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Abstract

Recent results show that the peak transient response of a linear system to

bounded energy inputs can be computed using the energy-to-peak gain of the
system. However, analytically computed peak response bound can be
conservative for a class of bounded energy signals, specifically pulse trains

generated from jet firings encountered in space vehicles. In this paper, shaping
filters are proposed as a methodology to reduce the conservatism of peak
response analytic bounds. This methodology was applied to a realistic Space

Station assembly operation subject to jet firings. The results indicate that
shaping filters indeed reduce the predicted peak response bounds.

1. Introduction

Assembly of the International Space Station requires robotic manipulation of various

payloads. The payloads will be manipulated by the Shuttle Remote Manipulator System

(SRMS), the Space Station Remote Manipulator System (SSRMS). During assembly operations,

it may be necessary to execute corrective attitude control thruster firings. The operational plan

requires stopping the robotic payload operation and activating the SRMS/SSRMS joint brakes

before firing attitude control thrusters. Hence, to evaluate the feasibility of planned robotic

operations, it is necessary to show that the joint brakes do not slip during thruster firings.
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To evaluate the feasibility of thruster firings when the robotic systems are in the brakes-

on mode requires evaluating the maximum joint torque and comparing that with a brake slip

limit torque. Typical attitude control firings include bipolar pulse trains representing attitude

maneuvers and unipolar pulse trains for attitude hold or momentum desaturation. The standard

approach to evaluate the peak brakes-on joint torque is via time-domain simulations. This

approach can be time consuming and inefficient since time-domain simulations can only

calculate the peak response to one pulse train at a time. Thus, it is difficult to map the time-

domain simulation results to a family or class of pulse trains.

Recent results [1,2] in linear operator norm theory show that the peak transient response

of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of

the system. This computation requires the solution of a Lyapunov equation of order equal to the

order of the system. The energy-to-peak gain theory also provides the worst-case input that will

result in the transient response reaching its peak. It is noted that the bounds provided by this

theory are tight, that is, the bounds are achievable by a certain input excitation.

The class of all energy-bounded input signals considered in the energy-to-peak gain

theory is a very broad one for practical applications. Hence, the analytically computed peak

response bounds can be conservative for practical classes of bounded energy signals, such as,

pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping

filters are proposed as a methodology to reduce the conservatism of peak response analytic

bounds computed by the energy-to-peak gain theory. A filter design procedure corresponding to

a given class of input signals is presented for conservatism reduction, and the methodology is

illustrated using two types of input signals for a realistic example involving Space Station robotic

assembly.

The notation to be used in this paper is as follows: I1 11 denotes the energy (or 2-norm) of

a signal u, that is,
oo

IlulL2= <f u¢')Tu(t)dt)1/2

0

and I1.11 denotes the peak (or infinity) norm of a signal u, that is

u L. = max ui(t)l.
m

i

For a matrix A, 11,411denotes the maximum singular value (or induced 2-norm) of the matrix.

2. Worst-Case Energy-to-Peak Gain

We consider the energy-to-peak gain response of linear time-invariant (LTI) systems.

The specific application of interest is the computation of peak response bounds for robotic

assembly of the International Space Station (ISS) subject to thruster firings. Mathematical

modeling of the ISS robotic assembly results in high-order nonlinear models that contain linear

structural dynamic effects and nonlinear robot arm dynamic effects. Since the operational
scenario under consideration is static and the response of the robotic system is dominated by its

local behavior, a linear representation is appropriate if the non-linear brakes-on behavior is



approximatedby a linear equivalent. This can be accomplishedby modeling the brakes-on
dynamicsby anequivalentlinearstiffness. With this assumption,a linear time-invariantmodel
from thrusterinputs to joint torquescan be obtained. Then, considera linear time-invariant
system,G(s),whichhasthestatespaceform asfollows,

.ic= Ax + Bu

y = Cx

where u is the input pulse train. The objective is to estimate the peak pulse response of the above

system without a time-domain simulation. This can be accomplished by making use of the

energy-to-peak gain of the system.

The peak transient response of a linear time-invariant system to bounded energy input

signals can be computed from the energy-to-peak gain (L2-to-L= gain) of the relevant transfer

function [ 1]:

Fep --I_P Ylt,. (1)

Hence, the energy-to-peak gain provides the worst-case peak response for the class of all unit-

energy bounded signals. This gain can be computed from the following result [ 1,2]

Fep = l CXCr [I/2

where X is the controllability grammian of the system, which must satisfy the linear Lyapunov

equation:

AX + XA r + BB r =0

Hence, the energy-to-peak gain can be computed by solving a Lyapunov equation of order equal

to the order n of the system. Efficient Bartels-Stewart algorithms can solve the Lyapunov

equation requiring O(n 2 ) floating point operations [3]. The symmetric solution can also be

solved by use of the Kronecter product [4]. For very large-scale systems approximate solutions

can be computed very efficiently using Krylov-subspace methods [5].

The above standard formulation of the energy-to-peak gain theory provides a tight upper

bound as well as a method to construct the particular input signal for which the bound is reached.

Hence, a straightforward application of this approach to a specific class of inputs, such as,

thruster pulse trains can be very conservative. The conservatism is due to the fact that the

standard formulation cannot, for example, distinguish between unit-norm bipolar and unit-norm

unipolar pulses since both pulse trains have unit norm, resulting in the same estimate for the peak

response. On the other hand, these signals generate very different time-domain signatures

resulting in different peak responses. Thus, direct application of this method to practical

problems involving specific classes of inputs would result in conservative estimates due the large

class of input signals it allows.

One approach to improve the peak response estimate is to restrict the allowable class of

signals by preshaping the input signal so that it corresponds to a desired class of practical signals.

From (1) it is apparent that the input signal u can be preshaped by a linear operator F resulting in

a new input signal w, such that, u = Fw, as long as its induced 2-norm is less than one. In this

case, the fictitious input w is any unit-energy bounded signal and F is selected so that Fw

approximates the desired class of input signals. Hence, F can be used to shape or optimize the
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resulting peak estimate. In this paper, a method to design such shaping filters is proposed to

reduce the conservatism of the energy-to-peak gain for pulse train input signals. However, the

methods can be generalized to any specified class of input signals.

3. Shaping Filter Design

The fundamental shaping filter design strategy is to exploit the frequency domain

characterization of thruster pulse trains, specifically its power spectral density function, in order

to design shaping filters that match the signal frequency content. The frequency domain

representation of the input signals provides the ability to discriminate between similar norm

signals. For the example presented in the previous section, the power spectral density (PSD)

representation of unit norm bipolar and unipolar signals clearly allows for discrimination among

these inputs. From the power spectrum of the input signal, filters can be designed such that the

power spectrum of the filtered signal matches that of the input signal.

Given a characteristic input or class of inputs in the time domain the corresponding filters

can be designed by solving a frequency-based interpolation problem. First the Fast Fourier

transform(s) (FFTs) of the input signals is calculated, and then a continuous-time filter, which

corresponds to the FTT of the pulse train, is computed using any one of many standard

interpolation algorithms. In our case we use the MATLAB function invfreqs to solve for the

filter interpolation [6]. Assume the filter transfer function has the following form:

B(s) _ b,s" +b,_ls"-' +...+b,s _ +b o
F(s) -

A(s) a,s" +an_tS n-I +...+a_s _+a o

The coefficients of the numerator and denominator are determined by the minimal of the

following cost function [6],

n

min E wt(k ) I F(k )A(k ) - B(k )12
a,b

k=l

where wt(k) is a user specified weighting function. In our approach, only peak PSD response

frequencies were selected and used in the solution of filter coefficients to avoid solving a large

system equation. The magnitude at each peak response was selected to be the weighting

function, wt(k).

To guarantee existence of the Lyapunov solution [7], the filter has to be stable since the

original system is stable. This can be implemented by removing the unstable poles of the filter.
Once the filter has been formed, it is then normalized in order to achieve an induced 2-norm

equal to 1. The filter is then concatenated with the original system resulting in the augmented

plant:

G (s) = G(s)F(s)

where G(s) is the transfer function of the LTI plant and F(s) is the transfer function of the

shaping filter. The augmented plant is then used to compute the energy-to-peak gain.



4. Test Case Results

In this paper, the Intemational Space Station assembly stage 4A is used to illustrate the

the improvement in peak response estimate using the energy-to-peak gain formulation and

shaping filters. The testcase represents the US Lab installation using the SRMS shown in Figure

1. The testcase corresponds to the US Lab in the Pitch 180 configuration with the SRMS in

brakes-on mode. The output variables of interest are the SRMS joint torques, shoulder yaw

(SHY), shoulder pitch (SHP), elbow pitch (ELP), wrist pitch (WRP), wrist yaw (WRY), and

wrist roll (WRR). The input signals are typical bipolar and unipolar thruster pulsetrains. The 2-

pulse bipolar pulsetrain is shown in Figure 1 and consists of 20sec thruster firing time, 75sec

delay between thruster firing, and the signal is sampled at 0.2sec. The PSD of the pulse train and

the shaping filter are shown in Figure 3. The frequency response of the shaping filter is shown in

Figure 5. The 5-pulse unipolar pulsetrain is shown in Figure 5 and consists of l sec thruster

firing time, delays of 17.8, 11.4, 8.8, and 14sec between thruster firing, and the signal is sampled

at 0.2sec. The PSD of the pulse train and the shaping filter are shown in Figure 6. The frequency

response of the shaping filter is shown in Figure 7.

The SRMS joint torque peak response is computed from simulation and compared to the

estimates produced by the standard formulation (unweighted) and shaping filter formulation

(weighted) of the energy-to-peak gain. The peak response is obtained for three pure single axis

(roll, pitch, yaw) and a single multiaxis thruster pulsetrain testcases. The results for the bipolar

inputs are shown in Table 1, while those for the unipolar input are given in Table 2. For the

bipolar input testcase, Table 1, it is evident that the unweighted results substantially overestimate

the peak response when compared to the simulation results. The overestimate is on average

approximately 760% of the simulation peak response. The weighted results on the other hand

reduce the overestimate by approximately 75%. For the unipolar testcase, Table 2, it is evident

that the unweighted results also substantially overestimate the peak response when compared to

the simulation results. The overestimate is on average approximately 860% of the simulation

peak response. The weighted results reduce the overestimate by approximately 50%. Further,

the overestimate in the weighted results can be attributed to errors in interpolating the frequency

content of the input signal.

5. Conclusion

In this paper, shaping filters were proposed as a means to reduce the conservatism of

analytical peak response estimates due to thruster pulse trains using the energy-to-peak gain

formulation. The methodology was illustrated using two types of input signals for a realistic

example involving Space Station robotic assembly. The results indicated that the use of shaping

filters indeed does reduce the analytic peak response bounds substantially. Improved filter

interpolation algorithms are expected to result in further improvements in the analytic estimates.
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Figure 1. Stage 4A SRMS US Lab installation intermediate configurations

7



-0.05

100

Time [sec]

: ii

Figure 2. 2-pulse Bipolar Signal

IZO

45

40

PSD of Full Order Filter Compared to Input Singad

Full Order Filter t
Input Signal I

35

3O

_zs

lg

10

5

0

10"* 10 "_ 10 "2 10 "1 10° 101

Frequency [Hz]
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Table 1. Maximum

Input Output
SHY
SHP
ELP

ROLL
WRP
WRY
WRR

SHP
ELP

PITCH
WRP
WRY
WRR

.qHY
SHP
ELP

YAW
WRP
WRY
WRR

ALL

roint Torque
Sire

,_l--lY
SHP
ELP
WRP
WRY
WRR

14 uu
22.78
16.69
5.82

3.83
3.15

49 Q4
31.41
22.85
16.80
16.43
12.08

ql fir
23.23
15.65
6.63

10.31
3.22

97 _6
77.35

50.12
23.20
17.83
15.46

for ISS 4A US Lab Pitch 180 due to Bi

Unwtd
76 07
97.50
70.05
25.04
26.58
14.47

941 49
192.81
250.38
186.27
107.28
146.65

96 IQ
41.64
30.20
10.38
8.79
5.43

69 _7

55.98
46.23
34.70
23.84
23.47

6q 09
38.19
29.30
11.34
18.12
4.96

Q9 _Q
79.53
62.51
37.95
31.21
24.59

Wtd Unwtd/Sim
44

4.28
4.20

4.30
6.95
4.60

69
6.]4

10.96

11.09
6.53

12.14

7 60
5.69

5.73

8.59
10.85
12.54

19 6R
3.28
5.49
8.47
8.82
9.88

940 q9
132.24
89.68
57.00

111.87
40.38

q4Q 4_
253.31
275.03
196.40
157.26
152.79

7_R

,olar Input
Wtd/Sim

1 R7
1.83
1.81
1.78
2.30

1.73
! 46
1.78
2.02
2.07
1.45
1.94

IQQ
1.64
1.87
1.71
1.76
1.54

q "_6
1.03
1.25
1.64
1.75
1.59

I RC

Table 2. Maximum Joint

Input

ROLL

PITCH

YAW

ALL

Output

,qHY
SHP
ELP

WRP
WRY
WRR

RI--IY
SHP
ELP
WRP
WRY
WRR
RHY
SHP
ELP
WRP
WRY

WRR
.qHY
SHP
ELP
WRP
WRY
WRR

Sim

Tort ue for ISS

Unwtd

6.36
3.48
2.03
2.87

2.45
qql30
22.16
29.30
22.44
15.46
24.26

%067
18.70
11.43
8.96

16.99
6.85

7(;07
97.5C

70.05

4A due to Unipolar Input
Wtd Unwtd/Sim

"_6112+81
4.27E+01
3.06E+01

25.04 1.13E+01!

26.58 1.26E+01
t4.47 6.87E+00

941 49 1 q912+O?
192.81 1.04E+02
250.38 1.32E+02
186.27 1.09E+02

107.28 6.13E+01
146.65 8.55E+01
9411Q? 1 9012+09
132.24 6.50E+01

89.68 4.32E+01
57.00 2.94E+01

I 1 !.87 5.8 IE+01
40.38 2.13E+01

°,40 4_ 1 R912+09
253.31 1.30E+02
275.03 1.42E+02
196.40 1.14E+02

157.26 8.54E+01
152.79 8.84E+01

lqRI
15.321
20.14 !
12.35
9.27
5.91

7 q9
8.70
8.55
8.30
6.94
6.04
7R_
7.07

7.85

6.36
6.58
5.89

ROO
7.38
8.26

7.57
5.42
4.97

R_R

4q 67
34.31

33.32

25.95

29.04

30.73

;it_nal.
Wtd/Sim

6.71
8.81

5.55
4.41
2.81

4(il
4.68
4.51
4.87
3.96
3.52

"_09
3.47
3.78
3.28
3.42
3.10

41R
3.77
4.28
4.38
2.94
2.87

4q9
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