In-orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

Anisa Ahmad
Marlon Enciso
Gopalakrishna Rao
Code 563, Power Systems Branch
Electrical Systems Center
Applied Engineering and Technology Directorate
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

1999 NASA Aerospace Battery Workshop -65-
ERBS Spacecraft

- Launched October 5, 1984
 - 610 km circular orbit, 57 degrees inclination
 - 3 instruments:
 - Earth Radiation Budget Experiment (ERBE) Scanner, ERBE Non-Scanner, Stratospheric Aerosol Gas Experiment (SAGE) II
 - ERBE Scanner failed in 1990
 - ERBE Non-Scanner & SAGE II collecting 99% data
- SAGE II - provides long term global trending of ozone, aerosol, water vapor and nitrogen dioxide
- Spacecraft is needed to be in operation until launch of SAGE III + ~ 6 months
ERBS Power System & Battery History

- Peak Power Tracker Standard Power Regulator Unit (SPRU)
- Launched with Two 22-cell 50 Ah NiCd Batteries (GE/GAB)
- Battery Charging using VT Mode & Constant Current Mode
 - VT 6, avg. C/D = ~1.16, avg. T = 10 C, avg. DOD= 9% (max=14%)
- Half Battery differential voltage (Cell Balance) began to diverge in 9/89 (Bat 1 increased to 200 mV & Bat 2 to over 450 mV by 7/90)
- Battery load sharing divergence
 - VT Level for both batteries reduced from VT 6 to VT 5 in 1/92
 - VT Level for both batteries reduced from VT 5 to VT 4 in 7/92
ERBS Battery Cell Failures

- Aug. 1992, cell short on Battery # 1
 - Cell Balance increased from 90 mV to 1.2 V
 - Temperature Rise greater than 5 degrees C
 - VT reduced from VT 4 to VT 3
- Sept. 1992, 2nd Cell shorted on Battery # 1
 - Cell Balance increased from 1.2 to 2.5 V (Max. possible Cell Balance in telemetry)
 - Temperature Rise greater than 5 degrees C
- October 1992 Battery # 1 taken off-line
- Battery # 2 supporting all loads
ERBS Battery Cell Failures (Continued)

- June 1993, cell short on Battery # 2
 - Cell Balance increased from 50 mV to 1.28 V
 - Temperature Rise greater than 5 degrees C
- July 1993, 2nd Cell shorted on Battery # 2
 - Cell Balance increased from 1.25 to 2.5 V
 - Temperature Rise greater than 5 degrees C
- Battery # 1 & Battery # 2 both have 20 cells
 - Attempts made to bring Battery # 1 back on-line 8/93
 - Unsuccessful due to poor load sharing - Battery # 2 was healthier of two batteries
- Battery # 2 (20 cells) continued to support all loads
20-Cell ERBS Battery #2 Operation

- Manual battery charging by uplinked commands switching between three Constant Current Modes (CCM)
 - VT charge mode cannot be used
 - Charged at beginning & end of orbit day at 2.74 Amps
 - Middle of orbit day charged at 11.4 Amps
 - 5 Amp discharge rate used during full sun periods & during less than 7% DOD orbital nights to minimize battery overcharge
 - CCM changed every orbit to maintain C/D of ~1.1 & End of Night (EON) cell V > 24 V
 - C/D Ratio lowered to 1.02 by 3/94 to further minimize overcharge
 - Battery Temp: 3 - 5 degrees C, DOD: 7 - 14 %
 - 11.4 A rate varied from 0 to ~ 40 min.
 - Battery discharge period varies from 0 - 55 min due to orbit inclination and fixed solar array
ERBS Spacecraft Failures

- 5 of 6 Gyros failed
- ERBE scanner instrument failed on 2/90
- Command Memory # 1 & # 2 subject to random Bit Flips since launch
- Command Memory # 2 failed on 10/93
- Digital telemetry Unit # 1 failed on 4/98
Battery # 2 Additional Cell Failures

- 6/98 Cell balance began to dip from the maximum telemetry value of 2.5 to 2.0 V at EON
- 7/27/98 ERBS completed 5 years of operation on a single 20-cell battery.
- 10/98 EON V decreased below 24 V.
- 11/98 EON V decreased further by 1 Volt (23.1 V).
 - Only a 0.9 degrees C temperature rise seen over the entire orbit.
 - No Cell Balance change observed
- 12/7/98 EON V reached 21.68 V and a 5 degree temperature rise. Additional Cell failure.
10/98 - 11/98 Battery #2 Voltage Drop

Battery #2 Voltage
October - December 1998

| ITEM | MIN | MAX | STB | PC
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PREM</td>
<td>8.48</td>
<td>14.86</td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td>2. PREM</td>
<td>13.98</td>
<td>14.39</td>
<td>RIGHT</td>
<td></td>
</tr>
</tbody>
</table>

Beta Angle (deg) vs Voltage (volts)

Maximum: 29.94
Minimum: 21.20
12/98 Battery #2 Cell Failure

Battery Temp and Pressure

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HENOMIC</th>
<th>MAX</th>
<th>MIN</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PRTP</td>
<td>17.33</td>
<td>5.42</td>
<td>LEFT</td>
</tr>
<tr>
<td>5</td>
<td>PRTP</td>
<td>34.54</td>
<td>3.14</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

Battery Currents & Voltage

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HENOMIC</th>
<th>MAX</th>
<th>MIN</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FT1HT1</td>
<td>17.29</td>
<td>-3.68</td>
<td>LEFT</td>
</tr>
<tr>
<td>2</td>
<td>FT1HT2</td>
<td>17.39</td>
<td>17.50</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>

Battery Cell Balance

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HENOMIC</th>
<th>MAX</th>
<th>MIN</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRESS1</td>
<td>180.88</td>
<td>87.91</td>
<td>LEFT</td>
</tr>
<tr>
<td>2</td>
<td>PRESS2</td>
<td>3.49</td>
<td>3.89</td>
<td>RIGHT</td>
</tr>
</tbody>
</table>
Battery # 2 Additional Cell Failures (Continued)

- Battery # 2 @ 18 - 19 cells (?)
 - YAW Maneuver accomplished on 12/25/98
- January 15, 1999 Battery # 2 lost another cell and EON V dropped to 20.4 V with a simultaneous temperature rise of ~ 20 degrees C
 - Battery # 2 @ 17 - 18 cells (?)
- Attitude Control System and Transponder are unreliable at V < 20 V
- Battery charging unstable. Battery going to VT charge control mode instead of 5 A discharge mode (default charge mode)
- Battery Voltage reached 19.67 V
- Spacecraft went into a B-dot mode where the spacecraft tumbled twice per orbit.
- Spacecraft attitude system stabilized, battery charging stabilized and battery EON V reached 20.4 V
1/99 Battery #2 Cell Failure

Battery #2 Voltage
January 01-25, 1999

Battery #2 Cell Balance
January 01-25, 1999

Battery #2 Temperature
January 01-25, 1999

Battery #2 C/D Ratio
January 01-25, 1999

Cell Balance (volts) - C/O Ratio

Voltage (volts) - Temperature (deg C)

C/D Ratio

Max: 2.45
Min: 1.92

Max: 26.81
Min: 19.97

Max: 23.83
Min: 4.21

Max: 1.458
Min: 0.611
Average: 1.098
Battery Operations Dilemma

- Predicted Battery #2 Voltage < 20 V at upcoming (2/3/99) Yaw maneuver
- Battery #1 has been open circuit for > 5 years. The Voltage via telemetry is at the low rail of 19.4 Volts. Battery #1 has 20 out of 22 cells (last time it was on-line)
- Risk of bringing Battery #1 on-line:
 - Battery #2 being drained to charge Battery #1 (Voltage going below min. safety V)
 - Relay concern: Being vaporized, or arcing
 - Poor sharing of batteries under parallel configuration (Battery #1 stuck on-line)
Battery Management Decision

- Bring Battery #1 on-line on January 26, 1999
- Attempt two-Battery Operation
- Take Battery #2 off-line if Battery #1 alone could support the spacecraft load
Bringing Battery #1 On-Line

- Brought Battery #1 online during the orbital day so voltage doesn't drop below 20 V.
- Goal - Keep Battery #2 adequately charged while charging up Battery #1.
 - Orbit #1 - Battery #1 relay connected - Voltage immediately rose from 19.4 to 22.44 V and Bat #1 began charging.
 - Orbit #2 - Charge Bat #1 @ 3 A for 5 Min (Bat #2 off-line)
 - Orbit #3 - Charge Bat #1 @ 3 A for 16 min (Bat #2 off-line)
 Discharge Bat #1 for 4 min (Bat #2 off-line)
 - Orbit #4 - Charge Bat #1 @ 11 A for 15 min (Bat #2 off-line)
 Discharge Bat #1 for 15 min (Bat #2 off-line) at beg. of night
 - Continue charging scenario by increasing Battery #1 charge time and discharge time with Battery #2 off-line
Stabilization of Battery # 1

- As Battery # 1 got fully charged - Battery # 2 did not discharge during eclipse & Battery # 1 discharged during orbital day to charge Battery # 2
 - Battery # 2 was over charging
- Battery # 2 was disabled 32 hours after bringing Battery # 1 on-line
- Spacecraft Voltage reached: 25.95 - 29.57 V
 - Prior to 1/26/99: 20.35 - 24.72 V
- Battery # 1 Charged at NASA VT 1 (1.5 V/cell @ 5 C) for 3 orbits to ascertain fully charged battery
 - Battery Current & Temperature closely monitored to minimize overcharge
Present Battery Operations and Performance

- Battery charged by a power command load uplinked at least twice per day (default VT mode overridden)
- 3 CCM rates being used to charge battery (Same as for Battery # 2, before being taken off-line)
- Battery # 1 C/D Ratio being maintained at ~ 1.05
- Battery # 1 Voltage: 23.58 - 30.8 V
- Cell Balance:
 - 2.45 for first month after Battery # 1 brought online
 - 0.89 - 2.45 V from 2/99 - 5/99
 - Since 5/99, 2.13 - 2.45 V
- Temperature: 1.97 - 6.84 degrees C
 - Higher temperature at Beta 0 (Full Sun)
Present Battery Operations

Battery #1 Voltage
02/01/99 - 10/20/99

Battery #1 C/D Ratio
02/01/99 - 10/20/99

Battery #1 Temperature
02/01/99 - 10/20/99

Battery #1 Cell Balance
02/01/99 - 10/20/99
Summary

- Battery #1 adequately supporting load
- Cell Balance divergence needs to be monitored
- Power System closely monitored
- New Power Command Loads must be uplinked every 22 hrs
 - Concern in case of ground power failure or loose commanding with spacecraft (Leonids Meteor storm, Y2K)
- SAGE III scheduled for launch in April 2000
- > 15 YEARS SUCCESSFUL LEO OPERATION SUPPORTING SPACECRAFT LOAD
- FIRST EVER KNOWN ON-BOARD "STORED" BATTERY (even with two failed cells) BROUGHT INTO OPERATION
Acknowledgments

- NASA HQ
- NASA/GSFC Management
 - J. Dezi, E. Macie, R. Sodanao et. al.
- Facility Operations Team
 - L. Nihal and Company
- Ball Aerospace
 - Z. Emsley and P. Lyman