =1. Let us notice

that operator (5) differs from the displacement operator defined in [5]: DG(a, at ,oc,oc*,s)= e"_./2 e_* _*a

Still, the new operator (5) has the same properties as the conventional displacement operator D(a, a t
,o_,o_*)---D(_) = e_t- _*a. In particular,

D(a, a t ,oqcc*,s) D(a, at ,J3,13*,s)=e2i,mt_(_*-_m]D(a, a* ,oc+J3,_*+J3*,s)

Since in general, an introduction of any unimodular factor e _ into the operator DG(a, at ,oq_*,s) - DG(OqS) does
not change its basic property "

e i_D(cc,s)10> : ei¢ e'=*/2D(o0110>= e i* e'="21o_>

( for s=0 this expression reduces to an operator in the coset space, cf. Ref. 6), we can introduce a generalized
displacement operator as follows

r(ct 2 ct,_)/4 sl=l=/2

D((_,s,r) = e e e_a,-=*a (6)

It is easy to see that D(_,s,r) has the following properties



Dt(o_,s,r) = D(-c_, s,-r),

D=l(cqs,r) = D(-cq-s,-r),

Dt(o_,s,r) _ D-l(c_,s,r), and

aD(_,s,r) - D(o_,s,r) a = _D(c_,s,r)

Returning to p-q-space we get from (6) the expression for the generalized displacement operator D(p,q,s,r):

s(_2+O2)/4

D(p,q,s,r) = e-ire_/2e e i(°q *_p)

The form of the operator D(p,q,s,r) lends itself to the introduction of the following
parameter(s and r) -star product

and respectively

o _ e i[(,+,)_=_=.<1-,)3o._o]s2e ,(_._=+_.._..]/2

The associative °-product of any 2 functions f(q,p) and g(q,p) has the following properties:

i)fOg l+r-_ 1-r_
= f(q+ i-_-- 6p + s_, p - i + s_, )g(q,p)2 "

+il+r_• l-r_ +s_)g(q,p +s_q).
= f(q, p -i--_-- q 2

ii) j fg*dpdq = f f °gdpdq.

iii) Lemma. A function _(q) satisfies the Schroedinger equation iff the genera/ized Wigner function

F(s,p,q) = ]-_-fdre -"_ T(q+ (l+s) r)_°*(q -(l-s) r)
2re 2 2

satisfies one-parameter ( r=O, s_ (9) MoyaI-Liouville equation

0
--F =i ( FOH-H°F)
&

where H is the classical Hamiltonian.

For the stationary generalized Wigner function the above lemma yields ( cf. Ref.7 where s=0, r=0)

Foil = HcF
and

H°F=EF

where E is the °-eigenvalue of this equation. More generally, for

W(q,t) = Z ane -iEnt Un(q),

F(q,p,s)= E E a nam*Fnm,

n rrl

where

(7)

associative two

(8a)

(8b)



Fnm=°YUn[q+ y'Um'[q y,0y
Therefore we get

H°Fnm - Fnm°H = (E_ - Em)Fnm (9)

and

H°Fnm = EnFnm (10)

THE SIMPLE HARMONIC OSCILLATOR

The hamiltonian in this case is H = (p2+q2)/2 = ccc_*.We set in (8b) r = 0. Substitution of H into (9) yields
then

(c_c_,_- _*a_. )Fnm= (En -Era) Fnr_

This means that neglecting a constant coefficient

(En-E m)

Fnm: F((_c_*)cc* (11)

Inserting this expression in (10) we obtain after some algebra the Whittaker equation

zF" + (sz +1 +En -Ern)F' + ( 1+ s E + l- s 1- s2
T m _--Eo---z)F=0,4

(12)

where z = 4o_o_*/(1-s2).

Solution of (12) is given in terms of the confluent hypergeometric function 1F1:

F= e-(l*s)zJ21Fl( l+s _ Eo, Era- E, +1 ,z)
2

The function F is finite if 1+s _ E_ is equal to a negative integer (-n). Since En and Em symmetric we obtain the
2

following °-eigenvalues of equation (10).

l+s
En = n + -- (13)

2

In this case 1F_ is expressed in terms of the Laguerre polynomial L, (m-n).Therefore returning to the original

variables ocand co*we arrive at the unnormalized eigenfunctions Fnmcorresponding to the o_eigenvalues(13):

F_m = ((1")m-ne
]-s

Ln(m-n)(4_ )

This result coincides up to a normalization coefficient with the respective expression given in Ref.4.
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Abstract

We present experimental realisation of the photon counting scheme for mea-

suring the Wigner function of a light mode. We also show that generalization

of this scheme to the multimode case provides a novel way of testing quantum

nonlocality exhibited by correlated states of optical radiation.

One of the most exciting topics studied currently in quantum optics is the complete mea-

surement of the quantum state of microscopic systems. This field has been initiated by the

reconstruction of the Wigner function via optical homodyne tomography [1], which combines

quantum measurement of field quadratures with a filtered back-projection algorithm used

in medical imaging.

In this contribution we briefly review the first experimental realisation of the direct

scheme for measuring the Wigner function of light [2]. This method provides complete

characterization of the quantum state in the form of the Wigner quasidistribution function

without using any numerical reconstruction algorithms. Our experiment is based on the

representation of the Wigner function at a complex phase space point denoted by a as the

expectation value of the displaced photon number parity operator (-1) _ [3,4]:

= 2 (1)
7r

The measurement of this observable has been implemented by interfering the signal at a low-

reflection beam splitter with an auxiliary coherent probe beam, and subsequent measurement

of the photon statistics. Using this scheme, we determined the complete Wigner function

by scanning the phase space point-by-point.

The experimental setup was constructed as an unbalanced Mach-Zender interferometer

with the beams in the two arms serving as the signal and the probe beams. The signal

beam was prepared as the vacuum, a coherent state, or a phase diffused coherent state.

Two electrooptic modulators controlled the point of the phase space at which the Wigner

function was measured, and a photon counting module was used to collect the photon

statistics. Typical experimental results are depicted in Fig. 1.
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FIG. 1. The measured Wigner functions for the vacuum state (left), a coherent state with

approximately one photon (center), and a phase diffused coherent state (right).

The photon counting scheme for measuring the Wigner function has a very elegant gen-

eralization to the two-mode case. After applying the displacement transformation to each

of the modes, the Wigner function is given by the correlation of the photon number parities

measured for both the modes:

4 (ba(O_)(_l)h_bat(ct)@ Z)b(/3)(_l)fibb_)w(o , #)= (2)

Here the indices a and b refer to the two modes. The above representation of the Wigner

function offers a novel way of testing nonlocality of quantum optical correlations [5], in anal-

ogy to spin-l/2 measurements: the binary 4-1 outcome is provided by the parity operator,

and the coherent displacements a and fl play the role of adjustable parameters in each of

the spatially separated apparatuses. In particular, this scheme can be applied to test nonlo-

cality of the state produced in the nondegerate parametric amplification process, which is a

quantum optical analog of the original Einstein-Podolsky-Rosen state. Appropriate choice

of coherent displacements shows that the corresponding Wigner function, though positive

definite, provides a direct evidence for nonlocality [6].
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Abstract

A constructive method is derived to represent any state of the harmonic

oscillator along an arbitrary, continuous curve in phase-space by a continuous

superposition of coherent states. The weight function of the superposition

is expressed in terms of the Fock state expansion coefficients of the state in

a truncated Hilbert space. This weight function does not necessarily exist

as an ordinary function, it can also be a distribution if the dimension of the

truncated Hilbert space tends to infinity.

In many applications of quantum mechanics an appropriately chosen basis set simplifies

greatly the calculations. In quantum optics coherent states proved to be one of the most

efficient one 1. It has been shown, that coherent states on the complex a plane form an

overcomplete basis set. It means that even a subset of coherent states could be complete. It

was proven by Von Neumann that a set of coherent states on a lattice in phase-space with

lattice cell size 7r is a complete set 2. Moreover, Cahill has pointed out that for any Cauchy

series {c_} the corresponding coherent state set {] a_)} is complete 3. Unfortunately, these

theorems do not provide a straightforward method to find the expansion coefficients in the

coherent state basis.

A further advance in coherent state representations was the discovery of one-dimensional

coherent state representation along the real axis of the complex a plane 4. It was shown

that Gaussian superposition of coherent states along the real axis in phase-space yields

a quadrature squeezed vacuum state. It has been also pointed out, that any quadrature

1R. J. Glauber, Phys. Rev. 131, 2766 (1963).

2A. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, 1986).

3K. E. Cahill, Phys. Rev. 138, B1566 (1965).

4j. Janszky and V. Vinogradov, Phys. Rev. Lett. 64, 2771 (1990).



squeezednumberstate can be representedalong the real axiss

t " "dxH_(ax)e I x),

J_rn= i (2 -+-7)nv/T -J77 12(1+7)2nTrn!(n+l)7, a= 7(2+7), (1)

where H,_(x) are the Hermite polynomials of order n. This expansion offers a way to find

the one-dimensional representation of any state vector in the Hilbert space of the harmonic
oscillator

/2I¢)= dxF(x) l x). (2)

The expansion function F(x) can be deduced in a straightforward manner

oo

hnAf,_H,_(x)e- , (3)F(x) = _-_ " " x2/_
rim0

where

h_=A/'n // dxHn(ax)e-x2/'_(x l @). (4)

and a is defined in Eq. (1). There arise two questions in connection with the last formulae:

(i) any continuous curve in phase-space could serve as a starting point for a coherent state

representation. Is it possible to find a weight function of that representation in a systematic

way? (ii) In practical cases the integral in Eq. (4) is difficult to evaluate. Is there a simpler

way to find a weight function for a coherent state representation?

In this contribution we propose a method, which possess both the above mentioned

properties: in principle it is a representation along an arbitrary curve in phase-space, and

it is simpler to evaluate in practical applications. Let us define the general one-dimensional

coherent state representation in phase-space:

I¢)= fr dzF(z) lz)" (5)

where F is an arbitrary curve. We truncate the Hilbert space of the harmonic oscillator at

a very large, but finite number state I N). Inserting the Fock-state expansion of a coherent

state into the previous equation, the one-dimensional coherent state representation in the

truncated Hilbert space reads

N _F znI ¢)=_ dzG(z)-_. In>,
n----O

" (6)

5p. Adam, I. Foldesi, and J. Janszky, Phys. Rev. A 49, 1281 (1994).



Let us comparethis expansionwith the fock state representationof the state

N

I (7)
n_O

The Fock-state coefficients and the corresponding integrals should be equal, which implies

5n.=v/-n!cn= fr dzG(z)z n, n=O...N. (8)
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FIG. 1. The graph of the weight function F(x) expanded in the Chebyshev I. polynomial basis

for the coherent state I 0.3) and the number of polynomials is N -- 120.

{z _} are polynomials in the domain F. They can be orthogonalized with respect to a

weight function w(z) which yields the system of orthogonal polynomials {P_(z)}. With

the aid of these polynomials Eq. (8) can be inverted to find the coherent state expansion

function F(z)

F(z) =w(z)AfNl(Z)P(z)P_, (9)

where

( oo°°/ (c°/ clPl,o P1,1 ... 0 P(z)= P_(z) 5= (10)P= : • : , : , . .

PN,o PN,_ ... Pi,g , By(z) V/_..CN

As a first example for the application of the method let us consider the weight function

of a coherent state I Xo/, with Xo real. After some straightforward calculations we obtain

F(x) = w(x)N'Nl(X) e -xg/2 P (x)P (Xo). (11)



To be specific,wechoosethe ChebyshevI. polynomials. The graph of the weight function
F(x) for the coherentstate I 0.3}, and summingup the contribution of the first 120polyno-
mials is depicted in fig. 1. It is readily seen,that the distribution is approximately a Dirac's
5.
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FIG. 2. The graph of the weight function F(x) for the phase optimized state expanded in the

Hermite polynomial bases in the [-0% c_] domain.

In the following we determine the weight function F(x) for the Summy-Pegg phase

optimized state% The Fock-state expansion of the state is defined by

c_ N

[ ¢} =Af _-'] Ai(a[k 4- b] 4- bo) [ k)= _ bk ]k>, (12)
k:0 k:0

where Ai(x) is the Airy function, b0 = -2.3381 is the first zero of the Airy function. We

have chosen the parameters a= 0.271 and b= 0.86. The mean photon number in this state

is (75} = 4.86, and the phase variance of the state is A¢ = 0.0574. In terms of Hermite

polynomials the weight function of the coherent state expansion reads

N 1

r(x) ]E v 2.n,H.(x)H.k v .bk,
n,k:0

z e (13)

In fig. 2 we plotted F(x) including the first 35 Hermite polynomials into the expansion. We

note that for Chebyshev I polynomials this method yields a regular distribution for F(x) as

N --+ ce.
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Abstract

We propose a scheme using feedback from homodyne measurements to cool

a trapped particle close to its motional ground state.

In recent years there has been an increasing interest on trapping phenomena and related

cooling techniques [1]. Some years ago it has been shown that a single ion can be trapped

and cooled down near to its zero-point vibrational energy state [2] and recently, analogous

results have been obtained tbr neutral atoms in optical lattices [3]. The possibility to control

trapped particles, indeed, gave rise to new models in quantum computation [4], in which

information is encoded in two internal electronic states of the ions and the two lowest

Fock states of a vibrational collective mode are used to transfer and manipulate quantum

information between them. However the quantum logic operations involving vibrational

degrees of freedom cannot be easily performed simultaneously with the standard laser cooling

procedures; this implies having heating mechanisms representing, up to now, the dominant

source of decoherence which limits the fidelity of quantum logic operations [5]. For this

reason it is important to have alternative control schemes for the vibrational modes, able to

achieve a significant reduction of thermal noise.

In this paper we present a way to control the motion of a trapped particle, which is able

to give a significant phase-space-localisation. This scheme can be applied when the particle

is already in the Lamb-Dicke regime, and therefore the scheme assumes that, some sort of

laser cooling has been already applied. Our scheme will provide therefore further phase

space localisation and cooling.

We consider a generic particle trapped in an effective harmonic potential. For simplicity

we shall consider the one-dimensional case, even if the method can be in principle generalized

to the three-dimensional case. This particle can be an ion trapped by a linear rf-trap [5]

or a neutral atom in an optical trap [3]. Our scheme however does not depend on the

specific trapping method employed and therefore we shall always refer from now on to a

generic trapped "atom". The trapped atom of mass rn, oscillating with frequency _ along

the 3? direction and with position operator x = xo(a + at), :Co = (h/2rn_) 1/2, is coupled to

a standing wave with frequency cJb, wave-vector k along 2 and annihilation operator b. We

assume that the standing wave can be treated classically and it is resonant with the transition

between two internal atomic levels {+} and 1-}, so that, in the interaction representation

respect to H0 = hWb (b*b + _), and making the rotating wavewith approximation, this

Hamiltonian becomes

H = l_L,ata + hcl[_lcr_sin(kx + ¢) , (1)



where oz -- I+)(-1 + I-)(+1, c is tile coupling constant and 1/31is tile amplitude of tile
classicalstanding wave. If we finally set tile spatial phase_ = 0 (i.e. the atom is trapped

near to a node of the classical standing wave) and assume the Lamb-Dicke regime, we can

approximate the sine term at first order and get [7]

H = hT_ata + hxcxX, (2)

where ;_ = 2el_lk_ 0 is the effective coupling constant between the internal and the vibrational

degrees of freedom, and X = ((_+at)/2 is the dimensionless position operator of the trapped

atom. This Hamiltonian shows how one can realize an effective measurement of the atomic

position. In fact,, the atom displacement away from the electric field node increases the

probability of electronic excitation and, hence displacements can be monitored by means

of the atomic fluorescence. Therefore, the two-level (sub)system can be used as a meter to

measure the position quadrature X.

The evolution equation for the total density operator D for the vibrationa] degree of

freedom and the internal states is determined by Hamiltonian (2) and the dissipative terms

describing both the coupling of the vibrations with a thermal environment, and the sponta-

neous emission from the level I+) responsible for the fluorescence. One has therefore

i[H,D]+ (2o_D_+-_+a_D-D_+o_) , (3)

where

n: is the spontaneous emission rate, 7 is the damping of the center-of-mass motion, and

r,,, is the number of thermal phonons.r,,--[exp (k_rf)- 1] -1

It has been recently shown that when excited by a low intensity laser field, a single

trapped atom emits its fluorescent light, mainly within a quasi-monochromatic elastic peak

[8]. The fluorescent light spectrum was measured by heterodyne detection. By improving

the technique it does not seem impractical to get a homodyne detection of the single-ion flu-

orescent light. Thus, by exploiting the resonance fluorescence it could be possible to measure

the quantity P,_ = (cr_e -i_ + c,+e i_) through homodyne detection of the field scattered by

the atom along a certain direction [6]. In fact, the detected field may be written in terms of

the dipole moment operator for the transition I-) ++ I+) as [6] E_+)(t) = x/_cr_ (t), where r/

is an overall quantum efficiency accounting for the detector efficiency and the fact that only

a small fraction of the fluorescent light is collected and superimposed with a mode-matched

oscillator.

The continuous monitoring of the electronic mode performed through the homodyne

measurement, modifies the time evolution of the whole system, and the state conditioned

on the result of measurement evolves according to an Ito stochastic differential equation.

\¥e considerg a strong fluorescent transition, i.e. the spontaneous emission rate rc is very

large, _ >> X. This means that the internal two-level system is heavily damped and that it

will ahnost always be in its lower state I-). This allows us to adiabatically eliminate the

internal degree of freedom and to perform a perturbative calculation in the small parameter

t_/ec, obtaining (see also Ref. [9]) the following equation for the vibrational reduced density

matrix O, conditioned to the result of the measurement of the observable (X(t,))_,

•/'7



X 2

The continuous record of the atom position can be used to control its motion through

the application of" a feedback loop. We shall use tile continous feedback theory proposed by

Wiseman and Milburn [10]: averaging over the white noise #(t) and neglecting the feedback

delay time, we get the following Markovian master equation [10]

where /C is a Liouville superoperator describing how the feedback signal acts on the vi-

brational mode. The second term of the right hand side of Eq. (6) is the usual double-

commutator term associated to the measurement of X; the third term is the f_edback term

itself and the fourth term is a diffusion-like term, which is an unavoidable consequence of

the noise introduced by the feedback itself. The Liouville superoperator /C can only be of

Hamiltonian form [10] and we choose it as /Cp = 9 [a - a t, p]/2 [9], which means feeding

back the measured homodyne photocurrent to the vibrational oscillator with a driving term

in the Hamiltonian involving the quadrature orthogonal to the measured one; 9 is the feed-

back gain related to the practical way of realizing the loop. Since the measured quadrature

of the vibrational mode is its position, the feedback will act as a driving for the momentum.

Using the above expressions in Eq. (6) and rearranging the terms in an appropriate way, we

finally get the following master equation:

2 2 '

where F = 7 - 9 sin _,

N = [_/,,_÷ _+ _ +._sin_p]/F, M = -[_-_/,_ i_cos_]/F. Eq. (7)is very
instructive because it clearly shows the effects of the feedback loop on the vibrational mode

a. The proposed feedback mechanism, indeed, not only introduces a parametric driving term

proportional to 9 sin _, but it also simulates the presence of a squeezed bath, characterized

by an effective damping constant F and by the coefficients M and N, which are given in

terms of the feedback parameters [9]. Because of its linearity, the solution of Eq. (7) can

be easily obtained by using the normally ordered characteristic function d(A, A*, t). The

stationary state is reached only if the parameters satisfy the stability condition that all the

eigenvalues have positive real part. In this case the stationary solution has the fbllowing form

C(A, A*, oc) -- exp [-(IA} 2 + m'a(A*)2/2 +/z'a2/2], where ( and # can be obtained in terms

of the parameters of the model (see [11]). Under the stability conditions and in the long

time limit (_ -+ oc) the variance of the generic quadrature operator Xo = (ad o + czte-_°)/2

becomes (XJ) = _ + ( + Re{#e 2_° . If we assume that 7,, is much greater than any other

relevant quantities (as it usually happens), one has ( _ N and # _ 0. Then, in absence of

feedback (9 = 0) we have ( - rz, otherwise ( can be smaller than r_, providing a stochastic

localisatior_, in the phase space. We call it stochastic because it is obtained by feeding back



the fluctuating output of the homodynemeasurement.It is worth noting, by virtue of the
aboveasumptions,that the variance{X_) isconstantoverthe phasespaceangle0; hence the

localisation effect takes place uniibrmely in all the quadratures. The fact that the feedback

action affects all the quadratures is a rather novel result in the quantum theory of feedback,

and it is essentially due to the fact that the bare atom Hamiltonian huata mixes the dynam-

ics of the atomic position and momentmn, so that the continuous homodyne measurement

actually gives informations on both quadratures. This model shares some peculiarities with

that one we have proposed in [12] to cool the vibrational motion of a macroscopic mirror of

an optical cavity. It is possible to see that the proposed scheme is not able to reduce the

noise below the quantum limit, i.e. {X$) < 1/4 for some 0. The potentiality of this feedback

mechanism is clearly shown in Fig.i, where we have sketched the phase space uncertainty

contours obtained by cutting the Wigner function at 1/v/_ times its maximum height. We

see that the feedback produces a relevant contraction of the uncertainty region. Practically,

the feedback mechanism is able to get information from the environment and put it into the

system, so to decrease its entropy: in this specific case feedback works as a noise eater.

X n/2

/q , 2,,,

FIG. 1. The phase space uncertainty contours are represented for X = 0, 9 = 0 (outer dashed

line), for X = 5 s 1, 9 = 0.3 s -1 (solid line). The values of other parameters are rt = 5, _ = 106

s -1, _/= 10 .2 s -1, _ = 102 s-1, rl = 0.8, p = -re/2. Notice that feedback provides a phase space

localisation close to the vacuum state (inner dashed line).

d'

Cf_



REFERENCES

[1] see e.g., P. K. Ghosh, Ion Traps, (Clarendon, Oxford, 1995), and references therein.

[2] F. Diedrich et d, Phys. Rev. Lett. 62, 403 (1989).

[3] S.E. Hamannet al, Phys. Rev. Lett. 80, 4149 (1998);

[4] J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[5] D.J. Wineland et al, J. Res. Natl. Inst. Stand. Technol. 108,259 (1998).

[6] see e.g., D. F. Walls and O. J. Milburn, Quantum Optics, (Springer, Berlin, 1994).

[7] C.A. Blockley, D. F. Walls and H. Risken, Europhys. Lett. 17", 509 (1992).

[8] J. T. HSffges et al, Opt. Comm. la3, 177 (1997).

[9] P. Tombesi and D. Vitali, Appl. Phys. B 60, $69 (1995); Phys. Rev. A 51, 4913 (1995).

[10] H.M. Wiseman and G.J. Milburn, Phys. Rev. A 49, 1350 (1994).

[11] S. Mancini, D. Vitali, and P. Tombesi, quant-ph/9810022.

[12] S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 80, 688 (1998); this model

has been experimentally implemented by P. F. Cohadon, A. Heidmann and M. Pinard,

quant-ph/9903094.

J



Planck constant and micro-macro scaling

laws in complex classical macroscopic systems

Salvatore Capozziello t, Salvatore De Martino *, Silvio De Siena *, Fabrizio Illuminati *

f Dipartimento di Scienze Fisiche "E.R. Caianiello", Universit_t di Salerno,

Dipartimento di Fisiea, Universitlt di Salerno,

INFN Sez. di Napoli, Gruppo Collegato di Salerno, INFM Unitd di Salerno,

Via S. Allende, I-8_081 Baronissi (SA), Italy.

Abstract

We introduce phenomenological scaling laws relating the characteristic scales

of complex macroscopic aggregates to the fundamental quantum scales of the

nucleons. These relations allow to predict the observed orders of magnitude

of the typical dimensions of stable classical systems.

I. INTRODUCTION

Classical macroscopic systems with many constituents range from charged beams in

particle accelerators to astrophysical systems. Although many of the physical aspects of these

complex systems are well understood, there are fundamental questions, still unsolved, that

in some sense can be seen as preliminary to a truly deeper understanding. A paradigmatic

example of such foundational questions is the following: how and why a galaxy, which is a

classical system with a large number of components (the stars), is stable on the observed

lenght-scale, with the observed number of stars?

In this note, we present a reformulation of a scheme firstly introduced by Francesco

Calogero [I], which provides a possible answer. Calogero suggests that the origin of quanti-

zation could be attributed to the universal interaction of every particle with the gravitational

force due to all other constituents of the Universe. We replace this hypothesis, introducing

general criteria of stability, that hold independently of the nature of the interaction (as long

as the latter is attractive). In such a way, the method can be applied, besides gravity, to all

the physical situations where a complex system is ruled by an overall effective interaction.

More specifically, we show that for any bound and stable aggregate of particles interacting

through an overall attractive law of force, there exists a scaling relation between a minimal

unit of action per particle (to be defined below), the fundamental constants associated to

the interaction, and the dimension of stability of the system, in order of magnitude, such

relation always yields the Planck action constant h.



II. SCALING RELATION FOR THE ACTIONS, AND A GENERAL FORM OF

THE MINIMAL UNIT OF ACTION

Calogero proposes a model of the Universe as made up of nucleons interacting via the

gravitational force [1]. On a sufficiently small scale the overall interaction perturbs the

local motion of each single component. This perturbation is described by introducing a

characteristic time r of the local component of the motion, and by assuming normally

distributed fluctuations, that scale as N -1/2. Hence, Calogero imposes r -_ N-1/27-, where

7" is the time scale for the mean global deterministic motion of each constituent. One needs

to define the global units of energy E and of action A, the unit of energy per particle _, and

the minimal unit of action per particle a. By using the above definitions, one obtains the

nontrivial scaling relation

_- N-a/2A. (1)

A simple dimensional analysis allows to obtain _ _ GU2mal2Rll2, where G is the Newton

constant, m is the proton mass, and R is the observed radius of the universe. This relation

was already known as a numerical coincidence [2]. Inserting experimental values, one gets

a _ h, i.e. the Planck action constant. We have generalized this approach by introducing

and computing the minimal unit of action for the generic constituent of any bound classical

system [3]. These systems, with N elementary constituents, are described by a classical,

overall attractive law of force F(R). By introducing the mass m of an elementary constituent,

its mean global velocity v = R/7", and a time scale r, to be determined, we define the

minimal action per particle as _ _ mv2r. Now, a natural criterion of stability for classical

bound systems (virial theorem) requires that, on average, the potential energy of a particle

must be of the same order of magnitude of its kinetic energy. Then, if £ denotes the mean

characteristic work performed on a generic constituent, one has to impose that/2 -_ my 2.

On the other hand, £ _- NF(Rm)Rm _- NF(R)R where Rm denotes some mean scale of

length, which is obviously of the same order of magnitude of the dimension R. We can put

together these definitions to obtain, for the minimal unit of action per particle, the relation:

_ m_/NF(R)Rm-I_ = mll2Ra/2__x/-N. The fluctuative hypothesis of Calogero

can be immediately derived by imposing a further criterion of stability, that the minimal

action per particle be independent of N. The general form of the minimal action per particle
follows:

ml/2 3/2 _-R- _oz= R . (2)

It is essential to stress that the overall law of force F(R) can be associated to any known

interaction, also of nongravitational nature. The original scheme of Calogero is of course

recovered in the gravitational ease.

III. TWO PARADIGMATIC EXAMPLES: ELECTROMAGNETIC SYSTEMS

AND GALAXIES

Electromagnetic interactions range, to form bound systems, from the microscopic scale

(_ 10-Scm, atoms) to the intermediate scales (_ 10-4cm, large molecules), up to the



macroscopicscales(macrocrystals). Screening,photoemission,and absorption effects are
accounted for by including the velocity of light c in the laws of force, and by consider-

ing combinations of powers of e, m, R, and c, with the other exponents parametrically

dependent on % the exponent of c: F(e, m, R, c"y) = (e2)"('Y)mb('Y)Rd(_)c'_. For the value

7 = 0 one recovers the Coulomb law in vacuum. Negative values of _/ define screened

Coulomb forces, which decay faster than R -2. Some examples can be given, a) 7 = -1:

in this case F = e3m-U2c-lR-5/2; then, the minimal action per particle, from Eq. (2), is

a = ml/4e3/2c-U2R 1/4. Due to the exponent 1/4 the variation of R over a wide range of

values does not modify the result a _ h; the equality is optimized for R _ 10-4cm (large

molecules and molecular clusters), b) 7 = -2: in this case F = e4m-lc-2R -3 (dipolar in-

teractions, responsible for the binding of molecular crystals). This yields a minimal unit of

action a = e2c -1, independent of R. This fact signals the absence of a specific dimension of

stability, since molecular crystals can exist on very different scales of length. Furthermore,

the action turns out to be the product harm, where aem is the electromagnetic fine structure

constant. Our scheme can be tested in the case of electromagnetic aggregates, whose dy-

namics is studied in the framework of classical mechanics, for instance charged plasmas, and

charged beams in particle accelerators. In the first case, we consider the plasma oscillations,

which are described by an effective harmonic force F -- -kpx, where x is the displacement

inside a double layer of opposite charges. In Ref. [3], we have obtained, for a large class

of laboratory controlled plasmas, that the minimal unit of action, Eq. (2), coincides with

the Planck action constant. In Ref. [3], we have also considered charged beams in parti-

cle accelerators. The latter are kept in a stable state by applying external electromagnetic

fields, and by pumping energy from RF cavities. In the comoving frame, one considers the

transverse oscillations with respect to the ideal, synchronous orbit. The effective binding

force is given, in first approximation, by F -- -kbx, where x is the transverse displacement.

We have then a _ ml/2k_/2R 2, with m the mass of the particles (protons or electrons), and

R the transverse dimension of the beam. Taking the most recent experimental data [4], we

have that for the Hera proton accelerator kb _ 10 -9 g • sec -2, R --- 10 -5 cm, while for the

electron linear collider kb _- 10 -s g • sec -2, R _- 10 -5 cm. In both cases we get, from Eq. (2),

the Planck action constant [5]. Finally, we review the case of galaxies, which are systems

that reach stability on proper, characteristic geometric dimensions. The most recent cosmo-

logical data [6], give that: the energy per unit of mass is of the order 1015 (cm/sec)2; the

period of a galactic rotation, is of the order Tot _- 1015sec; the total mass of a typical galaxy

is of the order M _ 1044g; finally, the total number of nucleons in a galaxy is N _- 106S.

Introducing these numbers in Eq. (1), we get, up to at most an order of magnitude, that

the minimal unit of action is of the order of the Planck action constant also for nucleons in

a galaxy [7]. A micro-macro bridge, analogous to Eq. (1) for actions, can be also imposed

for lengths in the form:

R---- _cv_, (3)

where R is the geometrical radius of a typical galaxy, and Ac = h/mc is the Compton

wavelength of the proton. Inserting data, we obtain R _ 1021cm __ lkpc, which coincides

with the observed order of magnitude of the galactic radii. It is remarkable that the result

(3) can be also obtained working in the standard picture of a galaxy made up of stars, by

exploiting a further scaling law in the following way. Let us introduce the number Ns of



stars containedin a typical galaxy, the number N_8 of nucleons in a star, and the obvious

relation N _ NsNn_ for the total number of nucleons in a typical galaxy. The following

chain of equalities holds:

-- _ _ A s ,

R mc (mN  )c (4)

where A_ -_ As/Mc, with As _= .v_hN3/2._, and M = mN_s (the total mass of the star). The

length A_ _ 1015 cm coincides with the typical range of interaction for a star. Therefore,

the conceptual scheme remains unaltered by identifying, on each scale of length, the proper

constituents and their characteristic dimensions.

IV. CONCLUSIONS

We have introduced a general scheme to compute the order of magnitude of a suitably de-

fined minimal unit of action for the particles forming complex macroscopic systems. We have

shown that this action is always of the order of magnitude of the Planck action constant, ir-

respective of the nature of the interactions and of the systems considered. Our scheme allows

to introduce phenomenological scaling laws and micro-macro connectivity factors, showing

a not negligible role played by quantum mechanics in determining the typical dimensions of

macroscopic stable systems.
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Abstract

The new Theorem on location of maximum of probability density functions

of dimensionless second difference of the three adjacent energy levels for N-

dimensional Gaussian orthogonal ensemble GOE(N), N-dimensional Gaus-

sian unitary ensemble GUE(N), N-dimensional Gaussian symplectic ensem-

ble GSE(N), and Poisson ensemble PE, is formulated: The probability density

functions of the dimensionless second difference of the three adjacent energy

levels take on maximum at the origin for the following ensembles: GOE(N),

GUE(N), GSE(N), and PE, where N >_ 3. The notions of level homogeniza-

tion with level clustering and level homogenization with level repulsion are
introduced.

Many complex N-level quantum systems exhibiting universal behaviour depending only

on symmetry of Hamiltonian matrix of the system are divided into: Gaussian orthogonal en-

semble GOE(N), or Gaussian unitary ensemble GUE(N), or Gaussian symplectic ensemble

GSE(N). The Gaussian ensembles are used in study of quantum systems whose classical-

limit analogs are chaotic. The Poisson ensemble PE (Poisson random-sequence spectrum) is

composed of uncorrelated and randomly distributed energy levels and it describes quantum

systems whose classical-limit analogs are integrable. The standard statistical measure is

Wigner's distribution of the ith nearest neighbour spacing:

8 i : A1Ei _- Ei+ 1 - El, i=l,...,N-1. (1)

For ith second difference (the ith second differential quotient) of the three adjacent energy
levels:

A2Ei = A1E/+i - AIEi = Ei + E/+2 - 2Ei+1, i=1,...,N-2, (2)

we calculated distributions for GOE(3), GUE(3), GSE(3), and PE Refs [1-3].

We formulate the following

Theorem: The probability density functions of the dimensionless second differ-

ence of the three adjacent energy levels take on rnazirnurn at the origin for the

following ensembles: GOE(N), GUE(N), GSE(N), and PE, where N > 3.



We present the idea of proof. For Gaussian ensembles it can be shown that second

difference distributions are symmetrical functions for N >_ 3. Hence, the first derivatives of

the distributions at the origin vanish. For Poisson ensemble the second difference distribution

is Laplace one for N > 3. Therefore, the distribution takes on maximum at zero.

The inferences are the following:

1. The quantum systems show tendency towards the homogeneity of levels (equal distance

between adjacent levels). We call it homogeneization of energy levels.

2. There are two generic homogeneizations: the first is typical for Gaussian ensembles,
the second one for Poisson ensemble. For the former ensembles we define level ho-

mogenization with level repulsion as follows. Energy levels are so distributed that the

situation that both the spacings and second difference vanish:

/k2Ei _ si _ 8i+1 _ 0, (3)

is the most probable one. For the latter ensemble level homogenization with level clus-

tering is described below. Now it is the most probable that only the second difference

is equal to zero but the two nearest neighbour spacings are nonzero:

A2Ei = O, si = si+l, si¢ O. (4)

3. The assumption of non-zero value by the second difference is less probable than the

assumption of zero value. Equivalently, the inequality of the two nearest neighbour

spacings is less probable than their equality.

4. The predictions of the Theorem are corroborated by numerical and experimental data

Refs [1-3].

The theorem could be extended to other ensembles, e.g. circular ones, and it is a direction

of future development.

We present on Fig. 1 the second difference probability densities for Gaussian and Poisson

ensembles. On Figs 2, 3 we depict comparison between second difference probability densities

and exparimental nuclear data of 181Ta and 167Er belonging to chaotic systems. We plot

these comparison for random sequence spectrum on Fig. 4. Finally, we show it for simulation

of GOE(2000) on Fig. 5.



FIG. 1. The probability density function of the dimensionless second difference for Poisson

ensemble (P: medium dashed line), for GOE(3) (O: solid line), for GUE(3) (U: medium dashed

line), and for GSE(3) (S: short dashed line). The value of x is the ratio of second difference to the

mean spacing for GOE(3), GUE(3), GSE(3), and Poisson ensemble, respectively.
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FIG. 2. The probability density function of the second difference for GOE(3) (solid line), for

Poisson ensmble (dashed line), and for lSlTa (histogram).
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FIG. 3. The probability density function of the second difference for GOE(3) (solid line), for

Poisson ensemble (dashed line), and for 167Er (histogram).
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Abstract

This paper reports the results of the application of the Thermal Wave Model

(TWM) to the trap dynamics. In particular TWM has been applied to the

proposed set-up of the ATHENA experiment to study the trapping conditions

that maximize the antiprotons- positrons overlap in the nested trap.

I. INTRODUCTION

Since the first Fedele's presentation in an academic course in Pisa, we were fascinated by

the TWM which allowed to write directly an equation for the square root of the beam density,

i.e. for the beam envelope, in contrast to the standard single particle approach which forces

to look at the phase-space dynamics to get information about the beam envelope. Moreover

in the TWM the only crucial condition is the validity of the paraxial approximation. The

TWM seems to be the right approach for an unitary reformulation of the accelerator theory,

since the model has been recently improved to include non Hamiltonian forces and change

in the beam emittance [1,2].

A second reason of interest was the possibility to apply this approach to bunches of charged

particles confined in Penning or Pauli traps, the two most used trap structures to measure

quantities relevant for the fundamental physics. A set of coaxial electrodes held to suitable

DC potentials and immersed in an axial uniform magnetic field constitutes the Penning

trap. In the Pauli trap the magnetic field is replaced by suitable RF potentials added to

the DC potentials. The time evolution and the equilibrium conditions of a few particles

can be studied by means of classical mechanics (quantum effects are usually not relevant),

while statistical mechanics is needed when the bunch density approaches the plasma limit.

*Talk presented by G. Torelli



We thought that the TWM could bevery useful to study complexsituations in thesetraps,
like mixed bunchesof positive and negativeparticles, time or spacemodulated magnetic
field and so on. As a matter of fact we obtained, by means of the TWM [3], the same
resultsof the standardstatistical mechanics[4]for the radial density distribution of bunches
of chargedparticles either when the Debyelength is much larger (low density) or when it
is much shorter (high density) than the bunch dimensions. Since we are interestedin the
antihydrogenformation at rest in the lab, we included this powerful tool as a new weapon
to study the trap dynamics in the ATHENA experiment.

II. THE ATHENA EXPERIMENT

ATHENA [5]is looking at the antihydrogenformation in a trap containinga mixed plas-
ma of antiprotonsand positrons. The basicformation processis the radiative recombination,
with a rate F dependinglinearly on the positron density and inverselyon the positron ve-
locity. Therefore the ATHENA setuphas been designedto confine a bunch containing a
relevant number of antiprotons overlapping,at least partially , a densepositron bunch at
very low temperature.
The set-up is a long array of cylindrical electrodesimmersedin a coaxial magnetic field,

which provides for the radial confinement of both particles. By acting on the longitudi-

nal distribution of the electrodes potentials positive and negative particle bunches can be

confined in different sectors of the array or moved from one sector to another.The section

devoted to the recombination process consists of five electrodes which can be connected to

DC potentials to form two external traps for antiprotons and a central trap for positrons. If

the antiprotons energy is high enough a fraction of them will move through the central trap

and will be mixed with the positrons at any time (nested trap).

We applied the TWM formalism to evaluate the efficiency of the antiproton-positron overlap

in the nested trap and in this paper we present the first results of the calculations.

III. NESTED TRAP

The fraction of antiprotons overlapping the positron plasma can be derived by a simple

integration from the antiprotons axial density function . Using the TWM the axial density

function can be calculated solving an unidimensional Schroedinger-like equation with the

proper potential distribution. The real axial distribution of the potential due to the five

electrodes can be quite well approximated by two symmetric parabolas matched to a central

one, oriented in the opposite way (see fig. 1), by imposing the continuity-condition for U(x)

and for its derivative at :t:x, where the concavity of the resultant function changes. Due to

the symmetry of the system around the central point it is sufficient to describe the potential

function U(x) only on the positive x axis. We can define an "internal region" (labeled 2) for

0 _< x _< _ and an "external region" (labeled 1) for _ < x _< oo:

U(x) =
"_Tr IX__I k X2-- I klk2 2

[._2t j- 2 2 1- 2 _q-_-_2x0



where kl, k2 and Xo are positive constants, kl and k2 being the absolute values of the

quadrupole-like strengths and Xo being the absolute value of x where U(x) has the minimum.

It turns out to be 5: - klXo/(kl + k2). The barrier height that the particles see is AU =

1Umax-- Um_nl= 1 ka_a__2kl +k2 XO "
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FIG. 1. Comparison between model and real potential for a 5 electrodes nested trap. /3 -_- e

The Schroedinger-like equation is:

0q_ e2 029

i%-2 = 2 0x 2 + V(z)_

where I_(_,_)1=_ _(x,,) gives the number density along x at each time t = s/c, and e is

_ _ - _ [6], wherethe beam emittance. ¢ is related to the bunch temperature as 4%2 - md- 7

ks is the Boltzmann constant, m is the particle rest mass, a0 is the r.m.s, particle space

distribution, and Vth is the thermal velocity. Since the potential is time independent the

spatial equation can be solved in semiclassical approximation to obtain for n(x, s):

[ 2_°_k_(x - x0)qnl (x, s) = A exp ¢2 2O.o2k2 ]n2(x,s) = Aexp ¢2 ( -x2 +2x°)

where the constant A has to be determined by the normalization condition

F0o I_(_,_)12d_ = _(_,_) dx = N
oo oo

N being the total particle number.

If, as a first approximation, we assume that the positron plasma covers the entire "internal"

region ( -5: < x < +2 ), the fraction of antiprotons overlapping the positrons is given by:

RO --

N_ 2fo _2(x)dx
N1 + N2 2 fo n2(x)dx + 2 f_ nl(x)dx



If we measure the lengths in units of x0, the energy in units of AU and describe the potential

shape through _ we obtain:
_0

RO --

NI+N2
exp(- ),D f22expy2dy

-- exp(---})x/_ f_2 exp y2dy + _ f_J7 exp -y2dy

where a = fl = K IJ1 = --IL_ - and Y2 = _/_ In Fig. 2 Ro is plotted versus a for
x 0 'mpc 2 ,

different values of/3.
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FIG. 2. Ro as a function of a for different values of

This first approximation shows that with a reasonable choice of/3 (around 0.6) and for an

antiproton thermal energy of the order of magnitude of AU about 20 percent of the antipro-

tons are permanently mixed to the positron plasma and can therefore form antihydrogen.

As a matter of fact the efficiency of the nested trap is given by the fraction of antiprotons

overlapping the positron plasma, whose length depends on the positrons energy• Calculations

are in progress to take into account this correction, which anyway seems to be reasonably

small, thus confirming this first positive indication on the efficiency of the nested trap.
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Abstract

We try to deep the concept of diffusion of a charge&particle beam travelling

in vacuo. We show that the usual diffusion equation for a given diffusion

coefficient (which here is represented by the beam emittanee e is not capa-

ble of reproducing the envelope motion of the beam. However, under the

substitution e _ ie, the envelope equation becomes the right one. It results

that, according to the experimental results, the above diffusion equation is

transformed in a SchrSdinger-like equation which explains exactly the beam

motion in vacuo with the thermal spreading.

Let us consider a charged-particle beam travelling along the z-axis, and suppose that

the beam is. relativistic but manifests a transverse thermal spreading which corresponds

to a transverse thermal velocity Vth much smaller than the speed of light c: Vth _ ¢. In

this condition, the beam motion is paraxial. This physical circumstance can be also de-

scribed saying that the electronic-ray slopes with respect to z are very small. Considering

for simplicity a 2-D beam (i.e. with only one transverse extension along, say, x-axis), the

paraxial approximation can be written as dx/dz << 1, where x is the transverse ray lo-

cation. Let us denote with p = dx/dz the ray slope. Thus x and p constitute a pair

of canonical conjugate variables [1,2]. The transverse behavior (diffusion) can be now de-

scribed statistically by the first- and the second-order moments of the classical phase-space



distribution function p(x, p, z) for the electronic rays [3]. In particular, with the second-

order moments, ax(z) = ((x- (x))2) (beam width or r.m.s, dispersion in the electronic-ray

transverse position), ap(z) =-- ((p- (p})2} (r.m.s. dispersion in the electronic ray slopes),

and a_p -- ((x - (x))(p - (p))) (electronic-ray correlation term), we can define the diffusion

coefficient e as [4,5]: c2 _ 4 [a_(Z)Gp2(Z)- a_p(z)], which is called r.m.s, transverse emit-

tance of the beam [2]. Since the beam is in vacuo, it is well known that e is an invariant

[2]. Furthermore, it is possible to show that during the beam motion ax(z) satisfies to the

following envelope equation :

d2Gx E2

d_2 4G_
- 0 (1)

Eq.n (1), which is in full agreement with the experimental observations concerning with the

beam propagation in vacuo (f.i., in a final stage of a linear collider) [6], characterizes the

behaviour of the beta-function defined as: /3(z) = G_(Z)/C. At this point we are ready to

formulate the following question: Can this diffusion be described, for a given 6, with the

following diffusion equation:

Of e 02f

Oz 20x 2 '
(2)

which is written for a probability density distribution f(x,z) in the configurational x-space

and giving the experimentally correct envelope equation (1)? In order to give an answer,

we observe that, for a Gaussian initial condition of f, (2) has the following non-stationary

normalized solution:

1 (x- <x)) 2

f(x,z)- V,_af(z) eXp 2a_(z) ' (3)

where @(z) satisfies to the following equation: d@/dz = e, which can be cast in the form

d2of c2
+ - 0 (4)

dz 2 4@

Note that (4) does not coincide with (1). Thus, taking for (1) and (4) the same initial

conditions, namely:

G:(_= _0)= G.(_= _0)- G0 , = = Go , (5)
\ d_ ]z=z0 \ d_ ]z=z0

they do not give the same solution. In fact, the envelope equation (1) gives the following

solution: a_(z) = 2E (z - z0) 2 + G02, where 2g --=_2/4G_ + (a'0) 2 > 0, whilst the envelope

equation (4) gives @(z) = a02 + c(z- z0). An important difference between these two

solutions is that to determine the latter only the first of (5) is necessary, whilst to determine

the former both of (5) are necessary. Another important difference is that, since o0 > 0, for

finite emittance e there exist a finite z, say g, for which solution of (4) gives the collapse of

the beam (ai(z = _) = 0, with -_ = zo - a_/6). On the other hand, solution of (1) does not

predict any collapse (note that a_ > o0, for any real z), according to what experimentally



happensin vacuofor finite emittances.We concludethat, evenif (2) is a diffusion equation,
it does not describecorrectly the thermal spreadingamong the electronic rays in vacuo.
The crucial point of this problem is just connectedwith the fact that to give solution of (1)
we needtwo conditions: one related with the distribution of the transverseelectronic ray
locations, ¢0a'0includedin the initial condition that has given solution (3). Consequently:
(/)the parabolic equation (2) is not suitable to describeour beamtransport problem; (ii) we
needto include in the presentdiffusion problemthe information related to the electronic-ray
slopedistribution.

In order to include the above secondinformation, we can reasonably keep again a
parabolic equation. To understand how to modify the parabolic equation (2), we observe
that (4) transformsinto (1) by meansof the formal substitution:

(6)

where i denote the imaginary unity. Correspondingly, (2) transforms into the following

Schrbdinger-like equation for the free space (U = 0):

09 c 029

i az 2 ox 2 ' (7)

where now, instead of f, we have the function 9 which in principle may be complex. Let us

represent 9 in the following form:

with O(x, z) real function and n(x, z) positive and real function, satisfying the following

normalization condition: f__ 19(x,z)l 2 dx = f_ n(x,z) dx = 1. It is immediately clear,

following the language of quantum mechanics, that we have now two suitable information:

the transverse probability density of the electronic rays, i.e. 19 (x, z)12, and the transverse

current velocity, i.e. V(x, z) = O0(x, z)/Ox. The latter is related to the ray-slopes. In fact:

L £(p} = = V(x,z)n(x,z) dx = V(x,z)lO2(x,z)l 2 dx
oo

(9)

It is easy to see that:

d2Gx

dz 2 - 4g = constant , (10)

where the constant

fro 1 912dx (11)g 2 oo Ox '

represents the mean total energy of the electronic rays. Obviously, from (10) and (11), we

obtain an envelope equation which coincides with the (1) and not with the (4).

Furthermore, it easy to see that, in correspondence to the initial condition for 9:

(12)



with n(z, zo) = f(x, zo), and O(x, zo) = 0, we obtain the following solution of (7):

where a_ satisfies the (1) and O(x,z) = x2/2R(z) + ¢(z), with 1/R(z) -

(1/ax(z)) (da_(z)/dz), and (d¢/dz) = -(e/4ax(z)). Note that, according to the defini-

tion of the current velocity, we have:

dz o (z) dz
(14)

from which we clearly see that the initial condition V(x, z0) corresponds to the initial con-

dition (5).

We can conclude that, the parabolic diffusion equation (2) does not describe the particle

beam transport in the presence of thermal spreading among the electronic rays. On the

contrary, the SchrSdinger-like equation (7) fully describes it. Eq.n (7) is the starting point

of the Thermal Wave Model [7].

Remarkably, the following very important consequence comes from this result. A dif-

fusion process, like the above beam transport, can be described in the real space as a

diffraction-like beam spreading. In fact, due to the presence of the imaginary unity i, the

second derivative in (7) accounts for the quantum mechanical diffraction of a wavepacket

as well as the diffraction among the light rays in an e.m. radiation beam in paraxial ap-

proximation [8]. Thus, in the real free space, the dispersion of the electronic rays seems to

simulate exactly the diffraction of the light rays.

Additionally, we note that R(z), defined above, plays the role of local curvature radius

of the wavefront associated with the eikonal O(x, z).
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We study how the bandwidth of a spectral filter influences the spectral correlations of light from a
quantum mechanical source. Generally we examine the difference between a classical and a quantum
description of a Fabry-P@rot filter. Specifically we apply the results to filtered resonance fluorescence.

of

The actual presence of a spectral filter, for example in the form of a dielectric slab, can change the statistics of a
fluctuating classical field. This was recognized in 1966 by Armstrong [i], who showed that sending laser light through

a narrow spectral filter changes the statistics of the light from Poissonian to chaotic. This lead us to question, whether
in the case of a quantum mechanical input field also the quantum properties of the spectral correlation function are

affected by the presence of the filters. A first off-hand answer would be, that for very narrow filters all quantum
properties are lost, seeing that all a spectral filter 'does is delaying photons for arbitrary times proportional to the

inverse of the filter linewidth and thereby mixing the ordering of the photons. We will show in the following that this
line of thinking is too simple.

Consider two classical stochastic light fields E (+) and E_ ±) where (+/-) denotes the positive, resp. negative

frequency part of the field. We assume that the fields are stationary. The normalized two-time correlation function
of these fields is given by

g (a;b;T)= < + + > (1)
_(-)_(+) /_(-)/_(+)

For classical fields the mean square deviation is positive, yielding

< Ia(t) 2 >>< Ia(t) >2 _._._+ g2(a;a;O) _> 1. (2)

In words, the photons are bunched in time. Detecting anti-bunching of photons from a single field thus displays the
quantum nature of its source. Furthermore, when we consider the correlation between two fields, Schwarz' inequality
leads for classical fields to

g22(a; b; T) < g2(a; a; 0)g2(b; b; 0). (3)

When the two fields under consideration are the outputs of different spectral filters with the same input field, a

violation of this inequality reveals the quantum nature of the source.
Now, using Fourier analysis we find for the spectral correlation function

g2 (wa ;wb; _') oc / d_e -i_ (tl-t4)-_(t_-t_) < _,(-)(t,)F,_-)(t2 + T)E_ +) (t3 + T)E (+) (t4) >, (4)

with f dt = f f f f dt_dt2dt3dt4. This does not satisfy for the description of a physical filter with a finite linewidth

though. Firstly the Fourier analysis only holds true for fully stationary fields and infinitely narrow spectral filters [2].
Secondly the right hand side of this equation is an observable quantity, whereas the integrand on the left hand side
is not, since it also contains terms that are not ordered in time. For a correct quantum description of the output

field, the radiation field needs to be quantized in the presence of the spectral filter [3]. We model the filter by a

highly reflective dielectric slab. Several methods have been developed to quantize this system [3,4]. We will not give
a complete derivation of the quantization procedure, but just mention the different steps in the procedure, following

KnSll et al. [3].
The first step is to quantize the radiation field in the absence of a source, but in the presence of the filter. The

electric field can then be written as

_--_. _ _
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w) ,b)FIG. 1. (a) The Mollow triplet of o-level atom driven far from resonance or Ior strong coupling and (b) its dressed

eigenstates with the possible transitions for a spontaneous emission event

where c06(_ is the dielectric constant of the medium. The operators &_ and fz_ are annihilation and creation operators
that satisfy the standard commutation relations. The time evolution of &_ in the Heisenberg picture is as in the absence
of the medium

Ot&:_ = -iw:_&;_. (6)

The influence of the filter on the electric field is thus only via the mode functions /_ that are now no longer plane

waves, but satisfy

(71Vx(Vx/_)- c2

The next step is to include the source. The presence of the source will change the time evolution of the creation
and annihilation operators, but not the shape of the mode functions. When the interaction Hamiltonian between the

source and the radiation field is linear, the time evolution breaks up in a freely evolving part &_,f and a part which is

driven by the source &_,s

&;_(t) -= &),,f(t) + &;_,s(t). (S)

Likewise the electric field can be written as/_(+) = /_+) + E_+). Though it is tempting to assume that these two
parts commute, they in fact do not. In the case that the source remains evolving freely (this can be established by

placing the filter under a slight angle so that no light is reflected back unto the source) we find for g2 of the output
of two filters a and b with frequency setting wa,b and linewidth A

g2 (a, Wa; b, Wb; T) O( f dtA4e -;_(tl+t2+t3+t4)+iw_(tl -t4)-t-iwb(t2-t3)

In this expression T (+) orders the following operators downward in time, T(-) orders them upward in time. This is

equivalent to the classical description of the correlation function except for the time ordering in the integrand.
Let us consider resonance fluorescence of a two-level atom driven by a monochromatic field at frequency w as input

for the filters. We assume that the ground and the excited state are non-degenerate and separated in energy by hw0.
When the detuning A = w - w0 is large or the coupling f_ is strong, the spectrum is the well-known Mollow triplet

(see Fig. 1). Its three components can be easily understood in terms of the ladder of its dressed states ]1 > and ]2 >,
which are mixtures of the state of the radiation field and the state of the atom and are separated in energy by hfl _
with f_ = _ + f12 (see Fig. 1). A spontaneous emission event corresponds to a transition between two successive

steps in this ladder. Three transitions with different frequencies are possible. For positive detuning the fluorescence
band F has the lowest center frequency, OAF _- _A -- fl[prime, the middle or Rayleigh band R has a frequency equal to

the pump field WR = w and the three photon band T has the highest center frequency, ww = w + _[prime. From the
ladder of states we see, that the T and F photons alternate in time. The photons within a side band thus violate

inequality (2) and the correlation of photons between the two side bands violates inequality (3).
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FIG. 2. The spectral correlation functions within and between two side bands plotted against the logarithm of the waiting
time T (in unities F- 1) and logarithm of the linewidth )_of the filter (in unities F) at A/_ = 0.7. In (a) g2 (T, &2w+ (_; F, O-)F"_ (_; T)

is plotted and in (b) g2(T, WT + 6; T, O2T-]- ¢J; T).

We now have all the ingredients to study the effects of the presence of a spectral filter on the quantum nature

of light. The correlation function can be calculated analytically. The resulting expressions however, are in general

ill-digested except for the limits where the filter covers a full band (A >> F) or where the filter is very narrow (A << F).
For this reason we refrain from giving the analytical expressions, but present the results as Maple plots of g2 as
functions of the waiting time T and A (see Fig. 2). For both plots, the two horizontal axes are on a logarithmic scale

and A, _- are given in unities F, resp. F -1. We have taken A << _', so that a filter covers one band at most. The
first thing one notices, is that the spectral correlation function depends on the linewidth of the filter. For large filter

linewidth and short waiting times the plots show the alternating behaviour of T and F photons: in Fig. 2 (b) g2 = 0
and in Fig. 2 (a) g2 > 1. In Fig. 2 (a) we furthermore see, that as A _ T -1, the strength of the bunching is shifted as

compared to very short waiting times. This is due to the fact that the probabilities for the transitions ]1 >--+ ]2 >
and 12 >--4 ]1 > are not equal and that in this region the order of the detection of the F/T photons is not necessarily
the order in which they were emitted by the atom.

For narrow filters the anti-bunching behaviour of T photons is lost (see Fig.2 (b)), and so the quantum nature of

the source is concealed as expected from our off-hand answer. However, the bunching between photons from different
side bands is not lost (see Fig. 2 (a)), no matter how narrow we choose the filter: the quantum nature of the source
remains observable. This result can be understood, when we realize that the action of a narrow filter on a stream of

in-coming photons is not simply the mixing of these photons in time order. To be precise a filtered photon is better

viewed as an average of photons entering the filter at different times, the time span of the average proportional to
)-1. For short waiting times, two filtered photons are constructed from the same set of in-coming photons, so the

correlation between successively emitted photons remains present.
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Abstract

Limits of the use of the standard mathematical model of physical reality

(based on the system of real numbers) are discussed. We propose a new

mathematical model of physical reality based on the system of so called p-

adic numbers. By this model, physical reality is information reality. Basic

objects of this reality are transformers of information, basic processes are

information processes.

This paper is an attempt to provide a description of reality based only on information

objects (so called transformers of information). Material objects give just a particular class,

M, of transformers of information. Elements of M can be represented in the real space R 3.

However, the system of real numbers is a particular system for cording of information. There

are many other coding systems which can be used to create new pictures of reality. If instead

of the real metric we consider a new metric corresponding to the ability of cognitive systems

to form associations, then we obtain systems of p-adic numbers (see, for example, [1]). On

the basis of p-adic quantum mechanics we consider a pilot wave theory over information

spaces. In fact, already the ordinary pilot (real) wave formalism can be interpreted in the

right way only on the information basis [2]. Our general information formalism improves

the ordinary pilot wave theory. It gives natural solutions for such problems as non-locality,

energy balance for the pilot wave field, information character of this field.

Let us consider some system 7- which has the ability to transform information. In the

simplest mathematical model we can assume that information strings can be coded by

sequences of digits x = (c_1, c_2,..., c_N,...), where c_j = 0, ..., m - 1 (here m > 1 is a fixed

natural number). Denote the set of all information strings of this form by the symbol X,_.

Suppose that the system _- has the ability to form associations. We introduce a metric pm on

the space of information strings Xm which describes such an ability. Let x = (c_0, ..., an, ...)

and y = (rio, ..., fin, .-.) be two information strings belonging to Xm. The _- 'thinks' that x

and y are close with the precision ek = 1/mk(k = O, 1, .... ) if they correspond to the same

association (abstract idea) a = (a0,...,ak-1) : ao = O_o= rio, ...,ak-1 = OZk__ = flk-_. We set

1 if ozj = flj, j = O, 1, k- 1, and ak # ilk. This is a metric. It is called m-adic m(x,y)= ...,
metric. A point x = (an) of X,_ is identified with the expression: x = _]k_0 ak ink. We set

Ixl,_ = m -k if c_j = 0, j = 0, ...,k - 1, and ak # 0. Then p,_(x,y) = [x - Ylm" This gives the

identification of the information space X,_ with the ring Z,_ of m-adic numbers. Therefore



it is natural to use m-adic numbers for a description of information (at least cognitive)

processes. Mathematically it is convenient to use prime numbers m = p > 1.

We choose the space X = Zp (or multidimensional spaces X = Z N) for the description

of information. The X is said to be information space. Everywhere below we shall use

the abbreviation "I" for the word information (for example, information space =/-space).

Objects which "live" in/-spaces are said to be transformers of information (/-transformers).

/-transformers are not characterized by localization in information p-adic space (or real

space). They are characterized by the ability to transform information and form associations.

In particular, the whole universe U is the great/-transformer.

Each/-transformer 7 has internal clocks. A state of the clocks is described by an/-vector

t C T = Zp which is called information time. The/-time can have different interpretations in

different/-models. If 7 is a conscious system then t is (self-recognized) time of the evolution

of this system. We can say about psychological time of an individual or about (collective)

social time of a group of individuals. In fact, we have not to image t as an ordered sequence

of time counts. This is only information with describes evolution of 7. In principle, there

is no direct relation between I-time and "physical" time that is used in the model over the

reals. At each instant t E T of/-time there is defined a total information state (/-state)

q(t) E X of 7. It describes the position of 7 in the/-space X. The "life"-trajectory of _- can

be identified with the trajectory q(t) in X. We use an analogue of the Hamiltonian dynamics

on the/-spaces 1. As usual, we introduce the quantity p(t) = q(t) (= _q(t)) which is the

information analogue of the momentum. However, here we prefer to use a psychological

terminology. The quantity p(t) is said to be a motivation (for changing of the/-state q(t)).

The space Zp x Zp of points z = (q, p) where q is the/-state and p is the motivation is said

to be a phase /-space. As in the ordinary Hamiltonian formalism, we assume that there

exists a function H(q, p) (I-Hamiltonian) on the phase/-space which determines the motion

of r in the phase/-space:

OH OH (q(t),p(t)), p(to) = Po. (1)
(t(t) = -_p (q(t),p(t)), q(to)=qo, f)(t)- Oq

The I-Hamiltonian H(p, q) has the meaning of an I-energy. In principle, /-energy is not

related to the usual physical energy.

In general case the/-energy is the sum of the/-energy of motivations Hf = ap 2 (which is

an analogue of the kinetic energy) and potential/-energy V(q): H(q,p) = c_p2 + V(q). The

potential V(q) is determined by fields of information. In the Hamiltonian framework we can

consider interactions between /-transformers 7-1,..., 7N. These /-transformers have the I-

times tl,...,tN and /-states ql(tl),...,qN(tN). By our model we can describe interactions

between these I-transformers only in the case in that there is a possibility to choose the

same/-time t for all of them. In this case we can consider the evolution of the system of

the /-transformers 71,...,_-_ as a trajectory in the /-space Z_ = Zp x -.. x Zp, q(t) =

(ql(t),...,qN(t)).

1In fact, this is an application to the/-theory of the Hamiltonian p-adic formalism developed in

[3] (and generalized in [1]).



The aboveformalism of classicalinformation mechanicscan be developedto the for-
malism of quantum information mechanics(in fact, we need only to use the information
interpretation for p-adic quantum mechanics which was developed in [1]). Here the wave

function _ (x) is a function of the information variable x with information values. It is quite

natural to interpret such a function as a new information field which is associated with an

/-transformer or a group of/-transformers. Such a viewpoint to the wave function is very

close to the viewpoint of D. Bohm and B. Hiley [2] on the pilot wave theory.

Let us consider a system of N I-transformers, _-1, TN, with Hamiltonian H = _k _ +
"'" ' 2mj --

_k>i Vki(xk -- zi). The wave function ¢(t,x),x = (xl, ...,Xy),Xk e Z_ evolves according to

the Schr6dinger equation. Thus

o-ip(t) + (2)
k

where p(t, x) = _p(t, x)¢(t, x) is a probability density on the configuration/-space Z_ N and

jk(z,t) = m_-llm(¢(t'x) o t0--22k_p(, X)). As in the ordinary Bohm's formalism, we assume that

a quantum /-transformer _-k has at any /-time well defined /-state xk and motivation pk.

/-state xk evolves according to

ick(t) - jk(t,x)
" (3)

We describe the work of a brain 7- in the framework of the pilot-wave/-theory. The _- has

an incredibly complex internal structure (see [4]) which generates a new information field

given by brain's wave function _p(t, x). We claim that the field _(t, x) induced by the brain

_- is nothing than a conscious field. Thus conscious processes are quantum/-processes. A

conscious (quantum) motion in phase/-space differs from an unconscious (classical) motion.

This difference is due to a quantum /-potential Q. In the same way we can consider the

conscious information dynamics of any group of/-transformers. It is even possible to use

the wave function of the universe (conscious field of the universe).

This is the good place to discuss the problem of non-locality of the pilot wave formalism. Some

authors consider non-locality as one of the main difficulties of the pilot wave formalism. However,

non-locality is not a difficulty in our pilot/-wave formalism. This is non-locality in the/-space.

Such non-locality can be natural for some/-systems. For cognitive systems, /-non-locality means

that ideas which are separated in a p-adic space can be correlated. However, p-adic separation

means only that there are no strong associations between ideas or groups of ideas. But this

absence of associations does not imply that these ideas could not interact.

By our model each human society S has a wave function _p(t; x). This function gives

a description of a quantum potential Q. The quantum potential can essentially change

/-motions (i.e., evolutions of ideas) of individuals. Different societies are characterized by

quantum potentials of different forms. This model provides an explanation of such collective

phenomena as religion or political (or national) ideology.

The same considerations can be applied to animals and plants. The only difference is

probably that here quantum /-potentials are not so strong. Thus we get the conclusion

that there may exist a wave function _liv(t, x) of all living organisms. The wave function

_(t, x)liv(t, x) can be represented in the form:



¢(t'X)liv(t'x) = E Cf(_, X), (4)

f

where _I (t, x) is a wave function of the living form f. An observable F (a living form) can

be realized as a symmetric operator in a p-adic Hilbert space, F¢f = f¢f, where f C Zp is

the cod of the living form f in the alphabet {0, 1, ...,p- 1}. By equation (3) the evolution

of the fixed form f0 depends on evolutions of all living forms f.

The process of the evolution of living forms is not just a process based on Darwin's

natural selection. This is a process of a quantum /-evolution in that the conscious field

of all living forms plays the important role. This model might be used to explain some

phenomena which could not be explained by Darwin's theory. For example, the beauty of

colours of animals, insects and fishes could not be a consequence of the only process ofthe

natural evolution. This is a consequence of the structure of the conscious field ¢(t, X)liv(t, x).

By the same reasons we can explain some aspects of relations between robbers and victims.

It seems that in nature there is a well organized system which gives to robers a possibility

to eat victims. This system is nothing other than a result of the evolution due to (3).

Our formalism improves the ordinary pilot wave theory. On of the delicate problems of this

theory is a difference between ordinary fields and C-fields. There is no such a problem in the

/-theory. All/-fields have no physical energy. Thus we need not discuss the energy balance for

the field ¢(t, x) (see [2], p.38). Of course, there is still a difference between classical and quantum

rules for computing/-forces. As in the standard pilot wave theory, the increase of the (p-adic)

amplitude of ¢(t, x) does not imply the increase of the (p-adic) amplitude of the corresponding

/-force. However, even in classical mechanics over p-adic numbers the increase of the amplitude of

an/-force does not imply automatically an essential perturbation of a trajectory in phase/-space.
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Abstract

The classical propagator for tomographic probability (which describes a quan-

tum state instead of the wave function or density matrix) is presented for

quadratic quantum systems and its relation to the quantum propagator is

considered. The new formalism of quantum mechanics, based on the proba-

bility representation of the state, is applied to particular quadratic systems

-- the harmonic oscillator and particle's free motion; the classical propagator

for these system is written in an explicit form.

The quantum propagator (Green function of the Schr6dinger equation) contains complete

information on a quantum system and can be expressed in terms of the path integral.

The quantum propagator can be calculated in different representations. The evolution of

quantum systems in different representations is determined by quantum propagators. In

view of this, one of the main problems of the theoretical research is to obtain an explicit

expression for quantum propagators for given quantum systems.

The quantum propagator for the wave function gives the possibility to obtain also the

evolution of the density matrix. Since the density matrix can be expressed in terms of a

quasidistribution (e.g., in terms of the Wigner function), the quantum propagator determines

the evolution of the quasidistribution. But the quasidistribution is not the joint probability

distribution of the quantum system in the phase space. For example, the Wigner function

can take negative value and probabilities can take only positive value. Consequently, the

quantum propagator cannot be considered as positive transition probability; it has the

physical meaning of the complex transition-probability amplitude.

Recently, the symplectic tomography method of measuring quantum states was sug-

gested [1,2]. In this method, a quantum state is described by the conventional probability

distribution (marginal distribution or tomographic probability) [3,4]. The evolution of the

tomographic probability is described by the classical propagator, which is an analog of the

transition probability used in classical statistical mechanics. The quantum propagator is

connected with the classical propagator [5,6]. The new formulation of quantum mechanics

of [3,4] recently was applied to some physical problems [7,8].

The aim of this study is to construct classical propagators in an explicit form for several

interesting systems, which are described by quadratic (in quadrature operators) Hamiltoni-

ans, expanding the results of [6,9,10].



It wasshown[1] that for genericlinear combinationof quadratures,which is a measurable
observable(h = 1)

x = + @, (1)

where _ and /3 are the position and momentum, respectively, the marginal distribution

w (X, #, u) (normalized with respect to the variable X), which depends on the two extra

real parameters # and u, is related to the quantum state expressed in terms of its Wigner

function W(q,p) as follows

w (x,u,u)= fexp[-ik(X-m-.p)]W(q,p)
dk dq dp

(2.)5 (2)

The Wigner function of the state can be expressed in terms of the marginal distribution [1]:

ifW(q,p) = _ w(X,#,u) exp[-i(#q + up- X)] d#dudX. (3)

For pure states with the wave function ffJ (x), the nonnegative marginal distribution

w (X, #, u), which describes the quantum state, is given by the relationship [11,8]

1 f (i#y 2 iX )dy2w(X, mu)- 2_lul ,I,(y)exp \2u u y . (4)

The evolution of the marginal distribution w (X, #, u, t) can be described by means of the

classical propagator II (X2, #5, us, X1, #1, ul, t2, tl), in view of the integral relationship [4]

f II(X2,#2, u2,Xl,#l,ul,t2,tl)w(Xl,#l,ul,tl) dX_ d#l dul. (5)w (X2, _2, u2, t2) -_

Below, we will also use the notation H (X2, #2, us, X1, #1, ul, t) for the classical propagator

in the case tl =0, t2=t.

The classical propagator has the property [6]

1

II (bX, b#,bu, bX',b#',b#,t) = -_ II (X,#,u,X',#',u',t) (6)

and, in view of [6], is related to the quantum propagator G (x, y, t) by means of the integral
transform

II(X,#,u,X',#',u',t) - 4re 21 k2C a+-_,y,t a* a--_-,z,t

x exp [ik (X' - X + #a - #' Y + Z ) ]2

xS(y - z - ku') dkdydzda. (7)

If one introduces the notation

K (X,X',Y, Y',t) = G(X,Y,t)C* (x',r',t), (8)



the inverseof (7) can be found [5]

(27r)211 {(f _5 expK (x,x',z,z',t) _ J i v-

x II(Y,#,X - X',Y',#',u',t) d#d#' dY dY' dr'.

X + X"_ Z - Z'

# -_ ) - i v'
Y'+i

Z 2 - Z '2 I

2 u' #'

(9)

The classical propagator for free motion obtained in [4,5] has the appearance

Hf (X,#,_,,X',#',_/,t) = a (x- x') 5 (_- d) 5 (_'- _" + _t).

The classical propagator for the harmonic oscillator reads [6]

Ilos (X, #, v,X',#', v',t) = Isin t] 5 (X - X') 5 (v cost + #sin t - v')

x 5 (u' cos t - #' sin t - u)

= 5(X - X') 5 (ucos t - #sint - u') 5 (#cos t + usint - #').

(10)

(11)

The classical propagator for quadratic quantum systems reads (see [5])

II (X,#,v,X',#',v',t) = 5 (X - X' + .A/'A-*A) 5 (Af '- A/'A-_),

with the vectors .hf = (v,#) and Af'= (u',#').

The main result of this study consists in the explicit expressions for the classical propaga-

tor for two physical systems with quadratic Hamiltonians (harmonic oscillator and particle's

free motion) treated in the framework of the new formulation of quantum mechanics based

on the symplectic tomography method. The study of the classical propagator and its con-

nection with the quantum propagator for the other particular quadratic systems, namely, for

the problems of an ion in a Paul trap and in asymmetric Penning trap and for the process

of stimulated Raman scattering one can find in [9, 14-17].

The author is grateful to Dipartimento di Scienze Fisiche, Universitg di Napoli "Fed-

erico II" and Instituto Nazionale di Fisica Nucleare, Sezione di Napoli for kind hospitality.

The work was partially supported by the RF State Programm "Optics. Laser Physics"

and the Russian Foudation for Basic Research under Project No. 99-02-17753.

A (0) = 1, A (0) = 0. (15)

(14)

(16)

with the initial conditions

where the real symplectic 2×2-matrix h (t) and real vector A (t) satisfy the equations

/k = i ABly, /_ = i A_yC,

I(t)=A(t)Q+A(t), (13)

Let us consider the system with the quadratic Hermitian Hamiltonian

1

H= -_ (QBQ) + CQ , (12)

where one has the vector-operator Q = (p, q). The symmetric 2×2-matrix B and real 2-

vector C depend on time. The system has linear integrals of motion [12,13]:
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An interpretation of the the "halo problem" in accelerators based on quantum-like diffraction is

given. Comparison between this approach and the others based on classical mechanics is discussed

Keywords: Beam Physics, Quantum-like, Beam halo, Beam Losses, Stochasticity.

I. INTRODUCTION

Recently the description of the dynamical evolution of high density beams by using the collective models, has

become more and more popular. A way of developing this point of view is the quantum-like approach [1] where

one considers a time-dependent SchrSdinger equation, in both the usual linear and the less usual nonlinear forms,

as a fluid equation for the whole beam. We proceed as follows: A. Linearization of the transversal motion of the

beam for a circular accelerator; B. Formal similarities with SchrSdinger equation; C. Feynman propagator approach;

D. Diffraction through a slit (sharp and Gaussian); E. Differential and Integral probabilities of loss of particles.

We here point out that, after linearizing the SchrSdinger-like equation, one can use the whole apparatus of quantum

mechanics in beam dynamics, with a new interpretation of the basic parameters (for instance the Planck's constant

h _ ¢ where e is the normalized beam emittance) and introduce the propagator K (x$,tl[x_,ti) of the Feynman

theory for both longitudinal and transversal motion [2]. A procedure of this sort seems particularly effective for a

global description of several phenomena such as intrabeam scattering, space-charge, particle focusing, that cannot be

treated easily in detail by "classical mechanics" and are considered to be the main cause of the creation of the Halo

around the beam line with consequent losses of particles.

Let us indeed consider the Schrgdinger like equation for the beam wave function

c2 2 v(x,t)¢
ieOt¢ = - _m0=¢ + (1)

in the linearized case U (x, t) does not depend on the density [¢12. Here, e is the normalized transversal beam emittance

defined as c = mocvfl_ where, g being the emittance usually considered, where as we may introduce the analog of

the De Broglie wavelength as Jk = e/p. We now focus our attention on the one dimensional transversal motion along

the x-axis of the beam particles belonging to a single bunch and assume a Gaussian transversal profile for a particles

injected in to a circular machine. We describe all the interactions mentioned above, that cannot be treated in detail,

as diffraction effects by a phenomenological boundary defined by a slit, in each segment of the particle trajectory.



Thisconditionshouldbeappliedto bothbeamwavefunctionandits correspondingbeampropagatorK. The result

of such a procedure is a multiple integral that determines the actual propagator between the initial and the final

states in terms of the space-time intervals due to the intermediate segments.

K (z + z0, T + fix', 0)

F= g(x+so, r]xo+y_,T+(n-1)v')g(_+y,,T+(n-1)r'[zo+y__l,T+(n-2)v')
b

x ...K (x + y_,T]s',O) dyldy2...dyn, (2)

where r = nv' is the total time of revolutions T is the time necessary to insert the bunch (practically the time between

two successive bunches) and (-b, +b) the space interval defining the boundary conditions. Obviously b and T are

phenomenological parameters which vary from one machine to another and must also be correlated with the geometry

of the vacuum tube where the particles circulate. At this point we may consider two possible approximations for

g (nln - 1) _-- K (so + y,_, T + (n - 1)r']x0 + Yn-1 + (n - 2)Tt):

1. We substitute it with the free particle K0 assuming that in the _-' interval (_-' << _-) the motion is practically a

free particle motion between the boundaries (-b, +b).

2. We substitute it with the harmonic oscillator K_ (n[n- 1) considering the harmonic motion of the betatronic

oscillations with frequency w/2w

II. FREE PARTICLE CASE

We may notice that the convolution property (2) of the Feynman propagator allows us to substitute the multiple

integral (that becomes a functional integral for n ----* oo and _" _ 0) with the single integral

FK (x + xo, T + vlx' , O) = dyK (x + xo, T + vlx0 + y, T) K (xo + y, T[s', O) dy (3)
b

[ _V__] instead of the segmentWe consequently obtain from equation (3) after introducing the Gaussian slit exp -2b:

(-b, +b) we obtain from

/+- _o [ Y_] { 2_rihr2_rihT_-}-2-_m m ) Jim ] [im ]g(x+zo,T+_'lx',0 ) = dyexp exp 2-_-_z(x-y)2 exp 2--_(x0+y-x')2

im (m2/2h2r _) (x - r) _

= m T+r+Tv_-_ exp _ v_T+ + V__-_I__ -- (4)

where v0 = _ and x0is the initial central point of the beam at injection and can be chosen as the origin (x0 = 0) of
T

the transverse motion of the reference trajectory in the test particle reference frame. Where as h must be interpreted

as the normalized beam emittanee in the quantum-like approach.
1

With an initial Gaussian profile (at t = 0), the beam wave function is f(x) = {_}_ exp [-_ ] r.m.s of the

transverse beam and the final beam wave function is:

¢(x): /+__ dx' (_) ¼e[-_x'_]K(x,T+T;x',O)= Bexp[Cx 2] (5)



with
1

= + r + Tv-_-_ < 7_) 2 im m=/21_=T2 '

2_T _(_+_)__

r.__..2 m 2 /2_:_T :_
i_ 1 1 1

im m2/2h2T 2 T2 -E(_+;)- _-

c= 2-_+ __(_+_)__in1 1 + (_ in ,_m_/2_.. ,_ (6)

The final local distribution of the beam that undergoes the diffraction and the total probability per particle are

respectively given by

p(x) : [¢(z)[ 2 : BB* exp [-&x2] , P : dxp(x) = BB* _ v_hT (7)

where & : -(C + C*). One may notice that the probability P has the same order of magnitude of the one computed

1 is of the order of b.in [3] if

III. OSCILLATOR. CASE

Similarly we may consider the harmonic oscillator case (betatronic oscillations) to compute the diffraction proba-

bility of the single particle from the beam wave function and evaluate the probability of beam losses per particle. The

propagator K,o (x, T + fly , T) in the later case is:

K(z,T+r]x',O) : dyexp -2-g5 g,.,(x,T+r[y,T) g,o(y,T[x',O)

: f+?_e_, [-_] { 2rihsi_(wr)}½exp [2h_(wr) {(:r2 +Y2) C°SWr-2zY}]

1

e_p d_',

where

:,. :12h sin(,,I") -_ sin2(,.,..,-)O'

2 1
sin (wr) sin (wT) D'

/_ : imw cos (wT)(mw) 2 1 1
2h sin (wT) -_- sin 2 (wT) D

1 .mw (cos (wv) cos (wT) _
D - 2b2 1-_ \ sin (wr) + sin (wT) J '

(9)

where

f+[ ]¢_(x): dx' Zexp - x '2 K_(x,T+r;x',O):Nexp[Mx 2]

1

M=_4+
2

(10)

(11)

P,,, : dzp(x) = N*N (M* + M)

1 mb w

vfd h sin (coT) "
p_(_) : 1¢_(_)12= N*Nexp [-(M* + M)x2] , (12)



IV. PRELIMINARY ESTIMATES

Parameters LHC HIDIF

Transverse Emittance, e 3.75 mm mrad 13.5 mm mrad

Total Energy E 450 GeV 5 Gev

T 25 nano sec. 100 nano sec.

b 1.2 mm 1.0 mm

w 4.47 x 106 Hz 1.12 x 107 Hz

P 3.39 x 10 -5 2.37 x i0 -3

P_ 3.44 x 10 -5 2.96 x 10 -3

V. CONCLUSION

These preliminary numerical results are encouraging because they predict beam losses which seem under control.

Indeed the HIDIF scenario gives a total loss of beam power per meter which is about a thousand higher than the

LHC. However in both cases the estimated losses appear much smaller than the permissible 1 Watt/re.

The relevant concluding remarks are as follows:

1. The probability calculated from the free and the harmonic oscillator propagators (both in the transversal motion

of the particles) appear very close for the two different circular systems such as LHC and HIDIF rings.

2. In both the machines the beam losses which we consider related with halo are under control because they appear

much smaller than 1 Watt/m.

3. The HIDIF scenario, as expected has a total loss of beam power which is at least 103 times higher than LHC.
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Abstract

The generation and application of high quantum correlated twin beams from cw OPO

and OPA will be presented. The applications of twin beams in the QND with nonunity

gain and sub-shot-noise optical measurements finished in our lab will be summarized.

1 Introduction

It has been well demonstrated that the intense twin beams generated from CW Optical Paramet-

ric Oscillators(OPOS) operating above oscillation thresholds are useful nonclassical light fields in

precise optical measurements with sensitivities beyond the Standard-Quantum-Limit (SQL).The

two-photon absorption spectroscopy[1]and weak absorption measurement [2] have been accom-

plished recently, in that the improvements in the Signal-to-Noise Ratio(SNR) with respect to the

SQL's of the total light used in experiment are 1.9dB and 7dB respectively, due to employment

of quantum correlated twin beams produced from CW nondegeenerate OPOs (NOPOs). The

quantum measurement of intensity difference fluctuation satisfying all the Quantum Nondemo-

lition(QND)criteria has been achieved with a beam splitter, the dark port of which is injected

by the twin beams in 1998 [3].

In this presentation we shall introduce our twin beams generation system at first, then simply

present the applications of twin beams on the QND and sub-shot-noise measurements.

2 Continuous wave twin beams generation

As well-known, KTP is a good nonlinear crystal for frequency conversion. Usually the KTP

is cut for type-II critical phase-matching (c-cut). In this case , the beams-walk-off effect and

polarization mixing will inevitablly affect the conversion efficiency. The twin beams with 3070

quantum noise reduction below the SQL and intensities of a few milliwatts was generated from

a CW NOPO pumped by green light of 200mw for the first time by A.Heidmann et al. in 1987

[4]. Then the result was improved with a larger transmission of the output mirror of NOPO

and a better pump source by the same group. A quantum noise reduction of 8670 in twin

beams with intensities of 6mw was observed at the pump threshold of 390mw[5]. With a pair

of c-cut KTP crystals in series to compensate the beam-walk-off effect between signal and idle

mode we obtained the twin beams of 50% quantum noise reduction in the intensity difference

fluctuation. The total power of the output twin beams is 23row at the pump power of 300mw[6].

To further increase the conversion efficiency and reduce the pump threshold. We use a-cut KTP

which is able to perform the type-II noncritical phase-matching instead of the c-cut one. Due

to the collinear transmission of signal and idle mode in the crystal the beams walk -off and

Permanent address : INFM Unit_ di Napoli, Italy



polarization mixing effectswere minimized, therefore the conversionefficiencieswereincreased
and the thresholdpower werereducedsignificantly.

Wehaveestablishedtwo cw NOPO and a NOPA systemconsistingof c_-cut KTP for nonclas-

sical light generation. One of the NOPOs and the NOPA are the semimonolithic configuration,

the front face of crystal was coated to be used as the input coupler for pump field and injected

signal a concave mirror was employed as the output coupler for nonclassical light. The pump

laser is an intrcavity frequency-doubled and frequency-stabilized cw ring Nd:YAP laser [7], the

output second-harmonic wave of that is at 0.54¢m wavelength which is able to perform the de-

generate frequency-down-conversion in c_-cut KTP .When the NOPO pumped by Nd:YAP laser

operated above the oscillation threshold the intensive twin beams of 36 mw with near-degenerate

frequency around 1.08#m and orthogonal polarization were obtained only at thepump power

of 110mw.The intensity difference squeezing was 7±0.1dB[3]. To control the frequencies of twin

beams a small signal at 1.08#m was injected into the NOPO operated below the threshold from

the input coupler. At the NOPA operation scheme the quantum correlated twin beams with

exactly degenerate frequency and orthogonal polarization was produced for the first time to our

knowledge, the noise in the intensity difference between that was reduced by 3.7dB below the

SQL at the measuring frequency of 3MHz shown in Fig.1.

S in / S out

M i M °ut

Fig. 1 Fig. 2
Other system of NOPO is a triply resonant OPO consisting of two concave mirrors coated

to be used as the input coupler for pump green light at 0.532 #m and the output coupler for

twin beams at 1.090#m and 1.039#m , respectively, a c_-cut KTP of 10ram-long is placed in the

center of the NOPO with a cavity length of 38 ram[2].

Due to the higher output coupling efficiency (the transmissions for the output coupler are

7.2% at the range from 1000 to 1100nm) up to 9.2dB (88%) intensity difference squeezing be-

tween the frequency nondegenerate twin beam(1.090#m and 1.039#m) has been accomplished

experimentally) [2]. All our twin beams generation system are stable which are convenient to be

applied into the optical measurements and communications.

3 Application of twin beams in the optical measurements

We designed a new QND device to measure the intensity difference fluctuation between two

orthogonal polarized modes in signal beam. The measured signal is modulated on a polarized

component and then is analyzed in the noise spectrum of intensity difference fluctuation.

A 50//50 beam splitter serves as the coupling device of the QND measurement. The input

signal(S in) and input meter(M _) both consist of two orthogonal polarized modes (s-and p-

polarization) of equal mean intensity. The phase and the frequency of S- and P- polarization

modes in Sin are same as that in M in, respectively.

The angles of incidence of S in and M i_ on BS are smaller than 3 ° to ensure the balance of

the reflectivities between S- and P- polarized wave (Fig. 2). The two polarized modes in Sin are



uncorrelated,the noiseof amplitude differencebetweenthat is in the SQL. i.e. I 6rp ]= 1,while

the two modes in M_are quantum correlated twin beams, i.e. I 6r_ ]< 1. The calculated the

signal and meter transfer coefficients(Ts and Tin) and the normalized conditional variance(Vs/m)

are[3]:

R

T, = R + T (I _(_)I _)+ '-_ (1)

T

T_ = T + R (I _(_) P) + 1-" (2)

1-, + _ (I __(_) I_>
</_ = (3)

Here T and R=I-T are the power transmission and reflectivity of BS. _ is the detection

efficiency. For our experiments,/_ = 50% + 1%, _ = 89% ( All three detectors for detection input

meter have nearly identical efficiency). The measured Ts = 0.66, T,_ = 0.65 and Vs/,_ = -2.1d[3].

Since T_ + T,_ = 1.31 > 1 and Vs/,_ < 1 the QND measurement fulfilled all QND criteria in

quantum domain[8]. The device has the abilities of quantum signal transfer and quantum state

preparation.

Fig.3 is a copy from Fig.3 of the review article in "Nature" [8] to characterize the properties of

QND measurement devices, on that open triangles and filled circles represent QND experiments

used third- and second-order nonlinearities, respectively. The asterisks represent "quantum-

repeater" schemes where the signal is amplified. Our experimental results were published on

Feb.1999, two months later than Ref.[8], so it is not on the original figure. For comparing we

cite the figure and add our data on it with the symbol of white asterisk.
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.__
> 1.0

"_ 0.5-
o
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Sum of the transfer coefficients (Ts+Tm)

Fig.3
For performing the sub-shot-noise optical measurement with twin beams , we modulate the

measured signal on one of the twin beams as an artificial "noise" at the modulation frequency,

then observe the noise spectrum of the intensity difference fluctuation between the twin beams.

The measured signal emerges from the squeezed noise background and the signal-to -noise ratio

(SNR) is improved a factor of the intensity difference squeezing degree. The first experiment on

sub-shot-noise measurement of weak absorption to the unmodulated medium was finished with

twin beams in 1996. The improvement of SNR was only 2.5dB[9][10]. Then we increased the

intensity difference squeezing to 9.2dB and hence the SNR was improved by 7 dB with respect

to the SQL of the total light employed in the experiment and by 4dB with respect to that of the

signal light.

We have accomplished the QND measurement and the sub-shot-noise measurement with the

quantum intensity correlated twin beams produced from NOPO's consisting of a-cut KTP crys-

tals. Since twin beams with high quantum correlation are easier to generate than the quadrature

vacuum squeezed state light and in the presented schemes only field intensities are measured,



the designedsystem is simpler and robust. Combining these measurementsystemsthe twin
beamscanbe developedas a noiselessoptical tap to be usein practical optical information and
measurement.
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Figure captions

Fig.1 Noise of the intensity difference of the signal and idler .Trace (a) is the associated shot

noise limit. Trace (b) is the noise spectrum of the twin-beam intensity difference. Trace (c) and

(d) are the shot noise and intensity difference noise spectrum without the pump. The analysis

bandwidth and video bandwidth are 300KHz and 300Hz, respectively.

Fig.2 Principle of QND measurement

Fig3. The different properties used to characterize a QND measurement device
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Abstract

A new and simple way of engineering quantum superpositions of 1.wo co-

herent states of a single-mode quantized electromagnetic field is presented.

Our prot)osal, developed in the context of micromaser theory, exploits the

passage of one atom only through a high-Q bimodal cavity supporting two

eh_ctromagnetic modes of different frequencies.

Quite recently quantum superpositions of two coherent states of light have received a

great deal of attention from both experimentalists and theoreticians. The interest toward

these states stems from the consideration that, due to probability amplitude interference

effects [1}, they might exhibit nonclassical features pronounced enough to provide ahnost

i(h'al conditions to l.esl basic aspects of quantum mechanics and to explore the border

between classical and quantum description of nature [2 L. In particular it has been shown

{1] t.lmt squeezing, sub-Poissonian photon statistics and oseillations of the photon intml)er

distrilmiion emerge from a superposition of coherent states.

In lhis paper we present a new and simple way of engineering a class of states obtained as

quantum superposit.ions of two coherenl, states of a single-mode quantized electromagnetic'

field. Ore proposal, dew'loped in the context of mieromaser t,heory, exploits the passage of

one atom only through a high-Q (Q _ .5 x I0 _°) bimodal cavity supporting two electromag-

nel.ie modes of different frequencies cot and co2 such thai; coI _ co2 _ ] 0 l°Hz. The atom is a

llydberg alx)m effcct.ively 1)chaving as a two-level atom whose ground state 1-} and excited

state It) are energetically separated by cot) (h - 1). The cavity mode to he manipulated,

hereafl.er also) called nlode of interest, is that of frequency col and is initially prepared in a

coherent st.ate ]a,) where ¢t C (7. In the context of Ollr procedm:e the other mode plays an

auxiliary role and a( t :: 0 is left in its empty state. Our experimental scheme relies on the

assmnplion coo _ col [ co') so that the atom-field coupling may be adeepmtely described in

accordance with the followillg e[fectiw? resonant two-photon ttamiltonian model:

(1)



well-known in literature after Gou [3]. As usual, the Pauli pseudo spin operators S_ and
'S',q'_ descril}e l.h{, atoniic int.ernal degrees of' freedom and are such that 2, _l±} = :Lid:} and

,, (y)_Ira) ....I±) whereas m a is i.he am,ihilai:ion (creai:.ion) operator relative, to the i-th

In()d{, (}[ t[l(_ cavity field, l_ach atonlic excitati{}n (de-excitation) is acconlpanied |)y the

simultaneous abst}rplion (emission) of one photon fFOlil (int.o) the nlode of interest and one

photon from (into) the auxiliary mode. The coupling constant _Xmeasures the strength of

ihe ai.om-Iieht energy exchallges and, as in a typical two-photon micromaser experiment [4i,

may 1)e taken of the order of lOallz. _'_'ln(_ intensity-dependent detuning is characterized by

t.hc l.wo St.ark parameters /_l and [77 here assumed coincident [or simplicity and such that

(7 .....[_ _ 10 :_Hz [/1]. The ttamilto_iian model (1) is exactly solvable and the time evolution

of t.he aton>eavil.y sysl.em has been exaclly treated in ref. [5 I.

Slippose that the Rydberg atom is prepared in its excited state before entering the cavity.

The initial condition of atom-field sysl.eni in our experimental scheme may be represented

as

with the mode of frequency a:i in the cohereDt state

I(/: ) r: _ C 2
>o gfi. If)- (3)

Indicate by 7- the time spent by the atom inside the cavity. It is possible to delnonstrate

that, if immediately after leaving the cavity, an appropriate detector of the internal atomic

state finds, with a w-dependent not vanishing probat)ility P(T), the atom not excited, then

lhe bimodal cavity fieht collapses into the factorized state Ig_(r)}ll} where

with

(x.} , , 9

If(r))-iN(r)_c ,e ,%(r)lP-4 1) (4)
p={}

1)
@(1,) ..... i si,,r(A(p I 1, l)t)c:mp(-iq}(p I 1,1)t) (5)

(pie)

X

A(p_ 1,1):- 7(t) t 2)

Thv p{}siiiv{_ normalization {;(}nsta, nt iV(T) appea.riIlg in eq.

(the phase factor i apt}ears for (-onveniencc)

1

;i,=_:{_I- 'a]2 (I-;P .-, . .,9 TN(r) ..... e: =, _l_bvtr)l" (r)

a.nd, {}f course, in view of eq. (6), is mat.henmtically well defined only when A?- / 2hn- with

k _ Z . In order to gain more insight on the properties of the state described by eq. (4),

1

(d) Inay 1)e written down as



we exploit the exponential Euleriarl represent, ation of tile sinusoidal factor appearing in tile

expression (5), get.ling:

%vhere

[ ]
q::(I q::: 0

(s)

,_l-J" (IJqc iqT:V(r)

D,,((_,c<y:_(7)) - q _, 2 (9)
q_l

A ¢) (10)

Since, in view o[' eq. (9), each probability amplitude Dq((_:c i_:v(r)) may 1)e obtained
;_I 20,,it,i,t'i:g(r)

nmlt.iplving the q-th poissonian atnplitu(le (: _ _. bv q., " ., _, it. is leasonal)le to guess

t:,hat, at least in correspondel_ce to not too low values of Ictl 2, even Dq(a(-: _(_)) exhibits a

slfl_st.aniial poissonian character.

\_re have quantitatively demonstrated that the scalar product between the coherent state
d (1'('_% (r) _:_ "i(_( _:_ (_-)} and the normalized state I( ' )} :-=d}__q=ol)q(Ct'e?_Yv(r))lq} is practically coin-

cideni with the unity when the condition la,Ie > 10 is satisfied. Thus, appropriately choosing

the initial intensity of the mode of interest, we are legitimated to say that at t :_ 7- it is

['oul_d in a q_lantuni superpositi(m of the two coherent states In'c _7 (_-)) and Io:c'_'_(':)).

In order 1.o 1,et.ter mMerstand this point, let's consitter the normalized state I@(r)) defined

as

(12)

where the normalization col,stallt A is given by

1 [ ,,., ] *A 1-, co. (.ot I".ri.,,.,O) (13)

Vvle have demonstrated that, there exist appropriate conditions, such that the state gen-

erated with t.he help of our scheme is well apt)roximated by the state IgS(r)} defined in eq.

(12). The results obtained are for simplicity showed in figures (1) and (2) where we plot the

function .f(Ar)= t(F (AT)I@(AT)}t in correspondence to [(t[2 10,20 respectively.

Lo(_king at t;hese figures it is immediate to deduce that properly choosing the time r spent

1)y lhe atom inside the cavity, the measm:ement o[ the interlml state of one atom only, afl, er

ills interacti(m with tl_e resonator, projects the mode of interest in the desired state if the

atom is found in its ground state. In conclusion, it is important to stress that controlling t,he

speed of only one atonl is easy to realize and, consequently, it may be tuned to gel; different
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desired final Slr&{,('S ()f the mode of interest always in the form of linear superpositions of two

equally intensily coherent slates as transparent, ly shown by equation (14).
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Abstract

When the density matrix is expressed as Taylor series in the off-diagonal

variable, the coefficients in this series are "hydrodynamical" moments of the

Wigner distribution. These moments can be obtained both recursively and

nonrecursively from the time-dependent probability distribution. The case of

a free particle is investigated in particular.

I. INTRODUCTION

In recent years, the subject of quantum state reconstruction has grown into a mature

field. Reconstruction methods such as optical homodyne tomography [1,2] and phase space

sampling [3,4] have been developed. As regards systems living in infinite-dimensional Hilbert

space, most reconstruction methods apply to quantum optical states and to particles in

harmonic oscillator potentials. Several interesting experiments have been performed in this

field, using for example optical homodyne tomography [5,6] or phase space sampling [7].

The tomographic reconstruction method has been generalized to particles in arbitrary

potentials [8,9]. In this case, the density matrix can be reconstructed by measuring the

position probability density parametrized over time. The tomographic method has also been

generalized to a class of time-dependent potentials [10]. In the generalized version of the

tomograpical reconstruction method, the position probability density should be measured

over an infinite time interval. Experimentally, the tomograpic reconstruction method has

also been employed to reconstruct the Wigner function of free particles [11]. An unphysical

shear of the Wigner function observed in this experiment was attributed to the finite width

of the time window used.

Among other reconstruction methods for more general potentials, a method based on

least squares approximations can be mentioned [12]. Recently, a general reconstruction

method using "hydrodynamicar' moments of the Wigner function was found [13]. In this

method, the density matrix of a particle in an arbitrary one-dimensional (and possibly time-

dependent) potential can be reconstructed. In contrast to the generalized tomographical

method, the position probability distribution should ideally be measured over an infinitesi-

mal time interval.



II. HYDRODYNAMICAL MOMENTS

The hydrodynamical reconstruction method is based upon the following Taylor-expansion

of the density matrix in the off-diagonal direction [14]

(x + yl_lx- y) = _ _! , (1)
n=O

where x is the position and y is the off-diagonal variable. The coefficients f, are defined in

terms of derivatives of the density matrix,

Oy" y=o

The density matrix is the Fourier-transform of the Wigner distribution

/5(x + yl_lx- y)= dpe21Pv/hW(x,p,t). (3)

Therefore, the moments fn can also be expressed as integrals over the Wigner distribution,

f_(x,t) = f dppnW(x,p,t). (4)

The hydrodynamical moments of lowest order have a well known physical interpretation.

The zeroth order moment is the position probability density. The zeroth and first order

moments are connected by a conservation equation;

Ofo(x,t) 10fl(x,t)
+ -o (5)

Ot m Ox

Therefore, the second order moment fl/m is the probability current density.

In certain restricted cases, the state can be described by a finite number of these moments.

ThermM states are described by the three lowest order moments [15]. Pure states are

described by the two lowest order moments f0 and fl [16]. However, in order to describe

arbitrary mixed states, moments of all orders are required.

Higher order moments can be described in terms of those of lower order. To demonstrate

this we integrate the conservation equation for the probability density, and obtain

/l(X,t) = -_ dx°f°(x't)_ Ot (6)

Thus, we may reconstruct the probability current density from knowledge of the time deriva-

tive of the probability density. Since the two first moment suffice to describe pure states, such

states can be reconstructed from the position probability density and the time derivative

thereof. This result was first found by Feenberg [17].

For moments of arbitrary order, a recursive reconstruction algorithm can be found [13]

0 f] dx' fn(x',t)A+,(x,t) = -_b-/

- " _ \5] 2k+1 f_dx' ox,2k+lt)fo-_k-l(x',t)• (7)



We see that every moment is determined from lower order moments. The moments on the

r.h.s, in (7) are to be integrated over the space-variable and possibly differentiated over

time. This allows one to recursively obtain moments of arbitrary order from lower ones. In

this way, the coefficients in the Taylor expansion (1) may be determined.

III. FREE PARTICLE KERNELS

For free particles, the moments can be expressed nonrecursively in terms of the zeroth

order moment [18],

rn n (9n i_ rfn(x,t) - (n - 1)! Ot n oo dx' (x - x')"-l fo(x',t), n > 1. (8)

This can be written as a convolution

f.(x,t)=f tit'/dx'X( (x - x',t- t')fo(x',t'), (9)

where the kernel K, is

Z£n(z,t)- .(---_----m))l (_(n)(t)xn--l?.t(X) 72 > 1. (10)
(n - 1)! ' -

u(x) is the step-function, and 6(")(t) are n-th order derivatives of Dirac's 5-function.

In a similar manner, we may write the density matrix as a convolution of the probability

density with an appropriate kernel function,

<x+ylZ,x- y>---fo(x,t)+l  t'l x',t- t',y)fo(x',t') (ii)

Combining Eqs. (1) and (10), we find that the kernel function K is

K(x t,y)= E Kn(x,t) (12)
' n! "

We may regularize the 5-function derivatives in the kernel in several ways. For example,

they may be substituted with gaussian derivatives. It can be shown that

5(.,(t) = li m (-1)" (t):-+0 a:+i v/-E Hn e -(tla)`, n >_ O. (13)

Here H,, are Hermite-functions. For regularized kernels, the series (12) can be evaluated to

arbitrary order prior to reconstruction.
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Abstract

We study controlled transitions of quantum or quantum-like systems from

a given initial state associated to a given potential to a final state ruled, in

general, by a different potential. An explicit example is supplied in the case

of harmonic interactions.

I. INTRODUCTION

In this report we introduce time-dependent potentials which allow to drive, through a

controlled and unitary evolution, quantum or quantum-like systems from a given initial

state associated to an initial potential, to a preassigned final state (possibly associated to a

different potential).

This problem arises in general in quantum mechanics (e.g. quantum optics or controlled

chemical reactions), but it can achieve a remarkable interest also for systems whose collec-

tive dynamics can be effectively described in a quantum-like formalism (beams in particle

accelerators, parametric processes in plasmas, transmission lines etc.).

The controlling potential interpolates between the initial and the final fixed potentials,

while the wave function, associated to the controlling potential by the Schroedinger equation,

interpolates between the initial and the final fixed states.

We consider here unitary evolutions because, due to the freedom in the choice of con-

trolling potentials, they allow to model the transitions in the more suitable way, depending

on the particular case to be considered.

The general idea is to use the hydrodinamic representation of Schroedinger equation [1] as

the programming device. In this picture, the Schroedinger equation can be recast in the form

of two coupled equations: the Fokker-Planck equation (in the form of a continuity equation),



and the Hamilton-Jacobi-Madelung(HJM) equation (i.e. a dynamical prescription involving
the potential). We first exploit the Fokker-Planckpart of the Schroedingerequationto drive
the state, and we then introduce the so-obtained interpolating wave function in the HJM
equation in order to compute the associatedcontrolling potential.

Obviously, the program can be fully accomplishedif we are able to compute explicit
solutions of the Fokker-Planckequation which (smoothly) interpolate between the initial
and the final states. Otherwise,approximationsmust be implemented.

For sakeof clarity, weconsidersystemsin onespacedimension,and asa first examplewe
study controlled, smooth transitions betweengroundstatesand coherentstatesassociatedto
different harmonic potentials. This examplecanbe relevant for actual problemsof physical
interest, for instance the shaping of harmonic atom traps, or the focalization of beamsin
particle accelerators.

II. FOKKER-PLANCK EQUATION AND QUANTUM SYSTEMS

Let us consider the pair of coupled equations

= +
2

(OxS)2 2mD20_V/-fi---V. (1)
2m

These equations describe the dynamics of a particle of mass m subject to an external poten-

tial V, and whose kinematics is diffusive, with diffusion coefficient D. The first of equations

(1) is nothing but the Fokker-Planck equation

Otp = -Ox(pv+) + DO, p, (2)

written in the form of a continuity equation. If we define the current velocity v = OxS/m

and the osmotic velocity u = DOxp/p, the forward drift v+ in eq. (2) is given by v + u. The

continuity equation is then semi-sum of the forward Fokker-Planck equation (2), and of its

time-reversed (backward) counterpart.

Note that, usually, diffusion processes are associated only to eq. (2), with an a priori

assigned drift v+, which accounts also for the the dynamics. Instead, eqs. (1) are associated

to a particular class of diffusion processes (Nelson processes) [2]: in this case, the Fokker-

Planck part models the kinematics, while the dynamics is provided by the the HJM equation,

which updates at each instant of time the drift, starting by an initial condition.

Contrary to the standard diffusion processes, the ones described by eqs. (1) do not

describe dissipative phenomena, but, due to the dynamical updating assured by the HJM

equation, preserve time reversal invariance [2].

It is remarkable that Nelson processes can be obtained as extremal solutions of a stochas-

tic variational principle [2]. The latter is a natural extension of the variational principle of

classical mechanics, which is obtained by replacing the standard differentiable kinematics

by a diffusive kinematics.

Moreover, if one exploits the De Broglie ansatz ¢ = v/-fie iS/2mD, the pair of equations

(1) become equivalent to the linear, Schroedinger-like equation

i(2mD)Ot¢ = -2roD202 + V¢. (3)



If D = h/2m, eqs. (1) or (3) describe a true quantum system. However, eqs. (1),

or their linearized version (3), can also provide an effective description for those classical

systems, where a complex (non dissipative) dynamics is generated by the presence of a

very large number of degrees of freedom. Obviously, in these cases the diffusion coefficient

is not connected to a fundamental constant, while the function p describes the (suitably

normalized) spatial density of the elementary constituents of the system; finally, the particle

of mass m plays the role of a collective degree of freedom.

The method that we exploit is the following [3]. We select pairs of densities Pi, Py such

that, inserting Pi as initial condition in eq. (2), endowed with a suitable velocity v+,c, one

obtains py as the asymptotic solution. In this case, the solution pc(x, t) of the Fokker-

Planck equation interpolates between Pi and pf. Obviously, this solution is not in general

an extremal one in the sense of the stochastic variational principle; however, if one inserts

the couple Pc, v+,c as input in the HJM equation, one can compute the controlling potential

Vc(x,t) so that the solution becomes the extremal solution associated to the potential Vc

itself. The interpolating evolution is thus forced to be unitary, and in turn the potential V_,

which supplies the control, interpolates between the potentials associated to the initial and

the final conditions.

In the next section, we give a first interesting example of the controlling procedure.

III. TRANSITION BETWEEN HARMONIC WELLS

If the initial and the final densities are both of a gaussian form, with an associated drift

field which is linear in the space variable, there always exists an interpolating solution of eq.

(2) in the gaussian form [4]

e-[X-_(t)12/2u(t)
p_(x,t) = F--=-:.. (4)

V2  Ct)

If the initial and final wave functions are ground states or coherent states associated to

two harmonic oscillators with different frequencies, eq. (4) allows us to drive smoothly the

system from the initial state to the final one by choosing the dispersion u(t) and the centre

p(t) so that they interpolate between the initial and the final values.

In this framework, the definition of the velocities v, u, v+, and the relation between the

current velocity v and the phase funtion S give

s(x,t) = 2- 2u(t)x + a(t)], (5)

where ft(t),U(t),A(t) are functions of p(t),u(t), and, due to the definition of S, of an

arbitrary function of time O(t). Note that eq. (5) has the form of the typical quantum phase

associated to coherent and/or squeezed states of the harmonic oscillator.

It is possible to show that a suitable choice of the arbitrary part O(t) in terms of p(t)

and u(t), allows for a smooth transition from the initial phase to the final one.

Finally, exploiting the HJM equation, one obtains the harmonic, time-dependent con-

trolling potential



where

=

a(t) =

Vc(x, t) = 2[w2(t)x 2 - 2a(t)x + c(t)], (6)

4D 2- 2u(t)i)(t) + i_2(t)

4u2(t)

4D2#(t) + 4u2(t)iS(t) - 2#(t)u(t)i)(t) + #(t)b2(t)

4u2(t)

8D2#2(t) - 4Du(t)i,(t) - 8D2u(t) - (2u(t)lS(t) - #(t)i,(t) + 2Dp(t)) 2t)(t)

c(t) = 4u2(t) + --m

(7)

Now, the interpolating functions u(t) and #(t) can be chosen in an arbitrary number of ways.

The choice must then be performed according to the physical goals one wants to achieve [3].

IV. CONCLUSIONS

We have constructed a procedure which, exploiting a stochastic formulation of quantum

mechanics, allows for controlled, unitary evolutions of quantum or quantum-like systems.

We have provided an explicit example (harmonic wells), and in this case the ample freedom

in the choice of the controlling potentials is clearly highlighted. This freedom is of great

value, because it can be used to satisfy theoretical or experimental requirements which arise

from the specific problems considered. A very interesting developement is to introduce

optimization criteria by imposing that suitably chosen functionals attain certain extremal

values.

Although our general scheme holds in principle for any choice of the pair of initial and

final states, the problem of providing explicit examples for nonharmonic potentials is still

open. Regarding this point, we are studying both the possibility of exactly solving the

problem in particular cases, and of implementing suitable controlled approximation schemes.

A further interesting, and difficult, goal is the extension of these techniques for pure

states, to density matrices, in particular with the objective of controlling (reducing) the

effects of dissipation and decoherence in quantum optics.
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Abstract

Non classical spatial effects, such as squeezing, are studied in the transverse domain in the

parametric processes of difference frequency generation in travelling plane wave propagation of the

field under the hypothesis of low conversion efficiency in a second order nonlinear medium with

the assumption of small quantum fluctuations. As expected, we find the spatial quantum effects

essentially confined in the instability regions, and with their size being controlled by the initial

conditions.

We consider planar propagation of the electric fields, e.g. obtained by means of a waveguide

or of a cylindrical lens, in a lossless medium which presents a nonlinear second order susceptibility,

in a situation that realizes a DFG process in the slowly varying envelope (SVEA), rotating wave

(RW), monochromatic and paraxial approximations at normal incidence [1-5]. Including diffraction,

we have the following equations for a collinear interaction (°)3 -col = (--02, /_k : k 3 -kl -k2,

being k = 2_/2 = co�c)

i 0-_---1+ Q1 = -Q3Q2-22v
/ 0 k 1 02 _ k 1

i---1+ )Q2 =---Q3Q_, (1)_. c_Z k2 _2 k2

(___ kl _2 ) kl
i 0 1+ Q3 : ---Q, Q2

. c3Z k3c3X 2 k 3

where the a-dimensional quantities are related to the physical ones by

16_ do) 2 _ (2)
Z = zAk, X = xx/-_IAk, Cj - c2 ' Q1 = EJ 2klAk ,

(i,j,k=l,2,3 and different from each other), d is the nonlinear tensor component pertinent to the

chosen geometry and Ej's are the amplitudes of the electrical fields of the waves of frequency coj.

We can obtain the cascaded Z (2) effect if we suppose a low conversion efficiency between

the input fields (c01, c03) into the generated field (c02) [1,5]



-- kl a_ /OZ k 2 0222 '

so the two coupled equations for the fields at co, and o3 result

i--_-0 -1+ Qx =- Q3 2Q1_z a-U

k30X2 Q3- Q_ Q3k2k_

and the fields undergo a cross phase modulation in which the nonlinear phase shit_ of one input

field is controlled by the intensity of the other input field.

The hypothesis (3) is equivalent to assume an undepleted regime, i.e.

Qj(ZX) = Qj(o,x t (j = 1,3) and a propagation distance dependence that stays only in the phase

factors of Qj (ZX)= Qj(x)e i_/zl, with

(Pl(Z)= (,°,(0)+(kk---__ Q3 2-1) Z

(P3(Z)=eP3 (,.k2k 3 Q1 -1 Z

Classical solutions are discussed in ref .[5] together with the instability conditions realized

during the propagation .

The quantum description can be performed by introducing the operators operators Q's

corresponding to the classical field amplitudes which satisfy the same equations as eqs. (1)

II,_--1+ 0-_i- _ =-Q2Q3

r i kl 02 ]_ kl ^+ ^0_1+ . = __

_. OZ k2 0222 J 2 k2 Q, Q3 (6)

k 1 c32 _ kl ^ ^

iA-, + )0_3=-VQ1Q_i, c3Z k 3 0222

and obey boson commutation relations [3,5]

[d_(x,z),d;(x',z)]=_08(x-x'),
[d_(x,z),_j(x',z)]=o,
[d:(x,z),O_;(x',z)]=0 (_)
In terms of photons, eqs. (6) enable us at once to interpret 0 and 0 + as destruction and creation

operators in the Fock space. We assume now that the full quantum character is associated to the

small fluctuations of the classical field Q(Z), i.e.

%(x,z) =Q(z)+O(x,z), (8)
where the c-number part is the plane wave stationary solution of the classical equations. The

commutation relations for the 0 's are the same as for the 0 's. To study these fluctuations it is well

suited the coherent vacuum state 10} (with the normalization (010> = 1).



We want to discussthe processof DFG in the caseof low conversionefficiency. The
linearization with respect to the fluctuations excludes operator ordering problems and the
developmentalongtheZ axisis thesameastheclassicalone.Sowehave0=1,3)

ei_A z)

glj (X,Z)- I dcre-'_x (tJ 1(rr, Z_, (or,0) + tj2 (cr, Z)_; (- or,O)+

+ t j3 (o'}Z_. 3 (0"_0)+ t j4 (0, Z)c; (- 0,0)) . (9)

The operators _ at the crystal input follow the commutation relations

o, o
(lo)

These _'s act on the vacuum in the usual manner: _(cr,O_ O) = O, (0]{ +(- o',0)= O.

The generated field at o) 2 is found as a function of the other two fields

kl e'(_-")Id°'e-'°X_Q3c: + Q, c3)- (11)

To investigate quantum effects we need observable quantities, i.e. hermitian field operators.

Therefore we define the quadrature phase operator

Q(°) =l(O_e'° +Q+e-'°).
2

The central second moment of _)(o), i.e. its variance, on the vacuum field state is

This quantity measures the deviations of the quadrature operator from its mean value versus Z and

X, so it is directly related to the following quantity

where S '(°) is the power spatial spectrum of the quantum noise.

We take fields in a coherent input state, the shot-noise level is defined as normalisation parameter:

S '(°) (cr, Z =0). Then the spatial noise spectrum normalized to the coherent noise if(0) (cy, O) is

SC°)(cr, Z)= S '(°) (or, Z)� S '(°) (or, O). Squeezing effects appear for those angles such that

S(°)(cr, Z)<l.

The other quantity we will utilize is the fourth moment of the field _)

(0+202>--<0+0> 2 = 2Re(Q*2(c)0))+ 2Q 2(0+@-4(Re(Q*(0))) 2 +0(03). (14)

Its significance becomes clear if we introduce the number operator (proportional to the beam

intensity) h=Q+0: the fourth moment is then (Ah2)-(fi). a nonclassical deviation from the

coherent statistics gives negative values (subpoissonian light), while positive values correspond to

superpoissonian classical light. To study the variation of the photon correlation on the transverse

axis we define the spectrum of bunching B(o',Z) as [5]

((_+2(_2 >- <(_+(_> 2 =Ido-B(cJ,Z), (15)

(clearly, if it is negative, it indicates antibunching).

With the aid of these two functions (the spectra of squeezing and bunching), we can analyse

the quantum behaviour of the fields at the crystal output after the nonlinear mixing. In the case of

the DFG process, the squeezing spectrum



4
is found by calculatingthe expectationvaluesin the last member of eq. (16). We see that, in the

vacuum state, the unique nonvanishing contributions derive from terms containing the combinations

(0 _j(o',0_ (- o-,0_0), confirming the fundamental nature of quantum noise, depending on the

noncommutativity of the operators rather than on accidental causes, such as instrumental errors,

which determine the classical noise. Then it results (j=l,3)

S]°)(_,Z) = _, t., (0-, Z1 = + 2 Re(e2_(_Az>°)(,jl (cr, Z_j2 (cr, Z)+ 1]3 (O=, Z)tj.4 (O", Z))). (I 7)
1

For the generated field

C>(o,z)=
4

= 1 (_--'_ _Q3 2ti, 2 4- QI 2t3, z)4- QgQI 2 Re(tllt32 4- ,12/31 4- '13/34 4- t14'33 )4-

Q3 2 + Q 1 , l

+2Re e 2'(°'-_'+°) Q32(111,12 +tlat14)*+Q12(13113z +,33134)+Q3Q1Ztlllt31 ). (18)
1

It is important to note that squeezing spectrum Sj(°_(6,Z) depends on phase 9j (Z) and on o.

This allows to expect an "optimized" squeezing spectrum for the fields at ol and c03. For the

generated field at the frequency o2, we have (see eq. 18) a dependence on the phase difference;

therefore we expect for $2 (0_(cy,Z) a more sensible dependence on the initial conditions.

Squeezing spectrum depend strongly on the spatial frequencies at wich modulational instability

occurs in the classical propagation for such process.

(j=l,3); with a coherent

B2(cr, Z)_ Q3Q12 k 4

Jr k4

4- Q3 2 _l n

I

2

The bunching spectrum is

Bj@7, Z)- QJ 2 (tj2((T, zl2 4- tj4@r, zl 2 4-Re(ljI((T,Z)lj2(cr, Z)4-tj3(G,Z_j4(G,Z))),

(19)

input, Bj (or,0) = 0. For the generated field one has

/ 41)* '33134)4- 4-(Re Q3 2(t_it12 +t,3t,4 + O_ 2(t31t32 + Q3QI Zttl_t31
1

4- '13 2)4- QI 2(132 2 4- '34 2)4- Q3QI 2Re(lll132 4-t13t34)) , (20)

and B2(cr,0 )- Q3Qlm k? Q3 2> 0.

k2
Bunching occurs at spatial frequencies at wich stable classical propagation is realized.
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Abstract

We have applied our method especially for the case of second harmonic

generation (SHG) and numerically solved the nonlinear quantum equation of

SHG for large number of photons at the input of the nonlinear crystal of second

order susceptibility. But our method can be easily applied for the higher order
harmonic generation. Also, we have calculated the photon statistics of SHG

mode.

1. INTRODUCTION

Theoretically there are not exact methods (see in the monographs: [3-5])

to solve the quantum equation of second harmonic (SH) generation.

Numerically, it was solved by [1-2] for the limited number of photons i.e.,

20- 200 at the input of the NLC (nonlinear crystal). To our best knowledge, in

quantum optics, the exact solution of nonlinear equation of SH is

mathematically unsolved due to the second order operator equations. There are

not exact methods, which can be applied to solve the quantum equation of SH.

We have used the matrix method to solve numerically the non-linear

equations of SH for the large number of photons at the input of nonlinear

crystal. Interaction Hamiltonian of SH is represented in the form of the matrix,

which is diagonalized with the help of computer. The eigenvectors and

eigenvalues of interaction Hamiltonian are also calculated with the help of

computer. Time dependent probability function and average number of photons

in the SH are numerically calculated and are shown in the graphics. We have

compared our results to the earlier works of [ 1-2] on the SH.

In paragraph 2, we have diagonalizied the interaction Hamiltonian of SH

and calculated the time dependent probability function of transformation of

photons from fundamental mode to SH numerically. In paragraph 3, we have

calculated time dependent average number of photons in the SH.

2. DIAGONOLAZING THE HAMILTONIAN OF SHG

The interaction Hamiltonian of SH is well known, which is written as:



/-)_., = h (g _2/_+ + g. 6+z b) (1)

Here h Plank's constant, _ (_ ÷),/_ (/_+) are the destruction (creation)

operators of fundamental and SH mode, g- is the coupling constant. We are

considering the case of perfect phase matching. The coupling constant g is

constant. For the simplicity, we have taken h = 1, g = 1.

We have taken the interaction Hamiltonian in the matrix form for the

Fock states (number states) of the following basis: [n, m). Here n and m are

the number of photons in the fundamental and SH modes, n is positive integer

and m is also positive integer but runs from 0 to n/2. As is well known, in the

SH process, we need two photons from the fundamental mode to convert them

in one photon of SH. So, the basis [n, m) will take the new form In-2 m, m).

Matrix elements of the interaction Hamiltonian are:

4(n±2ml(n-2m-1)(rn+l if m=m'-I
4(n-2m)(n-2m'-l)(m'+l) if m'=m-1

(2)

The matrix of interaction Hamiltonian is symmetric above and below the

principal diagonal elements, which is similar to the Jacobi matrix. Dimensions

of the interaction Hamiltonian matrix are (n/2 + 1) x (n/2 + 1) .The matrix form

of the interaction Hamiltonian is:

(Hi.t)",,, =

( 0 (Hint)12 0 0 0 0 0 "_

(Him)21 0 (Hint)" 0 0 0 0

0 (H_)32 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 (H_t)mr,

0 0 0 0 0 (Hi.t),.,,, 0 j

(3)

The method of diagonalization of interaction hamiltonain and to

calculate eigenvector and eigenvalues of interaction hamiltonain is thoroughly

explained in the monographs [6-8]. Interaction hamiltonain is diagonalized

with the help of the computer for the large number of photons i.e., 2- 20000

and more. Eigenvectors and eigenvalues of the interaction hamiltonain are also
calculated and normalized.

The probability of having n/2 number of photons in the SHG for the

Fock states at time t is as follows:

p(_,n t)= (0, n/2lexp(-i H_, t)]n, O)
(4)



The equation (4) is reducedand will takethe following form:

l=0n/2 12=EV,,o oxp(-, ,)
(5)

Here v m,g are the elements of square eigenvector matrix V,,m, of the

dimensions (n/2 + 1) × (n/2 + 1), hm,. are the elements of eigenvalues of the

diagonalized matrix H=t of the dimensions (n/2 + 1) × (n/2 + 1).

We have numerically diagonalized the interaction hamiltonain and

calculated the eigenvecotrs and eigenvalues of the interaction hamiltonain.

Time dependent probability of having n/2 number of photons in the SH for the

different initial number of photons are calculated numerically,

3. AVERAGE NUMBER OF PHOTONS IN THE SH MODE

Average number of photons in the SH is given by:

./2

(N2(t)) = ___ n P(n. t)
n=0

(6)

We have numerically calculated the (6) for the different initial number

of photons at the input of NLC. The fig. 1: (a), (b) and (c) are showing the

aperiodicity character of average number of photons in the SH.

"_ 1 llilI,
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t-l_onr.alized time
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Fig. 1 Average number of

photons in the SH mode for the

following initial number of

photons in the fundamental

mode: (a) n--- 500, (b)

n = 1000, (c) n = 2000.
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4. DISCUSSIONS

We have been developing the computer code (program) for the

diagnolization of huge Jacobian type matrices (3) and to find the eigenvectors.

We have solved numerically the quantum equation of SH for the large number

of photons at the input of the NLC, which was unsolved earlier. We have got

the aperiodicity in the SH mode, which contradicts the theory and experiment

of generation of SHG in the classical optics. From where this aperiodicity

arises in SH? What is the reason of this aperiodicty in SHG? Can we detect this

aperiodicty in the experiment of SHG? These questions are under study. To our

knowledge the aperiodicty in SHG may arise due to the vacuum quantum noise.

This method can be easily applied for the higher order harmonic

generation. The quantum solution of third harmonic generation is under

process.
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Abstract

Observations in stored high-energy beams in circular accelerators show the

existence of long-living coherent structures of solitary wave type. The paper

focuses on a collective kinetic description of such solitary structures based on

an extended Vlasov-Poisson model. Depending on the coupling impedance,

on the selected dispersion branch and on the beam energy in relation to the

transition energy various solutions of this system can be found. Of special

interest is the one, represented by a notch in the thermal range of the distri-

bution function, for which standard wave theory would predict strong Landau

damping.

In this paper stationary solitary structures propagating in coasting beams will be con-

structed [1] which are in favor of recent observations made at the FERMI lab [2]. Con-

centrating on a perfectly conducting wall situation, we get as the basic set of equations

[3]

lot+ _o_- cOu]f(z, _,t) = o (1)

c" = _g0al + _c (2)

where we adopt the normalization of Ref. [1]. The parameter # is proportional to 9,2, where

7 measures the relativistic beam energy, and a is proportional to r], the slip factor. Both

parameters are assumed to be large, go is a geometry factor [1,3]. The beam dynamics in

the presence of an electric field s = -Oz¢ is described by the Vlasov equation (1), whereas

the feedback is self-consistently represented by the Poisson-like model equation (2). hi is

the perturbed line density. Assuming a solution of (1) of the form of eq. (14) in [1], we get

in the small amplitude limit

Al(z)= 2 r _ ¢- b(/_,Au)¢3/2+...
(3)

where Zr is the real part of the plasma dispersion function,/3 a parameter characterizing the

trapped particle distribution and Au is the yet unknown velocity of the solitary structure

in the frame moving with the nominal beam velocity.

Inserting (3) into (2) we find after one integration

¢"= A¢ + B¢ 3/2 =-V'(¢) (4)



wherethe parametersA and B are given by

= + (ha) (hb)A

where b(/_, Au) = 7r-1/2[1 - fi- (Au) 2] exp(-½An2). A further integration of (4) yields the

"energy law" ¢'(z) 2 + 2V(¢) = 0 with V(¢) given by

-v(¢) = A¢212+ (6)

Two further conditions guarantee the existence of solitarywhere V(0) = 0 was assumed.

wave solutions

i) V(¢)=0 (Ta) ii) V(¢) <0 , 0<¢<¢ (7b)

where #; is the amplitude of the bell-shaped potential, we are looking for.

Condition i) represents the nonlinear dispersion relation (NDR) as it allows the deter-

mination of Au in terms of _ (and fl). Making use of (7a) we can rewrite V(¢):

-v(¢) - (8)

and through a further integration of the "energy law" we find

l/2z)¢(Z) = Csech4( 20

the desired solitary wave solution. The last step, however, requires B < 0.

consequences, we evaluate the NDR (7a) which becomes

_ 16 b r--
goa

(9)

To see its

(10)

Assuming the rhs of (10), D, small, we can make use of the expansion 1 ,-_Z'r(x ) = 1- X/Xo,

where x0 = 0.924 and I x - x0 I is assumed to be small. The solution of (10) is then

Au = 1.307(1- D) (11)

The phase velocity of the structure is therefore uniquely determined. It lies in the thermal

range of the Maxwellian type distribution. Using Au from (11), we get for b

b = '7r-'/2(-fi - 0.71) exp(-0.854) _ 0.24(-fi - 0.71) (12)

and the condition B = _ < 0 becomes a(-fl - 0.71) < 0.3
For a beam below transition energy, a < 0, we thus arrive at the condition -fi > 0.71

i.e. the distribution function must be sufficiently depleted in the resonant region. This

corresponds to the observations made in [2], where notches in the beam transfer function

reflecting the momentum distribution were found.



On the other hand, a beam abovetransition energy,a > 0, requires -/_ < 0.71,satisfied
e.g. by a positive/_. A/_ > 0 correspondsto a hump in the resonantpart of the distribu-
tion function. This essentiallyconfirmsand substantiatesthe "mass-conjugationtheorem"
conjecturedin [4].

A solitary wave with a smaller speedcan be obtained too: Assuming Au << 1, the lhs
of (10) becomes 1 ,--_Z_(x) = 1 - 2x 2 +... where Ix I<< 1, and we get Au = (1 - D) 1/2 << 1

from which -fl < 15(g0_-,) can be derived. In a beam below transition energy, a < 0,
16go(_v_

the distribution function at resonant velocity appears to be depressed stronger, since -/_

¢-1/2 >> 1. The deeper the notch in the distribution function the slower the solitary wave

propagates.

Note that these are extreme states far away from thermal equilibrium, and hence are not

accessible by a hydrodynamic description, unlike KdV solitons.

One puzzle remains. Extending the above consideration to periodic wave trains and

assuming I D I<< 1 and negligible, we get instead of (10)

k2 1 _ wr
- _Z_(_--_) = 0 (13)

where k is the wave number of the harmonic wave train and Au = wr/k. Linearized Vlasov-

Poisson theory (Landau theory) on the other hand yields

k2 1 Z_
-_ (_-_)=0 (14)

which is now a complex dispersion relation and has only heavily damped solutions in the

thermal range (a_ = wr + i7 with 7 < 0). According to the standard linearized wave theory,

found in all plasma textbooks, such an undamped mode should not exist at all.

The solution of this discrepancy is that by linearizing the Vlasov-Poisson system and by

making use of the Landau contour in handling the wave-particle resonance the above wave

solution is lost. Generally speaking, due to the wave-particle resonance the linearization

of the Vlasov-Poisson system is not automatically justified even in the infinitesimally small

amplitude limit. An appropriate seed distortion which changes the topology in phase space

in the resonant range of a width of O(_ 1/2) creates such a marginal mode which is hence

fundamentally nonlinear even in the infinitesimal wave limit.

Finally we point out the close proximity of the present collective wave description to

the thermal wave model (TWM) of [6,7]. In the TWM the beam is described in paraxial

approximation by a nonlinear Schrhdinger equation which governs the beam wave function.

The Planck's constant is thereby replaced by the transverse beam emittance e and the

interaction potential is provided by the wake-potential, a beam particle is surrounded with

due its interaction with the image-charges in the wall and its self-interaction potential.

Introducing a Wigner-like distribution function f(z, u, t) and performing the semi-classical

small emittance limit I e I<< 1, one obtains avon Neumann-like equation which coincides

in the limit c -+ 0 with the Vlasov equation. Quantum-like corrections enter in O(e), and

the interesting question arises, how the present solitary waves are modified by those O(c)-
corrections.

The author acknowledges financial support by INFN and valuable discussions with Dr.

R. Fedele.
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Abstract

For arbitrary multipole radiation of a quantum source the operators of cre-

ation and annihilation of polarization are constructed at any space-time point.

It is shown that the polarization in the near and intermediate zones is de-

scribed by the SU(3) algebra of operators which is reduced to the SU(2)

algebra in the far zone. A dual representation of these operators, involving

the quantum phase properties of the spin states of photons, is considered.

The purpose of this paper is to discuss how the polarization of radiation of a localized

quantum source can be described.

The remarkable recent progress in quantum optics gave rise to a strong interest in the

quantum polarization measurements. As a particular example of considerable interest, we

mention here the quantum entanglement investigation (e.g., see [1]). In the usual treat-

ment of quantum polarization [2,3], the polarization properties of radiation are calculated

as though the radiation field consisted of plane waves of photons. It is clear that this picture

is incapable of describing the polarization of radiation of a quantum localized source such as

an atom or molecule at an arbitrary distance. The point is that the atomic and molecular

transitions emit multipole radiation represented by spherical rather than plane waves of pho-

tons [4]. The plane waves of photons correspond to the states with given linear momentum

fi, i.e. with given direction of propagation ticand two polarizations always orthogonal to ]_.

Therefore, the polarization is usually defined to be the measure of the transversal anisotropy

of the radiation field [5].

The spherical waves of photons describe the states with given angular momentum f.

Since [fi, J] ¢ 0, the spherical waves of photons do not have well defined direction of

propagation. In the three-dimensional space they can be specified by three orthogonal unit

vectors {2,}, describing the states # = 0, _1 of the spin 1 of photons [6]. It is hence clear

that the polarization of radiation of a localized source, both classical and quantum, should

be determined as the measure of the spatial rather than transversal anisotropy of the field

[7,8].

Consider a monochromatic pure (jm) multipole radiation of a quantum source localized

at the origin. The vector potential of such a radiation has the form [4,6]



HereV_ (7) are the known functions of position with respect to the source and the operator

aj,_ describes the annihilation of a spherical photon with given j and 'm. It is clear that the
--4 __+

-" -_+-A(r) of (1) obey the following commutation relationsspatial components A_(r) = X_

Here the right-hand side determines the entries of the Hermitian (3 × 3) matrix l? =

11_)_,,(7_)11, which can be diagonalized by a unitary transformation U(7_). This transfor-

mation describes the rotation of the basis {;_L}. The same rotation converts (1) into the
form

MJ_# (_) = (Vi/-tt)-l/2

1

#tin--1

where W_ is the real positive diagonal element of U+)JU. The "turned" vector potential (3)

obey the commutation relations

similar to those for conventional non-local photon operators. Therefore, one can choose

to interpret (3) as the annihilation operator of a multipole photon with polarization # at

K Thus, the quantum polarization of radiation of a localized source can be described by

the set of three annihilation A,(7) and creation A+(7) operators at any point 7 of the

three-dimensional space.

The polarization is usually described in terms of the polarization matrix [5]. In the case

of quantum multipole radiation this is the (3 × 3) Hermitian inatrix whose elements are

bilinear in the field operators (1) [7]. Instead of finding these elements, one can investi-

gate the generators of the gU(3) algebra, forming the complete set of bilinear forms under

consideration [9]. Omitting for the moment the position dependence, the generators of the

,5'U(3) in the representation of operators (3) can written as

(A;A÷- A2 o) (Ao+Ao-A2A_)
 (A_;Ao+ Ao+A÷) (AoA_ ÷ + A_+Ao)
1 + at+A+) 1 +_(A+Ao + _(Ao A_ + A_+Ao)

(A+A_- A+A+)
}(A+A++ AtA_)
1 (A-kA_k JI- A+q_A-)-

The Stokes operators can be constructed as independent linear combinations of (4) and the

total number of excitations S0(7) = E, A+¢t_.. To illustrate the position dependence of the

polarization, consider the electric-dipole Jaynes-Cummings model of [10]. Assume that a

two-level atom emits a photon with # = 0, i.e. linearly polarized photon at 7 = 0. In view of

the explicit form of the coefficients in (1) [4,6], is is a, straightforward matter to arrive at the

conclusion that the radiation in the near and intermediate zones consists of two circularly

polarized components and one component linearly polarized in the radial direction. In the far

zone, the radiation consists only of the two linearly polarized components. The polarization

at far distance can be specified by the three Stokes operators



(5)

out of the nine operators (4). Since operators (5) form a representation of the SU(2)

sub-algebra in the Weyl-Heisenberg algebra, one can say that there is a SU(3) _ SU(2)
contraction with the increase of distance from the source.

In the classical picture of transversal radiation, the phase difference between the two

components with different polarization is considered. Undoubtedly, the multipole radiation

with three spatial components at any space-time point should have more rich phase proper-

ties. In the quantum domain they can be described in the following way [11]. At any point

7, we define the dual representation of the the local photon operators (3)

1 1

A_(7)- j_ _ ei"_'_/3Au(7), (6)
y=--I

which effectively represents the polar decomposition of the spin of multipole photons. Note

that this polar decomposition cannot be constructed directly in the way proposed in [12].

The point is that the spin and orbital contributions into the total angular momentum of pho-

tons cannot, in general, be separated [6]. Moreover, even for the total angular momentum of

a photon with well defined representation of the SU(2) sub-algebra in the Weyl-Heisenberg

algebra, the polar decomposition cannot be determined because the Casimir operator cannot

be represented uniquely in the whole Hilbert space. Nevertheless, transformation (6) intro-

duces the phase states of the spin of a photon. Actually, this transformation diagonalized

the operators

s (e) = A++A0+ ,a0+A_+ A_+,4++ H.¢.,
= + A0+A_+ A+_A+- H.¢.), (7)

forming the Caftan algebra in (4). As can be seen from the generalized Jaynes-Cummings

model [10], the operators (7) represent the radiation counterpart of the cosine and sine of the

quantum phase of the angular momentum of the atomic transition [13]. The quantum phase

variable determined in this way has discrete spectrum in (0, 27r). Since this variable reflects

the spin properties of the radiation, it can be considered as an inherent phase of photons.

This is one of the possible quantum phases, which can be determined in the operational way

[14].

Let us briefly summarize our results. First, operators (3), describing the polarization of

multipole radiation at an arbitrary space-time point, are constructed. In addition to the

polarization, they can be used to determine the quantum statistical properties of radiation

in the near and intermediate zones as well as in the far zone. Then, the dual representation

(6) of these operators describes the quantum phase properties of photons connected with

their spin states.
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Abstract

The construction of a propagator for evolution equations using Laplacian of

Oaussian (LOG) wavelets is implemented and studied in analogy with har-

monic spectral procedures. What we have done is to generalize the free dif-

fllsion solution in wavelet-space to a propagation term tbr SchrSdinger and

diffusion type equations. We have applied this method successfuly to the con-

struction of spectral correlation flmctions for the assymetric well and com-

pared with standard FFT spectral analysis methods, as in [1].

I. INTRODUCTION

We address here the 1)rol)lem of constructing an evolution operator for Schr6dinger equa-

tions,

_)'_/, l)_
_ V2ot "' + v (:,:),,,, (1)

using an adequate 'frame' of wavelet transformations called Laplacian of Gaussian (LOG)

transforms. Two types of solution will ensue from this approach, one that is meant to be

analogous to the split operator alghorithm of harmonic analysis, and another based on a

FredhSlm equation for the propagator kernel in the dual of the wavelet space.

The construction of a propagator e i H t for the wavefunctions of a SchrSdinger equation

is, except for a few types of potential function V(f), usually amenable only by numerical

methods. Knowledge of a complete orthogonal set of eigenfunctions and eigenvalues is not

the most pratical way to prol)agate a given initial state, although formally it, could be done,

in principle. Numerical methods for solving the time-independent SchrSdinger equations

have to be used in most cases, and rnatrix-diagonalization and iterative methods are fre-

quently chosen for the computation of approximated energy eigenvalues and corresponding

eigenfunctions. Spectral methods for the solution of potential problems, on the other hand,

rely on the computation of the auto-correlation function "P(t) = @o]'_/'t} for determining en-

ergy spectra, and thus need to find first a good approximation fbr the solutions _t of the

time-dependent Schr6dinger equation given any initial state '_/'o. By using a perturbation



technique basedon Fourier transformations, one can obtain good approximations for the
solutions %_t,and then the numerical Fourier transform 75(£) of "P(t) exhibits sharp peaks

at the location of the energy eigenvalues.

Since the Dee evolution can 1)e accurately computed in Fourier space, and we can express

C'i_ 5TV_that formally as the effect of the operator _ -' . If we accompany that, evolution with a

phase change in place e-_} '_v, proportional to the local potential V(_), we obtain the split

operator algorithm fbr the incremental time evohltion of the initial wave%rm [1].

II. GAUSSIAN WAVELET TRANSFORM DEFINITIONS AND THE LOG

TRANSFORM

In analogy with harmonic spectral procedures we studied and irnplemented the construc-

tion of a propagator for evolution equations using Laplacian of Gaussian (LOG) wavelets

9_(x), with t_ = (_, _,_) _ _ × a, which are generated in the usual manner from a 'mother-
wavelet'

9

LOG wavelet transfornls of a function u,(:_:) are defined here as

'a(:_')_$4 _,,_= "(:_;)a(:':)d_: ;
• (DO

1/'o 1

III. THE WAVELET TRANSFORM OF DIFFUSION-TYPE EQUATIONS.

As shown in [1], a LOG wavelet transformation of a diffusion equation (1) (of which the
ih

Schr6dinger equation is a particular case with imaginary diffusion coefficient z/= -- and
2m

potential V(m) = -ih F(x)) yields,

1 5

With a change in variable _ = 't1_-7, and defining 'C%(t) = ,qL-_ 't_,_(t) we get instead

(5)

The time evolution can now be solved approximately in wavelet space.

Using r#(t) = ('q_ + 2_/t, '_72) we obtain, given an initial state u(:c, to),

/ ( )1 .,,,+2,,_t ,0[:_1,.2 V (:z:),,, (._:, to) .% 'i7_31'2x dx dO_,c_,(to+ _t) _ "_,,(_)(to)+ 2_ ,,, __

2_ . _ ,m,(_,,)(to) u'_l_+ 4.-' . oo

(6)



,)

where Gas (;r) = v/7:r erfc (2x/_7):r - 2 _,te (5 46tie.

Notice that the first term in (6) represents free propagation exactly, while the remainder

gives an approximation for the potential correction in time St.

IV. FREDHOLM INTEGRAL EQUATIONS

An alternative way of solving equation (5) is to introduce the IWT formula for u(x, t)

there in terms of ,a_,_(t) and, l:)y Fourier transforming in all variables (r/, t) --+ (k, s), obtain

a FredhShn equation of the second kind

where the kernel

w, (4 = E [k,-k'; W,, (4 dk' (7)

can be computed to l:)e

with

e-.i(k.,7 -k'.,f) dr/' dr/. (8)

1 / I .(] (2) '" ]Cl'ql
(_ (k) -- _/72_. lp÷,/_- 1 (_:2) e' d'[]l

(10)

This is not et separable kernel in k2, k2', but it is interesting to note that any discrete

wavelet transform (D\¥T) of the potential ,: F (1,:.2 k_) provides the means to approximate

this kernel by a separable one. Specifically, if we select he(k) as a convenient wavelet frame

(chosen e.g. to provide a convenient nmlti-resolution analysis), we could write

{7 (k2 - k2) = _ Q, (k:_)h¢,(k:_) (11)
¢,

and C¢,(k2) = F (tc.e - :r) l_¢(:r)d:r. Applying such a transformation to both sides of the
• (X)

Fredhglm equation (7) will generate the algel)raic prol)lem

¢,
(12)

i

E [/'g,--k'; £] _- 27T (£ -- 2///_:1) ()" (--_:[) f/ (_:2- _72)- (-_ (k) (9)



V. CONCLUSIONS

LOG wavelet transforms have been used by J.Lewalle [2] to study diffusion and Burger's

equations and incompressible 3-dimensional fluid equ_tions. The relevance of these equations

in the context of quantm-n me(:hanical motion tins 1)een previously noted in connection with

nonlirlear Schr6dinger equations, Burger's e(luaticms and Hamilton-Jacobi theory, which is

interesting in itself since the connection with the 'classical' tr_tjectories seems to be after all

needed to make sense of_t notion of quantmn chaos.

As compared with usual F_Lst-Fourier trampared with usual Fast-Fourier transform meth-

ods, the evolution of a wave packet solution exhibits greater stability in a LOG method with

lower resolution. The method is also stable with potential term evolution ¢-i At V and in

fact the wavelet transform of the equation with potential terms leads to a FredhSlm integral

equation.

Since the free evolution can be also be accurately computed in (LOG) wavelet space, we

can express the sequence of WT, evolution etnd IWT ,as the effect of the operator e i2@';a;v_ on

an initial condition. The technique for the conventional harmonic split operator algorithm

for incremental time evolution can also be used instead of (6) if we modify the free evolution

with a phase change in place (<_,,_v 1)rol)ortional to the local potential V(_).

The issue of effectiveness is also of importance: since the LOG method is a continuous

wavelet decomposition it does not automatically yield a fast pyramidal alghoritm for a

multi-resolution analysis, although proposals exist to associate scale discretizations of the

mother wavelet with low- and high-pass filters resulting from an 'integrated wavelet'[3]. A

scale analysis can be performed which shows how initial conditions details can affect the

numerical solution.
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Optical solitons in fibers are an experimentally readily accessible system

for studying the quantum dynamics of the nonlinear SchrSdinger equation.

Recent experiments show strong photon-number noise reduction below shot-

noise and a complex internal quantum structure of spectral photon-number

correlations, unraveling new perspectives in experimental quantum optics.

Optical solitons in glass fibers are an attractive system for quantum measurements.

Despite their large photon number of n _ 109, solitons showed unique nonclassical behavior

in a number of experiments, producing strong quadrature-amplitude and photon-number

squeezed light with large bandwidth [1].

Studying the quantum properties of fiber-optic solitons gives insight into a variety of

fundamental phenomena and application-related problems. The fiber-optic soliton is an

experimentally easily accessible system for studying the quantum dynamics of the nonlinear

SchrSdinger equation, a fundamental nonlinear field theory that models many phenomena

in nonlinear physics [2-5]. Furthermore, the nonlinear SchrSdinger equation governs pulse

propagation in fiber-optic communication links. Here, the quantum nature of light and in

particular the noise behavior of solitons impose a fundamental upper limit on bit rate and

distance of a communication channel. Quantum noise reduction techniques are useful in

extending these limits beyond the limits presently perceived because these techniques are

applicable to broadband noise reduction of both quantum and technical noise. Finally, a

third motivation for studying the quantum nature of light and fiber nonlinearities is the

unique opportunity that quantum entanglement offers for quantum information processing

beyond the capabilities of information processing in a classical world [6].

This paper summarizes recent progress and promising trends of experiments that exploit

the quantum nature of fiber-optic solitons. Recent experimental progress covers mainly

photon-number squeezing of solitons with the methods of spectral filtering and nonlinear

interferometers. The questions to be addressed here are:

• what has been and what can be achieved in terms of noise reduction,

• what are the underlying squeezing mechanisms, and

• which promising new developments may originate from this work?

In the history of fiber-optic quantum noise reduction, four generations of experiments

can be identified [1]. The first generation of experiments with continuous-wave laser light

demonstrated the principle of quadrature-amplitude squeezing based on the optical Kerr

effect. The second generation used ultrashort pulses to achieve a larger nonlinear phase

shift with less Brillouin scattering noise in shorter fibers. Ultrashort pulses that propagate



as solitons are free of chirp. Therefore, the local oscillator phase can easily be optimized for

the entire pulse in the phase-sensitive detection of quadrature-amplitude squeezing.

Recent experimental progress in fiber-optic quantum noise reduction was achieved with

spectral filtering and asymmetric nonlinear interferometers, the third and fourth generation

of experiments, respectively, using picosecond and sub-picosecond solitons. These new kinds

of experiments produced directly detectable photon-number squeezing, where no phase-

matched local oscillator was needed and where higher-power solitons may be used for further

enhancement of the nonlinear effects.

The method of spectral filtering gave new insight into the quantum structure of the

soliton. Spectral filtering of coherent solitons was unexpectedly found to produce photon-

number squeezed states [7,8] in 1995. The experimental method was fairly simple: a pulse

launched into a fiber was spectrally band-pass filtered after emerging from the fiber end and

was then detected. A variable bandpass filter allowed for optimizing the high and low cut-off

frequencies. From the first observation of 2.3 dB squeezing with 2.7-ps solitons, bandpass

filtered after ( = 4.5 soliton periods of propagation [7,8], the method was further investigated

with sub-picosecond solitons and a variety of filter functions, fiber lengths, pulse energies

below and above the fundamental soliton energy [9,10] and in the normal dispersion regime

[11]. When optimized in the experiment, up to 3.8(+0.2) dB of photocurrent noise reduction

below shotnoise were achieved in direct detection. If corrected for linear losses, a reduction

in the photon-number uncertainty by 6.4 dB below the Poisson limit can be inferred [9].

Predictions for what can be achieved in terms of noise reduction by spectral filtering show

that up to 6.5 dB of photon-number noise reduction can be expected when an optimized

bandpass filter removes the outlying sidebands of a fundamental soliton and transmits 82

% of the pulse energy [12]. With pulses of more than the fundamental soliton energy up to

8.1 dB of quantum noise reduction were predicted [13].

The underlying squeezing mechanism can be understood in terms of the multimode

quantum structure of solitons [14-17]. Spectrally resolved quantum noise measurements

showed that anticorrelations in photon number fluctuations emerge within the spectrum as

the soliton propagates down the fiber [16]. If these anticorrelated modes are transmitted

through a spectral filter and then detected simultaneously and coherently, their fluctuations

cancel each other. This anticorrelation produces a photocurrent noise reduction far below

shotnoise, similar to earlier predictions for squeezing by twin-beam correlations in fibers [18].

Nonlinear interferometers seem to be the most promising and most successful method of

quantum noise reduction with solitons so far. The continuous-wave [19] and soliton-pulse

analysis [20-22] show that the interferometer must be highly asymmetric in order to produce

strong photon-number noise reduction, in contrast to earlier experiments with symmetric

nonlinear fiber interferometers that produced a squeezed vacuum. Noise reduction in excess

of 10 dB was predicted.

After the first experimental demonstration with 130-fs solitons [23], the method was op-

timized and observation of more than 5 dB of photocurrent noise reduction was reported

[24,25]. This was the strongest noise reduction observed for solitons to date. When cor-

rected for linear losses, the inferred photon-number squeezing was 7.3(+ 1.3/- 1.0) dB [24].

More squeezing can be expected with pulse durations around one picosecond where Raman

scattering noise is much reduced.



The squeezing mechanism can be understood in terms of number-phase correlations in-

duced by the Kerr nonlinearity [22], similar to the continuous-wave case studied by Kitagawa

and Yamamoto [19]. This squeezing mechanism implies that noise reduction grows with

nonlinear phase shift in one arm of the nonlinear interferometer. This is in contrast to spec-

tral filtering, where noise reduction originates from multimode photon-number correlations,

which does not grow with propagation distance [22]. However, spectral filtering may play a

role because the multimode structure of the output pulse of the asymmetric interferometer

will be different from that of the strong pulse before interference with the weak pulse [2,24].

To summarize the experimental progress, there has been significant advancement towards

developing multimode broadband quantum optics and fiber-integrated sources of classical

and quantum noise reduction.

Worthwhile perspectives for further developments can be derived from the following

current trends: Firstly, higher-order solitons [26,27] and/or femtosecond high-peak-power

solitons show strong internal correlations and enhanced nonclassical effects. Unexpectedly,

femtosecond pulses which experience strong Raman scattering showed more photon-number

squeezing in the strongly Raman-shiffed regime (110 soliton periods of fiber length) than

in the weakly Raman-shifted case of shorter propagation distances (3 soliton periods fiber

length, the predicted optimum propagation distance without Raman scattering) [9]. There-

fore, experiments in the femtosecond regime of pulse propagation can be expected to give

insight into a novel Raman-assistet squeezing mechanism. Secondly, spectrally resolved

quantum measurements will be rewarding when applied to photon-number-squeezed soli-

tons, such as the solitons emerging from a nonlinear interferometer, and to strongly Raman-

shifted solitons. Spectrally resolved quantum measurements give insight into the multimode

quantum correlation pattern of the pulse and therefore into the squeezing meachnism. Open

questions concerning the squeezing meachnism of nonlinear interferometers and Raman-

shifted pulses can be addressed with this method. Thirdly, demonstrating a source of bright

entangled beams [28] based on the successful quantum noise reduction method in fibers,

the nonlinear interferometer, will be rewarding towards realizing quantum information pro-

cessing capabilities with solitons. Furthermore, extending recent quantum measurements to

the case of interacting solitons will open up new opportunities for quantum-nondemolition

measurements and entanglement of beams. As an example, spectral filtering in the center of

a soliton collision has been proposed as a novel method for back-action evading detection of

the photon number, allowing for direct detection in the probe beam. The interpulse photon-

number correlations were found to be strong enough to predict a conditional variance of 0.7

or better by spectral filtering of the probe soliton [26]. Last, but not least, the methods

for quantum noise reduction discussed here are relevant for optical communication links.

Spectral filters and nonlinear interferometers are already being investigated as key elements

in system design. They are promising for stabilizing the soliton against Gordon-Haus jit-

ter, resonance radiation and amplified spontaneous emission noise. With these nonlinear

elements in the fiber-optic link, the quantum limits need to be investigated for a better

understanding of the ultimate bounds of terabaud communications.

With these perspectives in mind, significant experimental as well as theoretical develop-

ments with quantum solitons can be expected in the near future.
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Abstract

We present systematic quantization scheme for dealing with single point interactions in one

dimension. The scheme is very general and is capable of treating macroscopic quantum systems

like superconducting circuits.

Traditionally, point interaction problems in quantum mechanics are treated in the physics lit-

erature by solving the Schr6dinger equation containing an appropriate 5-function potential. In this

paper we discuss a systematic quantization scheme, known as the method of quantization by parts

[I, 2, 3, 4, 5, 6, 7], which provides a general method for dealing with single point interactions in

one dimension, namely by reducing the problem to boundary conditions. Our method can also be

applied to superconducting systems like those concerning Josephson and the recently discovered

7r-junctions, and single electron circuit systems, amongst others.

An important aspect of operator theory, i.e., symmetric operators and their extensions, a subject

not normally encountered in standard quantum mechanics, plays a key role here. Take the simple

example of a one-dimensional case. In the absence of any potential a particle of mass m moving in

one-dimension along the real line ]R has associated with it the Hilbert space of square-integrable

functions L2(I_) on ]R. A normalized wave function ¢, describing the state of the particle, is

a member of L2(I_). To define an operator in L2(IR) it is not enough just to give an operator

expression. One must also specify the domain on which the operator acts in order to define the

operator.

Let C_ (]R) denote the set of infinitely differentiable functions on l_, each of which vanishes

outside a closed and bounded interval in I_. Note that C_(R) is a subset of L2(I_). Now, consider



quantum mechanical operators acting in L2(l_). When the given operator expression is a differential

expression the standard procedure is to let the differential expression act on C_(R) first. Let the

resulting operator be denoted by -40. Such an operator is usually symmetric and not selfadjoint

[8]. Hopefully A0 will have a unique selfadjoint extension. In other words there exists one and only

one selfadjoint operator .4 acting on domain :D(.4) such that :D(A) contains C_(IR) and that on

C_(R) the operator .4 is equal to A0, i.e., A¢ -- -40q_ if ¢ E C_(I_). One then concludes that the

appropriate quantized operator is A. In this paper we shall come across a new situation when A0

possesses many different selfadjoint extensions.

Mathematically the geometry of a one-dimensional system with a point interaction may be

idealised as the real line _ = {x E (-oe, oe)} broken into two half lines 1R0 -- (-_, 0) and

= (0, oc). The point at which the potential abruptly changes being at x -- 0. This is referred

to as the branch point which separates the real line into two branches B1 -- 1R0 and B2 -- R +. A

particle being scattered by this potential is represented by a wave function ¢ on the interrupted line

-= R o Ul_ +. The wave function on 1_0 is denoted by ¢1(x) and by ¢2(x) on R +. Classically, for

point interactions, the particle is free when it is on B1 or on/32 and when restricted to these branches

the Hamiltonian would agree with the kinetic energy. The method of quantization by parts starts

by setting up the kinetic energy for the particle on the branches separately in terms of operators

defined on C_ (1_o) and C_ (IR+). These operator are generally symmetric. We then combine the

results and find all the selfadjoint extensions to obtain the kinetic energy, and the Hamiltonian

for the system as a whole. Different selfadjoint extensions of the kinetic energy operators on the

combined system correspond to different domains. That is, each selfadjoint extension gives rise to

different boundary conditions at the point corresponding to different domains and this leads to a

characterisation of different types of point interactions.

We then use the concept of a transfer matrix [9, 10] to help us describe the boundary conditions

that arise from this method. Generally, let ¢(xl), ¢'(xl) be the values of the wave function ¢ and

its spatial derivative ¢_ at the point xl, and let ¢(x2), ¢_(x2) be their values at x2. The transfer

matrix linking the values of ¢ and ¢/ at two points xl, x2 is defined to be the matrix _4(xl, x2)

satisfying

It is apparent that a transfer matrix is just a convenient way of rewriting boundary conditions,

but it is an extremely useful tool. We find that by using these transfer matrices we can find limiting



familiesof potentialsthat give rise to the boundaryconditionsassociatedwith eachselfadjoint

extensionof the kineticenergyof our system.Forexamplethereexistsa selfadjointextensionKez

corresponding to the boundary conditions1:

- - Vo ¢i(o)-G(o)=o. (2)

The transfer matrix at x = 0 is

1 2mVo
A'4ex,Vo =

0 1
(3)

positive number much less than I, n be a positive integer, and following Pearson [9] let

V+na(X) : g: 6(X- na), g+ - 2ma _ _ - 1 .

can be limited in such a way as to produce the same boundary conditions at a point as the selfadjoint

extension. Let us introduce some notation to aid the discussion of this potential. Let a be a small

(4)

For sufficiently small a, g+ is positive and hence v+a(x) represents a repulsive &potential at x = na,

and let

Vna(X) : ga 6(X -- na), ga -- 2ma _ - 1 . (5)

For sufficiently small a, ga is negative and hence Vna (x) represents a attractive potential at x = na.

Note that the coefficients g+ and ga are dependent on a but not on n.

(3)
Now consider combining these 6-potentials to form a new potential V__,a (x)

(3) V_a(X) V_a(X)v4,a(x) = re(X)+ + + G(x). (6)

The transfer matrices for each of the elements of this family, may be multiplied together 2 and we

can show that in the limit as a --* 0, this potential does indeed realise the transfer matrix and

hence boundary conditions for Ke,.

We find that there are eleven more boundary conditions that give rise to selfadjoint extensions

and each of them can be attributed a potential in this way. Let us summarize our results as follows:

1From conditions (86,87) in [1].

2This method has a strong analogy with the ray transfer matrix analysis in optics. Each element has its own

matrix and by multiplying together the matrices corresponding to the elements of a system we get the effective matrix

for the whole system.

We then find that a family of four &function potentials located at regular intervals from the origin



1. Intuitively the basic building block for a point interaction is the _-function. First, we derive

the limit of a family of four/_-function potentials. We then derive most of the rest of point

interactions in terms of a finite family of 6-function potentials and this limiting family.

2. Each type of point potential shows a distinct physical characteristic, determined by the bound-

ary conditions.

3. Some of the point interactions that are included in this theory are: the step potential, 5-

function, 6/-function, 'open end' potentials, full 7r-phase shifter, high-pass 7r-phase shifter,

low-pass _r-phase shifter, mid-pass ½7r-phase shifter, tunable partial mid-pass filter, tunable

mid-pass phase shifter and the Josephson junction.

Hopefully the theoretical possibility of these potentials will find applications, e.g., in identifying

some of these point interactions with known phenomena as well as in prompting new experiments

to verify their existence. Full details will be published elsewhere.

References

[1] K K Wan and R H Fountain, Found. Phys. 26, 1165 (1996).

[2] K K Wan and R H Fountain, Int J Theor Physics 37, 2153 (1998).

[3] K K Wan and F E Harrison, J. Phys. A: Math. Gen. 30, 4731 (1997).

[4] P Exner and P Seba, J. Math. Phys. 28, 386 (1987).

[5] P Exner and P Seba, Rap. Math. Phys. 28, 7 (1989).

[6] P Exner and P Seba, Quantum Junctions and the Self-Adjoint Extensions Theory,

also P Exner, P Seba and P Stovicek, Quantum Waveguides, both in Applications of Self-Adjoint

Extensions in Quantum Physics (Eds. P. Exner and P. Seba) (Springer-Verlag, Berlin, 1989).

[7] J Blank, P Exner and M Havlicek, Hilbert Space Operators in Quantum Physics (American Institute

of Physics Press, New York, 1994) p 60, pp 471- 489, p145, p149, p137, p122.

[8] R D Richtmyer, Principles of Advanced Mathematical Physics Vol 1 (Springer-Verlag, New York, 1978)

p155, p141, p157.

[9] D B Pearson, Quantum Scattering and Spectral Theory (Academic Press Ltd, London, 1988) pp490-497.

[10] Merzbacher, Quantum Mechanics (Wiley, New York, 1970) Ch 6.

[11] K K Wan, R H Fountain and Z Y Tao, J. Phys. A: Math. Gen. 28, 2379 (1995).



A variational approximation for the ground states of Bose-Einstein condensates as

described by the Gross-Pitaevskii equation

D.Anderson, F. Cattani, B.Hall and M.Lisak

Chalmers University of Technology,SE-41296 G0teborg, Sweden

Yu.Kivshar, E. Ostrovskaya and T.Alexander,
Optical Sciences Centre, Australian National University, Canberra, Australia.

Abstract

An analysis, based on direct variational methods, is made of the properties of two- dimensional
ground state Bose-Einstein condensates as described by the Gross-Pitaevskii equation. Convenient
analytical approximations are found for the wave function and the concomitant properties of the
condensate. The results are compared and shown to be in good agreement with numerical results.

Introduction. In experimental studies of Bose-Einstein condensates (BEC) in ultracold and
dilute atomic gases, the BEC atoms are trapped in a generally anisotropic external potential created
by a magnetic trap and their collective dynamics in the trap can be described by the Gross-
Pitaevskii (GP) equation

ih c?u/ h 2
- V21/t + Vex(r)+U [q/] 2 _=0 (1)

at 2m

where _ is the macroscopic wave function of the condensate, Ve× is a parabolic trapping potential

and the parameter U = 4_h2a/m characterizes the two particle interaction, which is proportional to

the scattering length a. Although Vex is always a confining potential, the nonlinear potential may be
deconfining or confining depending on whether the scattering length,a , is positive or negative
respectively.

The purpose of the present analysis is to investigate the properties of stationary two dimensional
radially symmetric solutions of eq.(1). This will be done using direct variational methods involving
trial functions and Rayleigh-Ritz optimization. The analytical approximations are compared and
showed to be in good agreement with results of numerical calculations. For the present analysis,
eq.(1) can be rewritten as

1 d (r_r)+#p_r2p+p 3 =0 (2)r dr

where ILtplays the role of eigenvalue and __ refer to confining (+) and deconfining (-) two-particle

interactions. The properties of the ground state solutions of eq.(2) will be investigated.

A variational approach to the GP equation. Approximate solutions of eq.(2) can be
obtained using a variational approach based on trial functions and Rayleigh-Ritz optimization. For
this purpose, eq.(2) is rewritten as the variational problem

¢:o

6f L(r, p, dP)dr = 0 (3)
a dr
o

where the Lagrangian, L, is given by

L=r[( )2_#p2+r2p2g_p ] (4)

A convenient and flexible trial function to be used in the Rayleigh-Ritz optimization procedure is

super-Gaussian functions i.e. p(r) = Or (r) = Po exp[-(r I a) 2m / 2], where the profile width - a,



thesuperGaussianindex- m andthemaximumamplitude- P0, are to be related to the eigen value

- ix using variational optimization. Inserting the ansatz into the variational integral we obtain
oo

1 4 2. (5)
< L >= IL(P= PT)dr= p2I 0 -yp2a211 + p2a412 T-_POa 13

0

-(1+ 1 )

whereI O=m/2;I l=F(1+1/m)/2; 12=F(1+2/m)/4;I 3=2 m F(l+l/m) and F(x) is the

Gamma function. The integrated Lagrangian <L> is a function of a,P0 and m and the

corresponding variational equations can be manipulated into the following form

p2a2 -t rap(m) . a4 re[l- p(m)l m[2-3p(m)]=_ , - ; #= (6)
13 212 2a211

where the characteristic function p(m) is given by

m + 2IN(1 + 1) _ _(1 + 2)]
m m (7)p--

In 2 + 2[N(1 + 1) _ N(1 + 2)]
m m

and I//(x) is the logarithmic derivative of the Gamma function. The function p(m) changes sign at

m - 1 and only the branches where +p(m) is positive has physical significance i.e. m < 1 for(+)
and m > 1 for (-).

BEC for negative scattering length. Since in this case the nonlinear potential is focusing,
the condensate will ultimately collapse when the nonlinearity (i.e. the number of particles in the
condensate) becomes sufficiently large. The threshold for collapse can easily be shown to be p = 1.
When p = 0 (the linear case), the condensate ground state wave function is Gaussian (m = 1), as it

should, and for increasing p, the waveform becomes increasingly peaked and at collapse (p = 1),
the super Gaussian index is m = ln2. A comparison between the variationally obtained super
Gaussian approximations and the results of numerical solutions of the eigen value equation (2) are
shown in Figs. la,b. The agreement is seen to be very good over the whole allowable range of p.
A corresponding comparison is also made in Figs. 2a,b for the eigenvalue and the number of

particles of the condensate as functions of 90.
Profile for p2° = 0.1278, p= -0.0313, a<0

0.12 Variational
Nurnedcal

0.1

0.08

0.06

0.04

0._ _,

P#ile for pZo=5.581,p=-0.67, a_

2

P

o
o o.s 1 1_ 2 2;

r

5

4

3

2

1

0
0 0.5 1 1.5

r

Fig. 1 Comparison between normalized stationary condensate profiles for different number of particles. The dashed
lines are variational approximations and solid lines are numerical result.
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BEC for positive scattering length. In this case the external potential and the nonlinearity

are counteracting each other and stationary solutions exist for arbitrary number of particles in the
condensate. A classical approximation in this case is obtained by balancing the defocusing
nonlinearity against the linear focusing potential - the Thomas-Fermi approximation - which yields

simply p2 (r) = # - r 2 implying that # =/902 and N = p04 / 2. It is clear that the Thomas-

Fermi approximation can be expected to do best for strongly nonlinear situations, but also that the
parabolic approximation for the condensate density profile can be expected to be less good in this
case - the actual shape of the solution should be broader than a parabola.
The variational approximation predicts correctly these features: the profile of the condensate density

(O2) is not parabolic, it does depend on amplitude i.e. on the number of particles in the trap and it

becomes increasingly rectangular for large values of N (or 190). As a comparison we note that for

large P0, the variational predictions, expanded in this limit, yield/2 = 1.14/92 and N ----0.24/94 in

close agreement with the Thomas-Fermi approximation.

The analytical predictions obtained by the variational approach and the Thomas-Fermi
approximations for the condensate profiles are compared with numerical solutions of eq.(2) in

Fig.3a,b. The variational approximation is very good for small and moderate values of 190, but

tends to overestimate the condensate profile for large 190.On the other hand, the Thomas-Fermi

approximation is less good for small 190(as expected) and straddles the numerical curve for large

190. This has the consequence that the Thomas-Fermi approximation provides very good

approximations for /2=/2(/)02) and N-N(p 4) for large P0, in fact even better than the

variational approximation, cf Figs.4a,b
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Conclusion. It has been shown that direct variational methods based on super-Gaussian trial

functions and subsequent Rayleigh-Ritz optimization provide excellent approximations of the
profiles and other properties of Bose-Einstein condensates in parabolic traps and in the presence of
two-body interaction with positive as well as negative scattering length.
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Abstract

We present a consistent definition of classical-like states of a quantum system,

and provide an explicate construction of such states, irrespective of whether

the system has or has no classical analogue. We show that the definition sin-

gles out a unique set of states of the quantum system which behave classically

up to an arbitrary prescribed accuracy.

I. INTRODUCTION

A mixture of many pure states could suppress the typically quantum properties of the

single pure state. There could be such quantum states, represented by mixtures of pure

states, that the predictions of quantum mechanics ca.n be obtained with the tools of classical

statistical mechanics. We shall fornmlate natural conditions to caracterise the quantum

probability distributions, which behive as classical statistical distributions up to any desired

accuracy. The classical-like states, fixed by these conditions, are not localised on a classical

orbit of a single system. Furthermore, there need not be any classical system like in the

case of the spin. The approximate equality of the Cluantum and the classical formalisms is

achieved only in the statistical sense.

The coherent states are the most natural fl:amework to study the possibility of the

classical description of a quantum system. Among all pure states, they are those which

minimise the uncertainty relations for the corresponding dynamica.1 va.riables. The phase-

space picture for a. large class of quantum systelns is obta.i,led in the theory of generalised



coherent states [2], [3]. The phasespaceof a quantum system is obtained as a manifold
which parameterisesthe states which minimise the uncertainty relations among the basic
quantum dynamical variables of the consideredsystem. Foeexample, the quantum phase-
spaceof a one dimensional (1D) quantum particle is the complexplane C, and that of the
spin is the sphereS 2 We shall explain the ideas using the spin s = 1/2 as an example of a

typicaly quantum system.

As in the case of 1D particle, there are various prescriptions which can be used to assign

functions on S 2 to the qua.ntum states a.nd observalJes. The Husimi function pQ of the

state [3 is a real probability distribution on S 2, while tile Wigner function pw of the state

/3 can have negative values, so that, like in the 11) case, it is not a proper probability

distribution. Notice that only the W representation can be used to represent both the states

and the observables on an equal footing (i. e. using the same formulas on the corresponding

operators [3 and/)).

Like in the 1D particle case, the Heisenberg dynamics of the spin components can be

described by the Hamiltonian dynamics of points on S 2. The Hamilton' s function H(cJ is

Q representation of the corresponding Hamilton operator/i/.

II. CLASSICAL-LIKE STATES FOR THE SPIN

A quantum state of the spin s = 1/2, represented by a statistical operator _, is called

classical-like to a degree 0 < 1 - A < 1 if the [bllowing conditions are satisfied:

1) The quantum phase space distribution p describing the state is }aon-negative.

2) The mean value of an observable represented by an operator B in the classical-like

state is up to a given accuracy equal to tile classical mean value:

f p(0,¢)B(0, ¢) sin 0d d0, (1)

where the functions B(O, tb) and p(0, tb) are obtaimxl t'rolll tlle operators /_ and f3 by the

same procedure.

3) Up to a given accuracy, the quantum phase-space distribution of the classical-like state

evolve in time according to the classical Liouville equation, with the Hamilton function H

corresponding to the Hamilton operator H given by the condition 2.

The first condition is restrictive only together with the second condition. Namely, any

state t3 generates a well defined positive function, given by the Q representation. If the

Q representation is taken to define the functions which represent a physical observable

than, in general, the classical average and the quantum average are different. However, the

difference might be relatively small or large as compared to the actual values of the averages,

and this depends on the properties of the states f3. The condition 2 selects such states for

which this difference is relatively small. Thus the degree of classically 0 <__1 - )_ _< 1 of a

given quantum state is measured by the following ratio:

- pQBQsin0d0 ¢

The smaller is )_ the states are more classical-like.



In order to explicitly construct and study the classical-likestates of the spin, we shall
now introduce, the socalled, A-transformationof the states. The transformation is obtained
useingthe representationsof the operatorsand the correspondingfunctions on S _ in terms

of the irreducible tensor operators and the spherical harmonics respectively. This transfor-

mation maps a given state fi into the classical-like state fi_ which satisfies the conditions 1,

2, and 3, with an error proportional to 0 < A < 1.

A statistical operator/_ can be represented by the corresponding pQ or Pw functions. We

expect the classical like states to be represented by functions with small derivatives on the

relevant phase-space. Also, in order to satisfy both of the conditions 1) and 2) the difference

between the two representations of fi by functions pQ and pw should be small everywhere

on S 2. Both of these goals are achieved by the following transformation:

A: - (2)

where 0 _< ,_ _< 1 is a real number, and ci,j are conlplex parameters which uniquely fix the

quantum state [4].

Given a state ¢3 we can always associate with it. a. state which satisfies the first two

conditions up to a desired accuracy. The A-transformed states also satisfy the third condition

[/-/, fi_]Q-{HQ,p_?} ,_ )_, (3)

since the difference on the left side is given as a product of a bounded function on S 2 by a

small )_. We conclude that the A-transformed states, with a proper values of )% will satisfy
all the three conditions on the classical-like states.

Let us now breafly state a few properties of the A-transformed states. Some of these are

common to the 1D particle and the case of spin, but others are typical for the spin, and come

essentially from the finite dimensionality of the space of states, or from the compactness of
S _-"

First notice that the A-transformed states can not be pure states. Any mixed state of

the spin can be understood formally also a.s a A-transformed state of some other state, and

is, up to a certain accm'acy, a classical-like state. This is not so in the 1D case, where

mixtures of a finite number of pure states are not classical-like to any accuracy at least with

respect to some variables. When )_ is small all A-transformed states of the spin are close to

each other, and in all such states an observable has similar measured values. This is also

quite different fi'om the case of the 1D particle, which can be in many classical-like states

satisfying the classicallity conditions up to the same accuracy, but with large differences in

the measured values of an observable. All A-transformed states of the spin system converge

when )_ --+ 0 to a unique mixed state, known as the unpolarised state. This unique, exactly

classicM-like state, is a well defined quantum state i. e. it is represented by an admissible

statistical operator. This is not true for the one-dimensional particle, where the would-be

exactly classical-like state, with ,_ = 0, has an infinite norm, and thus is not permitted.

An example of application of the A-trnsformed states has been provided in [5], using the

most quite phase-insensitive amplifier of Glauber [6].
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Abstract

The new nonperturbative theory of quantum system interacting strongly

with thermostat (or physical vacuum) is developed on example of randomly

moving quantum parametric oscillator (RMQPO) problem. Mathematically

the problem of closed "oscillator+thermostat" system is formulated in terms

of complex probability process on extended space E = R 1 ® R{_}, where R 1

designates the Euclidean space and R{_} - the space of some functional _ (t) =

{_}. The representation for "ground state-ground state" transition probability

is obtained and investigated in detail. The thermodynamics potentials of

nonrelativistic physical vacuum is constructed exactly.

It must be noted, that chaos may be caused not only by the complicated dynamics of

the quantum system [1], but also by the strong interaction of simple quantum system with

thermostat or mesoscopic system. The quantum chaos can arise also in nonlinear optics

during a light ray movement through waveguide with nonideal or stochastic borders.

In the case of the 1D RMQPO the equation for the wave function can be written in

following form:

[ 1 1 (_20(t)+al (t;{W})) 2 ]idtqJstc -= -- 02x -t- -_ X 2 q2stc, (x,t) E (-oo,-t-oo), (1)

where the al (t; {W}) and the wave state k_stc(x,t; {_}) are functionals of some real

process W (t) - {W}, _ (t; {W}) - {_} is some stochastic process, that will be defined later

while separating the variables in stochastic differential equation (SDE) (1). The _"_1 (t; {W})

satisfies the following limit expression lim fh (t; {W}) = 0. In particular case of frequency
t-+-oo

being the regular function of t, i.e. f_l (t; {W}) =- 0, with boundary conditions lim ft0 (t) =
t-+Too

f_in(o_t) the equation (1) has exact solution (see [2]).

So in our new approach the SDE (1) for complex stochastic process _s+c(nlx, t; {_})

determined in the extended space E = R 1 ® R{_}, where n = 0, 1,... is a vibration quantum
number.



The wavefunctional in the limit t -+ -oo must pass to wave function of autonomous

quantum oscillator with n-th vibrational quantum state.

Let us start from the equation of classical oscillator under Brownian motion

exp(ia_t), _ dt_. (2)_ + fl2(t;{w})¢ = 0, ¢(t;{w}) ,_+_-% =

The solution of model equation (2) can be represented in following form:

_(t;{W})=_o(t)exp() (_(t';{W})dt), (3)

where _0 (t) is the solution of equation (2) with regular frequency f_0 (t). Substituting

(3) into (2) one gets the nonlinear SDE of Langevin type

_t.___ X2._}_ a20(t).___ F(t;{W})= 0 ' (_(t;{W}) _. x(t;{W} ) " --1- _o_o , xt = Otx, (4)

with boundary condition lim X = irwin.
t--+--Oo

Now we can pass to solving the equatio n (1) for complex probability process.

Theorem (see [2]): If the model SDE (2) can be reduced to SDE of Langevin type (_),

then the SDE (1) has exact solution

%+c(nix,t; {¢})= + a;n_oo +i2e l •
(5)

It is easy to see that the complex wave functionals (5) forms the full ortonormalized basis

set in Hilbert space L2 (R 1 ® R{¢}).

Let us pass to derivation of the evolutional equation for condition probability

P (0, t]_, t'). We shall study the functional of the form

-* =' ( [0 0'( )]} ={0,_}, 0=Rex, _=Imx,P(O, tlO,t')= 5 (t)- t' , O- (6)

where 0'(t) is the solution of SDE (4). After differentiating (6) over the time, using (4)

and taking into account, that stochastic force is given by correlator of "white noise"

(r(t)F(t')}=2eS(t-t'), (F(t)}=O, e>O, (7)

one can obtain the expression for Fokker-Plank equation for conditional probability:

One can derive from (8) the solution for small time intervals and construct the total

Fokker-Plank measure of the functional space R{g}

D#{0-'}=lim lim (lt_-)N N { N [Ok+i__Ok -
eo--*ON--+oo \27r V eoet ] H dOk+ldCflk+ l exp --_-_

k=O



(0 +1- + - - +2e0t

Now we can construct the full wave function of 1D RMQPO:

:%%(_Ix,t;{f}).(10)

A00(A,7) = (1 - p),12 {i21 (t,3') + 12 (1,3')}, ,X= (fli_2 / \(flo_t)'(11)
\cl/2] ' 3`= \/_ '

where p is a coefficient of reflection from barrier in the corresponding one-dimensional

quantum problem and

+_ 1 _ 1 "1"

-/1,2('_,3`) ---_ I dZ a V Z-_ Q _s ) ( )_ , 3` ; z )

The Q_ (A, 3`; x) satisfies to the following second order differential equation

- 2 -_" = O,
lim Q_P) = lim d_Q! p) = 0, p = 0,1. (12)

H--+o_ N-+_

Let's consider the case when frequency f_o (t) has following form:

1
f_ (t) = -_1(_2 + 02o,a)+ -_ (f_2o_,t- _i2_) tanh (at), (13)

where a characterizes the area of frequency changes. In this case parameter 3' can be
obtained as follow:

b-21n2 [(eb-j-[I/2) (1-J-pl/2eb)-l],

b-2ln2 [(eb--Dl/2) (i--[1/2eb)-1],

3`< 1, p C [0,1]

7> 1, pC[O, 1]

(14)

where b = 2_f_in.

Using the wave functionals the theory of generalized density matrix is constructed that

is not limited by value of "thermostat-quantum system" interaction. In the framework of

new representation [2] the expression for ground state energy of 1D RMQPO is obtained

1{Eo.c(_+,0+) = _0+ 7 vA+i i }, 1/3,ft+1+ dxx2AQ(a+,_) + _ dxxAQ(;_+,_) _+ _
--e_ --_ _-t-

(15)

The transition matrix will be evaluated as a limit t ---+ +(x_ of the projection of the total

averaged wave function (10) on the asymptotic wave function qJout (mix, t) (see [2]).

Taking the wave function of autonomous quantum harmonic oscillator (see [2]) as a

Oo,t (rnlx, t)and taking into account expressions (9)-(10) one can obtain the following ex-

pression for "vacuum-vacuum" transition probability [2]
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Figure 1. One can see from this figure that the

probability of "vacuum-vacuum" transition has two

branches. The first branch has monotonous be-

haviour and corresponds to a case, when the 7 varies

in an [0, 1] interval. In this case the transition to a

curve, that corresponds to a regular problem, takes

place at _ _ +oo. The second branch corresponds

to a case when depending on p parameter 7 varies

in an [1, oe] interval. In this case when p aspires to

e -2b value then probability goes to its regular limit.

Figure 2. The curves 1 and 2 show dependences

of oscillator's energy and its broadening in a vac-

uum state over fluctuation parameter A+. The

behaviour of entropy of nonrelativistic physical

vacuum from A+ parameter is shown by a curve

3. One can see that since certain value of A+

parameter (from value at which the entropy be-

comes positive) it is necessary to consider the

oscillator as a vacuum state.

where f_+ and c+ are constant frequency and diffusion coefficient, AQ(_+,x) =

Q!0) 1;x) - Q!2) 1;x).
One can obtain the following expression for the entropy of nonrelativistic physical vacuum

2

S (°) (A+) = -3 k A+ Oa+v_!°) (A+) + k in v_!°) (A+), (16)

where _!0) (t+) is states distribution function in vacuum and given by following expression

(a+)= J÷ [q (a÷;1)+ q (a÷;1)],
oo

J+= f dxQ!°)(_+,l;x). (17)
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Abstract

Cooling and trapping of potassium bosonic isotopes in a double MOT

apparatus has been studied. Density and temperature limitations due to the

peculiar laser cooling process are investigated and collisional parameters are

estimated in a magneto-static trap. Trapping of the fermionic isotope in a

single MOT is reported and perspectives tbr the achievement of quantum

degeneracy of this atoms are discussed.

Potassium has three "stable" isotopes: 39N, t°N. 4tK with a relative abundance of 93.26%,

0.012_ and 6.T3C/(, respectively. 4°N is a fermion, therefore potassium is a good candidate

to study a degenerate dilute Fermi gas and bosons-fermions mixtures.

The well established experimental method to achieve quantum degeneracy in a sample of

alkali-metal bosons [1], consists of two different cooling stages. In the first one laser cooling

techniques allow to gain many orders of magnitude in the phase space density p obtaining a

sample with p _ 10 -r starting from a dilute gas with p _ 10 zB. The final gap in the phase

space density is covered bv evaporative cooling in a magnetic trap. To be effective this cooling

,) t_((-,n elastic and inelastic collision rates _'_l/?i_d.process requires a high enough ratio I e "_

In the case of potassium the laser cooli_g stage is affected 1)3- the peculiar features of the

levels structure and. at the time we start'' ' e,(l to investigate potassium., little was known on the

collisional properties of the potassium isotopes. Something more must be said regarding the

possibility to evaporate a sample of fermions. The Pauli exclusion princiI)le inhibits s-wave

collisions (the predominant collisional channel which is active at very low temperature)

between spin polarized ferinion atoms. As a consequence for a sample of spin polarized

fertnions in a magnetic trap the evaporative cooling will stop at low temperature preventing

from reaching quantum degeneracy. This 1)roblem can be drcumvented using a mixtures

of t_rmions in difl)rent spin states [2,3] or taking advantage of sympathetic cooling [4] in a

mixture bosons-fermions. In spite of tlw exl)erimental complication and the uncertainties

on the collisional properties of the mixture, this scheme would also provide an efficient

diagnostic of quantum degeneracy of the f_rmion sample [5].

As a preliminary step to use the potassium bosons as collisional partners to cool down

via sympathetic cooling the fermionic isotope, we studied cooling and trapping of 3OK and

41K in a double-MOT set-up [6].



Tile laser cooling processfor s°I{ and 41K is complicated by the structure of the D2

transition. Tile hyperfine spacing of tile upper level is coniparable with tile natural linewidth

making not possible to isolate a single cooling transition. The first relevant consequence is

that two laser fl'equencies are needed, separated by the hyperfine splitting of the ground

state, both intense and red detuned with respect to the whole hyperfine structure of the

excited state [7]. A detailed description of our studies on the laser cooling process in a

MOT both for 39K and alK can be found in [SJ [9]. In this context, we would like to give

only the relevant results concerning tile minimum tenlperature and the maximum density

observed. As a direct consequence of the high intensity regime necessary to capture atoms

ill the MOT, the typical temperature during the loading phase is relatively high: few mK. In

order to cool further the cloud we found a regime ("cooling phase") of reduced intensity and

detuning applied for few ms after the loading, allowing to decrease the temperature by one

order of magnitude. Tile coldest observed temperature is _ 150#K corresponding roughly to

tile Doppler limit. \\_ were never able to observe sub-Doppler temperatures, in agreement

with the theoretical analysis predicting a sub-Doppler component of the cooling force only

in presence of very stable laser light (both in frequency and in amplitude) [8]. During the

%ooling phase" an increase of density is also observed. The peak density (_ 108 cm-3)

is however still lower than those obtained in a standard MOT with effective sub-Doppler

cooling . We also tried well established techniques to increase tile density in conventional

MOTs, like CMOT [10] or darkSPOT [11] without any result.

To summarize, at the end of the laser cooling cycle we are able to collect in the second

MOT 10 s - 109 atoms with a inaxinmm density of 10 s cm -3 and a mininmm temperature

of 1501zK. This gives a phase space density p = 10 -_). This numbers have to bee compared

with typical numbers at the end of the laser cooling stage in a rubidium BEC experiment

where one can collect 109 atoms with a density of' 10 ix cm -3 and a temperature of few tens

of #K (p _ 10-6).

In order to assess the effectiveness of evaporative cooling, one has to evaluate the elastic

collisions rate %1 = nay ( where _z is the density, cr is the elastic collision cross section

and v is the relative velocity of two colliding atoms) at the end of the laser cooling cycle.

At low temperature, where s-wave collisions are the predominant collisional channel left,

cr = 87ca 2 (a is tile scattering length). At the time we were facing this problem, theoretical

predictions of a based on photoassociative spectra of :_°ti were contradictory (see table I

[12,13]). We estimated experimentally the eollisional rate loading a cloud of cold 39K or 41K

in a quadrupole magnetic trap. We measured 5¢//%_4 _ 10, which is too small to start

an efficient evaporation. Our very preliminary results have found confirmation in recent

works (see Table I [14,3]). Ill [14] a new analysis of photoassociation spectra of agK gives a

relatively small value for tile scattering length a for 41K and an even smaller one for SgK.

Furthermore the expected sign the a°K scattering lenglch is negative. Ref. [3] reports the first

direct measurement of lal for the fermionic isotope (4°K) in a magnetic trap, from which

values for the bosonic isotopes are predicted and found ill good agreement with [14].

We conclude that having a relatively low density and high temperature at the end of

tile laser cooling stage and collisional parameters not favorable, an efficient evaporation of

potassium bosons would need a very long trapping lit)time (at least 1000 s). Therefore

it seems a reasonable choice to try to use a "simpler" atom like sTiRb as partner for the

sympathetic cooling of the potassium ferniionic isotope. Following this plan we converted



our double-MOT apparatusactually obs('rvingthe condensationin rubidium [?].
Regarding tile fernfionic isotope (*°K) we realized tile first MOT for this atoms in a

natural abundancesample[15]. As a consequenceof tile very low natural abundanceof this
isotope, we observeda MOT with only _-,10_ atomsestimating a temperature T_ 50#K,
well below the Doppler limit. As a inatter of fact the levelsschemeof 4°K is very different
from the one for agK and 41K.The hyperfinespacing is bigger and, more important, the
hyperfine structure is inverted. A better measurementof temperature both in a MOT and
in a molassesof 4°I( hasbeendonein our groupvery recently [16]loading the MOT from an
enrichedsample (3_). Using tile emiehedsamplewewereable to capture 107atomsin the
MOT havinghigh enoughsignalto m(,asurethe temperaturewith the Time Of Flight (TOF)
method. The measuredtemperature confirmedthat sub-Dopplermechanismsare effective
in a MOT of 4°K. This results on the laser cooling of the fermionic isotope of potassium
are very encouraging giving lessstringent requirementfor the lnagnetic trapping of this
atom. Moreover the low temperature attainable let one think to be able to capture the
cold potassium 4°K directly in an optical trap havingno constrains in populating different
magnetic levels.

isotopes H. Boestenet al. R. C6t(_et al. J. Bohnet al. B. DeMarcoet al.
[12] [13] [14] [3]

39-39 -1200 < a_ < -60 81.1 ± 2.4 -17 ± 25 -80 < aT < --28

40-40 1.7 ± 4.4 194_+:_4 136 < aT < 176

41-41 25 < o,T < 60 286 ± 36 65+ 13 49 < aT < 62

39-40 47._5 ± 2.3 --460 +33°inf aT > 500 or aT < --900

39-41 _5.1 ± 4.1 --205+__i_)° 140 < c_, < 185

40-41 -1 2 ± 83 < < 99

TABLE I. Comparison of scattering lengths values.
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Abstract

We study quantum interference effects and internal entanglement of fiber

optical solitons associated with their multi-particle nature. Such effects are

of interest as fundamental macroscopic quantum-optical phenomena but also

as practical mechanisms for noise reduction.

Solitons in optical fibres are uniquely stable macroscopic excitations that can be employed

for the undistorted propagation of information over long distances. At a more basic level,

the propagation of optical solitons is accompanied by unavoidable quantum effects that

progressively modify the stability of the excitations [1]. Such effects are of interest not only

as fundamental macroscopic quantum-optical phenomena but also as practical mechanisms

for noise reduction in optical signal detection. The purpose of this presentation is to assess

the development of these quantum effects in soliton dynamics, with particular emphasis on

phenomena that occur over distances no greater than the attenuation length.

We consider the propagation of the optical pulse with a mean frequency _ in a single-

mode polarization-preserving optical fibre. On the quantum level, it is described by the

quantum nonlinear SchrSdinger equation (QNSE) including both the effects of the group

velocity dispersion (GVD) and the Kerr nonlinearity:



O^ a 2

i_--_¢(t,x) - Ox2_(t,z ) - 2C_)t(t,z)_(t,x)_(t,x), (1)

where z is the normalized deviation from pulse center, t is the normalized propagation dis-

tance, (_(t, x), at(t, z) are the annihilation and creation operators of photons at a "point" x

and ':time " t, and the nonlinear coefficient C characterizes the ratio between Kerr nonlin-

earity and GVD. We address the problem in SchrSdinger picture using Bethe ansatz (see

also [2]). The system is analogous to that of the one-dimensional Bose gas in an attractive

&function potential. It results in the formation of the photon number - momentum bound

states, and the attractive binding force is the Kerr nonlinearity of the fibre. We consider the

evolution of the soliton state, which is a superposition of these bound states, in the frame

of the time - dependent Hartree approximation. This means that in the limit of a large

number of particles each of the particles (photons in the case of a soliton) experiences the

same attractive 5 - potential.

To visualize the evolution of the quantum state of the fundamental soliton I_(t)} we

calculate the Q-function

Q = I_(t)} = U(t)]_(O)> (2)

which is the anti-normally ordered quasiprobability distribution in phase space. U(t) is the

evolution operator determined by the interaction Hamiltonian of the system. For the soliton

pulse with the average photon number g, the parameter A defined as n = fi + A and the

nonlinear parameter 7 = C2t/2 soliton Q-function takes the form:

(a*a°)_ exp[in @2 _ fi2) ]Q(c_, o!*, t) = e -1_°12-1_1= × rt[ (3)

or, equivalently:

Q(a, a*, t) = e-1_°12-1_12x A oo u(t)_=__ (_ + A)!
(4)

U(t) = expi[_l/k + (I)2A 2 4- (TP3zi3]. (s)

The term q)lA = fi2_//k in the exponential phase factor (5) is the linear phase shift, which

leads merely to a rotation in phase space. The quadratic nonlinear term _2A 2 = fi3_/A2 has
2

the same ibrm as the evolution factor for the single-mode field in a Kerr medium. Figure 1

(a,b) shows the main features of the time-development of the quantum soliton Q-function

in a regime where the effects of the quadratic phase _2A 2 are more important than those

I' A 3 Although the dynamics follows the single-of the third-order nonlinear phase O3A 3 = _ .

mode behaviour only approximately, it is an interesting aspect of the evolution, because the

quantum effects in the dynamics emerge here at the distances by a factor of fi shorter as

usually considered in optical experiments [3]. Figure l(a) displays the formation of crescent-

shaped squeezing contours, corresponding to a state with reduced number uncertainty, which

is also a characteristic of the single-mode coherent state evolution in a Kerr medium [4].



Further propagationof the optical field results in spreadingof the Q-function contours in a
ring, with the formation of quasi-periodicmulti-component quantum interferencepatterns.
Figure l(b) showsthe Q-fnnction for _2 equal to rr/2, with the form of an approximate two-

component superposition, which we call a quasi-cat-state. In comparison with the dynamics

of the single-mode pulse in a Kerr medium, the additional structures and shifts in peak

positions are caused by the smaller third-order nonlinear phase term _aA 3 = 1Aa. For
2

longer propagation distances, where the third-order phase _aA a plays a more important role,

the Q-function (Fig. l(c)) breaks up into multi-component interference structures (multiple

SchrSdinger cat states). In contrast to the typical single-mode superposition states produced

in various nonlinear optical processes, the peak amplitudes of the individual components

differ and their phase separations lie at unequal intervals around the ring of radius v/-fi.

As it is seen from Eq.3,4,5 and Fig.1 the nonlinear dynamics of the quantum fundamental

soliton state in an optical fibre differs essentially from that of the single mode case. Mathe-

matically, the quantum soliton acquires an extra factor n in the relevant equations and the

evolution factors and the phase shift due to the Kerr interactions are nonlinear in n2 by ref-

erence to the linear dependence in a single mode case. These reflect the stronger interaction

of the photons in the pulse with each other and the medium (in comparison with a single

mode case) and lead to the development of the internal entanglement in a soliton pulse. One

of the evidences of this intrapulse entanglement is the recent observation of the quantum

spectral correlations in femtosecond soliton pulses [5] providing the additional mechanism

for noise reduction. In the case of fibre solitons, the conventional Kerr-type squeezing [4]

due to the phase - photon number correlations is efficient at the earlier stages of squeezing

development. With the propagation distance, the quantum spectral correlations [5], i.e. the

photon number - photon number correlations, come into play and turn to the main noise

reduction mechanism.

It is worthwhile to estimate the feasibility of the experimental observation of quantum

interference effects, like the superposition states (for details see [6]). The presence of the

single-mode-like dynamics, though exhibited approximately only, is associated with the pe-

riodicity in the evolution of the quantum state in phase space, and the formation of the

coherent superposition states (Fig. lb). These features come into play at distances shorter,

by a factor of order _, than the quantum interference structures due to the characteristic

soliton dynamics (Fig. lc). This may allow for the possibility of experimental observation

of the intrinsic quantum effects in the evolution of the macroscopic quantum objects, soliton

pulses.

The authors (NK, RL and MWH) greatly appreciate the financial support of the Alexan-

der von Humboldt Foundation and the hospitality of Prof. Dr. Gerd Leuchs and his group.
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FIG. 1. Q-function of the fundamental quantum soliton at different stages of the evolution,

characterized by the nonlinear phase shifts O2,ep3: a) squeezing; b) quansi-cat-like-state; c)

multi-component interference structures. Parameter _ is the complex amplitude of the field, n

is the average photon number per pulse.
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Abstract

The displacement transducer pumped with a train of high-intensity laser

pulses is considered. An expression for the minimal detectable external clas-

sical force resembles those for the continuous wave pumping with substitution

of the laser power by a time averaged power of pulsed laser. Possible scheme

for back action noise compensation for such transducers is considered.

The sensitivity of modern longbase laser interferometric gravitational wave detectors

to metric perturbation will be about h _ 10 -21 that corresponds to the classical regime

of operation. However for future installations with projected sensitivity 10 .22 + 10 -2a the

quantum features of the measurement process can play a significant role. At the same time

there are no principal limits on the accuracy of measurement of external classical force.

Therefore the methods and schemes which allow to overcome the quantum measurement

limitations [1] (or the so called standard quantum limit, SQL) is of vital importance for

future generation of gravitational wave experiments.

The pumping with a train of high-intensity laser pulses for gravitational wave detectors

can be technically advantageous over a continuous wave pumping for practical realization of

the schemes overcoming the SQL. In this contribution a sensitivity of a displacement trans-

ducer illuminated with a train of high-intensity laser pulses is considered and the algorithm

of optimal signal processing for such transducer is revealed.

Let consider the most simple case of optical displacement transducer - a mirror attached

to a mass of a mechanical oscillator and illuminated with a train of high-intensity laser

pulses. An external force displaces an equilibrium position of mechanical oscillator changing

the phase of reflected wave. The variation of the reflected field phase is measured by a

homodyne detector. This model is easy to calculate and it contains at the same time all

features of displacement transducers with pulsed pump. For the incident El and reflected

Er waves one can use the quasimonochromatic approximation

Ei = (A(t - x/c) + al). cosWp(t-- x/c) - a2-sincop(t - x/c)
Er = (B(t + x/c) + bl) . coscop(t+ x/c) - b2. sincop(t+ x/c) (1)

where A(t - x/c) and COpare an amplitude (mean value) and a frequency of the pump wave,

al and a2 are the operators of the quadrature components (fluctuations) of the pump wave



(vacuum for coherent state), B(t -]- x/c) is an amplitude (mean value) of the reflected wave,

bl and b2 are the operators of the quadrature components (fluctuations) of the reflected

wave. The periodic envelope function A(t - x/c) consists of a train of equally spaced pulses

with period T and the duration of each pulse is considerably larger than the period of light

wave but considerably smaller than the period of the mechanical oscillator. The spectrum

of the pump has the form of a train of pulses in frequency domain with the distance between

neighbour pulses tun -_- 27rT -1. For the amplitude of the pump A(t) one can use the expansion

into the Fourier series

oo

A(t) = _ gn exp(--inwqt) (2)
n_--O0

and the particular form of A(t) is defined by the set of Fourier amplitudes g_.

To obtain the equation coupling the amplitudes of the incident and reflected waves for

the moving mirror one can use a transformation of electromagnetic field for moving reference

frame. Then in linear approximation in V/c and for not very large frequencies one can obtain

the following expression for the transformation of the quadrature components of the field

bt(t) = -al(t)

b2(t) = -a2(t) + 2wpA(t)X(t)/c (3)

where for simplicity the reflection coefficient of the mirror is taken to be r _ -1 and X is

the position of the mirror.

For the motion of the mirror one has the following equation

J_(t) + 25,J_[(t)+ tu_X(t) = M-l(Fs(t) + Fp(t) + Fth(t)) (4)

where M and 5, are the mass and the damping coefficient of mechanical oscillator, Fs(t)

is a signal force, Fp(t) is a radiation pressure force and Fth(t) is a force associated with

the damping of the oscillator. Let suppose for simplicity that 5, tends to zero. Then the

displacement X(t) of the mirror will consist of two parts - a signal displacement Xs(t) and

a radiation pressure displacement Xp(t). For Fp(t) one has

Fp(/) = SA(t). a1(t)/(47r) (5)

where S is a cross section of the laser beam.

The response of the displacement transducer have many frequency components at tu =

ntun, n = 0, 1... according to the equations (3) and each frequency component contains the

signal part besides the radiation pressure force Fp(t) have also wide spectrum (cf. (5)). So

there are two problems: how to collect the signal parts from the whole spectral band of the

output and how to achieve the compensation of the radiation pressure noise in the output to

circumvent the SQL. It occurs that two problems can be overcome by the use of the pulsed

local oscillator with the amplitude time dependence resembling that for the pump.

For the radiation pressure displacement Xp of the mechanical oscillator one has from

equations (2), (4) and (5) the following expression

oo

Xp(tu) = G(tu)Fp(w) = ha(w) E gnal(tu -- f/,tuq) (6)
n_--OO



where G(a) = [M(-a 2 - 25_ia + w_2)]-1" is oscillator transfer function and ,_ = S/(4rr).

For the quadrature transformation in frequency domain one can obtain the following

equations from (2) and (3)

bl(a ) = -al(a )

b2(w) = -a2(co) q- 2apC -1

oo

g (x.(a - kan)+ xs(a - taq)) (7)

Let suppose the local oscillator field in the form of EL(t) = At(t) cos(apt q- qS) where the

dependence of the amplitude AL(t) on t is much slower than cos apt. Then for the envelope

of the local oscillator field AL(t) the Fourier expansion similar to (2) is valid

(x)

AL(t) = _ e,_ exp(-inwqt) (8)

The photodetector current has the following form

Ipd O(AL(t)(bl(t) cos¢ + b2(t)sin ¢) (9)

and in the frequency domain one has

oo oo

Ipd(W) Cx:COS¢. E enbl(a-nWq)+sin¢. E e_b2(w-naq) (10)

Let consider different parts in the photodetector output. The first term in equation (10)

depends only on the amplitude fluctuations of the input field according to (7)

co oo

cos¢. _ e,_bl(w-naq)=-cosO. E enal(a--glaq) (11)

The second term in equation (10) contains the signal and the noise parts. Tile noise part

I2, consists of the additive noise and the back action noise and has the following expression

according to (6) and (7)

oo

I2,=-sin6" _ e,_a2(a - naq) + 2wpc -l sin ¢ . A .

E E engka(a -- _aq -- _aq)( grnal(a -- /gaq -- rtaq -- /)),an) } (12)

n=-oo k=-_ rn=- oo

Let consider only the photocurrent at small frequencies a _ a,. Then the main input

into the photocurrent will be given by the resonant terms for which k + n = 0. With this

supposition one has from equation (12) ({(a) = 2apG(a)c -1 )

oo oo oo

/2n=--sinb _ ena2(a--naq) q-sin_.A_(a) _ emg-m _ gnal(a--naq)} (13)

Comparing equations (11) and (13) one can conclude that full compensation of back

action noise in the photocurrent is possible only for en = ag,_, where a is the same for all



numbers n so the forms of pump and local oscillator fields have to be the same (apart from

the scale factor cx).

Let now consider the signal part I2s of the second term in the r.h.s, of equation (10).

From equations (4), (7) and (10) one has for k + n = 0

hs=sin¢'_(W)Fs(W)

(30

E] (14)
n_--OO

Combining equations (10), (13) and (14) and supposing that the back action noise is com-

pensated in the output of the photodetector one can obtain for the signM-to-noise ratio #

the following expression

Ftt cx NoIP I ((aJ)F_(a_)12 dw = #_w
oo

(15)

where it is supposed that fluctuations at frequencies w- ncoq, n = 0, 1... are uncorrelated

and have the same spectral density No (this assumption is valid for not very small duration

of pump pulses), P is proportional to the time averaged power of the pulsed pump, Itcw is the

signal-to-noise ratio for continuous wave pump with a power P and correlative processing

of the output [2]. Note that the sensitivity here is not limited by the SQL like in the case

of correlative processing of quadratures for the monochromatic pump [2] and is increasing

with_ the increase of P.

It is worth to mention that the condition for the back action noise compensation for the

pulsed pump is just the same as for the monochromatic pump [2] with substitution of the A 2

with the time averaged value P. Therefore the compensation of the back action noises for

the finite frequency band can be possible for the time varying phase of the local oscillator

[2].

In conclusion the pumping of the displacement transducer with a train of a short high-

intensity laser pulses can be advantageous over the single frequency pumping because in this

case the energy of the pump is spread over the large frequency band and high intensities

can be produced relatively easy. At the same time the amplitude and frequency stability

of the pulsed pump in the case of a mode locked laser can be at the same level as for

the monochromatic pump [3]. Besides the perspectives of squeezed states generation with

high nonclassicality for the case of short laser pulses seem more realistic allowing the use of

squeezed pulsed pump in displacement transducers [4].
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Abstract

The generalized h-dependent operator algebra is defined (0 <_ h <_ ho).

For h = ho it becomes equivalent to the quantum mechanical algebra of

observables and for h = 0 it is equivalent to the classical one. We show

this by proposil)g how the main features of both mechanics can be defined in

operator form.

I. INTRODUCTION

There have been many investigations concerning the algebraic structures of classical

and quantum mechanics with different epistemological horizons [1-4 and references therein].

Here, our interest is to study the semiclassical limit of quantum mechanics (QM) in the

algebraic framework. For that reason an operator formulation of classical mechanics (CM)

is proposed, which is very similar to the standard QM one. Our intention is the formulation

in which all the characteristics of QM and CM are preserved. Therefore, the mathematical

arena for that purpose has to be wider than the one usually used in the representation

of QM. In some sense, it could be seen as a direct product of coordinate and momentum

representations of QM, so it mimics phase space formulation of CM.

II. BASIC DEFINITIONS

Firstly, we introduce the generalized operator h-dependent algebra of observables which

is defined as the algebra of polynomials with real coefficients over the operators (_, /5 and

2", which are defined as:

[,9=(9®/® -_,_+1-Vo° ._,,+i®,9®-_, (1)



and

(2)

(a)

These operators act in _'_q @ _'_p @ _'_r where q, p and r are indices, the first two spaces

are rigged Hilbert spaces and the third is, at least, a two dimensional Hilbert space. More

concretely, _-_q and _'_p are formally identical to the rigged Hilbert space of states which is

used in nonrelativistic QM of a single particle with the one degree of freedom when spin

is neglected° The indices q and p serve only to denote that the choice of a basis in these

spaces is a priori fixed. For the basis in T/q ® _-_p we take Iq} ® IP}. Here Iq} and IP} are

eigenvectors of (_ and /_, respectively. Then, T/q ® T/p can be seen as an analogue of the

phase space;. The third space is introduced only for the formal reasons. The parameter h

takes values from 0 to ho where ho is related to QM (the nonvanishing Planck constant)

while for h = 0 the above algebra will be related to CM. The operators Q and/5 are as the

operators representing coordinate and momentum in standard QM: they do not commute

([(_,/5] = ih[), they are Hermitian etc.
^ ^

For projectors /_q and /_p the following relations should hold: RqRp = 0, RqRq = Rq,

RpRp = Rp, [_ = Rq, R], = 1_p and /_q +/_p = /_. They have no physical meaning and

are introduced to ensme desired formal properties. This becomes obvious when one forms

polynomials over (_ and/5.

III. QUANTUM MECHANICS

When the above algebra of operators is represented in the basis lq} ® IP} ® Iri}, where

i = {q,p} and Irk} is the eigenvector for /_i, for h = ho it becomes equivalent to the

representation (in the same basis) of:

= ¢ ® ® + f ® ® (4)

Pqm--/5® f®R +i®P ® (5)

and

Z-:[®[®[. (6)

This algebra and the appropriate eigenvectors are in one-to-one correspondence with

the standard formulation of QM (defined in one rigged Hilbert space). Namely, for these

representations of QM, for the coordinate and momentum, it holds: [Qqm,/Sqm] = ihZ, as

it is necessary. Moreover, due to the mentioned properties of /_q and /_p, the standard

representation of QM observable, e.g., f((_,/5), is now translated to

f(Qqm, Pqm)- f ((_,/5) ® [ ®/_q + [ ® f(_,/3) ®/_p. (7)



The ordering problem for operators is here inherited from the standard QM. This we
shall discusselsewhere.If IkOi}wereeigenstatesof f((_,/5), then

I_i} = Cq[_i) ® [aI ® Irq} Jr cplb } ® ]_il Q [rp}, (8)

are eigenstates of f ((_qm,/3q,_) with the same eigenvalues. The coefficients Cq and Cp has to

satisfy only the condition Icql2 + [cp]2 = 1, and vectors [a} and [b} are fixed at the beginning

of all considerations, they are arbitrarily picked and they only have to be normalized. The

quantities like the mean values, the spectrum, and all relations and properties among eigen-
states of the same or different observa,_les are the same as in the standard formulation of

QM (what can be easily seen). Obviously, _q @ Up @ _r is much wider than it is necessary

for representing just the QM. Only a subspace of _q@Hp@Hr, which depends on the choice

of la), Ib}, Cq and which is [ormed over the basis [_i), has the QM interpretation.

IV. CLASSICAL MECHANICS

On the other hand, for the above representation of (1-3), but for h = 0, the above algebra

(1-3) becomes equivalent to the representation of:

(9)

(10)

and

(11)

This algebra and the appropriate eigenstates are in 1-1 correspondence with the standard

formulation of CM (defined in the phase space). Namely, to the c-number formulation of a

CM observable, e.g., h(q,p), now corresponds h((_c,_,/5cm). Such an algebra is manifestly

a commutative one. The vectors [q0} @ [P0} ® (Cq]rg) + c,[rp})) are eigenstates of all CM

observables for the eigenvalues h(qo, Po). These vectors are the analogs of the points in

phase space for a CM system with one degree of freedom. For these pure states it holds:

Iq0}{q0J ® IP0>(P01 @ (Cqlrq) + cvlrp>) (Cq(rql + c;(rvJ ) =

= fS6(q-qo)5(p-po)Iq){ql@lp}(pldqdp@(cqIrq}+Cplrp})(Cq(rql+C[_{rpl)= (12)

-- 6(47-q0) ® -;0) ® (cqlrq>+ c lr >) (c ( ql +

Motivated by this, the mixed CM states now can be defined as p((_ ® I, [ ® /5) ®

(Cqlrq) + %lrp))(Cq(rql + Cp0_l ). All CM states will be Hermitian, non-negative operators

and normalized to 62(0) if p(q, p) is real, non-negative and normalized to 1 as in the standard

phase space formulation of CM. The mean values of both QM and CM observables are now

calculated by the insatz: (A) = Tr(Dft)/Tr[h so the norm 6:(0) does not affect anything

in the theory.

There will be a complete correspondence between the c-number formulation and the

above given operator formulation of CM if the dynamical equation (Lie bracket) is defined

as the Liouville equation, where the partial derivations within the Poisson bracket are done
^

with respect to the operators Q_ and Pcm.



V. CONCLUDING REMARKS

The semiclassical limit of QM is established through the generalized operator algebra,

since for the one extreme value of h it expresses QM properties while for the other value of h

it has CM ones, and only for h E {0, h0} operators Q and/5 have a physical meaning. This

holds for each polynomial with real coefficients over coordinate and momentum no matter of

how these operators are ordered. The ordering problem we shall discuss elsewhere together

with the semiclassical limit of generalized Lie bracket. We have not expressed the above

operators explicitly after representing them only for the sake of simplicity. It could be easily

done having in mind that [Q, t5] = ih[ and that Iq} and IP) are eigenstates of Q and /5,

respectively.
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Abstract

Model independent uncertainty-like relationships for D-dimensional

quantum-mechanical systems are obtained using the concept of information

entropy. Numerical comparisons employing accurate Hartree-Fock atomic

densities are done in the whole Periodic Table.

The electron densities in position p(r) and momentum 7(p) spaces plait a significant role

in the modern quantum theory of N-particle systems, as in the Density Functional Theory

[1]. Some radial expectation values of the aforementioned densities for a D-dimensional

system, defined as (r a) --- f rap(r)dDr, (p_) -=- f p_7(p)dDp, are experimentally accessible

and/or physically meaningful in different systems (see references in [2]). More recently, the

so-called logarithmic expectation values (r _ lnr) and (p_ lnp} have been shown to be also

relevant in the description of some features of this kind of systems [3].

The Heissenberg uncertainty principle can be expressed in terms of the best known

relation involving radial expectation values of conjugate spaces

There are other known uncertainty expressions involving radial expectation values, obtained

by using different techniques [4], namely:

1
(3)



Inequality (3) is a particular case of the Pitt-Beckner inequality [5]

(p-a) < 2-a (r((D-a)/4) (<) (4)
- \P((D+a)/4)

In this work we show how the concept of information entropy allows us to obtain uncertainty

relations which generalize and improve the above mentioned ones. To study the accuracy

of such inequalities, a numerical analysis has been carried out for neutral atoms within a

Hartree-Fock framework.

UNCERTAINTY RELATIONS

F

1 /(D- 2) 2 +>_
L

The so-called Fisher entropy and Shannon entropy of a D-dimensional density function

can be considered, in an information-theoretical context, as two different and complementary

measurements of the degree of spatial delocalization of such distribution. Several sets of

uncertainty relations expressed in terms of radial and logarithmic expectation values can

be obtained, based on the concepts of Fisher and Shannon information entropy, and on i)

the use of a known uncertainty principle for each entropy, and ii) bounds to these entropies

derived variationally and/or using different classical inequalities [6].

The Fisher information entropy I I of a D-dimensional density function f(r) is defined

as [7]

Ivf(r) l2
b - f f(r) dr (5)

The Stam uncertainty principle [8] establishes an upper bound to the entropy Ip of the

one-particle density p(r) in position space in terms of the mean square momentum {p2)

(related to the kinetic energy of the system) in the form

Ip < 4 (p2) (6)

and similarly for the entropy I v associated to the momentum space distribution 7(P) in

terms of the mean square value of the conjugate variable.

Using this uncertainty principle together with the D dimensional bounds to the Fisher

entropy [9] (which have been derived in a similar way to that of Ref. [2]) the following

expressions are obtained:

--(r3-1)2 = Bi(¢/); /3 > -1 (7)
(z + 1) 2

(r23)(r-2) - (re-l)

1

<) _> (<2)2 ] = B2 (8)(D- 2)2+ (r-2(lnr) 2) (r_2) _ (r_21nr) 2

@2}< (3+D-1)2-- 2

-3
"7"3-1"2 --B 3 ifD>__2 and 3> 2

(r2e) -- (9)



) -3 (lO)<><-- 2 <T2_) -- B4 ifD _< 2 and _ > y

These inequalities improve Eq.(3) accordingly to the fact that <rb)<r -2) - <rb/2-1) 2 >_ O,

as HSlder inequality establishes.

The Shannon Information Entropy of a density function f(r) in a D-dimensional space

is defined by

S I = - f f(r)ln/(r)dr (11)

Concerning this entropy, the key inequality to obtain uncertainty expressions between radial

and logarithmic expectation values is the inequality of Bialynicki-Birula and Mycielski [10]

Sp + S_, > DN(1 + ln_) - 2NlnN (12)

Angulo uses that concept and several variational relations [11] between the Shannon entropy

and the expectation values (r"), (lnr), ((lnr) 2) to obtain:

r2(1 + _) _) eD-_-_N "+_ (13)

87r exp D- I - D (lnr} + (lap). (14)- N

where A(a) = _/(a 2) -(a) 2.

The relations (7)-(10) and (13) and (14) connect different sets of expectation values so

they are complementary inequalities. In addition these expressions generalized the known

relations (1) to (3). The uncertainty relations (7) and (8) improve the expression (3) using

more information, i. e. , by means of more expectation values.

A numerical analysis of the quality of some of these inequalities have been done using

the NHF atomic wave functions of Refs. [12]. The analysis have been done to see how the

inequality (3) is improved with the new relations (7) and (8). We can observe in table 1

that in general the best inequality is B2, and that all the new relations improve the relation

(3).

N B2 BI(1) BI(0) Eq.(1)

Table 1 Numerical analysis of the accuracy of some of the bounds to (r -2)-1 (p2) by means of

the accurate Koga-Hartree-Fock wavefunctions [12] for some neutral atoms with N electrons.



SUMMARY

The conceptsof Fisher and Shannoninformation entropiesallow us to reachtwo setsof
D-dimensional uncertainty relations. The keys to obtain these sets are the Stam and the

Bialynicki-Birula uncertainty principles, and several bounds to these entropies. The analysis

of the different relations reveals a large improvement in some cases respect to the previously

known ones.
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The quantum statistics of damped higher-order optical solitons are ana-

lyzed numerically, using cumulant-expansion techniques in Gaussian approxi-

mation. A detailed analysis of nonclassical properties in both the time and the

fi'equency domain is given, with special emphasis on the role of absorption.

Highly nonclassical broadband spectral correlation is predicted.

From classical optics it is well known that nonlinearities can compensate for the

dispersion-assisted pulse spreading [1,2] or for diffraction-assisted beam broadening (see,

e.g., [3]). In the two cases, the undamped motion of the (slowly varying) bosonic field

variables gt(x, t) is governed by the Hamiltonian

[I = h f dx [½w(2)(O:_t)(0xgt) + 1Xfitftgtf] , (1)

[a(x,_),at(x,,_)]= _(x- _') (2)
It, propagation variable; x, "transverse" coordinate; a2(2), second order dispersion or diffrac-

tion constant; % nonlinearity constant; see, e.g., [4,5]]. Note that bright temporal solitons

can be formed either in focusing media with anomalous dispersion (;y < 0, _(2)> 0) or in

defocusing media with normal dispersion (X > 0, w (2) < 0), whereas spatial solitons require

always focusing nonlinearity. The effect of absorption is described in terms of ordinary

Markovian relaxation theory resulting, in the low temperature limit, in the master equation

0t#= [O,#]+ iTh;/d_(2a#at- #ata- ata#)"ih (3)

(7, damping constant).

The master equation (3) is converted, after spatial discretization, into a pseudo-Fokker-

Planck equation for an s-parametrized multi-dimensional phase-space function, which is

solved numerically using cumulant expansion in Gaussian approximation [5]. The initial

condition is realized by a multimode coherent state without internal entanglement, and it

is assumed that the field expectation value corresponds to the classical N-soliton solution,

(gt(z, to)) = Nao sech(x/Zo), N = 1,2,... (a0 and x0, mean amplitude and width of the

fundamental soliton, respectively).

Spectral properties can be studied introducing the Fourier-component operators

5(a3, t) = (27r)-_ dze_fi(x,t). (4)
oo

Here we restrict our attention to correlations of photon number fluctuations. In the case

of fiber soliton pulses the correlations in the aJ-domain can be measured using appropriate

spectral filtering (see, e.g., in [6]). In the case of spatial solitonic beams the correlations in

both the x and c_-domains, respectively, can be measured by filtering the field in the near-

and far-field zones of the output beam (see, e.g., [4]).
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FIG. 1. The evolution of the mean photon number <hi) and the correlation coefficient _]ii

of an undamped soliton, N = 2, is plotted in the x-domain, Ax = 0.05 x0 [(a),(b)], and the

_-domain, Aw= 0.25a_0 [(c),(d)]. The plots (el)-(es) (x-domain) and (fl)-(fs) (_-domain)

show the correlation coefficient rj_j for typical propagation lengths (a;0 = 1/xo, td = Ix_/_(2) I,

f dxat(x,O)a(x,O)=S × 109).

The output can be given by (see, e.g., [7])

(5)

where, according to the domain considered, r, stands for x or a, and G(w,t), IG(,,t)l _< 1, is

the (complex) transmittance of the filter and f(,, t) is a bosonic noise operator. The photon

number operator of the detected light is h = f d_ bt(L,, t)[)(,, t). Assuming square bandpass

filters with G_(_, t)= 1 if It,- Q_] < Af_ and G_(w, t)=0 otherwise, we consider the correlation
coefficient
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FIG. 2. The maximal violation of the Cauchy-Schwarz inequality for the photon number

fluctuation [plots (a)- (d)] and the smallest Fano factor F : (Aft2)/(fi} (strongest photon

number squeezing) achievable with optimized filters [plots (e)-(h)] are shown for the funda-

mental soliton, N = 1, (dotted line) and the soliton with N = 2 (full line) [x-domMn: plots

(a), (b), (e), (f), cz-domain: plots (c), (d), (g), (h); 7 = 0: plots (a), (c), (e), (g), 7td = 0.03: plots

(b), (d), (f), (h); other parameters as in Fig. 1].

(: AniAfij :) Cij= (6)
?]ij = _/(Ah2)(z2kh2} _/(cii q- lTti)(Cjj q- 17tj)

(rni = (hi), cij = (: AhiAhj :), Ahi = hi - mi), where: : introduces normal ordering. It can

be shown that 7]ii _ 1, and [r/ijl _< 1 for nonoverlapping intervals. A negative sign of the

coefficient r/ii or a value smaller than unity of the Fano factor Fi= (Ah_)/(hi} =(1- r/_i) -_

indicates photon number squeezing of the filtered light.

From Fig. 1 it is seen that typical changes in the evolution of/hi) [Figs. l(a), (c)] and

those of r]ii [Figs. l(b), (d)] and r]ij [Figs. l(e_)-(es), (fl)-(fs)] are closely related to each other.

Near the points of soliton compression [maxima of (hi) in Fig. l(a)] the formation of strong-

correlation patterns is observed [Figs. l(e2)-(e4),(f2),(f4)]. In contrast to the x-domain

[Fig. l(b)], sub-Poissonian statistics is observed in the aJ-domain [Fig. l(d)]. Moreover, the

correlation in the a3-domain extends over a larger interval (relative to the corresponding

initial pulse width) than the correlation in the x-domain. One possible explanation of such

strong, almost perfect correlation (Ir]_jl _ 1) can be seen in the instability of the classical

N-soliton solution. From a linearization approach [8], the internal noise of a quantum

soliton should be associated with interferences [9] between the soliton components and the

continuum part of the solution to the classical nonlinear Schr6dinger equation, as obtained

by means of inverse scattering method (see, e.g., [10]). The qualitative changes observed for

turning from the fundamental soliton to higher-order solitons (N = 1 -+ N = 2, 3,...) are due

to the presence of more than one soliton component. Discrepancies between the parameters



(amplitude, group velocity, etc.) of the soliton componentsof the N-soliton solution play

the central role in establishing very strong internal correlations.

Nonclassical correlation can be detected, e.g., by testing the Cauchy-Schwarz inequality

for the normally ordered photon number variances. When it is violated, i.e.,

2
CiiCjj -- Cij < O, (7)

then the photon number noise in the intervals i and j is nonclassically correlated. Figures

2(a)-(d) reveal that the nonclassical correlation of the 2-soliton is substantially stronger

than that of the fundamental soliton even for an absorbing fiber. Such an increase cannot

be explained by a simple intensity scaling. The effect is obviously related to the mentioned

instability of higher-order solitons. It is remarkable that there exist propagation distances

for which the nonclassical correlation is stronger for an absorbing fiber than a nonabsorbing

one.

The strongest photon number squeezing (smallest Fano factor) achievable with an op-

timized broadband filter is illustrated in Figs. 2(e)-(h). Compared with the fundamental

soliton, only a small increase of the effect is observed for the 2-soliton in the w-domain

[Fig. 2(e), 6.6 _ 8.4dB]. On the contrary, a rather strong increase of the effect can be ob-

served in the x-domain [Fig. 2(9), 3.3-+ 9.6dB], provided that losses can be disregarded. It

is worth noting that the best photon number squeezing is achieved in the w-domain for the

fundamental soliton and in x-domain for the 2-soliton. The results show that the degree

of squeezing sensitively depends on the domain considered. Hence, replacing the Fourier

transformation in Eq. (4) [including Eq. (5)] with more general transformation that relates

the fields in the two domains, may offer possibilities of further optimization. In particular,

when we restrict our attention to linear transformations which can be realized experimen-

tally by passive linear optical elements, then we are left with a two-dimensional integral

kernel function to be optimized. In this way we may hope that also for other nonlinear

quantum objects a considerable improvement of nonclassical features can be achieved.
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We show that the resonance fluorescence spectra emitted from a two-level

atom driven by a strong, coherent field and a weak, amplitude-fluctutating

field are qualitatively similar to those produced by a driven two-level atom in

a squeezed vacuum. This prompts a comparison of the behaviour of atoms

interacting with classical and quantum noise sources.

In 1987, Carmichael et al. [1] showed that a monochromatically driven two-level atom

interacting with a squeezed vacuum exhibits strongly phase-dependent features in resonance

fluorescence. The relative heights and widths of the spectral triplet vary greatly with the

phase of the squeezed vacuum relative to that of the driving field. In addition, some peaks

may show subnatural linewidths. Although these effects were predicted over a decade ago,

their experimental verification remains a major challenge in quantum optics. The principal

difficulty is that the squeezed field modes must occupy the whole 4_ solid angle of space.

The squeezed vacuum is a quantum field, and it is tempting to attribute the features

described to the quantum nature of the squeezed vacuum. However, in this paper we describe

an arrangement using only classical fields which leads to very similar spectra. The only real

difference is that subnatural linewidths do not occur, at least in this parameter range, if the

fields are all classical 1. Details may be found in the reference [2].

We consider a two-level atom driven by a strong, coherent laser, and in addition, by a

weak, amplitude-fluctuating field of wide bandwidth which replaces the squeezed vacuum.

The experiment should be feasible with current technology, and avoids the problem of the

4_ angle of squeezing. We study the modification of the Mollow triplet as controlled by

the phase difference between applied coherent and stochastic fields. The coherent field has

a constant amplitude Ec, and the stochastic field a randomly fluctuating amplitude Es(t).

The atom is also damped in the usual way by the electromagnetic vacuum. The frequencies

of the atomic transition, of the coherent laser and of the stochastic field are assumed to be

identical for simplicity.

1Subnatural linewidths do occur with classical fields in other parameter ranges (W. S. Smyth and

S. Swain, J. Mod. Opt. 46, 1233 (1999)).



The masterequation for the density operator p of the system is

i_= -i [Ha-c+ Ha-_,p]
+7(2a_pa+ - e+cr_p- pa+e_), (1)

where

f2

Ho_c= _(_+ + __),

2

(2)

(3)

H_-c and H___ describe the interaction of the atom with the coherent field and the stochastic

field, respectively, 7 is the atomic decay constant, ¢ is the relative phase of the two fields,

= 2[d. eEcl/h is the Rabi frequency of the coherent field, and x(t) = 2[d. eEs(t)[/h

represents the stochastic amplitude of the atom/stochastic-field interaction, which is assumed

to be a real Gaussian-Markovian random process with zero mean value and correlation

function,

(x(t)x(t')>= D_ -_t'-'t, (4)

where D is the strength of the stochastic process and a can be associated with the bandwidth

of the stochastic field. The correlation function (4) describes a field undergoing amplitude

fluctuations, which result in a finite laser bandwidth a.

For simplicity, we assume that the intensity of the coherent part is much greater than

that of the stochastic field, and the bandwidth a of the stochastic field is much greater than

the atomic linewidth (in other words, the correlation time t_-1 of the stochastic field is very

short compared to the radiative lifetime 7 -1 of the atom). That is,

_>>_/V/ and _>>_. (5)

One can then invoke standard perturbative techniques to eliminate the stochastic variable

x(t). The resultant master equation for the reduced density operator p in the particular case

where 0 = 0 is

= -i [H___, p]

+7(N + 1)(2__p_+- _+__p- p_+__)
+TN (2cr+pa_ - a_cr+p - per_a+)

+27Ma+pa+ + 27M_r_pcr_, (6)

where M = N = D/47.

The master equation (6) is the formally the same as that of a coherently driven two-

level atom interacting with a squeezed vacuum. However, the ideal squeezed vacuum (ISV)

satisfies IMI = _/N(N + 1) whereas here we have M = N. This value of M corresponds to a

reservoir in which there is the maximal classical correlation between pairs of photons. Such

a reservoir is sometimes called a "classically squeezed field" (CSF).
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FIG. 1. Resonance fluorescence spectrum F(w) for ft = 2003', _ = 1007, D = 107, with (a)

¢ = 0 and (b) ¢ = Ir/2. Frames (c) and (d) are for an ideal squeezed vacuum with f_ = 20 V and

N = 0.25, • = _r in (c) and N = 0.05, • = 0 in (d).

For @ = 7c/2, we again obtain an equation of the form (6), but now with N = -M =

D/47 x _;2/(f_2 + _2). For ¢ -¢ 0, 7c/2 our stochastic system does not correspond exactly to

that of a classically squeezed field.

In Figure 1 we present the resonance fluorescence spectra for the stochastic system with

f_ = 2007, _c = 1007 and D = 107 in frames (a) and (b) for ¢ = 0 and 7r/2 respectively,

where the strong phase dependence is evident. In frames (c) and (d) we give the spectra for

the corresponding ideal squeezed vacuum, with f_ = 20 and N = 0.25 in (c), and N = 0.05

in (d). (For the squeezed vacuum case we have divided the parameters by a factor of ten,

in order to obtain experimentally reasonable values for N.) The comparison between the

spectra for the stochastic system and the system with a squeezed vacuum is most striking.

It is the modification of the atomic decay rates by the weak, amplitude-fluctuating field

that strongly affects the physical properties of the atom. For example, the two quadratures,

or= = a_ + o+ and ay = i(cr_ - or+), of the atomic polarization decay at the different rates

Dt_ 2

% = 3' + t_2 + f_--------_sin2 _b,

% = ',/+ D cos _ qS, (7)

whilst the population inversion az decays at the rate % = % + %. All these decay rates

are dependent upon the relative phase and intensities of the driving fields. Clearly, when

the coherent field is in-phase with the amplitude-diffusing one, i.e. when ¢ = 0, the decay

of the dipole quadrature crx is suppressed (% = 7), while the other decay rate is enhanced

(% = 7 + D). When both the fields are _r/2 degrees out of phase, however, the situation

is reversed. The suppression or enhancement of the polarization decays gives rise to rich

spectral features.



FIG. 2. 3D fluorescence spectrum F(w) against w/7 and ¢/7_, for _ = 200% _ = 100% D = 400'.
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FIG. 3. as fluorescence spectrum F(w) against co/'), and ¢/_r, for f_ = 2003,, _ = 1007, D = 407.

In conclusion, we have reported a scheme to modify the Mollow fluorescence and absorp-

tion spectra by means of the relative phase of a coherent field and a stochastically amplitude-

diffusing field interacting with a two-level atom. The phase-sensitive spectral features, which

are qualitatively similar to those of a driven atom in a squeezed vacuum, are revealed. We

have demonstrated that the atomic spectra produced by quantum and classical fields may be

qualitatively very similar. Noting that relevant experiments of the phase-control of the two-

photon excitation spectrum of atoms by a field with coherent and real Gaussian components

[3], and of the transient dynamics of bichromatically driven two-level atoms [4] have already

been demonstrated, the present model is experimentally accessible. Such experiments would

demonstrate our ability to tailor reservoirs so as to modify atomic radiative properties in

fundamental ways.

This work is supported by the United Kingdom EPSRC.

[1] H. J. Carmichael et al., Phys. Rev. Lett. 58, 2539 (1987); S. Swain, ibid. 73, 1493 (1994); S.

Swain and P. Zhou, Phys. Rev. A 52, 4845 (1995).

[2] Peng Zhou and S. Swain, Phys. Rev. Lett. 82, 2500 (1999)

[3] C. Chen et el., Phys. Rev. A 49, 461 (1994).

[4] Q. Wu et al., Phys. Rev. A 49, R1519; 50,1474 (1994).



Spatial Structure of Quantum

Spatial Solitons

Noise in

N.Treps, C.Fabre

Laboratoire Kastler Brossel, Universitd Pierre et Marie Cv,vie_ Case "/_, 75252 Paris Cedez 05,

France

Abstract

We study the transverse distribution of the quantum noise inside a spatial

soliton. The most interesting case is the X(2) medium, as two fields interact,

the :_(a) case is studied as a comparison• We demonstrate that the quantum

information moves from the intensity squeezing to the correlation between

quantum fluctuations in different regions of the transverse plane.

A lot of intensive studies has been done on the quantum aspects of the interaction

between an electromagnetic field and a nonlinear media [1]. However, they have mainly been

restricted to the study of quantum fluctuations integrated over all the transverse plane. It

is interesting to go further and look at the spatial distribution of quantum noise in simple

cases. Working here in simple propagation (without cavities), we study the propagation and

the correlations of this noise in a situation where diffraction and nonlinearity play balanced

roles : the case of spatial solitons either in X(2) or :_(3) media•

In order to present the method, we will consider the X (2/ media as an example• Let

us first set up the notation and the geometry : z designates the propagation direction, r

represents the one dimensional position in the transverse plane. El is the envelope of the

field , slowly varying along the propagation direction. We will call 1 the fundamental field

at frequency cJ and 2 the second harmonic at frequency 2w. The propagation equations

become :

• 0$1 1 ,-,,_ -,iak._
+ _-_Atgl + Xlsls2e = 0_-Z

iOg2 1 A
 -52z + + )c E e = o

Where Ak = 2k_ - k2 is the phase mismatch, and X_ and X2 are proportional to the nonlinear
coefficient for each field.

The spatial soliton is a state of the field whose envelope does not depend on time and

position. Is has been studied for a long time and recently observed experimentally [2]. For

a certain value of the parameter, we can find an analytical solution for such a soliton. This

solution is given here with non-dimensional variables [3], "u being the fundamental and v the

second harmonic in a rotating frame.
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Assuming that the quantum fluctuations are small, we can linearise the classical equa-

tions around the classical solution in order to get the propagation equations of these fluctu-

ations [4,5]. We define _ = _ + an and v = _ + dv and obtain the equations "

•c96_ 02an

_- + Or2 &, + (&,)*_ + '_*_'v= 0

.05v 02(% 5v + 'gSu = 0
2z_- + cgr---T- -

As these equations are linear, we can solve them in term of Green functions. For instance,

we can write input/output relations like •

The method consists in using stochastic variables for the fluctuations. At z in = 0, the

fluctuations of the input beam verify •

(s..(_.)&,*(,/))= c, a(_-/) (a_(_)s_*(/))= c_ _(,--/) (a_(_)a_*(/)?= 0

So that, using the solution in terms of Green fmictions, we can derive the correlation func-

tions at the output of the crystal. One has fbr instance:

w=&z,&v

The spatial distribution of the fluctuations only depends on the Green flmctions which are

evaluated numerically. In the X (3) case, the same method is implemented, with only one

field.

Let us now give the main results obtained by our method. Fig.(1) gives the correlation

function between the amplitude quadratm'e of the fundamental field and the phase quadra-

ture of the second harmonic (X(2)). The size and the position of the soliton is given above

the figure. One notices that there exists non zero quantum correlations between the local

fluctuations of these quadratures, especially between the centre of one field and the outer

part of the other. These normalised correlations are rather small on the left side picture

corresponding to very small pixel sizes. They increase appreciably if one takes much larger

pixels of the order of a quarter of the soliton size. This gives an idea of the coherence area

of quantum fluctuations in this problem.

Our approach allows us to determine the quantum noise in any partial measurement of

the soliton intensity distribution. Let us consider for example the situation where one uses a

diaphragm of radius r at the output of the crystal, centred on the soliton axis. Fig.(2a) gives

the intensity noise in this measurement as a function of r: one notices that the strongest

intensity squeezing effect is obtained when one measures only the (:entre part of the soliton.

The dashed line gives as a comparison the intensity noise variation of' a single mode field
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FIG. 1. Normalised quantum correlation between the local fluctuations of the fundamental am-

plitude quadrature and second harmonic phase quadrature. The size of the soliton mean intensity

is given oil the sides of the figures. Each dot represents the correlation between an area of" the

fundamental and an area of the second harmonic. The only difference between the two is the size

of the pixel. In figure b we are only interested in the amplitude of the correlations

having the same transverse intensity distribution and same squeezing measured over the

whole transverse plane.

The two lower traces of Fig.(2b) give values of conditional variances in the same configu-

ration : they give a quantitative evaluation of the knowledge about the quantum fluctuations

of the measured quantity drawn from the simultaneous knowledge of other fluctuations, be-

cause of the quantum correlations existing between the two. The very low value of this

conditional variance that can be obtained for a diaphragm size equal to the soliton radius

indicates that the effect of diffraction on the quantum fluctuations is to build strong quan-

tum correlations between the different local field quadratures, much more than to locally

reduce the fluctuations of some observable.

In the X (a) medium we have just to consider two quadratures of the same field. By a

rotational operation, we can find the most squeezed one, its conjugate being the noisiest

one. The correlation function of each of these quadrature does not depend oil the parameter

of the system and this is also the case when one consider one field in the X (9) case. This

demonstrates that the picture we get using two fields is very I)eculiar and more interesting

on the correlations point of view than with only one field (tbr instance, tile symetry breaking

of Fig.la cannot be seen with one field) [6].
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Abstract

An observable criterion is proposed that allows one to distinguish nonclas-

sical quantum states of the harmonic oscillator from those having classical

counterparts. It is shown that a quantum state is nonclassical if measureable

quadrature or phase-space distributions display structures that are narrower

than the corresponding distributions in the oscillator ground-state.

I. INTRODUCTION

The study of nonclassical properties of quantum systems has been a subject of increasing

interest. Pioneering experiments have demonstrated nonclassical effects of light, such as

photon antibunching, sub-Poissonian statistics and squeezing 1. More recently, it became

possible to prepare in various systems quantum superposition states of the SchrSdinger-cat

type 2. Until now, however, there exists no criterion for the nonclassicallity of a quantum

state that is of general validity and that can be observed.

II. MEASURABLE NONCLASSICAL EFFECTS

The nonclassical effects observed so far are typically based on one particular observable.

For the example of quadrature squeezing, let consider the phase sensitive quadrature,

1H.J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977); R. Short and L.

Mandel, Phys. Rev. Lett. 51,384 (1983); R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, and

J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985).

2M.W. Noel and C.R. Stroud Jr., Phys. Rev. Lett. 77, 1913 (1996); C. Monroe, D.M. Meekhof,

B.E. King, and D.J. Wineland, Science 272, 1131 (1996); M. Brune, E. Hagley, J. Dreyer, X.

Maitre, A. Maali, C. Wunderlich, J.M. Raimond, and S. Haroche, Phys. Rev. Lett. 77, 4887

(1996).



for arbitrary but fixed phase qo = p'. A quantum state is squeezed, if the variance of x(9)')

is below that in the oscillator ground-state, ([A2(_')] 2) < {(A2)2)gr.

Why does this condition define a nonclassical property? This may be surprising since

the variance of any classical variable may be vanishing. However, one may argue that

the quantum noise in the ground-state is the minimal one desired to fulfill the Heisenberg

uncertainty relation, for which there is no classical counterpart at all. Thus it is useful to

seek for a correspondence to a classical state after "subtracting" the noise effects in the

oscillator ground-state by considering normally-ordered expectation values, denoted by the

"::" symbol. In this form the condition for squeezing reads

<: :)< 0. (2)

In classical physics operator orderings are meaningless, thus one may establish the following

correspondence between quantum and classical fluctuations:

<: [Z_2C(_t)] 2 :} _=} <[Z:_X(_t)]2}c 1. (3)

Since ([Ax(_o')]2}c,> 0, the property (2) is a signature of nonclassicality.

Note that the choice of a particular observable in such a criterion can only incompletely

characterize a quantum system. The quadrature operator for the chosen phase qo' in general

does not commute with the quadratures for other phases, [2(9'),_(_")] # 0. Moreover, the

restriction to second-order statistical moments is incomplete.

III. CRITERION BASED ON THE P FUNCTION

The most commonly accepted criterion for a nonclassical state is the one based on the

P representation of the density operator,

= f d2°_P(°z) I_>(_1. (4)

Mean values of normally ordered operators can be written in close analogy to classical ones,

<:#(at, a) :) = f d2ap(a)F(a*,a). (5)

An observable fi behaves like a classical one if two conditions are fulfilled. First, the ground-

state noise is "subtracted" by normally ordering,/? -+ :/_ :. Second, the P function has the

properties of a classical probability measure, P(a) = Pc1(a).

Thus we conclude that a state is nonclassical, if:

(a) The ground-state noise is substantial for its characterization.

(b) The P function fails to be interpreted as a classical probability measure, P(c_) # Pd(a).



This criterion has been broadly accepted, see for example a. It ensures a complete character-

ization of the quantum states. However, the P function may become strongly singular and

thus it can hardly be measured. What one needs is a general, measurable criterion.

IV. CRITERION BASED ON QUADRATURE DISTRIBUTIONS

Let consider the quadrature operator :?(7)) defined in Eq. (1), including its dependence on

the phase parameter 7). For formulating a criterion on nonelassicality the use of this quan-

tity has several advantages. First, the statistics of this observable is measurable. Second,

knowing the probability distribution p(x, 7)) for a 7) interval of size 7c implies the complete

information on the quantum state of the oscillator 4. Third, the observable 2(7)) is closely

related to the classical trajectory of the oscillator, which plays a key role in the classical

theory.

The quadrature distribution p(x,7)) can be derived from its characteristic function

G(k, 7)) via

1/p(x, = dke-ikxa(k,7)), (6)

We may subtract the ground-state noise to obtain a noise-subtracted distribution 15(x, 7)),

by replacing G(k, 7)) with its normally ordered version, G(k, 7)) = {: e ik:?(_') :). Using the

Baker-Campbell-Hausdorff formula for relating both characteristic functions to each other,

the measured distribution is obtained as the convolution,

p(x, 7)) -_ f dx t p(x t, 7)) Pgr(X - xt), (7)

of the noise subtracted distribution with the (phase-insensitive) distribution of the ground

state, Pgr(X) = (27C)-1/2 e -x2/2.

The noise-subtracted distribution can be related to the P function by evaluating the

characteristic function G(k, 7)) by applying Eq. (5). After some algebra this yields

_(x,7)) = f d2aP(a)5[x - x_(7))], (8)

the function x_(7)) = c_ e i_ + c_*e-i_ corresponds to the classical trajectory. Equation (8)

yields the noise subtracted quadrature distribution in terms of a classical stochastic process,

7))- pd(x, (9)

3U.M. Titulaer and R.J. Glauber, Phys. Rev. 140, B 676 (1965); L. Mandel, Phys. Scr. T 12,

34 (1986).

4For a review on measurements and reconstruction of quantum states, see D.-G. Welsch, W. Vogel,

and T. Opatrny, Homodyne Detection and Quantum State Reconstruction, in: Progress in Optics,

Vol. 39, ed. by E. Wolf.



provided that the P function has the properties of a classical probability, P(a) - Pcl(Ol).

There is a one-to-one correspondence between the classical behaviors of the P function and

of the noise-subtracted quadrature statistics.

The classical low-noise limits of these distributions consists in a deterministic behavior,

P(c_) = _(a - /3) and 15(x, _) = 5Ix - x_(_)]. From Eq. (7), the low-noise limit of the

measured distribution is given by

p(x, _) = Pgr[X - xZ(_)]. (10)

Consequently, if the P function behaves like a classical probability, the measured quadrature

statistics cannot exhibit structures that are narrower than the quadrature distribution of

the ground state.

We may formulate a new criterion for nonclassicality that replaces the criterion (b) with:

(b*) There exist structures in p(x, (p) that are narrower than Pgr(X). Or equivalently, the

characteristic function G(k, qo) decays more slowly than Ggr(k) = e -k2/2.

This criterion is fulfilled for typical nonclassical states such as Fock states, squeezed states,

Schrhdinger-cat states, and others.

V. CRITERION BASED ON QUASIDISTRIBUTIONS

A measurable criterion for nonclassicality can also be based on the s-parameterized

quasidistributions P(a, s). The latter can be given as the convolution of the P function

with the s-parameterized distribution Pgr(a; s) in the ground state 5,

P(ct; s) = f d2/_ P(fl)Pgr(0_ --/_; S). (11)

Based on this relation and on similar arguments as in the preceding section, the criterion (b*)

for a nonclassical state can be reformulated as follows: There exist structures in the phase-

space distribution P(a; s) that are narrower than the ground-state distribution Pgr(a; s).

Equivalently, the decay of the related characteristic function may survive the decay of the

characteristic function of Pgr(a; s).

VI. SUMMARY AND CONCLUSIONS

A new criterion has been proposed for the nonclassicality of quantum states of the har-

monic oscillator. It is based on measurable distributions such as quadrature or phase-space

distributions. A quantum state has no classical counterpart when these functions show

structures that are narrower than the corresponding distributions of the ground state of the

oscillator. This criterion is closely related to the commonly used one that is based on the

P function. An extension to include effects of nonideal detection is straightforward.

5K.E. Cahill and R. Glauber, Phys. Rev. 177, 1882 (1969); for measurement principles see

footnote 4.



Automatic feedback as a

SchrSdinger-cat

tool to

states
preserve

M. Fortunato, P. Tombesi, D. Vitali

Dipartirnento di Matematica e Fisica, Universit_ di Camerino, via Madonna delle Carceri

1-62032 Camerino

and INFM, Unit5 di Carnerino, Italy

J. M. Raimond

Laboratoire Kastler Brossel, D@arternent de Physique de l'Ecole Norrnale Supdrieure,

24 rue Lhornond, F-75231 Paris Cedex 05, France

Abstract

We briefly sketch a scheme for contrasting the decoherence of a SchrSdinger-

cat state in a high-Q microwave cavity. It is based on.the injection of appro-

priately prepared "probe" and "feedback" atoms, whereby the information

transmission from the probe to the feedback atom is mediated by a second

auxiliary cavity. The decoherence time of the superposition state can be sig-

nificantly increased using presently available technology.

Schr6dinger-cat states [1] lie both at the heart and at the foundations of quantum me-

chanics, as their understanding would give us a deeper insight in the most important issue

of how the classical macroscopic world emerges from the quantum substrate [2,3]. These

rather paradoxical states are very difficult to observe, and the eyrrently (ahnost generally)

accepted explanation of this fact is provided by decoherenee, i.e., the rapid transformation

of these linear superpositions into the corresponding classical statistical mixture, caused by

the unavoidable entanglement of the system with uncontrolled degrees of freedom of the

environment [2]. The decoherence time depends on the form of system-environment inter-

action [4] but, in most cases, it is inversely proportional to the squared "distance" between

the two states forming the superposition [5]. For macroscopically distinguishable states, the

decoherence process becomes thus practically instantaneous [2]. Decoherence is therefore ex-

perimentally accessible only in the rnesoscopic domain. In this case, one is able to monitor

tile progressive emergence of classical properties from the quantum ones. SchrSdinger-cat

states of the vibrational motion of a trapped ion and of the electromagnetic field in a cavity

have been experimentally obtained recently by Monroe et al. [6] and by Brune et al. [7],

respectively.

In some recent publications [8,9] it has been shown that a possible way to control deco-

herence in optical cavities is given by appropriately designed feedback schemes. In [9] the

photodetection-mediated scheme has been adapted to the microwave experiment of Ref. [7]
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FIG. 1. Schematic diagram of the autofeedback scheme proposed in this paper. /_1 and/_2 are

the two cavities in which classical microwave pulses can be applied, C is the microwave cavity of

interest and C' is the cavity automatically performing the needed correction. Electric fields can be

applied at the superconducting mirrors of C and C' to Stark shift the Rydberg levels in order to

tune the interaction times in C' and realize adiabatic transfer in C.

in which photodetectors cannot be used, and the cavity state can only be indirectly inferred

from measurements performed on probe atoms which have interacted with the cavity mode.

Under ideal conditions, this adaptation to the microwave cavity case leads to a significant

increase of the lifetime of the SchrSdinger cat generated in [7]. It suffers however from two

important limitations, making it very inefficient when applied under the actual experimental

situation. It first requires the preparation of samples containing ezactly one Rydberg atom

sent through the apparatus. Up to now, the experimental techniques allow only to prepare

a sample containing a random atom number, with a Poisson statistics. Two-atom events

are excluded only at the expense of a low average atom number, lengthening the feedback

loop cycletime [10]. The original scheme requires also a near unity atomic detection effi-

ciency, which is extremely difficult to achieve even with the foreseeable improvements of the

experimental apparatus.

Here we present a significant improvement of the microwave feedback scheme described

in [9]. This new version, using a direct transmission of the quantum information from the

probe to the feedback atom, does not require a large detection efficiency, removing one of

the main difficulties of the previous design. It also circumvents the problem of one-atom

packets, implementing an atom counter.

The original "stroboscopic" feedback scheme for microwave cavities proposed in [9] is

based on a very simple idea: whenever the cavity looses a photon, a feedback loop supplies

the cavity mode with another photon, through the injection of an appropriately prepared

atom. However, since there are no good enough photodetectors for microwaves, one has

to find an indirect way to check if the high-Q microwave cavity has lost a photon or not.

In the experiment of Brune et aI. [7], information on the cavity field state is obtained

by detecting the state of a circular Rydberg atom which has dispersively interacted with
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FIG. 2. Wigner function of the initial odd cat state, Ig4= - I - with e = 3.3
(a, top). Wigner function of the same cat state after 13 feedback cycles (b), corresponding to a

mean elapsed time t __ 1/_ __ 6.6tdec, and after 25 feedback cycles (c) corresponding to a mean

elapsed time g __ 2/7 __ 13tdec (left). Wigner function of the same cat state after one relaxation

time t = 1/'7 (b), and after two relaxation times t = 2/_/ (c), in absence of feedback (right).

the superconducting microwave cavity. This provides an "instantaneous" measurement of

the cavity field and suggests that continuous photodetection can be replaced by a series

of repeated measurements, performed by non-resonant atoms regularly crossing the high-Q

cavity.

The limitations due to the non-unit efficiency of the atomic detectors could be avoided if

we eliminate the measurement step in the feedback loop and replace it with an "automatized"

mechanism preparing the correct feedback atom whenever needed. This mechanism can be

provided by an appropriate conditional quantum dynamics. This conditional dynamics can

be provided by a second high-Q microwave cavity C', similar to C, replacing the atomic

detectors, crossed by the probe atom first and by the feedback atom soon later, as described

in Fig. 1.

Instead of preparing a random atom number at a given time, one thus prepares with a

high probability a single Rydberg atom after a random delay. However, after a full quantum

mechanical calculation and lengthy algebra, it is possible to determine the map of a generic

feedback cycle, that is, the transformation connecting the states of the cavity field in C

soon after the passage of two successive feedback atoms in C, which also takes into account



the non-unit efficiency of the Rydberg state preparation. This map, which is reported
elsewhere[11], allowsus to study the dynamicsof the Schr6dinger-catstate in the presence
of feedback,and to compare it with the correspondingdynamics in absenceof feedback.

In Fig. 2 weshowthe Wigner function of the initial odd cat state (top) and its dynamics
in presence(left) and in absence(right) of feedback.The comparisonbetweenthe two per-
fbrmancesis striking: in absenceof feedbackthe Wigner function becomesquickly positive
definite, while in the presenceof feedbackthe quantum aspectsof the state remain well
visible for many decoherencetimes.
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Abstract

We study the realisation of a new test of Bell inequalities using the superposi-

tion of type I parametric down conversion produced in two different non-linear

crystals pumped by the same laser, but with different polarisations.

We discuss the feasibility and the advantages of this configuration.

A new procedure for the alignment, which constitutes the major improve-

ment permitting the realisation of this scheme, is suggested.

The technique of parametric down-conversion (PDC) has been employed, since its dis-

covery, for generations of "entangled" photon pairs, i.e. pairs of photons described by a

common wave function which by no means can be factored up into the product of two dis-

tinct wave functions pertaining to separated photons. It is due essentially to L. Mandel and

collaborators [1] the idea of using such a state of the electromagnetic field to perform tests of

quantum mechanics, more specifically to test Bell's inequalities which discriminate between

standard quantum mechanics and local realistic theories.

The generation of entangled states by parametric down conversion is alternative to other

techniques, such as the radiative decay of atomic excited states, as it was in the celebrated

experiment of A. Aspect et al. [2], and overcomes some former limitations in the propagation

direction of the conjugated photons. In fact the poor angular correlation of atomic cascade

photons is the origin of a small total et_ciency of this set up, leading to a selection of the

small subsample of the produced photons; this is responsible of the ei_ciency loophole [3]

which does not permit a definitive test of the non locality in quantum mechanics in such

experiments. On the other hand a very good angular correlation (better than 1 mrad) of

the two photons of the pair is obtained in the PDC process, permitting, in principle, to

overcome the previous problem.



The entanglementon phaseand momentum,which is directly producedin Type I para-
metric down conversioncanbe usedfor a test of Bell inequalities usingtwo interferometers
spatially separated[4], asrealizedby [5]. The useof beamsplitters howeverstrongly reduces
the total quantum efficiency.

In alternative, one can generatea polarisation entangledstate [6]. It appears,however,
that the creation of couplesof photons entangledfrom the point of view of polarisation,
which is by far the most diffuse casedue to the easyexperimental implementation, still
suffers severelimitations, as it was pointed out recently in the literature. The essence
of the problem is that in generating this state, half of the initial photon flux is lost (in
most of the used configurations), and oneis, of-necessity,led to assumethat the photon's
population actually involved in the experiment is a faithful sample of the original one,
without eliminating the efficiencyloophole.

A schemewhich allows no postselectionof the photons [7] has been realised recently,
using Type II PDC, where a polarisation entangled state is directly generated. This scheme

has effectively permitted, paying the price of delicate compensations for having identical

arrival time of the ordinary and extraordinary photon, a much higher total efficiency than

the previous ones. It is, however, still far from the value 0.67 [8], which is required for

an efficiency-loophole free experiment for non maximally entangled pairs (for maximally

entangled pairs this limit rises to 0.81).

Some recent experiments using entanglement among three photons [9] are also far by

solving these problems [10]. A large interest remains therefore for new experiments increasing

total quantum efficiency in order to reduce and finally overcome the efficiency loophole.
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Figure 1. The amplification scheme for aligning PD C produced in the two non-linear crystals.



Our proposal follows and developsan idea of Hardy [11] and contemplatesthe creation
of a polarisation entangledstate of the form

I¢> -- [H>IV> + IV>IH) (1)

(where H and V indicate horizontal and vertical polarisations respectively) via the superpo-

sition of the spontaneous fluorescence emitted by two non-linear crystals driven by the same

pumping laser (at 351 nm). The crystals will be put in cascade along the propagation di-

rection of the pumping laser and the superposition will be obtained by using an appropriate

optics.

The alignment (which is of fundamental importance for having a high visibility and in

principle constitutes the main problem of such a configuration) can be profitably improved

using of an optical amplifier scheme, where a solid state laser is injected in the crystals

together with the pumping laser (see fig.l): such a technique has already proved its validity

and it is of strong help in the recognition of the directions of propagation of correlated

photon wavelengths and applied to metrological studies in our laboratory [12].

A very preliminary study of the problem and computer simulations of the optical group

to be used in the experiment proves the feasibility of the set-up. In particular, the main

difficulty concerning the alignment derives from the fact that the PDC produced in the

first crystal enters the second crystal as extraordinary rays. This leads to a non perfect

superposition with the PDC produced in the second crystals.

We have studied the compensation of the different paths by a computer simulation for

the degenerate PDC at 702 nm. This simulation has shown that for a crystal of 1 cm length

with two conjugated rays with angles of 6.8 and -6.8 degrees with respect to the normal

and contained with the pump (propagating along the z axis) in a plane (xy) forming an

angle of 53 degrees with the optical axis, the deviation with respect to the rays produced

inside this crystal is of 0.07 cm on the y axis (larger than the ordinary ones) and 0.76 cm on

the x axis (both acquiring a positive x component). The symmetry of the effect (due to the

choice of the pair inside a plane orthogonal to the one containing the pump and the optical

axis) permits an easier compensation.

This compensation does not require further optical elements (aside from those necessary

to focus the PDC of the first crystal on the second one) as it is the case for experiments

using type II PDC.

A first practical attempt to superimpose the PDC produced in the two crystals has been

successful, showing the feasibility of the scheme, which will be realised soon.

The proposed scheme will lead to a further step toward a conclusive experimental test of

non-localit_r in quantum mechanics. The analysis of the experiments realised up to now [3]

shows in fact that visibility of the wanted effect (essentially visibility of interference fringes)

and overall quantum efficiency of detection are the main parameters in such experiments.

One first advantage of the proposed configuration with respect to most of the previous

experimental set-ups is that all the entangled pairs are selected (and not only 50_ as with

beams splitters); furthermore, we hope to be able to obtain rather high efficiencies thanks

to developments in photo-detectors. Finally, the elimination of the space-like separation

loophole could be obtained in a second time using rapid switch optical devices.

Altogether our aim is to obtain an experiment with high efficiency as well as high visi-

bility.
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Abstract

We demonstrate that Bell's inequality has nothing to do with such things as

nonlocality or death of reality. Arguments based on Bell's inequality could not

be used to choose 'right interpretation' of quantum mechanics (statistical or

orthodox Copenhagen). In fact, Bell's mystification has purely probabilistic

roots: identification of probability distributions for hidden variables with re-

spect to different statistical ensembles. In principle, these distributions need

not be reproduced in quantum measurements. So called p-adic probability

theory gives a large class of such probabilistic distributions fluctuating from
ensemble to ensemble.

Experimental violations of Bell's inequality [1] are typically interpreted in one of two

ways: (1) nonlocality: by changing the state of one particle in the EPR pair we change

the state of the other particle; (2) death of reality: realism could not be used as the

philosophic base of quantum mechanics ('properties' of quantum systems are not objective

properties, i.e., the properties of an object). In particular, (2) implies that the statistical

interpretation of quantum mechanics (via L. Ballentine) must be denied in favour of the

orthodox Copenhagen interpretation. The aim of this note is to demonstrate that Bell's

inequality implies neither nonlocality nor death of reality. This is just a mistake in quite

trivial chain of probabilistic considerations.

We reproduce now the proof of Bell's inequality. Let T' = (f/, 9% P) be a Kolmogorov

probability space: f_ is a space of elementary events, 9c is an algebra of events, P probability

measure.

Theorem 1. Let A, B, C = +1 be random variables on "P. Then Bell's inequality

]<A,B>-<C,B>I<_I-<A,C> (1)

holds true.

Proof. Set A =< A, B > - < C, B >. By linearity of Lebesgue integral we obtain

As A(cJ)2 = 1,



f f

IAI : IJ[ - A(cv)C(_)]A(w)B(co)dP(_z)[ <_/a[1 - A(_z)C(_v)]dP(cv). (3)

Of course, this is the rigorous mathematical proof of (1) for Kolmogorov probabilities. However,

abstractness of Kolmogorov's probability model could induce serious problems, if we do not control

carefully dependence of probabilities on corresponding statistical ensembles of physical systems.

Bell's did not control this dependence. In fact, the symbol P used in the proof must be regarded

to different statistical ensembles.

To simplify our considerations, we suppose that the set of hidden variables is finite:

A = {A1, ..., AM}. For each physical observable U, the value A of hidden variables determines

the value U = U(A). Let U and V be physical observables, U, V = +1. We start with

the consideration of the frequency (experimental) covariation < U, V >x_v with respect to a

collective ('random sequence') Xuv = (Xl, x2, ...,XN, ...), where xi = (ui, vi), which is induced

by measurements of the pair (U, V). The xuv is obtained by measurements for an ensemble

Suv of physical systems (for example, pairs of correlated quantum particles). Our aim is

to represent experimental covariation < U, V >xvv as ensemble covariation < U, V >svv •

Then we shall demonstrate that in the general case it is impossible to perform for ensemble

covariations Bell's calculations which have been performed for Kolmogorov covariations. Let

Suv = {dl, ..., dN}, where ith measurement is performed for the system di. Define a function

i --+ A(i), the value of hidden variables for di. We set nk(S_zv) = I{di E Suv: A(i) = Ak}l

and pkgV = Ps,v(A = Ak) -- nk(svv) These are probabilities of hidden variables Ak k =N "

1, 2, ... M, in the statistical ensemble Suv. We have < U, V > - ± N, Xuv-- N Ei=l U(,_(i))V(/_(i)) :
M uv

_k=l Pk ukvk =< U, V >svv, where uk = U(Ak), vk = V(Ak). Thus

A =< A,B >z_8 - < C,B >zc8

AB
-- -- Pk ck)bk=< A, B >SAB < C, B >scs= _--](Pk ak cs

k

< A, C >XAC:<: A, C >SAC: E ACPk akck.
k

We suppose now that probabilities of Ak do not depend on statistical ensembles:

Pk = pAB = pCB = pAC (4)

(later we shall modify this condition to obtain statistical coincidence of probabilities, in-

stead of the precise coincidence). Hence A M= Ek=lPk(ak- ck)bk and < A,C >xAc=
M M

_k=l pkakck. We can now apply Theorem 1 for the discrete probability distribution {Pk}k=l

and obtain Bell's inequality.

However, if condition (4) does not hold true, then equality (2) and, as a consequence,

Bell's inequality can be violated. The violation of condition (4) is the exhibition of unstable

(with respect to the real metric) statistical structure on the level of hidden variables of (at

least some) quantum ensembles. In particular, the principle of the statistical stabilization

('the law of the large numbers') can be violated for hidden variables: limN___ _N(At) do not

exist. Thus we could not introduce the probability distribution on the set of hidden labels

A.

All our considerations were based on the statistical stabilization with respect to the real

metric. In [2] we considered the statistical stabilization with respect to a p-adic metric.

and



The field of p-adic numbers Qp, where p > 1 is a prime number, can be constructed (as

the field of real numbers R) as a completion of the field of rational numbers Q. The p-adic

metric differs strongly from the real one. As for finite ensembles S, ensemble probabilities

Ps(a) = _ are rational numbers, we can study their behaviour not only with respect to theN
real metric on Q, but also with respect to the p-adic metric, p-adic probability theory gives

numerous examples of ensemble probabilities fluctuating in the real metric and stabilizing

in the p-adic metric. However, the p-adie stabilization of probabilities does not imply the

possibility to repeat Bell's proof for p-adic probabilities: these probabilities may be negative

rational numbers, see [2].

We introduce now a statistical analogue of the precise coincidence of ensemble probabil-

ities for hidden variables. Let gl, g2 be two ensembles of physical systems and let rc be a

property of elements of these ensembles. The rc has values (c_1, ..., c_m). We define

M

5_(gl, ce2) = _ ]P& (ai) - P&(ai)[,
i=1

where Pc(ozi) = I{deE:'_(d):_i}tlel are ensemble probabilities. We remark that the function 6_ is
a pseudometric on the set of all ensembles which elements have the property re. In our model

we set rc = I, hidden variables. The precise reproducibility of the probability distribution

of hidden variables (4) can be written as 6(SAB, ScB) = 6(SAB, Sac) = 0, where 6 = 6a. Of

course, we need not use such a precise coincidence in probabilistic considerations.

Theorem 2. Let statistical ensembles satisfy condition

a(SAI,,SCB),a(&,,,&C)<_

Then Bell's inequality

I < A, B >saB - < C, B >sob I <1+ 24- < A, C >sAc (5)

holds true.

However, the constant e is unknown. Thus the 'right Bell's inequality' (5) could not be

experimentally verified.

1. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod.

Phys., as, 447-452 (1966).

2. A.Yu. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical sys-

tems and biological models. Kluwer Acad.Publ., Dordreht, The Netherlands, 1997.
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Abstract

The Schr6dinger's cat paradox [1] is to do with possible coherent superpositions of

classical-like states of quantum systems. The object of this paper is to explore various

possible SchrSdinger Cats, their states and their separability. The commonly cited

coherent states fail our definition of separability.

1 Classical cats and their states

A classical cat is assumed to have only two pure states: being alive and being dead, and there

are no coherent superpositions of a live and a dead state (limbo state). We can describe such

a cat with a 2d Hilbert space 7-/_ spanned by two orthonormal vectors IL) and ID), with [L)

for the state of being alive and ID) for the state of being dead. The absence of any limbo

state can be achieved by a superselection rule [2] which forbids any coherent superposition

of IL) and ID). This is the same as to require all observables of a classical cat to be of the

form A = alL}(L I+blD)(DI, a, b E IR. Operators of this form are unable to correlate the live

and dead states, i.e., (D I -AI L} = 0, so that a linear combination c_ IL} +/3 ID} is equivalent

to a mixture of the live and dead states with weightings Ic_l2 and 1/312.

Note that a coherent superposition of states is a physical statement implying the existence

of observables capable of correlating the constituent states. In contrast, a linear combination

of states is just a mathematical expression for a sum. For a system admitting a superselection



rule, the Hilbert space_ is divided into certain subspaces_n such that states _1, _2,-.-

from thesesubspaces_-/1,_2,-.. cannot form coherentsuperpositions [2]. Thesesubspaces

areknownas supersectors. We call states from different supersectors separable. For a classical

cat the two states IL) and ID) are separable.

2 Quantum cats and their states

A quantum cat is assumed to have two pure states IL} and ID} which span a 2d Hilbert space

7-gqc. These are not assumed to be the only pure states. No superselection rules are assumed

so that all selfadjoint operators on _qc represent observables, i.e., there are observables to

correlate IL) and ID). So, any linear combination c, IL) +/3 ID) represents a new pure state

describing a state of limbo, i.e., the cat being partially alive and partially dead.

A quantum cat is no different from any 2-level orthodox quantum system, and the two

states ILl and ID/are not separable.

3 Separable states

Our primary interest is in cases which lie in between the two extremes of being classical

and being quantum. We look for what may be called quasi-separable states. Intuitively we

seek states whose behaviour is classical sometimes, i.e., definitely alive or definitely dead as

far as one can tell, and quantum at some other times, i.e., having a state of limbo of being

partially alive and partially dead.

There have been many attempts to construct what may be called classical-like states of a

quantum system. The best known examples are perhaps the coherent states of a quantized

harmonic oscillator [3]. The motion of a classical oscillator is

me(t) = Acoscot, pc(t) = -rncoAsincot.

A coherent state is the following solution of the time-dependent Schr6dinger equation of the

quantized oscillator:

• z(X,t) = C(t) exp pc(t)x- -_ x-xc(t) , z = _ -_wwpc(t) +xc(t)

c(t) = 7-i- exp i 7_- sin2_t - _ _t

with an oscillating spatial probability density

= \ rrh / exp - .



The magnitude of oscillation can be as big as one likes by increasing A. This solution

represents a wave packet which oscillates without distortion like a classical oscillator. A

coherent state is therefore considered classical-like. Linear combinations of classical-like

states are referred to as SchrSdinger cat states in the literature, e.g., a linear combination of

coherent states aSz and _5_z.

A quantized harmonic oscillator is a pure quantum system with no superselection rules

so that observables .A, in the form of selfadjoint operators, exist to correlate aSz and _5_z,

e.g., we have the parity operator ff such that (_Sz I P_5-z) = 1 for all z and t. Clearly

the traditional SchrSdinger cat states represented by coherent states _ and _-z are not

separable by our definition.

To proceed further we have to resort to a concept of equivalence FAPP 1 based on the

following assumption on measurement:

Any experiment gn is performed within a finite time and is capable of measur-

ing only a finite number n of bounded observables A,,..., _ln with some finite

resolution of interference terms.

Suppose that the experiment cannot tell the existence of the interference terms when they

are less than a certain small number, when the system is in state • -- (¢ + ¢) / x/2. Then,

1

linear combination _ (¢ + _)

1 (1¢)(¢1 + I_)(_1) FAPPgn.----- mixture fi=

Generally let Cz, @z be a one-parameter family of pairs of states of a system at time

t = O. At a later time the states evolve to Czt, _zt. Suppose that given any experiment g n,

there is a finite time interval A and a value Zo such that for all z > Zo and for all times t ¢ A

we have

_t = aCzt + bf_zt =- fi= lal 2 ICzt)(¢_tl + Ibl2 I_d<_tl FAPpgn •

Then we call ¢_t, _zt separable FAPPg n for z > Zo, t C A. It turns out that many

standard quantum systems admit separable states in this sense.

Take for example a general scattering system which possesses bound states Cb and scat-

tering states Cs in 7-i. As time goes on Cs evolves to Cst which moves to a region far away

from the origin, while Cb evolves to Cbt which remains around the origin at all times. The

1FAPP means for all practical purposes, an abbreviation proposed by John Bell [4]. We shall denote

FAPP for experiment $_ by FAPP$%



overlapbetweenCbtand Cstover any finite region tends to zero t --+ oo. We can establish

vanishing correlation

lira (¢bt I _ Cst) = 0
t---*oo

for every bounded operator A in _. So, for any finite set of bounded observables .4j, j =

1,..., n we have correlations (¢bt I Aj Cst} becoming arbitrarily small as t --_ oe. Hence COt

and Cst are separable FAPP at large times, leading to a resolution of the de Broglie Paradox.

Finally let us return to the quantized oscillator. Let _n be the normalized eigenfunctions

of the Hamiltonian. Then a coherent superposition Vt = (_0 + _l)/v_ represents a wave

packet with oscillating position expectation value, i.e.,

1

= cos t.

It can be shown that for any given bounded operator .4 the correlation term (_Sz I fi_rh)

tends to zero as z --* oe. So (I)z and rh are separable FAPP for sufficiently large z.

It is common to use the terms classical-like and classical distinguishable interchangeably.

We have avoided refering to classical distinguishability altogether. When classical waves

meet and interfere the constituent waves may become indistinguishable!

This idea of separable states can be developed a lot further, e.g., periodic separability

(separable in a periodic manner). Full details of this development will be published elsewhere.
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Abstract

We present an experiment testing Bell's inequality under strict Einstein lo-

cality conditions using ultrafast random switches. At the same time the ex-

perimental setup can be used to generate quantum cryptographic keys.

The inequality derived by J. S. Bell in 1964 [1], which puts limits on the strength of

correlations of two-particle systems, rests upon the assumptions of realism and locality. In

the experiments that followed to test the theorem locality could not be guaranteed by the

apparatus. In fact in most of the experiments the analyzers had been at rest for several

hours so that any hypothetical communication between the two observing stations could in

principle explain the strong correlations that had been observed [2].

The first attempt to close this so-called Einstein locality loophole was the impressive

experiment by Aspect and coworkers [3] who used acousto-optic modulators to switch the

basis of polarization analysis on a time scale that was shorter than the flight time of the

FIG. 1. Photograph of the Innsbruck science campus. The parametric down-conversion source

was approximately centered between the two observer station called "Alice" and "Bob". Optical

fibers connected the different locations.



FIG. 2. A physical random bit generator. This device produces an output signal that tog-

gles randomly between "0" and "1" triggered by the detections of photons in either output of a

beamsplitter.

photons. However, the switching was performed only in a periodic, predictable manner. A

conclusive test of Bell's inequality should involve fast random switching. Random switching

requires high bandwidth in all the components used and is therefore much more difficult.

Recently we completed an experiment [4] where the random switching and spacelike

separation conditions could be fulfilled. Further we were able to utilize the apparatus to

perform quantum cryptographic key distribution. This was possible because the data were

collected independently at the observer stations.

To achieve the timing conditions it was necessary to spatially separate the observers,

in our case by 360 m across the Innsbruck university science campus (Fig. 1), which gave

us 1.2 #s to have each observer complete his individual measurement. Near the geometric

center between the two observers we placed our type-II parametric down-conversion source,

which emits polarization entangled photon pairs.

Each of the observers switched the direction of local polarization analysis using a trans-

verse electro-optic modulator with DC to 30 MHz bandwidth. The actual orientation for

local polarization analysis was determined independently by binary physical random number

generators with a maximum toggle speed of 500 MHz (Fig. 2). With the random number

generator and the fast switch we made sure that the whole measurement process was short-



er than 100ns. This is much shorter than the 1.2#sthat any information about the other
observer'smeasurementis necessarilyretarded.

In our experimentatypically observedmaximumvalueof the function wasS = 2.73±0.02

corresponding to a violation of the CHSH inequality of 30 standard deviations assuming only

statistical errors. Such a measurement took 10 s and is in good agreement with the quantum

theoretical prediction. The correlations had 97% visibility (less than 3% Bit Error Rate)

and were thus appropriate for efficient quantum key distribution by EPR-pairs. The Bit

Error Rate could be enhanced to less than 0.5% by classical lossy error correction.
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Abstract

In this communication we will derive a new form of Bell's inequality to

carefully take into account the detectors efficiency. By this approach we will

show that, although the two most recent experiments on Bell's inequality

can be considered a huge improvement in the direction of testing quantum

mechanics predictions, the loophole of the low quantum efficiency of detector

is not yet solved.

I. INTRODUCTION

Is Quantum Mechanics non-local? Addressing this question has been the subject of a

huge amount of work, starting from the very first paper by Einstein, Podolsky and Rosen

(EPR) [1]. In 1965, J. S. Bell [2] set a milestone in this subject by proofing that Quantum

Mechanics (QM) is not compatible with the existence of elements of reality (according with

the definition given by EPR), introducing the well known Bell's inequality. Unfortunately,

his analysis was based on two assumptions that are hardly achievable in experiments: i) it

is possible to get total correlation ; ii) the measurements always yield well defined results.

Later, several attempts were made to derive testable Bell's inequalities by introducing sup-

plementary assumptions [3,4], though none of them gave any justification for making such

assumptions. However, all experiments to date showed a remarkable agreement with QM

predictions giving a very strong evidence that QM has a non-local character. Notwithstand-

ing the agreement reached by all the experiment with QM, if for no other reason than the

great importance of the question, the experimental results must be carefully analyzed in

order to elucidate the role of supplementary assumptions. In particular a common problem

for all the experiments appears to be the detection efficiency, namely the ratio between the

number of detected events and that of tested quantum systems. This, often referred as detec-

tion loophole (DL), is recognized as the major problem in the two most recent experiments



too [5,6], and will be the central issue of the this report. The DL consists in the following

trivial (under the point of view of QM) assumption: the sample over which the statistic is

measured is fair (fair sampling assumption, FSA). Of course such assumption is unavoid-

able in any experiment where the finite value of the detection efficiency limits the number

of tested events in comparison with the overall number of quantum system. However, as

already pointed out by Clauser, Home, Shimony, and Holt [3], who wrote that, in view of

the difficulty of an experimental check, the assumption could be challenged by an advocate

of hidden variable theories in case the outcome of the proposed experiment favors quantum

mechanics, the FSA is not so trivial under the point of view of a Local Hidden Variables

(LHV) theory. It is, in fact, possible to postulate that there exists some actual value of a

hidden variable affecting the probability to trigger a detector. Several attempts have been

done to develop a LHV advocate proof version of Bell's inequality, in particular Ebherard

[7] deduced a supplementary assumption free inequality, proving that it can be violated on

condition that the detection efficiency is greater than 66% assuming null background noise

(that is visibility equal to unity) and highly asymmetric entangled states. Moreover, De

Caro and Garuccio [8] proved that in case of trichotomic observables the detection efficiency

lower bound is 81%. Recently Larsson [9] showed that, within the framework of GHZ states,

the lower bound for detection efficiency drops down to 750/o.

II. DERIVATION OF BELL'S INEQUALITY

If A(a) and B(b) are two observables assuming the values [+1,0,-1] and if the result of

a measurement on A(a) and B(b) is dependent on the experimental parameters a and 5

respectively, and on the element of reality A variable over the set A with normalized density

p(A), the correlation function of A(a) and B(b) is defined as [10]:

P(a,b) = fA A(a,A)B(b,A)p(A)d._- fh A(a,._)p(A)d),. fh B(b,)_)p(._)d),

qfh A2( a, "_)P( )O d)_ " qfA B2( b, "_)P('_ )d)_
(1)

ematics we have:

Z, < 1 B(b, A)

1 B(b, A)

where c_(a) = fA A2(a,'_)P(A) dA and cry(b) = fA B2(b,'_)P('_) dA" Now, let AA(a) and AA(a')

be subsets of A in which A(a,),) = 0 and A(a',)_) = 0, respectively; if A E h' = AA(a) N

hA(a t) the integrals vanish and we can evaluate them in the subset h - A t. Moreover,

since ]d(a,)_)l < 1 as well as ]A(at, A)[ < 1, we can replace the above quantities with their

maximum value. The same argument can be applied to observable B(b) for which subsets

p( +

We define the Bell observable as 2x = ]P(a,b)- P(a, bt)[ + [p(at, b) + p(at, b')[. If the

quantum state is symmetric fh A(a,A)p(._)dA = fA B(b,)OP(A)dA = 0 and, after a few math-



As(b) and As(b') of A in which B(b,)_) = 0 and B(b',)_) = 0 respectively, can be defined.

For all the values of A E A" = AB(b) A AB(b') we have:

B(b, )_)
+ =0 (3)

Now, let's assume that: i) AA(a), AA(a'), As(b), As(U), are completely randomly deter-

mined, i.e. the non detection process is independent of the value of the hidden variables;

ii) the probability of non-detection does not depend on the values of a, a', b and b'; iii) the

measuring apparatuses are identical, i.e. channel A and B are identical. In these conditions

0.2_= _ and _ = _). As a consequence for A E A'flA",it holds:

B(b,,_) B(b', _)

And finally we get:

B(b,_) B(b',_) 2+ + _< (4)

2 fA p(.X)d._=2Z,< _ '_*" _,(_.) (5)

where M = rain (_, _. If #A(a,a') = fh' p()_)dA, #s(b,U) = fh" p(,_)dA and

#AB(a,a',b,b') = h,nx,, p(a)da, Eq. (5) turns to be:

2 (1 -- #A(a,a') -- #s(b,b') + #AB(a,a',b,b')) (6)£ <_-_

Owing to hypothesis i), we have #As(a,a',b,b') = #A(a,a')" #B(b,b'), #A(a,a') = #A(a)"

#A(a') and #s(b,b') = #s(b)" #s(b'). Moreover, hypothesis ii) allows us to state that

#A(a) = #A(a') = #A and #s(b) = #s(b') = #s. Finally hypothesis iii) allows us to write

#A = #S = #. As a consequence Eq.(6) becomes:

2 (1- (7)2x_<_

Remembering that if r] is the detection efficiency, 7/= 1 - #, and M = (1 - #) = 7/we finally

have:

z, <_2,7(2- _)_ (8)

whereas it is well known that the Quantum Mechanics prediction (Z_QM) gives for maximally

entangled states (as the singlet state):

?7 2
AQM = 2 _- (9)

q

As long as AQM <__ _ it is impossible to distinguish between a LHV theory and QM pre-

dictions. The comparison between Eq.(8) and (9) gives a lower bound for the detection

efficiency,



Umi== 2 -_"-2= 0.811 (lO)

This number is in total agreement with the a previous one, deduced by De Caro and Garuccio

[8] in the framework of a Bell's inequality using expectation values (instead of correlation

functions) and assuming a random non-detection process. We would moreover note that the

result of Eq.(10) can only be partially compared with the that one, obtained by Eberhard

[7], who derived an inequality without using any supplementary assumption which could be

violated by QM predictions if the detection efficiency exceeds 66%. Since, as already pointed

out in the Introduction, he got his result by using extremely asymmetrical quantum-states

and in the limit of visibility equal to 1.

III. CONCLUSION

Up to now, all the experimental tests aiming to investigate the non-local character of

QM carried out by using photon-pairs show a remarkably good agreement with QM it-

self. Notwithstanding, in all the experiments the detection efficiency was far below 20%.

Moreover, in all the experiments, the comparison between QM and LHV theories have been

performed by using the CHSH inequality. In this short communication we introduce a proba-

bilistic form of Bell's Inequality, i.e. we propose to use a very general approach entirely based

on the probability definition of correlated variables. In summary we showed that assuming

the validity of Random selection hypothesis and in the case of symmetric quantum

state any discrepancy between a LHV theory and QM prediction can be evidenced by a

clever experimental physicist if and only if the detection efficiency is greater that 0.811%.
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Abstract

We suggest a feasible method, based on a homodyne-like detection scheme,

to detect the degree of entanglement obtainable by mixing a couple of excited

squeezed coherent states in a balanced beam splitter.

In the novel field of quantum technology, entanglement is a resource that can be exploited for

the transmission and the manipulation of information. Actually, the entanglement between

two photons has been widely investigated, both theoretically and experimentally. Entan-

gled photon pairs have been used to test nonlocality of quantum mechanics, and to explore

potential applications such as secure quantum key distribution and teleportation [1]. More

recently, the experimental realization of continuous teleportation [2] raised attention to meso-

scopic entanglement, namely the quantum correlations that can be established between two

radiation beams containing many photons. Indeed, the continuous teleportation protocol

relies on the mesoscopic entanglement obtained by mixing a couple of squeezed states in a

balanced beam splitter. For these reasons, it is a matter of interest to quantify the entan-

glement between excited beams, and to devise detection schemes capable of revealing their

degree of entanglement.

In experiments involving correlated photon pairs, entanglement is revealed by measur-

ing the coincidence counting rate at the output, namely the fourth-order correlation func-

tion K(¢) = (¢OuTIata btbl¢ouT), where ¢ is a phase-shift between the two photon paths.

However, when many photons are present, namely when we are dealing with mesoscopic

entanglement, this corresponds to low fringes visibility, and thus we need a more sensitive

kind of measurement. The homodyne-like detection of the output difference photocurrent

(¢OUT lata -- btbl¢ouT) is widely used in interferometry and generally results in a very sensi-

tive measurement scheme [3]. Starting from this consideration, here we suggest the squared

difference photocurrent H(¢) = (¢OUTI(ata -- btb) 2 I¢ouT) as a suitable fourth-order quantity

to be measured at the output. Apart from the very low signals regime (the photon-pair

regime) homodyne-like detection shows very high fringes visibility, thus providing a reliable

detection scheme to reveal mesoscopic entanglement.

*paris@pv. ±nfn. it



In order to present explicit calculations, and to compare the two different measurement

schemes, we focus our attention on the specific setup depicted in Fig. 1. First, a couple

of degenerate optical parametric amplifiers (DOPAs) is employed to generate a couple of

uncorrelated identical squeezed coherent state [4]

I_din)- I_,r)al_,r)b- [:)a(_)Db(a)_(r)Sb(r)lO )

where D(c_) - exp{aa t -(_a} is the displacement operator, and S(r) -- exp{1/2r2(a t2 -a 2) }

the squeezing operator.

FIG. 1. Schematic diagram of the setup to generate and reveal states with different degree of

mesoscopic entanglement.

The two squeezed states are then mixed in a balanced beam splitter, and the resulting
output state, U = exp(ilr/4(atb + abt)} being the evolution operator of the balanced beam

splitter,

ranges from a totally disentangled state to a maximally entangled state, depending on the

squeezing fraction _ of each of the input state. This is defined as the fraction of the total

number of photons engaged in squeezing 3, -- sinh 2 r/N, N - lal 2 + sinh 2 r being the total

number of photons of the state. In particular, for a couple of squeezed vacuum at the input

(0' = 1) the output state is given by the so-called twin-beam state

OO

IX) = _1 -JXI 2 E X n In'n ) (1)
n=0

where X = tanh r. Twin-beam IX) represents a maximally entangled state that may contain

a mesoscopic number of photons, we have

N x = <xlata + btblx> = 21XI2/(1 + IXI2) 2 .

In general, a measure of the entanglement for pure state in provided by the normalized

entropy of entanglement [5,6]

s[ a]
£--

where S[_] = -Tr{_log_} is the Von-Neumann entropy of the quantum state _, _a =

Trb{[_o_)(_o_[} is the partial trace of the output state, and _h describes a thermal state (a

maximum entropy state) with the same number of photon of the partial trace _. The degree



of entanglemente ranges from zero for uncorrelated states to unit for maximally entangled

states. After some algebra we obtain for the degree of entanglement of I_out)

log(1 + ")'N) + 7N log(1 + _)

e = log(1 + N) + Nlog(1 + -_) (2)

From Eq. (2) it is apparent that the degree of entanglement is an increasing function of the

squeezing fraction, and that a maximum entangled state (e -- 1) at the output is reached for

a couple of squeezed vacuum (7 "- 1) at the input. For highly excited states the entanglement

is given by the asymptotic formula

N>>I log 7

e " l+logN (3)

We now study the visibility of the interference fringes that are observed, by varying the

phase-shift ¢ between the two signals, in intensity measurements at the output. Besides being

originated by interference effects, the variations in the quantities measured at the output

also reflect the variations in the quantum correlations between the two output signals. In

analogy with experiments involving correlated photon pairs, we may consider the detection of

the coincidence counting rate at the output, namely of the fourth-order correlation function

K(¢). However, as we will show in the following, this corresponds to low fringes visibility,

and thus we sought for a more sensitive kind of measurement. Here, we consider the squared

difference photocurrent H(¢) = (_o_t{ (ata - btb) 2t_o_t) as a suitable fourth-order quantity

to be measured at the output of the interferometer. The fringes visibilities of both detection

schemes are given by

Kraax - Kmin Hmax _ Hmin
vK = = (4)

Kmax + Kmin Hm_ + Hrnin

In Fig. 2 we report VK and VH as a function of the intensity N for different values of the

input squeezing fraction 7- The H-measurement visibility VH is larger than Vg in almost

all situations, with the exception of the very low signals regime, where very few photons

are present. The behavior of fringes visibility versus intensity N also confirms that VH

represents a good measure of the entanglement at the output. As it happens for the degree

of entanglement, in fact, a couple of squeezed vacuum at the input corresponds to maximum

visibility VH = 1 independently on the intensity. On the other hand, the coincidence counting

rate shows a visibility VK that rapidly decreases versus N, and saturates to a value well below

1/2. For non unit squeezing fraction, and moderate input intensities (N < 10), the behavior

of VH looks qualitatively similar to that of the degree of entanglement, whereas again VK

rapidly decreases. Remarkably, for highly excited states N > 10, the visibility VH has the

same asymptotic dependence of the degree of entanglement e, in formula

N))I A(7)

1+ (5)
log N '

where the proportionality constant A(7 ) __ 1/5 log 7 is roughly proportional to that appear-

ing in Eq. (3).
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FIG. 2. Fringes visibility as a function of the intensity N for different values of the input squeez-

ing fraction 7- In (a) the visibility of K-measurement IrK, and in (b) the visibility of H-measurement

VH • In both plots we report the visibility versus N for five values of the input squeezing fraction.

From bottom to top we have the curves for -y = 0.2, 0.4, 0.6, 0.8, and 1.0. As it is apparent, VH is

larger than VK in almost all situations, with the exception of the very low signals regime.

In conclusion, we have analytically evaluated the degree of entanglement at the output of

a balanced beam splitter fed by a couple of squeezed coherent states. By varying the input

energy, we can produce entangled states of arbitrary large intensity, whereas the degree of

entanglement can be tuned by varying the input squeezing fraction. We have suggested an

effective experimental characterization of the output entanglement through the measurement

of the squared difference photocurrent between the output modes. The interference fringes

that are observed by varying the phase-shift between the signals show, in fact, high visibility

for the whole range of input squeezing parameter.
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Abstract

Quantum states move in the projective Hilbert space because there are quan-

tum fluctuations (uncertainties) in the observables. We investigate the un-

certainty relations based on the geometry of the projective Hilbert space of

the quantum system. We do not need any Hermitian operator to represent

an observable to study the associated uncertainty.

Section: (a) Uncertainty Relations.

1. Introduction:

Though the dynamical aspects of the quantum theory have been well studied, the geometric

aspects have been appreciated much later. The study of geometry of quantum states and its

implications have gained much importance in recent years [1-7]. One of the outcome of the

geometric approach is the parameter-based uncertainty relation (PBUR) in quantum theory

[2,8]. This is often useful when we do not have a Hermitian operator canonical conjugate

to another operator which represent a physical quantity of our interest. The vivid example

is the quest for time-energy uncertanity relation, when we do not have a Hermitian time

operator canonical conjugate to energy.

In this paper we discuss the geometric uncertainty relations when we have one Hermitian

operator and when we do not have any Hermitian operator. We present a new form of energy-

time uncertainty relation without any recousre to time operator. We argue that one may

not need any Hermitian operator to define an uncertainty in the physical quantity. We

find the intelligent states [9,10] for non-orthogonal initial and final states. From a quantum

information processing point of view keeping track of intelligent states are important.

2. Geometric Uncertainty Relation:

Let us consider a quantum state I¢(t)) e 7/= CN which evolves in time. Geometrically

the state is represented by a point in the projective Hilbert space :P = 7/- {0}/C*. The time

evolution of the system gives us a curve C in 7/. The Hilbert space curve can be projected

onto a curve C = II(C) via a projection map II : 7/--+ :P. The projected curve C has a length

which is induced from the inner product of the Hilbert space and is given by the Fubini-Study
1

2 rt2 AH(t)dt, where AH(t) = rI(¢(t)lH(t)21¢(t)) _ (¢(t)lH(_,)l¢(t))21_metric [2-5] S -- _ Jr1

is the usual uncertainty in the energy of the system. This distance is independent of a
L .I



particular Hamiltonian used to evolve the quantum system and is invariant under a gauge

transformation. On the other hand if So is the shortest distance between the initial and final

states joining the points H(l¢(tl)> ) and YI(l¢(t2)) ) then the distance measured by Fubini-

Study metric is alway greater than the geodesic distance connecting the initial and final

points, where So is given by the Sargmann angle [5] formula cos 2 So = i(_b(tl)l_b(t2))12. This2
gives S _ So and the equality holds only for those states that evolve along a geodesic in 7_.

The Anandan-Aharonov uncertainty relation for time-energy is given by

h

(AH(t))At _> _ (1)

where (AH(t)) -- 1 f_: AH(t)dt is the time average of the energy uncertainty and(t2-tl)
_tAt = _o( 2--tl) is the '_uncertainty in time". When the initial and final states are orthogonal

(which are distinguishable by quantum mechanical tests) then the shortest distance is It.

In this case time-energy uncertainty relation takes a simple form (for a time-independent

Hamiltonian) as AHAt > h_ _, where At = (t2 - tl) is the ordinary time difference that

is required to make a transition to a orthogonal state. There are various aproaches to

time-energy uncertainty relation and to estimate the time required to make a transition to

orthogonal states in the literatue [11]. The advantage of the geometric uncertainty relation

is that we do not have to look for a Hermitian operator for time. It can remain just as a

parameter and uncertainty in the parameter would mean how good we can estimate it given

a certain amount of uncertanity in the conjugate variable. This fact can be grounded by

the observation that we can go beyond the time-energy uncertainty relation. If we have any

continuous parameter A and any Hermitian observable A(A) which is the generator of the

parametric evolution, then the Fubini-Study distance is given by

2f_ x'S = _ AA(A)dA (2)
1

where AA(A) is the uncertainty in the observable (the quantum fluctuation) of the system.

The speed of the system point in :P is V(A) - _AA(A). This means if we regards position

as a parameter then V(X) - RAP is the speed of the system point in :P. On the other

hand if we regard momentum as a parameter then V(P) = 2gAX is the speed of the system

point in P. This suggests us a new meaning to the Heisenberg uncertainty relation. Thus,
a

AXAP >_ _ can be expressed as

2

v(x)v(P) > (3)

which means in the projective Hilbert space we can not trace two curves parametrised by X

and P (whose quantum parts do not commute) with an arbitrary speed. The product of two

speeds must have a lower bound fixed by Planck's constant.

Now coming to geometric uncertainty relation a similar geometric reasoning (as for time-

energy case) would give us (AA(A)_AA > h 1 _2_, where (AA(A)) - f_, AA(A)dA is-- (_2-AI)

the parameter average of the observable uncertainty and AA -- _0(A2 - A1) is the scaled

displacement in the space of the conjugate variable of A. This generalised uncertainty

relation would hold for position-momentum, phase-number or any possible combinations.

Recently, Yu [12] has discussed the PBUR for position-momentum case.



If the Hermitian generator A of the parametric evolution can be split into two parts

A0 +A1 such that A0 has a complete basis of normalised eigenstates { I¢i)}ie, with degenerate

spectrum (a0}, with I a set of quantum numbers and A1 has matrix elements (A,)ii = 0 =

(A1)jj and (A1)ij - (A1)ji - al, then all states of the form

i¢j

(4)

are intelligent states for non-orthogonal initial and final states.

The proof can be found in [13]. The uncertainty in the operator AA 2 == a_ The shortest
2 adistance along the geodesic So = 2cos-*([(¢(A1)]¢(A2))[) : _ 1A2. The rhs of the PBUR

of Anandan-Aharonov becomes AAAA = al.2-_h = h This proves that the states (4) are

indeed intelligent states.

3. Uncertain Relation without Hermitian operator:

In the preceding section we discussed geometric uncertain relation when we have a Her-

mitian operator which is the generator of the parameter evolution. Suppose we do not have

any Hermitian generator corresponding to a particular parametric evolution. All that is

known about a quantum system is that the state vector evolves in the Hilbert space contin-

uously when certain parameters are changed in an arbitrary manner. We argue that even in

this case we can talk of a geometric uncertainty relation. This suggest us that we may not

need a time operator at all in quantum theory. We can define an uncertainty in the time

without a time operator. The idea is as follows.

Let us imagine a quantum system which evolves in the Hilbert space through the variation

of a continuous parameter A. The state may not necessarily obey some linear and unitary

evolution law. In fact, it can obey some non-linear and non-unitary equation. In such

situations the norm of the state may not be prserved during a parametric evolution. Given

the Hilbert space structre of the quantum system, we know that we can define the inner

product between any two vectors. This inner product induces a generalised Fubini-Study

metric [14] on the projective Hilbert space of the quantum system 7_. The Fubini-Study

metric is given by

es2 = I1¢- 111>-tu il¢-- llI1¢( 111 (5)

Therefore, during an arbitrary evolution the total distance travelled by the system point in

:P is given by

2S- V(A) dA.
1

(6)

Since the actual distance S is always greater than the geodesic distance So we can write the

following inequality

> 1 (7)

where (V(A)) is the parameter average of the speed of transportation of the system point
1

in 7_ and AA -- _o(A2 - )h). The above inequality is most general geometric uncertainty



relation for pure quantum states. When wehave a Hermitian operator A corresponding to

the parameter translation, the the Anandan-Aharonov uncertain relation can be thought of

as a special case of the present one. Since the system point moves in P because there is some

kind of uncertainty in the system, we might intereprete V(A) as an inherent uncertainty in

the quantum system without an associated operator. For example, if we have quantum state

labelled by energy (a continuous variable) for unbounded systems, then the parameter A can

play the role of energy. Then the the quantity V(E) may be called an uncertainty in the

time (on dimensiaonal ground also V(E) has dimension of time), where V(E) is given by

_l[(d(¢(E) )1 d ¢(E)_-(i((¢(E) [_E( ¢(E)._2]V(E)=
I;¢(E)]I d-E(II¢(E)I; j' ;]¢(E)H ) I]¢(E)i]J'J]

(s)

Then the generalised uncertainty relation takes the form

(V(E))AE > 1 (9)

This is new form of energy-time unceratinty relation treating energy as a parameter

unlike the Anadan-Aharonov case, where time was a parameter.
4. Conclusion:

We have discussed geometric uncertainty relations in quantum theory without any re-

course to Hermitian operators. We provided a new meaning to Heisenebrg uncertainty

relation. We found the explicit form of intelligent states when the initial and final states are

non-orthogonal.
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In this paper, I discuss how the duration of the measurement of a subsystem of an

entangled state determines the state of the unmeasured subsystem. We derive an integral

equation that must be satisfied for perfect teleportation of a broadband qubit state. This

type of measurement is important in quantum computing, quantum information theory and

in the preparation of entangled states such as the Greenberger, Horne, and Zeilinger state

[1].

I. A simple example: Quantum teleportation of qubit states

We begin with a simple example of the effect of finite time measurements on quantum

teleportation. Following the usual teleportation protocol [2], Alice and Bob each receive one

of two identical particles prepared in an entangled singlet state Ik_/ab. Alice is then given a

qubit in an arbitrary state, I¢)_ = aI+)c+fl[-}c, that she wishes to send to Bob. We suppose

that the computational states of the qubits are not degenerate, HI-}- } -- -2]+}. HI-} =

Consequently,I¢/cis time dependent.
Alice performs a measurement of duration T,_ at the time T on the pair of particles a, c.

Her measurement projects out one of the Bell states

[(_(4-)}ac = _(I-J- 2T)ac _- [ -- -->ac) I_I;(J=)}ac : _(I-_ --)ac _- I -- -_}ac).
(1)

Suppose the outcome of the measurement is ](I)(+)>ac, then the state in Bob's laboratory is

given by

2 )p(t)= _o 9! I)iofl (2)

where fl(t) = fie -iet. Since the measurement is not performed instantaneously, but is of finite

duration T,_, Bob's density matrix must be time averaged which leads to the replacement

fl(t) --+ fl(T)sinc(eTm/2) in eq(2).

To complete the protocol Alice performs the unitary transformation, conditioned on the

outcome of her measurement, _/= cry_ay. The fidelity, correcting for the time T, is

F = (4>(T)I-&I¢(T)>b = _-- 21o 1 191(1 - sinc(eT._/2)) (3)

where I¢(T)) = c_l+) + fl(T)l-). The same result hold for the other three possible outcomes.

For e = 0 or Tm = 0 we get perfect fidelity. If eT,_ >> 1 then the fidelity reduces to

F = 1 - 21a121fll 2 > ½, which depends on the state that is teleported.

II. Finite time measurements of photons

We now examine the effect of finite time measurements on photon entangled states. We



definea detectionoperator [3] E = _ p(w)c-i"4t-X)a(a_, e), where a(aJ, e) is the annihilation

operator for a photon of angular frequency a_ and polarization e, and p(co) is the spectral

function of the detector. The function p(aJ) is determined, in part, by placing filters and

polarizers in front of the photodetector. We restrict ourselves to a pooint detector located

at x. The instantaneous counting rate for an input state • is proportional to R(t) =

If q is the single photon state Iq_)= E_ f(_)a*(_, e')10), R(t) can be written in

terms of the single photon amplitude, (0[El_fl) = 2_ f(w)P(w)e-i_(t-X)(e" e'). The detector

actually measures a quantity proportional to the time averaged intensity. Introducing the

retarded time T = t -- X, we find

1 d -I(OIEI6)I=
I = _ JT-Tm/2

= E f(a/)*P(d)*f(aJ)P(aJ)e_(J-_)Tsine[( _ -- a/)T-_/2]l(e" e')l 2" (4)

The outcome of the measurement depends on the duration of the measurement T,_, f, and

p. T,_ is the fundamental resolving time of the detector.

We shall restrict ourselves to the case that the spectral amplitude f(w) is peaked at

= f_ with width of Aw << f_ and to broadband detectors so the width of the p is large

compared to that of f. The characteristic quantity for the detector is 0 = Aa_T,_ = Tm/T,_,

where T_ is the coherence time of the single photon wave packet.

There are two extreme cases that we shall consider, fast and slow detectors. Fast detectors

are characterized by the condition 0 << 1 so the sine function can be replaced by 1 over the

range of summation giving I = Ip(f_)_f(w)e-i_T(e- e')l 2, (fig.l). This means that the

envelope of the wave packet can be resolved by the detector. For slow detectors, which is

the usual case for photodetectors, 0 >> 1. The sine function restricts the integration region

to _ _ a/ and we find I = 7rlp(f_)12_,lf(w)[2[(e.e')] 2, (fig.l). In this case the average

intensity is measured.

A. Preparation of a one particle state from a two particle entangled states

For an entangled pure state, neither photon is in a definite state [4]. When one of particles

is detected, then the undetected particle acquires a definite state. Consider the two photon

entangled state with one photon moving to the right and the other to the left,

Iq2) = _ f(w,w')(_+lw, e+)RIJ, e-}L + _-Iw, e-)RIJ, e+)L), (5)
_I[O !

where e+ and e_ are orthogonal linear polarization states, and [+ are phase factors. We

assume that f(a_,d), is peaked around cz0 and cz0_ with widths AaJ << w0 and AcJ << Wo'.

If the right-moving photon, R, is detected at time tl and the left-moving photon is not

detected, the density matrix for the system reduces to a one photon state. The subsequent

detection of the second photon is determined by

C, = Ntr(pLE_E2) PL= E IJ, el>LPL(a/,fl')L<f_',exl (6)

1

pL(w', f_') = -_ _ pR(aJ)pR( f_ )* f (w, J) f ( f_, fl')*e-i("_-a)T_ T._sinc[ (co - ft)T._/2]
co,_t

(7)



pc(co', [2') is a density matrix element of the L particle. N is the normalization constant.

For a slow detector the sine function is non-negligible when ]aJ - [21 < Aco/0 << Aco. We

set co ,-_ f_ in f giving the mixed state pL(co',a') = J_,xr-72_lpR(co)12f(co, w')f(co, a') *.may

For a fast detector leo - f/] < Aco/0 >> Aco and the sine function may be set equal to 1 over

the entire range of the summation over co and f_, giving the pure state

pL(co';a') = x(co')x(a')* X(J) = V/--_-----ff--ff_ pR(w) f (w, CO')e-i_T1. (8)

B. Teleportation of qubit wave packets

In this section we outline the calculation for the telepor-

tation of qubit wave packets. For the initial three particle state IqJ) = II')ab](I})c, where

1_)_6 = E_o_b f(co_,co6)(Icon, e+)alcob, e-)b + Icoa,e-)a]cob, e+)6), ]O)c = E_c g(coo)lq_;co_}c and

](,b;coc)c = a+lcoc, e+)_ + a-lco_,e-)c is a normalized plane wave state. 10)_ is the state to

be teleported. We shall use the notation IB),/3 = 1, 2, 3, 4, respectively, for the Bell states

I_(+)), IO(-)), Iq_(+)), I_P(-)) and define the Bell state detector

E {B) _ p(e)(co_,co2)e -i(_+_)'_ _ ?(B) alco e_l)a(co2, e_),%alc_2 I, 1,

O31(,O 2 O"10" 2

(f)

: ¢[12 1, : 1, etc.where the non-zero elements of the ¢'s are _++ = s++ =

As before, 9-B = tB --XB, where XB is the coordinate normal to the detector and tB

is the time the detector registers the pair. The three particle correlation is CB =

( IE(B)tEbtEbE{B)I ) = I&BI _ where the amplitude AbB is given by

AbB = (0]EbE(B)Iq0 = ]_2 UB(co_,cob,co_)e-_(_+_)Z_(OlEbl¢(8)(co8))8 (10)
a3aa3b_c

with UB(co_,cob,coc) = f(co_,cob)g(co_)p(B)(co_,co_). The procedure is now the same as above,

we must integrate CB over the detection time Tt_, giving the density matrix in Bob's labo-

ratory:

, 1
rOB(cob'cob) = 'N E "siT_c (coa '_- coc -- co; - co: ) Tin2

co;)*. (11)e-i(wa+w_)TBUB(coa,cob, " , , , ',

For a fast detector so that the sinc is approximately equal to one over the range

of integration. This requires that (Aco_ + Acoc) T,_ << 27r, where Aco_ is the width

of f(co_,cob) in the first variable and Aco_ is the width of g(co_). With these assump-

tions, PB = kB)b(XSl where the state produced in Bob's laboratory is IX(B))b =

V_2_b [_b U(co_,cob,co_) ei{_°+_)T'] I¢(B);co6) 6" This is a pure state but, in general, it

does not have the same spectral properties as the state given to Alice. Consequently, for

perfect teleportation there is an additional condition that must be satisfied by the state to

be teleported. The spectral function g must satisfy the integral equation

_-2 (_ f(coa,cob)p(B)(co_,w_)ei(_°+_)TB) g(w_) = Ag(cob). (12)
(Me (Met



That is, g must be an eigenvector of the operator, K, in brackets which depends on the

input entangled state, f, and the nature of the Bell state detector, p(n). The fidelity of the

teleportation is F = I(g, Kg)/(g,g)I 2 < A,_ax.

III. Conclusion

When a system composed of subsystems is an entangled state, the subsystems are in general

not in any definite state. The effect of measuring a subsystem is to project the unmeasured

subsytem into a definite state. The precise nature of this state depends on the initial en-

tangled state and the nature of the measurement. In particular, there is a time scale set by

the initial entangled state and the subsystem measured. If the duration of the measurement

is long on this time scale, then the state prepared will be a mixed state. If the duration is

short, then the state prepared is a pure state, otherwise, the prepared state is mixed. We

have illustrated the effect of finite time measurements on teleportation but similar results

hold for any process in which a subsystem of an entangled state is measured in order to

generate a state of the unmeasured subsytem.

IV. Acknowledgements

The author wishes to express his thanks to Mark Heiligman, Keith Miller, Arthur Pittenger,

and Yanhua Shih for their comments on this work. This work was supported in part by

ONR and NSA/ARO.

l( I

J

_P_S S

/ S ,S

4-------Ak

.. t_x. 2n / Tra

""" _.]. NN_t..

Ak I ."
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detector, 0 << 1
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Abstract

A general expression is found for the instantaneous atomic state following

detection of a photon passed through an interference filter. For its derivation,

the second-order correlation function of filtered and unfiltered photons has

been used. Properties of the reduced atomic state are discussed.

"Quantum state reduction", or "collapse of the wavefunction", is an inherently quantum

mechanical phenomenon which can be regarded as a back-action of a measuring device on

a quantum system during measurement [1]. This notion also becomes useful for physical

interpretation of many experiments in quantum optics, for example, of those related to

resonance fluorescence. It is known [2] that when the atomic radiation is detected without

spectral resolution, each photodetection event is accompanied by atomic state reduction onto

the ground state for zero time delay. Now, let us suppose that we have detected a photon

transmitted through a spectral (Fabry-Perot) filter with the bandwidth Ff and resonance

frequency czz. Then what the atomic state is? In this paper we present an answer to this

question. The answer is based on the use of the fact that the second-order coherence of

resonance fluorescence contains explicit information about the reduced atomic state.

For derivation of the expression for the atomic state following a detection of a trans-

mitted photon, we propose to use, apart from the detector D1 placed behind the filter, an

additional broadband detector D2. We associate the narrowband and broadband detection

channels with these detectors. Earlier, an identical scheme was used in connection with the

study of two-photon wave-packets [3]. A similar setup but with two narrowband channels

was extensively studied as applied to the problem of spectral correlations in resonance fluo-

rescence [4-6]. In the problem of atomic state reduction being considered, the detector D2

is used monitor the atom in instants when clicks are produced by the detector D_. Then,

based on an analysis of time delays between clicks at D1 and D2, the atomic state can be

deduced. In terms of the quantum measurement theory, detection of the filtered photon

is regarded as preparation of an atomic state, whereas detection of an unfiltered photon is

considered as measurement of this atomic state.

In the stationary regime, statistics of delayed coincidences at the detectors D1 and D_ can

be described by the second-order temporal coherence g(2) (T). This is the joint probability

pf_ (_-) for detection of a filtered photon at some time followed after delay _- by detection of



an unfiltered photon, normalized by the probability for two independent countsof filtered
and unfiltered photonspf (ec) and p_ (ec), respectively,

g(_)(_)= pf_(_)
p:(oo)p_(oo) (7 >_o) (1)

Under assumption that optical paths from the atom to both detectors D1 and D2 are the

same equal to l, and that the field reflected from the filter does not affect the atom and

photon flux at D2, expressions for the probabilities in the right-hand side are given by

pf_ (7) _ _im _ [0:+ (tR)0+ (tR + 7) 0_ (tR + 7) £ (tR) _AF (0)],

PI (OC) 0( lim Tr [5_ (tR) 0 f_ (tR) tSAF (0)] (2)
_--+ oo

p_(oo) o<p_2(_),

where/_AF (0) is the initial density operator,

(t) = fotdt'Tf (t- t')0_ (t') (3)0f

is the convolution of the atomic lowering operator 0_ (t) and the filter transmission function

[7,8] Tf (t) = (_ (t) Ffe-(i_s+rf) t, 0 f (t) = (0 f (t))f, tR = t - I/c, and P22 (oc) is the steady-

state population of the atomic excited state. The joint probability pf_, (7) can be expressed

as the conditional probability of a click at D2 at time 7 given a click at D1 at time 0. Then

9 (2) (7) reads

g(_)(7)= 022(7)I_(o)=_(_) (7 > 0) (4)
p22(oc) ' -

where/_ (oo) is the reduced atomic state following detection of filtered photon. The super-

script "c" means that this state is conditioned by a count in the narrowband channel. The

conditioned atomic state is given by

fi_(oo)= lira 2(t-l/c)
_ _i_-- _) (_)

where

5 (t) = exp (-i[-It/h) is the evolution operator, and the Hamiltonian/2/= H_tom +/2/_eld +

Equations (5) and (6) allow to calculate the atomic state just after detection of the

transmitted photon, provided that the parameters of the atom, exciting field and filter are

known. For large filter bandwidths r I >> 7, where 7 is the spontaneous decay rate, the

conditioned state slightly differs from the ground atomic state, and in the limit Ff --+ ec we

have t__ (oc) = I1)(1[. On the other side, when F_ << 7 the distribution of emission times

has the width _ F} -1 which is much larger than the lifetime of the atom in the excited state.



The atom after collapseto the ground state evolvesto its steady state, beforethe emitted
photon reachesthe detector D1. Therefore, in the limit of a very narrow filter, t_c (cx_) tends

to the unconditional atomic state/_ (cx_). In the intermediate case, when F/ _ V, we can

expect that detection of the transmitted photon occurs when the atom is still in the transient

regime. It is well known that for large Rabi frequencies the excited state population in the

transient regime oscillates and may be > 1/2, although the steady state population of the

excited atomic state cannot exceed 1/2. So, we can expect that for particular bandwidths

and setting frequencies of the filter the conditioned atomic state can be inverted, that is,

(Sz) c =Tr[_ c (cx_) _z] > 0. And this is indeed so. The calculations of the expectation value

of the inversion operator in the stationary conditioned state has been performed for several

filter parameters at the Rabi frequency _ = 10% For Ff = 3V we found that for any setting

frequencies (5_)_ < 0. For F/ = 0.017 the sign of (Sz) c is the same. However, we obtained

positive ((_)_ = 8.10 -4 for Ff = 0.57 and w I = (ML (_d n is the laser frequency) and the larger

value (Sz)_ = 0.0246 for the filter set in between the central and sideband components of the

fluorescence triplet w/= WL ± _t/2. Although the reason of the inversion in _ (cx_) can be

explained approximately as the transient regime of the atom at the instant of transmitted

photon detection, the influence of the filter resonance frequency and role of the wings of

the transmission function should be clarified in a more rigorous consideration. Obviously,

it is incorrect to identify _ (c_) and the unconditional atomic state at any time. The state

/_ (cx_) explicitly depends on the filter parameters and cannot be expressed as resulting from
the atomic evolution alone.

It is interesting that, given a measured intensity correlation function g(2)(7-) defined

by Eq. (4), it is possible to find the conditioned state in the case of the unknown filter

parameters, provided the parameters of the exciting field are known. Moreover, the diagonal

elements of the state t5_ (cx_) can be obtained from the value g(2) (0) alone:

P_2 ((x_) = _(2)(0); P_I (oo) = 1 - _(2) (0), (7)

where _(2)(0) = g(2) (0) p22 (oc).

In conclusion, we considered spectrally-resolved resonance fluorescence of a single atom

and showed that a simple scheme with two detectors allows to express the second-order

intensity correlation function at the detectors in terms of the instantaneous atomic state

f_¢ (oc) conditioned by detection of a spectrally resolved photon. That makes it possible (i) to

calculate j5c (oc), provided that the atomic, filter and exciting field parameters are known; (ii)
to reconstruct the conditioned atomic state from the measured second-order coherence. The

steady-state t5c (cx_) can be found inverted indicating that on average, transmitted photons

are detected at instants corresponding to the transient regime of the atomic evolution.
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We discuss the motivations as well as the structural aspects of the random path

approach to quantmn mechanics.

In spite of the fact that probabilities get replaced by amplitudes in the

transition from classical to quantum mechanics, a very remarkable structural

similarity between classical and quantum physics exists. Indeed, in the coor-

dinate representation amplitudes satisfy' (up to the normalization condition)

the same calculus that probabilities obey in the theory of classical diffusion

processes defined in the configuration space M of the dynamical system in

question. That is, in either case one has a first-order time evolution with a

semigroup structure. As a consequence, quantum mechanics ought to be formu-

lated in (at least) three different ways as it is the case for classical diffusion

processes (see below). In addition, these formulations of quantum mechan-

ics are expected to be structurally very similar to those of classical diffusion

processes in A4.

What is the actual import of these facts? We all know that. the wave

function _'2(x,t) is an arbitrary solution of the Schr6dinger equation, while

the transition amplitude (x,t]xo,to} is the associated propagator. Similarly,

the probability density P(x,t) is an arbitrary solution of the Fokker-Planck

equation in _, and again the transition probability P(x,tlxo,to ) is the as-

sociated propagator. In fact., both equations have the same mathematical

structure. Therefore, the SchrSdinger formulation of the quantum theory can

be regarded as the quantum counterpart of the the Fokker-Planck approach to

classical diffusion processes in _d. Alternatively, (x,tlxo,to } is supplied by

the Feynman path integral and analogously P(x,t]J:0, t0) can be represented

by a Wiener-Onsager-Machlup path integral. In reality, the two treatments

are almost indistinguishable, and so the Feynman formulation can be viewed

as the quantum counterpart, of the Wiener-Onsager-Machlup description of

classical diffusion processes in _M. Although all this is well known since a long

time, a crucial point nevertheless emerges, lndeed as far as classical diffu-

sion processes in _M are concerned - P(x,tlxo, to) can also be expressed as a

noise average involving the solutions of a Langevin equation with a gaussian

white noise. So, what the present discussion implies is that even in quantum

mechanics a similar representation of (x, tlxo, to} should exist. Actually, such



arepresentationisprovidedbytherandom path quantization 1, which looks

like the quantum counterpart of the Langevin approach to classical diffusion

processes in .M.

As we shall see, the strategy upon which the random path approach is

based consists in modifying classical mechanics by putting a certain white noise

into play, so that every classical dynamical trajectory in ;Vl gets replaced by

a set of quantum, random, paths which fluctuate about it. Any solution of the

SchrSdinger equation and in particular the propagator -- then arises as a

noise average involving a set of quantum random paths. As a result, quantum

mechanics can be analyzed explicitly in terms of

• classical mechanics,

• quantum fluctuations a.

We consider throughout a point particle ,5 (mass m, spin 0) with ,M = 7_ N

and described classically by a lagrangian of the form b L(x, 5:,t) = lm2i2i +

f_i(x, t)2i - ¢(x, t). As is well known, the Hamilton-Jacobi equation reads in
this case

,)

s(x,t)+._m s(_,t)-p.x(x,t) + e(_,t) = 0. (1)

Corresponding to any particular integral S(x, t) of eq. (1), a family of trajec-

tories in _V[ is provided by the first-order equation

m / la_=q(t)

We denote by q(t; x',ff; [S(-)]) the solution of eq. (2) with initial condition

q(t') = x' and controlled by S(z,t). Then q(t;x',f:';[S(.)]) happens to be

just the classical dynamical trajectory of 8 in _k4 selected by the initial data

q(t') = x', p(t') = (VS)(x',t') in phase space.

Starting point of the random path quantization is classical mechanics in the

Hamilton-dacobi form. Central to the present strategy is the idea - naturally

suggested by the similarity between quantum mechanics and classical diffusion

processes in _VI that all quantmn fluctuations can be simulated by a certain

white noise r/(t) which perturbs the classical time evolution in A4. Moreover,

aAlthough this statement might give the impression that the random path quantization
strongly resembles Nelson's stochastic mechanics, it will become apparent that the two for-
mulations are totally different.

5Repeated indexes are summed over.



suchananalogyalsoimpliesthatthewhitenoisevariables71(t) shouldmerely
beadded in eq. (2) withouL altering the already-present terms. Observe that

this fact entails in turn that the Hamilton-Jacobi eq. (1) remains unchanged

within this setting. So, quantization is presently accomplished by turning

eq. (2) into the following Langevm equation

d_(t) = 1 S(_,t) - a_(x,t) 7.. _(t)
7_

(3)

where _l(t) - {Tl.i(t)}l<i<_N is a Fresnel white noise first, introduced by It.6

defined by the functional (pseudo) measure

(4)

Quite analogously to the case of classical diffusion processes, the Fresnel noise

average of any 7/(t)-dependent quantity (.-.) is defined by

<('")},7- f _PP[q()]('"). (5)

We stress that. the Fresnel white noise variables 71(t) are real, while :D/.t[7)(-)]

is manifestly complex - this circumstance prevents a standard probabilistic

interpretation of eq. (4). Still - given that classical probabilities get replaced

by quantum amplitudes we are to regard/)#[q(.)] as an amplitude (pseudo)

measure, so that A[q(.)] has to be understood as the amplitude distribution for

the Fresnel white noise realizations q(t). As either h --+ 0 or m -9 ao the noise

decouples away- and the classical behaviour of S shows up.

Coming back to the Langevin eq. (3), we denote by _(t; x',t'; [S(.), 77(.)])

its solution with initial condition ((t') = x' and controlled by any particular

integral S(x, t) of eq. (1). These solutions describe the set of quantum random

paths controlled by S(x, t), which are the basic objects in the present approach.

They are fluctuating curves (fractals with Hausdorff dimension two) analogous

to the erratic trajectories so characteristic of macroscopic brownian motion.

Within this context, we obviously expect the quantum mechanical propa-

gator to arise as a noise average involving the quantum random paths, indeed

much in the same manner as the transition probability of a classical diffusion

process in _Vt arises within the Langevin treatment (namely, as a noise average

involving the solutions of a Langevin equation). What is its explicit form?

Surely, (x,t]xo,to} should not depend on any further variable besides those



indicated.Therefore,thedesiredrepresentationof@,tlx0,t0} should not de-

pend on the particular solution S(x, t) of eq. (1) which controls the quantum

random paths. Remarkably enough, this requirement yields

< ,ti o,to>=  o)I}-
{a(x - _(t;_0,t0; IS(.),,_(.)]))_(t;x0,to; IS(.),,_(.)1),/2},

(6)
where the definition

A(t";x',t';[S(.),,l(.)])- det _{i(t",x',t';[S(.),@)]) (7)

is employed. We stress that the overall S(x, t)-independence ofeq. (6) - besides

making the random path representation of <x, tlxo, t0> quite flexible in prac-

tical applications also explains why the dependence on the classical initial

moment.nn_p(t0) = (VS)(x0, to) gets washed out on going over to the quantum

theory. As a consequence, we understand why "phase space gets squeezed into

configuration space" in the transition from classical to quantum mechanics.

Moreover, an arbitrary solution */_(x,t) of the Schr_Sdinger equation for $ -

arising from a given initial wave function _[,(x, to) - I_';(a:, to)lexp{iS(x, to)/li}

enjoys the following random path representation

_,_,(x,t) = e_°(_'_/_<_(_0;_,t;IS0(.),_(.)l)'/'_l_,(_(t0;_,t; [So(.),_(')1),to)I},
(s)

where So(x,t) denotes that particular solution of eq. (1) which arises from

S(x,to).
Manifestly, the strategy outlined above which is characterized by the fact

that all quantum corrections to the classical behaviour are brought about by a

noise provides a new way to handle and solve quantum dynamical problems

by exploiting techniques developed in the field of classical diffusion processes.

Although it would be out of place to describe here the technical advan-

tages of the random path quantization, we would like to mention that this

approach leads most easily to a full quantum generalization of the semiclassi-

cal Gutzwiller formula, and proves more effective than other formulations in

performing numerical simulations of certain dynamical systems which exhibit
a chaotic behaviour in the classical limit -_.

1. M. Roncadelli, Random Path Approach to Quantum Mechanics, in

Quantum-like Models and Coherent Effects, ed. by R. Fedeie and P.

K. Shukla (World Scientific, Singapore, 1995).

2. G. Vattay and P. E. Rosenqvist, Phys. Rev. Lett. 76, 335 (1996).
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0.1 INTRODUCTION

With the devlopment of the optical Quantum measurement and communication, there is

a great demand for the high measurement sensitivity in the processing of the optical in-

formation. It has been demonstated that the squeezed light has a broadly application in

the measurement of weak absorption, interferometry and spectroscopy[l, 2, 3], in the quail-

turn measurement and communication, the nonlocality study of photos[4, 5] and the newly

emerging field of quantum information processing [6, 7], the superposition and interference

of quantum state of light from independent sources are involved.

A number of optical interference experiments[8, 9, i0, ii] have recently been performed

in which the fields are in nonclssical states, and the resulting interference patterns exhibit

certain explicitly quantum-mechanical features. Several proposals have also been made to

investigate quantum interfrence between twe independent sources among which the demon-

stration of nonlocal phase correlation in a parametric down-conversion process[12], quantum

state teleportation[13], and the realization of muiti-photon entangled states are[14]. These

phenomena rely on interference between a quantum state and a classical coherent state or

between two independent quantum states.

In this paper, the interfrence of the squeezed lights derived from two independent OPO's

will be discussed.First, the basic equations of the OPO's are presented, then the second and

fourth order interfrence of the two overlapped squeezed lights are analyzed.

0.2 THE MODEL OF THEORY

The squeezed lights generated in OPOI and OPO2 through type II parametric downconver-

sion are superposed at 50% beam splitter; then the intensity of the resultant field is detected

by detectors D1and D2.

We use the semiclassical approach proposed by Fabre et al. [i 5]to calculate the interference

of the output fields from the OPO cavities and the fluctuations. We consider these field

fluctuations to be driven by the vacuum fluctuations entering the cavity through the coupling

mirror. Treating the pump light as a classical field and neglecting the dissipation of the pump

field and the detuning of the OPO cavities,we can write the C-number Langevin equation of

the system as:

t " _ tin
+ = + n+ (la)



where c_i(i----1,2)represent the intracavity signal and idler field amplitudes associated with

their annihilation operators,60 is propotional to the amplitude of the classical pump field,_- is

the cavity round-trip time for the signal and idler modes,g is the nonlinear coupling parameter

that depends on thesecond order nonlinear coefficient X(2)of the intracavity medium,Ti is

related to the losses of the output mirror of the cavity, and7_ dependents on the absorption

and scattering losses of the crystal as well as on the losses of the other cavity mirrors. In

the following calculations we assume that 71 = 72 = 31and 7_ = 7_ = 7 _, and we take g, 31

and 7 _ as real quantities,i.e.,the phase shift of the light field in the cavities is not considered.

in and c_/nare the field amplitudes of the injected noise from the output and the inputand _i

mirrors respectively.

in tin ____0, we easily obtain the threshold pump power from Equ.(1):Taking ai = ai

I_01= (7 - 7')/g (2)

Solving Equ.(1) in frequency space and using boundary condition, we obtain the output

fields of the signal and idler lights:

+ _2 c2 A262 + A_el
+ _1cl ([2) + A2a 2 (-[2) (-[2) + (3a)a_ ut (_) = Alail n (_) -At in * *in --At, *in ! *
B B B

J- A 2 51 A2el ++Alc 2 (_2) + A2c h (-[2) (M2) + (35)a_ _'t (a) = Alc_ ([2) , i,_ • ,in ,, ,i_ , • A,S2
B B B

where, A1 = 7 2 - (O/- i_7-) 2 -}-g2 16012, At = 2[(?2_}_ _/t) _ i[2w] _%/-_7,
A2 = 2g6o7, A_ = 2g60x/-_ 7, B = [(7 + 7') - i[2_-] - g2 ]e012

We assume that the configuration for OPO1 and OPO2 are completely identical, so all

expressions obtained for OPOlcan be used for OPO2 if we replace a by fl, while the injected

signal and noise obeys the following relations:

,,i,_(_a,)] = 16012,%_;([2+ [2,),[_ (a),%.i_(_a,)] : _i/(a +a') , [_'_(a),%
'in(_-_t)] :O,[c_*in *in (__"_,)] _---0,: o, .

:0,
The output fields from OPO1 and OPO2 are

c-- ,d--
v_ v_ (4)

The superposition field of the two outputfields from OPO1 and OPO2 through beam

splitter M2 can be expressed as

ce -i_t + id

D1 -- V_ , Du -

The average photon flux at the detector is

ice -i_t + d

v_
(5)

g2 16---0[2--2_ 1 { 871-7"/ 16112 -Jc 871"77t 16112 COS (0d_ -_- A_I/) } (6)

R= <D_D1) = T [(7+7,)2_g2]eo12 ] +_7



Figure i:

It is obviously seen that there is no interference in the usual sense when there is no

injected signals Oal 12 =0).

Next, we show the spectral analyses of the fourth order interference without the injected

signals. In this case, the coincidence measurement of two photons is applied to detect the

effect. The coincidence rate is then propotional to the quantity:

"ff

, , 1 {32g_ i_o1__2(_ + _,)2 + (7)

492I_ol2_2[(_+ _,)2+ a2_2 + g2 1_o1212

492L_ol2_[(_ + _,)2+ a__2 + g2 i_01_]_cos2_t}

The fourth-order interference is just defined by the phase delay(wt) between two squeezed

lights, but not depend on the phase of pump power, which is good matched with the result

in the literature[16].

The visibility as a function of normalized pump power and analyzed frequency is depicted

in Fig. i. It is shown that the visibility takes the minimum value of 33.3_ at the frequency

of zero and the threshold pump power. The visibility increase along with the pump power

taking the value of away from the threshold and at the high analysis frequency. This effect is

in accordance with the descriptions in the Ref.[17], in which it is shown that the maximum

intensity correlation exists between two perfect random lights. The phase squeezed light

is a photon bunched state in which the randomness is smaller, so the intensity correlation

between them reduces. The maximum degree of quadrature phase squeezing is obtained at

the threshold and the zero analysis frequency, in the mean while the maximum bounching

of photon numbers happens, that lead to the minimum intensity correlation between the

two outputs from OPOI and OPO2. The forth-order interference depends on the intensity

correlation, so the visibility reduces to the minimum.

0.3 SUMMARY

We have studied the second and forth-order interference effect between two squeezed lights

produced by two OPOs pumped by a common laser source. The calculation results show:



i. Without the injectedsignalthe second-orderinterferenceis not present.Thereis forth-
order quantuminterferencebetweenthe two squeezedstate light fields,at the oscillation
thresholdof OPOsthe squeezingof two output fieldsis highestbut the fringevisibility is
lowest. When the pump poweris awayfrom the thresholdthe squeezingdecreaseswhile
the visibility increases.2. Whentwo coherentsubharmonicsignalsareinjectedrespectively
into the two OPOs,the output squeezedfieldsinterferein the usualsense.The interference
patterndependsonly on the phasedifferencebetweenthepropagationtimesfromtwoOPOs
to theobservingpoint.
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Abstract

The Low Frequency Facility (LFF), an R&D VIRGO project experiment, plans to measure the

thermal noise of two mirrors suspended to the last stage of the R&D super-attenuator (SA), with

a similar suspension performance to that of Virgo. The expected displacement sensitivity is
l_-IS ,r, 1/2

u m/rtz . Present status and near future plan are described.

Introduction and sketch of the experiment

Direct thermal noise measurement is doubly important and its direct observation is a topic of

current interest 1. Firstly, because suspension and mirror internal thermal noise is the ultimate

fundamental noise of the Laser Interferometric Gravitational Waves (LIGW) detectors in the

intermediate frequency range 2. Secondly, it will allows us to have a wide spectrum of thermal

noise, which represents by itself a considerable scientific breakthrough 3. In VIRGO, Low

Frequency Facility project (LFF) 4 is under progress. It aims to study the thermal noise of

suspension systems as well as of mirror substrates. It consists of suspending a Fabry-Perot cavity

to the R&D SA, which is identical to the VIRGO super-attenuator. It has already been built, and

is being used for Virgo tests. It will became part of the Low Frequency Facility in a very short
time.

The VIRGO suspension 5 system, which works by suspending a cascade of several mechanical

filters, is expected to considerably reduce the seismic noise above a few Hz. The SA has been

designed with three roles in mind: to isolate the test mass from environmental noise, to exhibit

the minimum possible thermal noise level and finally to control the test mass position in order to

keep the interferometer at its working point.

The highest noise source in the frequency range up to a few hundred I-Iz is the seismic noise,

which are reduced by the SA by more than a factor 1012. There have recently been many

proposals to improve the sensitivity of the suspension due to thermal noise, such as cryogenic

cooling, low loss test mass materials and novel noise cancellation techniques 3. A very high

sensitivity experiment devoted to studying methods to reduce the thermal noise level is therefore

of enormous importance.

In Figure 1 we show a design of the apparatus: the R&D SA supporting the two mirrors of the

Fabry-Perot cavity, and the table with the optical components from which a stabilized laser is

injected into the cavity. The injection table is only lm diameter in order to put the whole

experiment set-up under vacuum.

The thermal noise measured at the mirror depends 6 on the last stage of the suspension and the

mirror itself. Finally the control of the mirror position is handled by special parts of the SA: the

inverted pendulum 7, the marionetta and the reference mass. These two last elements of the SA



can be important for the thermal noise itself since they are very close to the test mass. The

essential idea is to suspend to the SA a very high finesse Fabry-Perot cavity in which one of the

mirrors is the standard VIRGO mirror(VM), suspended and controlled by the SA, and the other

mirror, which we call auxiliary (AX), will also be suspended to the SA 8. The AX mirror will be

much smaller than the VM, so in order to reduce the displacement noise due to the radiation

pressure of the stored light in the cavity, it will be loaded with an extra mass, thus forming a

double pendulum. It will be attached to the last seismic filter of the R&D SA in a similar way as

the VM. The F-P cavity will act as a displacement transducer and allow the measurement of the

combined thermal noise of the VM and the AX; the expected displacement power spectrum

sensitivity is 10 -18 m]Hz 1/2. The planned cavity has 1 cm length and finesse 3000, while the

frequency stabilization has to be at the level of 10 -1 Hz/Hz 1/2.

The LFF is composed of two main parts: the R&D SA and the optics. The tests concerning the

R&D SA are described in different papers and in Virgo Notes in preparation. For a detailed

description of this experiment the reader should take a look to reference 4. In the present paper

we focus on the experimental results obtained so far for the optical lay-out 9 and the laser

stabilization, and we outline the very near future plan.

Tests of the optical lay-out

Figs. 2a and 2h show the optical lay-out, composed of a frequency stabilised laser injected into a

Fahry-Perot cavity. Excluding the displacement transducer cavity, which is suspended to the SA,

all the optics sit on a round table of lm diameter in order to fit inside a vacuum tank, and

machined from a single piece of steel.

There are two main independent optical circuits: the Fabry-Perot transducer and the frequency

stabilisation circuits, they have been separately assembled and tested so far.

Transducer cavity:

Fig. 3 shows the experimental set-up: a 2 cm long plane-concave cavity, with plane input mirror.

The radius of curvature of the curved mirror was 3.8 cm, so the waist was about 80 ktm. The F of

this cavity was about 2,000. The mirrors, of 1/2 inches diameter, were mounted in a steel cage of

INVAR bars. The curved mirror was fixed on a mirror mount for laser cavity (Oriel). The plane

mirror was mounted on a piezo (PZT) tube, also on a laser mount, on which the longitudinal

feedback was applied. Two steering mirrors mounted before the cavity on three piezo actuators

(Physik Instrumente) controlled the input beam. The laser source was a Nd:YAG 500 mW

MISER (LightWave),)_=1.064 gm. The frequency jitter 6v(f) of the laser had been separately

measured by locking it on a ULE (Ultra Low Expansion) triangular cavity and extracting the

correction signal inside the locking bandwidth (more than 200 kHz). It yielded about 1.4

kHz/_/Hz at 10 Hz, with a 1/f trend from at least 0.1 Hz to 10 kHz. The well-known Pound-

Drever-Hall _0 technique has been used to extract the longitudinal signal. The phase modulation

frequency for the locking on the 2 cm cavity was 11 MHz, with about 4% of power in each side
band.

The digital filters developed in the INFN-Virgo laboratories in Pisa 5 has been used for signal

acquisition, processing and feedback generation; controlled by computer. The bandwidth of the

loop was about 1700 Hz and the open loop gain was about 10 4 at 10 Hz. The power spectrum of

the correction signal is a measure of the cavity displacement sensitivity _SXcAv(f): the value at 10



Hz is about 3×10 13 rrd_/Hz. This value is in agreement with the expected sensitivity limit

imposed by the laser frequency jitter (6X_,s(f) =XoX,_v(f)/v o , where x o is the cavity length and v o is

the laser frequency).

The transducer cavity has to be kept aligned using signal extracted by the cavity itself. This is

called wave-front sensing, a detailed theoretical analysis of the behavior of signals in function of

the Gouy phase shift has been done and compared with the experimental results 9. For the

experimental test the same cavity used in the longitudinal control experiment has been used. It

has been locked by using signal extracted with the so called Ward method 13.

We performed the locking of the translation degree of freedom of the 2 cm cavity (see fig. 4).

The quadrant photodiode was situated at _=90 °, where only the translation signal is detected.

The feedback was actuated on the two steering mirrors. The displacement sensitivity in the error

signal was measured sending a known modulation to the piezo and detecting the peak in the error

signal at the same frequency with a spectrum analyzer. The same results were obtained for the

horizontal degree of freedom. In both cases the unitary gain of the closed loop gain was about

few hertz. The noise reduction was more than one order of magnitude, and the residual

translation between cavity axis and beam results about 10 -7 times wo. The noise level of the

power spectrum at 10 Hz was about 3×10 q4 m]_Hz.

Frequency stabilization
Our experimental set-up for laser frequency stabilization is fully described in 11 . A 400 mW

Nd:Yag MISER is locked to a high finesse ring cavity (19000) using P-D-H technique. The

frequency fluctuations is corrected using a servo which drives the Laser PZT and thermal control

as well as an electro-optic modulator to cover a wide frequency range (>1 MHz). Figure 4 shows

the frequency stabilization level, measured relatively to the U.L.E. reference cavity. A level of

less than 10 .3 HzHHz is achieved which is compatible with the expected shot noise level.

Moreover, we measured the power fluctuation while the laser is locked, and shows a level of

10-6/_/Hz.

Near Future plan and Conclusions

We have reported the main principle of the Low Frequency Facility and summarized the results

obtained in our laboratory to build the optical part of the experiment.

We have extracted all the control signal (longitudinal, angular and translation), from a 2 cm

cavity (Finesse 2000), the longitudinal signal has been extracted with the Pound-Drever

technique; and the wave-front sensing (Ward technique) has been applied to extract all the other

signals to keep the cavity in its working point. Moreover a full control of the cavity has been

done using the digital filter which will be used in our experiment. It has been checked that the

displacement sensitivity of the Fabry-Perot transducer is limited by the frequency jitter of the

laser, and is 10 -13rrdHz 1/2. Frequency stabilization of the laser relative to the reference cavity has
been measured to be below 10-1Hz/Hz 1/2.

In the near future, we plan to complete and study the whole optical layout, before installation in

front of the R&D SA. This test, together with the tests on the control of the R&D SA, will give

detailed information on the control procedure of the whole experiment.



At present the R&D SA is being used for tests on the control of the suspended test mass. At a

later stage, it will be wholly dedicated to the LFF (approximately spring 2000).

The LFF expected displacement sensitivity 10-18m/_/Hz is enough to probe the thermal noise of

the test mass suspension. In order to reach the mirror substrate itself thermal noise it will be

necessary to improve the sensitivity. Since the transducer is limited by the frequency noise of the

Laser, a possibility to improve the sensitivity will be to make the cavity very short. The theory of

a very short cavity has been studied in ref. 12

We expect that such an accurate measurement of the thermal noise of the suspension, will throw

light on the fundamental dissipation processes in suspension systems, and will help in the future

development of suspension for large gravitational wave interferometric detectors, based on

Earth.
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