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ABSTRACT

We shall present results of a recent collabora-

tive effort between the authors attempting to iln-

plement the numerical flux scheme, AUSM+and

its new developments, into a widely used NASA

code, OVERFLOW. This paper is intended to

give a thorough and systematic documentation

about the solutions of default test. cases using the
AUSM+scheme. Hence we will address various

aspects of numerical solutions, such as accuracy,

convergence rate, and effects of turbulence mod-

els, over a variety of geometries, speed regimes.

We will briefly describe the numerical schemes

employed in the calculations, including the ca-

pability of solving for low-speed flows and mul-

tiphase flows by employing the concept of nu-

merical speed of sound. As a bonus, this low
Mach number formulations also enhances con-

vergence to steady solutions for flows even at

transonic speed. Calculations for complex aD

turbulent flows were performed with several tur-

bulence models and the results display excellent

agreements with measured data..

1. INTRODUCTION

A collaborative attempt has been evolved to im-

plement the numerical flux scheme, AUSM+and

its new developments [1-5], into a NASA CFD

code, OVERFLOW [6]. The OVERFLOW code

currently is a production code that has been

widely used in the US industry, government labs,
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and universities. It is written to rise the over-

set, structured (Chimera) grid systems and has

evolved through several significant changes, due
to contributions from various researchers over

more than two decades (see [6] for further details

and references therein). The Chimera grid a.p-

proach was developed for multibodies and com-

plex geometry flow simulations. Major applica-

tions have included the Space Shuttle Launch

Vehicle and subsonic transport high-lift config-

urations. The Pulliam-Chaussee diagonalized

implicit algorithm [16] has become the stan-
dard solver for the code. Several numerical flux

schemes are commonly used, including central

differencing and Roe upwind differencing.

The AUSM family schemes, even though rela-

tively young, also has gone through several mod-
ifications. The schemes have been made into

some major production codes as well (see, for

example, [7]-[9] ).

In addition, this collaboration is intended to give

a thorough and systematic documentation about

the solutions of default test cases obtained by us-

ing the newly imt)lemented scheme, tlence, it is

considered to be a long-term project, especially

the validation processes. As a result, this paper

contains only the first instalhnent of results from

this continuing effort. The numerical schemes

will be briefly (tescribed, together with tire con-

cept of numerical speed of sound [5], which is

especially' usefifl for low speed flows and multi-

phase flows [11,17]. To confirm the effectiveness



of the AUSM+schenle for practical engineering

problems, calculations for a wide variety of flows

were made. Tile results display excellent agree-

ments with measured data.

2. NUMERICAL METHODS

Governing Equations

_% solve tile Reynolds-averaged Navier-Stokes

e(luations written in curvilinear coor(linates

(_, q, () and conservation form:

Qt + Ft,t + F(V)= 0, I = 1,2, 3 (_, r], (,') (1)II

where

Q = (p, pu,pv, pw,pet)T/J.

The inviscid and viscous fluxes are included in

Ft,l and w(_) where the summation and (lifter-_l,l '

entiation notation, FI,I = Y_-I OFt/Oxl is as-

sumed.

Fl =

ptttu, + pcSt_ r,t I

pulu2 +pcSl2 , FI v) = - r2z !1

pttltl 3 + p(513 r3l I
pu.lh t t¢T,1 + u.i'l-il /

(2)

where 2

rij = tt(ui,j + uj,i- _ui,i) (3)

The flow variables in Q and the geometric Ja-

cobian J are standard. The turbulence terms

are included in F (') and expressed in the form

of eddy-viscosity described by algebraic or dif-

ferential equations.

To enhance the convergence rate when solving

flows at low speeds, the time-derivative term is

premultiplied by a conditioning matrix F. The

equations now can be cast as,

FQt+F_,t+F (')=0, O=(p.u,v,w,T)r/.l.l,l
(4)

Several forms for the local preconditioning ma-

trix F have been proposed, notably by Choi and

Merkle [12], Turkel [13], and Van Lee,', Lee, and

Roe [14]. While these matrices are different., ow-

ing to different design criteria, it is not essential

for now to explicitly specify the fornl of f.

Implicit Operator

The nonlinear equations of (4) are linearized,

resulting in an implicit equation to solve for

AQ = Qn+l _ Qn.

[I + At6l (ME-'At)] AQ

= -_tMr-_f_ (Fl + FI")),
(5)

where

0Q 0Fl (6)
M- 0Q' At = })Q.

Note that the LHS inlplicit operator consists of

only the inviscid part. of the whole flux. Several

methods have been suggested for approximating

the implicit operator, in order to gain conver-

gence rate, reduce computa.tion, and increase

stability. Several options are available in the

OVERFLOW code. At the initial stage of this

study, our focus is mostly on the accuracy and

convergence rate of steady sohltions, which are

controlled only by the numerical methods repre-

senting the RHS and should be independent of

the LHS operator because it vanishes as steady

sohltions are reached. In this study, we fixed

the implicit operator to be the Beam-Warming

ADI scheme [15], in which tile LIIS was approx-

imately factored according to the computation

coordinates in the following form:

[I + At_,NA1] [I + AttS2NA2] [I + Att_3NA3] AQ

-AtN,_, (F, + FLY)), N = Mr-'.

(;)

The LHS operator was then discretized using

the central differencing method, with appro-

priate second-order and fourth-order smooth-

ing terms added for stability. Furthermore, the

diagonalization procedure of Pulliam-Chaussee

[16] was applied. Details can be found in [6].

Since the RIIS operator was represented using

the AUSM+scheme an upwind scheme, there

should be a concern about the inconsistency in

discretization of the LtIS and RtlS terms. And

the stability and convergence rate are likely not

at optimal situations. This, however, is a very



dimcult issue by itself and will not be addressed

in the present paper.

Explicit Operator

In this section, we will give a brief description

of the algorithm involved in tile AUSM+[2] and

tile new development for the low-speed flows

[5,11,17]. Concerning detailed numerical prop-

erties and detailed analysis, the reader should
consult the cited references.

For illustration purposes, we shall begin by con-

sidering the 1D flux for ideal gas. The inviscid
flux F is written as a sum of convective and pres-

Sllre fluxes:

(')F = pu u
H

+ =_ u + p =7_*_+p.
H 0

(8)
The vectors • and p are introduced respectively

as shown. It is noted that a common mass flux

7}zappears in all equations. This is also true for

multidimensions. Since the mass flux is common

for all equations, its effects will thus perpetuate
in all variables. Hence, it is desirable observing

this fact at the discrete level when devising a

new scheme. However, this fact is ,tot. entirely

enforced in several modern nnmerical schemes.

If this same factor is kept at the discrete level

for all equations, it becomes easy to add other
conservation laws.

As observed in (8), all one needs to do is to define

the quantities, r_,@ and p. Concerning the de-

tails of developments of the AUSM-family fluxes,
the interested readers are referred to the refer-

ences [1-5,11]. In what follows we will summarize

only the latest formulas implemented in the code

[5]. Firstly, a simple upwinding is applied to the

convected quantity • to yield the numerical flux

at the cell interface (denoted by subscript 1/2)

straddling cells j and j + I.

f /2 = )]+m/2.
(.9)

The pressure flux is nothing but

Pl/2 = P;,o)(Mj)pj + T'_,o)(Mj+I)pj+I, (10)

with

+ IMI), if IMI > 1,T'_,_)(M) = ¼(M±I)2(2TM)
:t:3 M(M 2- 1)2; otherwise.

(11)

The only task left now is to find the mass flux

1_, which can be easily done by following these

steps.

1. A concept of numerical speed of sound is

introduced in [.5] to make the flux formu-

lation valid for the entire speed regime.

Here, we let the speed of sound be scaled

by a scaling factor f_(M; M.),

(Ill 2 = fa(_-[; Al.)al/2, (12)

where

_/( 1 - M_ )2312 + 4 312
L ( )

1 + M_

M = (Mj + Mj+ )/2,

and

<_1,

(13)

(14)

M 2 = min(1,max(Al 2, 2m_o)). (15)

The unsealed speed of sound al/2 can take
several forms, as given in [2,-1], one of

which allows exact capturing of stationary

shock. For silnplicity, a. simple average suf-

fices,

al/2 = aj + aj+ 1 )/2. (16)

The cutoff parameter .'tI,_o << 1 is intro-

duced to prevent a singularity at stagna-

tion point. It is a user-specified parame-

ter and we choose M 2 = M2/4. The use

of numerical speed of sound /i results in a,

reduction in numerical dissipation at low

Mach numbers.

2. Use 5 t.o define

ttJ/J+l -- !_[J/J+l (17)
AIj/j+ x -- -al/2 f=

3



This scaled Mach number will revert to

the local physical Mach number at super-

sonic speeds. In fact, the scaling factor be-

comes essential only in the low Mach range

since it rises rather quickly towards unity

as 3I increases. Hence, what tile nunlerical

speed of sound does is to make the Mach

number appear larger in determining the

numerical fluxes in tile low speed regime.

3. Let

1 , " - 1 _t.2)ytj+1],IQj = T)[(l+ M. )3Ij + ( -

(18)

3_/j+, -- 1[(1 + 1'_I2)_[j+1 + (t -- 312).Qj].

(19)

4. Set. the interface Mach number,

+ Ytj+t
_I1/2 _- ._'_'_(4,13)(l(lj) q-J_¢'[;,3) ( )-

(20)

The split Mach nutnber functions, +_Jv[ (4,fi) ,

are defined as follows:

½(_t + I-_tl), if IMI >-1,,,,_,_)(,_I) = +'(_v 4- 1)_4- }(_,1_- 17;
otherwise.

(21)

The numeral in the subscript of ,t4_: 4;_) t
indicates the degree of polynomials used.

a.t. once, the moving shock around a 90-degree

corner is a suitable problem. Several tnodern

upwind methods have been known to encounter

difficulties [4]. Figure 1 displays the density con-

tours, showing crisp resolution of the original

and several internal shocks, as well as the shear

layers resulting from the intersection of shocks.

itvd= 2 muscl: primitive variables

(d): AUSM *

DENSITY

Jmax= 400

Kmax= 400

CFL = 0.40

N = 2500

Time= 0.1378

Fig. 1 Supersonic corner problem. Calculation

was made with linear extrapolation of primitive

variables using the Van Albada limiter

5. The inass flux can now be obtained by a

simple upwind formula,

_}q/2 = _[Mll2(Pj + Pj+t )

+[Mt/21(pj - pj+l )], (22)

To see the effect of this numerical speed of sound,

we evalua.te the condition number at low speed,

lul + a
= -- --,O(1), (23)

I.I

For identification purpose, we now call this ex-

tended method, AUSM+-a, to highlight the rote

of the numerical speed of sound 6.

Remark: Test. cases have shown that the deft-

nitions in Eqs. (18)-(19) are not strictly nec-

essary, tile simpler alternatives ,Qj = 3Ij and

3Ij+1 = ,'Qj+l can be used as well.

To demonstrate the robustness, shock-capturing

capability, and positivity-preserving property all

because

h--O, a,s lul-0. (24)

Hence, the condition number remains of order

unity for all speed ranges. Also, the numerical

dissipation based on this new speed of sound now

scales with local speed lul, instead of local speed

of sound . as I"1- o.

fFhe coefficient, in (19b) of JCP129, 36,t-382 (1996), should be 1/4, not 1/2.



To further improvethe residualconvergencein
the low speedrange,it is foundbeneficialill Ed-
wardsand Liou [11]if a pressurediffusionterm
7_pis includedin the massflux.

r_l/2= Eq. (22)+ r_p. (25)

tlere 7_p is expressed in a. general form,

~

_p= _( 1 - M2. )A.'Ut(pj - Pj+I ),

where

(26)

)+ (2r)

and the function 23 in the denoininator can take

several forms. Based on the mass flux of the

AUSMDV scheme, Edwards and Liou [11] de-

rived the pressure diffusion term for low Mach

nu nlbers,

2[ Pj+l ]23= tPJ+ p77+,' (2s)Pj

Another formula has been proposed [5],

1 ]2
-- [_ I. (pj + Pj+I )(flj + Pj+IO )

PjPj+1

--(Pj -- Pj+I )(Pj -- Pj+l )] . (29)

Furthermore, the last term can be omitted to

guarantee that 23 be positive,

1 [:_l?(pj )(Pj + Pj+l)] (30)23 _ + P)+_ ,
PjPj+_

which looks similar to the first expression. The

scheme with the inclusion of the pressure diffu-

sion term (Eq. (22))is now denoted as AUSM +-

ap.

We now make remarks on tile preconditioning

matrix F. We have used the \Veiss-Smith F [18]

to arrive at tire scaling function f_(_I; M.) in

Eq. (12). Other preconditioners [12-14] can be

used as well. The procedure for extension will

be precisely the same since all one needs is the

eigenvalues of the preconditioned hyperbolic sys-

tem. Thus, a new numerical speed of sound a

can be expressed in t.erms of the scaling function

f_( ,Q; M.). However, no significant effect, on tire

solution is anticipated because all these precon-

ditioners yield more or less the same behavior in

the limits of M -- 0 and 1. Unless at low speed

(say M,_, < 0.3), it was found in our calculations

not necessary to include the preconditioning ma-

t.rix in solving the governing equations. In other

words, the scaling function can be incorporated

alone, as in Eqs. (12)-(22), in the numerical flux

and improvements in accuracy and convergence

can be realized.

3. RESULTS AND DISCUSSION

In this section, we will present 2D and 3D

Navier-Stokes solutions for turbulent flows over

various geometries. The scheme proposed in

this paper was implemented in the OVERFLOW

code that has been developed by Buning et al.

[6]. The LHS operator was approximated with

the standard central difference scheme plus ap-

propriate artificial damping terms, (even though

tile RtlS residual operator was represented with

an upwind scheme !), it was then filrther fac-

tored and diagonalized in each space dimension.

To accelerate convergence, a full multigrid strat-

egy, using two levels of coarser grids is applied

initially.

The tlux in the RHS operator was constructed

with a third-order accurate interpolation for the

primitive variables, together with limiter used

by Koren [19]. The cutoff Mach number in Eq.

2 M._/4. Also, the OVER-(1.5) is given by' M_o = _

FLOW code has a parameter controlling the use

of the preconditioning matrix F. We kept the

default value to be 3M_ _< 1 under which con-

dition r was activated.

For all calculations presented in this paper, the

flow is assumed fully turt)ulent--no laminar or

transition regions are consider. Unless stated

otherwise, the baseline model is the Spalart-

Allmaras one-equation model. But the effects

of various turbulence models on the solutions

in comparison with ineasured data will also be

studied.

In this paper we will demonstrate the effective-

ness of using tire numerical speed of sound in



calculating flows at all speeds, specifically focus-

ing on two issues: (1) convergence rate and (2)

accuracy.

NACA Airfoil

A C-grid of 249 x 56 points was used for the

NACA 0012 airfoil. The purpose of calculating

this flow was to determine tile performance of

five popular turbulence models against the ex-

perimental data, see [20], so that it may help
down-select fewer models for additional vali-

dation tests. These five models include the

Baldwin-Lomax (denoted as BL) [21], Baldwin-

Barth (BB)[22], Spalart-Allmaras (SA)[23],

Mentor k-_ (SST)[24], and k-,; [25] models. Fig-

ure 2 displays the surface pressure coefficient on

the airfoil, indicating a relatively strong shock

situating in the middle of the suction surface of

the airfoil. In fact the boundary layer is sep-

arated because of the adverse pressure set up

by the shock. The Baldwin-Lomax model un-

derestimates the effects of shock/boundary layer

interaction, resulting in an incorrect shock loca-

tion; but it gives the best result, on the pressure
side. The Baldwin-Barth one-equation model

gives a very good prediction of the shock loca-

tion, but. with some disagreement with the data.

on the pressure side. The Spalart-Allmaras one-

equation nlodel overall gives a good agreement

with the data. The suction-side pressure is best

predicted by the SST model, but the pressure

side is accurately predicted by the BL and k-

,; models. Figure 3 displays the pressure con-

tours resulting from all five turbulence models.

Noticing that the models that predict the shock

location correctly appear to have a shock pro-

file curving forward more pronouncedly at the
foot. This behavior also corresponds to the fact

of having a larger separated bubble.

The calculations were carried out for all models

using the same set of parameters associated with

time marching procedures and the implicit oper-

ator, which are by no means the optimal set for

any models. The convergence histories of these

five models are shown in Fig. 4, where the SA

model reaches the steady value of CL in about

2,000 time steps, while the BL model takes about

3,700 steps. It is interesting that the lift coeffi-
cients from the BL and BB models starts out. at a

low value and increases to an asymptote as iter-

ation proceeds and a completely opposite trend
is observed for the other inodels.

Shuttle External Tank

This is an axisymmetric Shuttle external tank

geometry with a sharp nose and blunt base,

downstream of which there is a. significant sep-

aration zone. One of the grid lines conforms to

the body and grows outward and a plane con-

sists of 88 x 60 grid points. Shown also are the

meshes clustered around some key regions, one of

which is in the middle to resolve a tiny notch (not

visible to the scale). The free stream Reynolds

number was fixed at 10,000. We have tested con-

ditions from low Mach, transonic, to supersonic

flows. Several schemes were considered, consist-

ing of the standard AUSM +, AUSM+--a, and

AUSM + ap, with and without the Weiss-Smith

preconditioner. In all calculations for this prob-

lenl, we made 200 steps for each of two coarser

grids prior to the finest grid, on which 3000 more

steps were continued unless noted otherwise.

Table I summarizes the convergence behavior of

the above combinations. We observe the fol-

lowing: (1) For low Mach numbers (approxi-

mately M,_ < 0.3), it was found necessary to use

the time-derivative preconditioner r so that the

numerical dissipations in both the implicit and

explicit operators are compatibly scaled. Oth-

erwise, the calculation either diverged or stag-

nated. (2) For flows at transonic speeds or

higher, the time-derivative preconditioner, as

given in Eq. (4), serves no benefits whatso-

ever, even though the fluid speed is low in the

viscous and the base flow regions. This is un-

derstandable because the preconditioner effects

only the inviscid waves and the information in

the viscous-dominated regions is only transmit-

ted via diffusion processes which are ably han-

dled by the implicit operator.

In Fig. 5, we display the convergence history
for various Mach numbers using AUSM +, but

without the preconditioner r. The residuals for



the low Mach-number cases stall after a drop

of four orders of magnitude. These drops in

many calculations, although not especially ad-

mirable, would have been acceptable. However,

a close examination of the solution reveals that it

is completely unacceptable, as shown in Fig. 6.

It appears that there is a false boundary (exactly

aligned with a grid line) at which information is

unable to get passed. This phenomenon is quite

typical in the low Mach-number calculations us-

ing an unmodified compressible code, also seen

in [5]. tlence, a measure of caution should be

taken when reading the residual history for the

low Mach-number solutions.

On the other hand, the convergence histories

with the use of the numerical speed of sound

display improvement over those without it, as

shown in Fig. 5. As noted earlier in Table I, it is

necessary to invoke r for the 31,.,o = 0.01and 0.t

cases. The convergence rates for these two cal-

culations nearly coincide with each other, indi-

cating Mach-number independence.

In Fig. 7, we show the solution at N=1000 steps

at which the residual has been dropped to the

level approximately equal to that of the baseline

scheme AUSM +, at N=6400. However, the so-

lution now is well behaved and is every bit as

good as the final solution at N=3200 at which

the residual has been further reduced by two or-

ders. Also the blow-up view near the surface re-

veals smooth profiles of pressure contours, unlike

the standard AUSM+which has been known to

yield unwanted pressure oscillations in viscous

layers along the transverse grid lines when the

mesh aspect ratio is large and flow is essentially

parallel to a grid lille.*

Finally the effect of including the pressure diffu-

sion term on the solution was investigated and

the convergence histories are also included in

Fig. 5. Again, the preconditioner r must be

used for the low Mach-nnmber cases and their

convergence histories are essentially identical,

becoming independent of Mach number as the

Mach number lowers. Tile pressure contours are

indistinguishable from those shown in Fig. 7 and

are thus not included.

Comparing results in Fig. 5, we see that the

convergence rate is improved in the transonic

ranges by simply using the numerical speed of

sound alone. For low Mach number cases, M+ =

0.01,0.1, another order of reduction can be ob-

tained by inchlding the pressure diffusion term.

Also, the use of numerical speed of sound yields

the convergence histories that are relatively in-

sensitive to the flow speeds.

_\% now summarize major findings from tile

study of this problem: (1) The numerical speed

of sound concept is an effective means of ex-

tending the AUSM-type discretization to solve

low Mach number flows in an accurate and effi-

cient manner. (2) Since the numerical speed of

sound is reduced with the flow speed, tile nu-

merical dissipation changes accordingly, and a

compatible implicit operator (one that includes

the preconditioning matrix) must be used. (3)

For moderate Mach numbers and beyond, it is

not necessary to use r, (4) Incorporation of tile

numerical speed of sound, as described in steps

(12)-(22)), helps remove pressure oscillations in

the viscous layers.

ONERA M6 Wing

The next problem is the ONERA M6 wing with

the free stream conditions M,-_, = 0.84, and

Reo_ = 18.2 x 106 under various angles of attack.

The computation domain consists of 269 x 35 x 67

grid points. For this case, the precondition-

ing matrix r was automatically turned off in

the code since the controlling factor 3M, 2 ex-

ceeds unity, t[owever, the numerical speed of

sound fi was active with ,_I_o = M,-,:./2. The

pressure contours on the wing surfaces are dis-

played in Fig. 8, showing the well-known k-

shock pattern, where the double-shock region

extends more than 80% of the wing span. The

detailed comparison of surface pressure distribu-

tions are shown for three spauwise sections, Figs.

9, 10 and 11 respectively for 44%, 65%, and 90%,

for three angles of attack. The computed results

are in very, good agreement with the data [26],

*However, the pressure distribution along the wall is smooth.



noticingthe accuratecapturingof theshocklo-
cations. Recallthat the SA rao(lelis assumed,
unlessnotedotherwise.

The convergencehistoriesarepresentedin Fig.
12for threedifferentanglesofattack.Theyshow
a continuingdecreasein 800steps(600flue-grid
steps)by about four ordersof magnitudefrom
thelargestvalues,at nearlythe samerateseven
thoughthe flow featureshavevariedconsider-
ably.
Figure13comparestile effectofthreeturbulence
models,SA,n-,3, andSSTmodels,onthe pres-
sureprediction; the SA and SST modelsgive
nearlyidenticalresults,exceptminordifferences
behindthe shockat 1/= 0.95, and the n- ,z

model seenls to give a slightly better agreement

with the data for the shock location. The parti-

cle traces of two angles of attack, o = 3.06 and

5.06, at different wingspans are given in Fig. 14,

showing little spanwise excursion, except at the

wing tip for the _ = 3.06 ° case, but appreciable

three-dimensional effect for the other case.

Wingbody

Turbulent flows over a wingbody configuration

were calculated. The geometry is shown in Fig.

15, where the sting is included in the calculation.

The computation domain was gridded using the

chimera overset grid technique and entire grid

composed of seven grids. The particle traces

around the body and wing, shown in Fig. 16,

indicate that the flow follows the configuration

quite closely and is essentially two-dimensional

over the wing. Figure 17 depicts the pressure

coefficients at. various spanwise locations. The

computed results are in excellent agreement with

the measured data [27]. Moreover, the pressure

coefficients along the body, shown in Fig. 18,

exhibits the similar level of excellent agreement

with the data. Even in the wing root region

where a sharp variation is encountered.

Finally, Fig. 19 displays a well-behaved con-

vergence history, reducing the residual error by

more than five (5) orders of magnitude in 800

steps.

4. CONCLUDING REMARKS

We have successfully implemented the new

AUSM+flux schelne in the production code of

NASA, OVERFLOW and presented in this pa-

per the validation results of test cases. With the

introduction of the numerical speed of sound in

the previous AUSM+flux scheme, it now yields

accurate results at low Mach number and effi-

cient convergence at a rate (nearly) independent

of Mach number and angle of attack. Inter-

estingly, the convergence rate is even enhanced

at transonic speeds with the numerical speed of

sound, without invoking the l)reconditioning ma-

trix. Effect of turbulence models on the results

has also been investigated, the SA and SST mod-

els give tile best results in comparison with the

measure data of NACA 0012 airfoil and ONERA

M6 wing.
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Table 1: Summary of convergence behavior due to various schemes for the shuttle external tank,
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Fig. 2 Pressure coefficients on t.he NACA 0012 airfoil, using various turbulence models; _'lIOO __ 0.799, c_ = 2.26 °.
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Fig. 3 Pressure contours on the NACA 0012 airfoil predict, ed by" various models. From left to right, Top row:

BL, BB and SA; Bot, tom row: k-w and SST.
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Fig. 4 Comparison of convergence histories in C.L among different, turbulence models. From left to right, Top

row: BL, BB, and SA; Bottom row: k-w and SST.
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using the standard AUSM +. The picture to the right shows a magnified view near the nose.
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Fig. 7 Pressure contours for the shuttle external tank problem obtained at N=I000 time steps for M_ = 0.01,

using AUSM+-a. The other picture shows a magnified view near the nose.
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Fig. 8 Pressure contours on the pressure and suction surfaces of tile ONERA M6 wing at o = 3.06 ° M_ =

0.84, and Re_ = 18.2 x 10_, showing the A-shock pattern near the wing tip.
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Fig. 14 Particle t,races for the ONERA M6 wing problem at M,._ = 0.84, l?e_ = 18.2x 106., and Left: a = 3.06 °,

Right: c_ = 5.06 °.

Fig. 15 Geometry of the wingbody problem.

Fig. 16 Particle traces around tile body and wing.
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