
JavaGenes: Evolving Graphs with Crossover

AI Globus, Veridian-MRJ Technology Solutions, Inc. at NASA Ames Research Center

Sean Atsatt, Sierra Imaging, Inc.
John Lawton, University of California at Santa Cruz

Todd Wipke, University of California at Santa Cruz

Abstract

Genetic algorithms usually use string or tree representations. We have developed a novel crossover

operator for a directed and undirected graph representation, and used this operator to evolve molecules

and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible

graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A

steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test

the graph crossover operator. All runs were executed by cycle-scavaNng on networked workstations

using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug

molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized

drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with

somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than

undirected graphs (molecules), although necessary differences in the crossover operator may also

explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems,

such as transportation networks, metabolic pathways, and computer networks. However, large graphs

evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes

combinatorially with graph size. Since the representation strongly affects genetic algorithm

performance, adding graphs to the evolutiona_ programmer's bag-of-tricks should be beneficial. Also,

since graph evolution operates directly on the phenotype, the genot.vpe-phenotype translation step.

common in genetic algorithm work, is eliminated.

Introduction

[Holland 1975] applied the principles of Darwinian evolution to searching through the space of fixed

length binary strings representing solutions to various problems. This technique, genetic algorithms, has

been applied to a wide variety of fixed and variable lengthed strings of many kinds of symbols: for

example, bits, characters, integers, real numbers, etc. [Koza 1992] extended this technique to

hierarchical trees representing computer programs: this is usually called genetic programming. Both

genetic algorithms and genetic programming use crossover and mutation to evolve solutions to

problems. Related techniques, evolutionary algorithms and evolutionary programming, use only

mutation to evolve solutions. For an excellent reviev, of evolutionar', software techniques as of the

spring of 1997 see [Baeck. et al. 1997]. Evolutionary software has been applied to a wide variety of

problems as evidenced by' a voluminous literature and manx conferer._es dex oted to the subject.

Genetic algorithms seek to mimic natural evolution's abilit\ to prod',==e highly functional ob.iects.

Natural evolution produces organisms. Genetic algorithms produce sez> of parameters, programs.

molecular designs, and man 3 other structures. Genetic algorithms us_ally solve problems b_ some

variant of the following algorithm:



I. Randomly generate a population of individual potential solutions.

2. Evaluate each individual using a fitness function.

3. For each new generation, repeatedly select parent individuals at random with a

bias towards better individuals, and create children by applying transmission

operators. Transmission operators may include:

I. Crossover: each of two parents is divided into two parts and one part

each parent is combined into a child.

2. Mutation: a single ?parent? is randomly modified to create a child.

3. Reproduction: a single ?parent? is copied into the new generation.

4. Continue until an acceptable solution is found or exhaustion sets in.

from

If genetic algorithms can be usefully applied to two data structures, strings and trees, one might ask:

"Can the same techniques may be usefully extended to other data structures: for example, graphs?" In

this paper, a graph is a set of vertices and a set of edges, where each edge connects two vertices.

Specifically, we are not referring to an image representing data when we use the term "graph." Applying

genetic algorithms to new data structures is important because the representation has been shown to

have a strong affect on performance. As [De Jong 1990] states:

"The key point in deciding whether or not to use genetic algorithms for a particular problem

centers around the question: what is the space to be searched? If that space is

well-understood and contains structure that can be exploited by special-purpose search

techniques, the use of genetic algorithms is generally computationally less efficient. If the

space to be searched is not so well understood, and relatively unstructured, and if an effective

GA representation of that space can be developed, then GAs provide a surprisingly powerful

search technique for large, complex spaces." (italics added by [Forrest and Mitchell 1993])

Genetic algorithms evolve populations by mutation and crossover. Graph mutation operators are fairly

obvious and easy to implement. JavaGenes implements several graph mutation operators (add vertex,

add edge, change vertex, change edge, etc.), but these are not the focus of this paper. Crossover is easy

to implement for strings and trees because these data structures can be divided into two pieces at an 5,

point. Crossover applied to graphs is non-trivial.

Crossover on Various Data Structures

Chi_mr,

S_'in_ Trees

abe_

• bO IJ ,o,',rZ 2_ "_.

Gr_phs

Crossover can be applied to strings, trees, and graphs. Note that only



graph crossover sometimes requires breaking multiple edges, and that
fragment combination must work on fragments with different numbers of
broken edges.

For the purpose of our discussion, crossover may be considered to have two parts:

• Division, where each parent is divided into two fragments.

• Fragment combination, where two fragments are fused into one.

Graph crossover can be accomplished by breaking edges. However. graph crossover is complex

because:

• Graph crossover cannot trivially divide the data structure at any point, because any edge may be a
member of one or more cycles. All of these cycles may need to be broken to divide the graph into

two pieces because the edges to break must be chosen at random to avoid biasing the search. One

cannot avoid breaking edges involved in cycles, because then the cycle structure will not evolve.

• Graph fragments produced by division may have more than one crossover point ("broken edges")

that requires reattachment during fragment combination.

• When two fragments are combined they may have different numbers of broken edges to be

merged.
• For a graph crossover operator to potentially reach any possible graph from an initial random

population, the crossover operator must be able to create and destroy individual cycles, fused

cycles (cycles that share edges), cages (two or more cycles, each pair of which share at least two

edges), and combinations of fused cycles and cages.

The primary contribution of this paper is to introduce a new graph crossover operator that:

• Can operate on any connected directed or undirected graph. A connected graph is one where every

pair of vertices is connected by at least one set of edges.

• Divides graphs at randomly generated cut sets. A cut set is a set of edges which divides a

connected graph into two parts.
• Can evolve arbitrary cyclic structures given at least some cycles in the initial population.

• Always produces connected undirected graphs.

• Almost always produces connected directed graphs.

Our graph crossover operator was applied to evolving pharmaceutical drug molecules and simple digital

circuits. Molecules are represented as a set of atoms (vertices) connected by a set of bonds (edges).

Digital circuits are represented as a set of devices (vertices) connected by a set of w'ires (edges).

Our original motivation was to evolve molecules. At first, we attempted to devise a tree representation

of molecules. However. many' molecules contain cycles: which chemists call rings. Therefore. any

attempt to use genetic programming to design molecules must have a mechanism to evolve cycles. This

is non-trivial when crossover can replace an?' sub-tree with some other random sub-tree. After much

thought, we were unable to devise a crossover-friendly tree representation of arbitrar', c\clic graphs.

Crossover-friendly means that an 5' sub-tree is a potential crossover point \_ithout restriction.

Note that the problem we are solving here involves constructing graphs, rather than examining graphs.

Many classic graph theoretical problems, graph colonng, finding Hamilton circuits, graph isomorphism,



andmaximalsubgraphsdiscovery,havebeenstudiedin thesearchliterature. For example,see
[Cheeseman,et al. 1991].All of theseproblemsinvestigateoneor moregraphs. Our problemis to find
agraphrepresentingamoleculeor circuit with desirableproperties.Thus,thecharacteristicsof our
searchspacearequitedifferent from theclassicgraphproblemsin theliterature.There is little or no
reasonto believethatcrossoverwouldbeusefulfor solvingtheseclassicgraphproblems. It is possible

to view the graph design problem as a search through the space of all possible graphs, and this space can

be represented as an extremely large graph, as is explained in the next paragraph. However, rather than

determining some property of the graph representing the search space, we simply look for one or more

points in that space that possess desirable properties.

The space-of-all-graphs has very little in common with a multidimensional continuous Cartesian space.

The space-of-all-graphs consists of a large number of discrete points, each of which represents a

particular graph. One may define the neighbors of a graph to be all graphs that could be formed by a

single mutation. These mutations might be:

• adding or deleting an edge,

• adding an edge connected to a new vertex,

• deleting a vertex and the edges connect to it,

• changing a vertex's type,

• changing an edge's type,

• or adding a vertex to the null graph. The null graph has no vertices or edges.

If each point in the space-of-all-graphs is considered to be a vertex, and each of these vertices is

connected to its neighbors by edges, then the space-of-all-graphs becomes, itself, a graph. Note that this

space has no derivatives. If each graph (or vertex in the space-of-all-graphs) is associate with a number,

such as a fitness, then the space-of-all-graphs may have multiple, local optima if more than one graph

has better fitness then all of its neighbors.

Previous work

[Weininger 1995] patented genetic algorithms for molecular design, and used the standard graph

representation of a molecule in the crossover operator. The patent describes the straightforward and

fairly obvious parts of mapping genetic algorithm techniques to graph-based molecular design, and the

non-obvious portions: the crossover algorithm and fitness functions. The crossover algorithm described

in the patent depends on two parameters: a digestion rate, which breaks bonds, and a dominance rate,

which controls how many parts of each parent appear in a child. As described by figure 7 and related

text in the patent, [Weininger 1995]'s crossover algorithm removes random bonds from parents

according a "digestion rate" to create fragments, and does not connect the fragments from both parents

with new bonds when forming children. A "dominance rate" determines hov, many fragments of each
parent are placed in the child, which can obviously lead to disconnected children, la,Tmn restricted to

generating connected children (covalently bound molecules), [Weininger 1995] 's crossover operator

generates a child that is simply a fraement of one parent, so in this case the operation is not really

crossover at till. but rather a /_tvtl c_fnlutation. [Weininger 1995] uses the Tanimoto index (described
below) as a distance measure for a number of fitness functions. Da\'lieht Chemical Information Systems.

Inc.. which holds the patent, reports using gcnetic algorithm techniques to discover lead compounds for

pharmaceutical drug development and other commercial successes.

Circuit design is another field for which genetic algorithms using a graph representation should, in



principle,bewell suited.Geneticalgorithmsusinga variablelengthstring representation[Lohn and
Colombano1998]andgeneticprogramming[Koza 1997] [Koza 1999] have been used to design analog

circuits. In the genetic programming case, a tree language capable of generating a subset of the analog

circuits compatible with the SPICE (Simulation Program with Integrated Circuit Emphasis) simulator

[Quarles, et al. 1994] was developed. The system was used to design a iowpass filter, a crossover filter,

a four-way source identification circuit, a cube root circuit, a time-optimal controller circuit, a 100 dB

amplifier, a temperature-sensing circuit, and a voltage reference source circuit. Thus. genetic algorithms

can design graph-structured systems. Therefore, it may be advantageous to directly evolve graphs rather

than strings or trees that are be interpreted to generate cyclic graphs.

[Nachbar 1998] used genetic programming to evolve molecules for drug design by sidestepping the

crossover/cycles problem and representing molecules with trees. Each tree node represented an atom

with bonds to the parent-node atom and each child-node atom. Hydrogen atoms were explicitly

represented and are always leaf nodes. Rings were represented by numbering certain atoms and allowing

a reference to that number to be a leaf node. Crossover was constrained not to break or form rings. Ring

evolution was enabled by specific ring opening and closing mutation operators.

[Teller 19981 reported developing a graph crossover algorithm as part of his dissertation at Carnegie

Mellon University, but supplied few details. This technique was applied to Neural Programming, a

system developed by Teller to combine neural nets and genetic programming.

[Globus, et al. 1999] reported results evolving pharmaceutical drug molecules with the crossover

operator discussed in this paper. The crossover operator was only capable of operating on undirected

graphs, not the directed graphs required for circuits. Furthermore, after publication, a bug was

discovered that severely limited cycle evolution. [Globus, et al. 1999] reported adequate performance

evolving small molecules but poor results evolving larger molecules with more complex cycle

structures; as might be expected in hindsight. The present paper reports results evolving the same

molecules with the corrected operator as well as results on undirected graphs representing digital

circuits. The molecular results are significantly better. See the Results section for details.

Method

Genetic Algorithm with Graph Representation

Molecules

One approach to drug design is to find molecules similar to good drugs. Ideally, a candidate replacement

drug is sufficiently similar to have the same beneficial effect, but is different enough to avoid negative

side effects. To use genetic algorithms for similarity-based drug discovery, we need a good similarity

measure that can score any' molecule. [Carhart, et al. 1985] defined such a similarity measure.

all-atom-pairs-shortest-path, and searched a large database for molecules similar to diazepam. We use

this similarity' measure to evolve a population of molecules towards ,'. target molecule.

JavaGenes uses undirected graphs to represent molecules. Verlices ,'.,re typed bx atomic element. Edges

can be single, double, or triple bonds. Valence is enforced. Heavy atoms (non-hydrogen atoms) are

explicitly' represented by vertices, but hydrogen atoms are implicit: i.e.. any' heavv atom with an unfilled

valence is assumed to be bonded to hydrogen atoms, but these are not represented in the data structure.



Sincewe're interestedin thepropertiesthecrossoveroperator,for this studyJavaGenesevoh,ed
populationsusingcrossoveronly andmutationwasnot used.

Eachindividualin the initial populationwasgeneratedby thefollowing algorithm:

.

2.

3.

atoms = random number between half and twice the number in the target molecule

rings = random number between half and twice the number in the target molecule
while (true)

1. for some number of tries

1. choose first atom at random

2. for atoms-1

1. if possible, add random atom bonded (with random bond) to a random existing

atom, respecting valence

3. for number of rings

1. if possible, add random bond between two randomly chosen atoms, respecting
valence

4. if molecule has correct number of atoms and rings, return molecule
2. rings--

The random atoms were chosen with equal probability from the elements in the target molecule. Thus,

the initial population of a job searching for cholesterol would consist of roughly equal numbers of

carbon and oxygen atoms. The random bonds (single, double, or triple) were chosen with equal

probability from the bond types in the target molecule. The last step (rings--) is necessary because it is

possible to run out of empty valence before molecular construction is complete. Consider the case where

the first atom is chlorine. If the second atom is also chlorine, the two chlorine atoms must share a single
bond and the valence of both atoms will be filled, so no additional atoms may be added. If the random

generation algorithm fails to make a molecule with the proper number of atoms and rings, then the

algorithm tries again. Some choices of "atoms" and "rings" require a molecule with more rings than is

possible given the number of atoms. Consider searching for cubane. If atoms = 4 and rings = 16, it is

impossible to build a molecule to the specification. Therefore, after tr'}'ing to generate a molecule several

times, the algorithm will reduce the number of required rings by one and try again. Since all of the target
molecules contain at least one element with a valence of two or more. there is no hard limit to the

number of atoms that may be in a molecule.

The number of rings, by our definition, is always equal to bonds a-:ores + i. For this definition,

single, double, and triple bonds are counted as one bond each. This formula corresponds to the following

unambiguous definition of the rings in a molecule taken from [Core} and Wipke1969]. In this definition:

1. the set of all rings must include all the bonds participating in an_ ring,

2. removing any ring will result in at least one bond not being included in an>, ring.

3. no ring may share more than half its bonds with an>' other ring.

4. and the set of rings chosen must be at least as large as an 3, other set of rings with the first three
properties.

While this definition is precise and useful for coding, it comes to the ,.nteresting conclusion that cubane

(a cubic molecule) has five rings, not six. Consider the six sides of cubane to be the six nngs in the set
of rings. If any one of the six rings is removed from the set of rings, all bonds are still included in the

set of rings. Therefore, only five nngs are necessary to meet the definition.



Tournamentselectionwasusedto chooseparentsin asteadystategeneticalgorithm.Tournament
selectionmeansthateachparentis chosenbycomparingtwo randomlychosenindividuals andtaking
thebest.Steadystatemeansthatnew individuals(children)replacepoor individualsin thepopulation
ratherthancreatinganewgeneration.The poorindividualsarealsochosenby tournament,but theworst
individual is selectedfor replacement.By convention,after population-sizeindividualshavebeen
replaced,wesaythatonegenerationis complete.Theimplementationfollows this procedure:

I. Generate a random population of molecules

2. Repeat many times, gathering data periodically:

I. Select two molecules from the population at random. Call the better

molecule father.

2. Select two molecules from the population at random. Call the better

molecule mother.

3. Make a copy of father and divide it randomly into two fragments.

4. Make a copy of mother and divide it randomly into two fragments.

5. Combine one fragment of the copy-of-father and one fragment of the

copy-of-mother into a molecule called son.

6. Combine the other fragment of the copy-of-father and the other fragment of

the copy-of-mother into a molecule called daughter.

7. Choose two molecules from the population at r_ndom. Replace the worst one

with son.

8. Choose two molecules from the population at r_ndom. Replace the worst one

with daughter.

3. Repeat until satisfied

Crossover requires two procedures: one to divide molecules into two fragments, and a second to

combine two molecular fragments. To divide a molecule into two fragments we use the following
procedure:

I. Choose an initial random bond

2. Repeat

I. Find the shortest path between the initial bond's vertices (the first time

this will simply be the initial bond).

2. Remove and remember a random bond from this path. These bonds are called

"broken edges."

3. Until a cut set is found, i.e., no path exists between the initial bond's

vertices.

To combine fragments we use the following procedure:

I. Repeat

1. Select a random broken edge. Determine which fragmen- it :s associated

with.

2. if at least one broken edge in other fragment e:<ists

I. choose one at random

2. merge the broken edges into one bond; resLecting valence by reducing

the order of the bond if necessary

3. Else flip coin (this step was disabled by abuz in [Giobus, et al. 1999])



. Until

I. if heads -- attach the broken edge to a random atom in

(respecting valence)

2. if tails -- discard the broken edge

each broken edge has been processed exactly once

Graph Crossover of Butane and Benzene to Create a Child

Division Reco _ ination

Random
bond

F,,gme n_ __

R'andorn 0bond

shor'_-x

p=_h

Random

bond in

next path

Ongin_

_rne n_

bro_ n e_e on

e:ach tr_g n_nt

lJJ__e mlmcIId

bFo4_an _es

Select random brole_

edge. A_ h _o

random a_c)rn.

Atte.c h cut bond _r I_
Io selected aIDm

Butane bond _ Burro.he.broken =,,-Ige

Benzene bond _ Benzene. broken edge

other fragment

Butane and benzene are divided at random points. Then a fragment of

butane and a fragment of benzene are combined. Note that benzene must

be cut in two places. Also, during fragment combination the benzene

fragment has more than one broken edge. A random choice is made to

connect this extra broken edge to a random atom in the butane fragment.

Alternatively. the extra broken edge could have been discarded.

Forming Fused Cycles and Cages with Crossover



Generation Mom Dad

2 OR

Potential child with fused cycles Potential child with cage

Same color between generations _ Broken edge

indicates parent/child sub-graph
relationship. 0 Verte_

Edge added by "flip coin"
step

Graph crossover can generate fused cycles and cages. The "flip coin" step

of the crossover algorithm is crucial to this functionalitx.

Our crossover operator can open and close rings using crossover alone, and can even generate cages and

higher dimensional graph structures as long as there are rings in the population. Unfortunately, if there

are no rings in a population, none can be generated. Also, once a population consists entirely of
two-atom-molecules, no molecules with more than two atoms can be generated. Nonetheless, this

crossover operator is the most general of those we examined or found in the literature. In particular,

unlike [Nachbar 1998], no special-purpose ring opening and closing operators are necessary. Unlike

[Weininger 1995], no parameters are necessary and disconnected "molecules" are never produced.

The computational resources required for genetic algorithms to find a solution is a function of the size of

the search space, among other factors. The space of all possible graphs is combinatorial and enormous.

For molecular design, this space can be radically reduced by enforcing valence limits for each atom.
Thus, a carbon atom with one double and two single bonds will not be allow'ed to add another bond.

Also. avoiding explicit representation of hydrogen atoms substantiallx reduces the size of the graph.

Digital Logic

Since our group at NASA Ames is interested in molecular electronic:, and the best _ av to design

molecular electronic circuits is unclear, we thought it might be interesting to use Ja\ aGenes to evolve

digital circuits. If reasonably, successful, it might then be possible to apply' JavaGenes to designing
molecular circuits once simulators are available to implement appropriate fitness functions.



JavaGenesusesdirectedcyclic graphsto representcircuits. In otherwords,eachvertexhasa setof input
edgesanda setof outputedges,andeachedgehasan input vertexandanoutput vertex.Eachvertexand
edgehasacurrentstate(usually0 or 1).Verticesarethedigital devicesAnd, Nand,Or, Nor, Xor, and
Nxor.Theinitial valueof a devicemaybezeroor 1.Eachdevicecanhaveanynumber(including zero)
of input andoutputedges.If thereareno inputedges,And, Or, andXor output0, andNand,Nor, and
Nxor output1.If thereis oneinputedge,it is copiedto outputor invertedfor Nand,Nor, andNxor
vertices.If therearetwo or moreinput edges:

• Andwill output0 if anyinput valueis 0, or 1 if all input valuesare I.
• Or will output0 if all input valuesare0, or 1 if anyinput value is 1.
• Xor will output0 if anevennumberof input valuesare1,or 1 if anoddnumberof input values

are I.

For thedeviceswhosenamesstartwith N andhavetwo or moreinput edges,theoutput is inverted(0
becames1, 1becomes0). Thisschemeallowsverticesto haveanynumberof input andoutputedges,
therebysimplifying thecrossoveroperatorsubstantially.Nonetheless.anycircuit representedthis way
canbeeasilymappedto acircuit restrictedto two andthreeterminaldevicesplus fan out.

Therearetwo specialverticesin eachcircuit: input andoutput.Theinput vertexdoesnoprocessing,but
simply acceptsvaluesfrom a simulatorandoutputsthosevaluesto all outputedges.No input edgesare
allowed.Theoutputvertexis adigital devicelike theothers,but hasnooutputedges.Theoutput vertex
handsoutputvaluesto a simulator.

Eachindividual in the initial populationwasgeneratedby choosinga randomnumberof verticesand
edgeswherethenumbersfell within upperandlower boundssetby theJavaGenesinput parameters.
Vertextypeswererandomlychosenfrom all possibletypes.Thecircuits werecreatedasfollows:

1. Input andoutput verticeswerecreated
2. Therestof the verticeswereaddedoneat atime by attachingoneoutputedgeto theinput of a

vertexalreadyin thecircuit.
3. An outputedgefrom theinput vertexwasconnectedto arandomvertex.
4. Edgeswereaddedat randomto createtherequirednumberof cycles.

Becauseedgesweredirectedandthereweretwo specialverticesin eachcircuit (the input andoutput
vertices),thecrossoveralgorithmwassomewhatdifferent thanfor molecules.During division, instead
of choosingarandomedgeandcuttingrandomedgesconnectingthe verticesof thechosenedge,the
input andoutputverticeswerechosenandedgesbetweenthem were broken until the graph divided into

two parts. This guaranteed that each fragment had exactly one input or one output vertex, but never both.

Obviously, only fragments containing an input vertex were combined with fragments containing an

output vertex, and vice versa. Furthermore, during combination, broken edges with the output vertex
removed were only merged with broken edges where the input vertex was removed, and vice versa.

This modified crossover operator has the interesting property that. under certain rare conditions, a

disconnected circuit can be created. This anomaly requires multiple generations to occur, and is caused

by the fact that the edges are directed. While we have not collected data. the anomal\ appears to occur

only once for every few thousand crossover operations. When this occured. _ e simply discarded the
child.



Generation
Evolving a Disconnected Circuit

Mom Dad

lid

2

ID

()

Kev

3

Same cobr (other than black)

between generations indcates

I_irentJchild s_zb-graph relationship.

This sequence of evolutionary events results in a disconnected directed

]graph. Fortunately. this occurs rarely.

Broken edge

Verte_

Output Vertm<

input Vert e_

Fitness Functions

Molecules: all-pairs-shortest-path similarity

A key, to successful genetic algorithm search is a good fitness function [Kinnear 1994] -- for tournament
selection, a function that can determine if one molecule is better than another. This function must be

very robust, since the randomly generated initial molecules rarely make much chemical sense. Fitness

functions must also make fine distinctions between any two molecules, even if both are very. good or



very bad. These fine distinctions are necessary to avoid flat regions in the fitness space where evolution
has no direction. Also, for our initial studies, we wanted a fitness function that only required the graph

of a molecule, not the xyz coordinates of each atom.This simplifies initial studies and avoids the

necessity of equilibrating the structure of candidate molecules, a CPU intensive step. The

all-atoms-pairs-shortest-path similarity test chosen [Carhart, et al. 1985] is a robust graph-only fitness

function. The fitness function algorithm was as follows:

1. Each atom is given an extended type consisting of a tuple containing the element and the number

of single, double, and triple bonds the atom participates in. For example, the carbon in carbon

dioxide is represented by the tuple (C,0,2,0). The C indicates that the atom is carbon. The zeros

indicate that the atom participates in no single or triple bonds. The 2 indicates that the atom

participates in two double bonds.
2. The shortest path between each pair of atoms is found.

3. A bag is constructed with one element for each atom pair. A bag is a set that contains duplicate

elements. Each element in the bag is a tuple consisting of the sorted extended types of the two

atoms and the length of the shortest path between them. For example, the path between a carbon

and one oxygen in carbon dioxide would be represented by: ((C,0,2,0),(O,0,1,0), 1). The first two

elements in the tuple are the extended types of the atoms. The 1 is the length of the path between

them.

4. The fitness of each candidate molecule is the distance between its bag and the similarly

constructed bag of a target molecule. The distance measure used is the Tanimoto index. This is:

Ic intersection tl/ Ic union tl

where c is the candidate?s bag and t is the target?s bag. Two elements are considered

identical for the purpose of the intersection and union operators if the atoms have the same

extended types and the distance between them is identical. Each duplicate in the bag is

considered a separate element for the purpose of the intersection and union operators. The

Tanimoto index always returns a number between 0 and 1. We prefer fitness functions that
return lower numbers for fitter individuals, so we subtract the Tanimoto index from one to

get the fitness.

Search spaces with many local optima are difficult to examine because man}' algorithms tend to

converge to local optima and miss the global optimum. The all-pairs-shortest-path fitness function has

many local optima over the space-of-all-molecules whenever the target molecule contains rings.

Consider benzene, a six membered ring, as the target molecule. An_ ring other than a six membered ring

will be at a local optima because a bond must be removed, lowering the fitness in most cases, before

bonds and atoms can be added to generate benzene. Thus, any target molecule containing rings will have

an associated search space containing many local optima. Interestingly. a small modification in the

definition of the space-of-all-molecules eliminates these local optima. Consider mutations that

1. replace an edge with a vertex and two edges,

2. or replace a vertex and two edges with one edge.

These mutations can change the size of rings. If these mutations arc allo,aed to create neighbors in the

space-of-all-molecules, then incorrectly' sized rings are not local opt:ma. This illustrates the difficult} of

understanding the space-of-all-molecules.



The targets for this study were benzene, cubane, purine, diazepam, morphine and cholesterol. All targets

contain rings and thus generate a search space with local optima. The fitness function can not only find

similar molecules, which is useful in drug design, but can also lead evolution to the exact molecule used

as the target. This can prove that the algorithm can find particular molecules. In addition, the number of

generations to find the target provides a crude quantitative measure of performance.

Digital Logic

For digital logic circuit evolution, we attempted to evolve correct 15-step delay, parity, and one-bit add

serial circuits. By "serial circuit" we mean that only one bit is input and output at each time step. The

fitness of a circuit was the percentage of wrong output bits generated when processing 100 random input

bits. Thus, a score of zero indicated a perfect circuit and a score of one a totally incorrect circuit. The

circuits were simulated by assuming that every device (vertex) and wire (edge) required unit processing

time. While this is not particularly realistic, it is easy and quick to implement and is sufficient to

exercise the directed graph crossover operator. No attempt was made to generate optimal circuits, a task

of greater interest to the digital hardware community.

Some initial runs ran out of memory when the circuits became extremely large. To reward parsimony, a

fitness penalty of one percent was assessed against a circuit for each additional edge or vertex the circuit

grew above a certain size. The penalty-free size was chosen to be well above that necessary to create the
circuit.

Implementation

All computational experiments were run using the Condor cycle-scavaging batch system [Litzkow, et al.

19881 managing approximately 150 SGI workstations at NASA's NAS supercomputer center [Giobus,

et al. 2000]. Condor watches a "pool" of desktop workstations. When a workstation appears to be

unused, Condor will match a waiting job with the workstation. The workstation will run the job until

mouse or keyboard activity is detected, or the non-Condor CPU load exceeds a certain value. The job is

then removed from the workstation. The job will execute later on (usually) another workstation. Jobs

typically save their state periodically or when they are informed that they must leave a workstation.

Saving state is called checkpointing. Cbeckpointing allows jobs to restart near where they left off.

JavaGenes checkpoints periodically, usually at 30 minute intervals. With Condor, workstations that

would otherwise be idle can perform useful computation.

JavaGenes is implemented in Java. Java was chosen because its syntax is similar to C++, many useful

libraries are available (the graph layout software [Tunkelang 1998] and some statistics code were

contributed by others), garbage collection vastly simplifies memoo ' management, and Java?s array
bounds checking and other bug-limiting features seem to substantiallx reduce debugging time and

produce more robust code than C++, Fortran or C. A run-time penalt> is paid for these advantages, but a

generation of 500 individuals typically takes less than a minute to compute. The only significant

performance problem has been with Java serialization. JavaGenes used serialization to checkpoint.

Serialization is the process of flattening a data structure into an array of bytes, a form that can be saved

to disk. Serialization is a standard part of the Java language. Although standard Java serialization

worked well for small data structures, when the data structures grew large, senalization could take

hours. Standard Java serialization was replaced with custom checkpoint/restart code. reducing
checkpoint/restart time to around 10 seconds in most cases with a maximum around five minutes. See

[GIobus, et al. 2000] for a more detailed investigation of this problem.



Long serializationtimescreatedaseriousproblem.In the initial implementation,JavaGenesstarteda
new randomnumbergeneratorafterrestart.Becauseof this, evolutiondid not follow thesamepath
takenafterthe lastcheckpoint.Thegeneticalgorithmwascontrolledby different randomnumbersand
thereforesearcheda differentpartof the space-of-all-graphs.Becausethenumberof generationsto find
a specifictargetwasusedastheperformancemeasure,re-startingthesearchrepeatedlyafter a
checkpointmadethealgorithmappearmoreefficient thanit was.Considerthecasewhereajob ran for
100generationsup to acheckpointand20moregenerationsbeforebeingkilled. When thejob was
restarted,adifferent setof populationswouldbeconstructedandoneof thenewgenerations,saythe
10th,might find thetarget.Therefore,it would appearasif thetargetwasfound in 110generations,but
actually 130populationsweregenerated.Thus,whencheckpointtimeswerelongcomparedto thetime
availablefor executionona singleworkstation,jobs might repeatedl.vsearchtheregionaroundthe last

checkpoint and stop if a solution were found, reporting an inaccurately small number of generations to

completion. It was therefore necessary, at job restart time, to restart the random number generator with

the same seed and then execute the random number generator until the sequence was where it left off.

This should have insured that jobs followed the same evolutionary path regardless of checkpoint history.

Unfortunately, although this fix worked properly when a job was restarted on the same machine,

different results were observed in normal execution on the Condor pool, where jobs frequently move

between machines. The changing evolutionary path was presumably caused by differences in the Java

libraries on different versions of the SGI operating system. This may change the order of certain lists in

JavaGenes and cause the same random number to pick a different item from a list. While this problem

may make the results reported below somewhat optimistic for the larger molecules and circuits, we

believe that the effect is fairly minor now that checkpointing is fast. There should be little effect on the

smaller molecules because most jobs completed before the first checkpoint. Because checkpointing was

fast, computations would usually proceed to the next checkpoint before being stopped and restarted.

Only -6% of all generations were repeated once the checkpointing performance problem was corrected.

There was an additional problem during circuit evolution that was also caused by checkpointing. Each

time a job restarted, a different set of random binary inputs was chosen to evaluate candidate circuits.

This could have the effect of changing the fitness of a given circuit, although usually' the change would

be minor if the input sequence was long. Nonetheless, individuals generated after a restart could find

themselves with a lower or higher fitness with respect to an older individual than if the restart had not
taken place. We do not believe that this had any significant effect on the results.

Test environment

Molecules

To see if JavaGenes could find molecules of interest, we tried to find the following targets:

1. @ benzene (C6H 6) a simple ring molecule.

2. _ cubane (CsH 8) a cage molecule.



N_% N
' I1 _\

3. [.._N _... N,/ purine (C5H4N4)

\ o

4. CI

0

/
5. 0

N.,

0

design for many years.

6. _--

0

fused tings and heteroatoms.

diazepam (C16H13CIN20) used in [Carhart, et al. 19851.

morphine (CITH19NO3) Dr. Wipke's group has worked on morphine analog

(
cholesterol (C27H46 O) a non-drug molecule.

Stereochemistry and hydrogens are left out of the molecular diagrams since JavaGenes does not believe
in them.

Digital Logic

We attempted to evolve thee different serial circuits:

• _ 15-unit delay

• _ _ parity

• =T_f_=cz>-__-->-_l-bi_ a_a_o_t_a__,__1_c_.,.oo,_.'_.,or_,o_d.,_.
but because our simulator assumes unit propagation delays for every device and wire, the

simulated circuit will perform properly.



Results

Since the algorithm is stochastic, 31 jobs (each job is one execution of JavaGenes) were conducted for

each experiment run. The number of generations and population size were varied. Once the target was

found, jobs stopped. Jobs also stopped after a fixed, maximum number of generations. We use the

number of generations to find a perfect individual as a performance measure. Combined with the

population size, this provides a quantitative measure of performance, although the precise value of the

numbers should not be taken too seriously. Even with 31 jobs per run. variation between runs with

identical input parameters (other than the random number seed) was observed (see the comparison of

purine and diazepam runs below). We display the results with line _aphs where each data point is the

generation one job of a run found a perfect individual: in other words, fitness was 0. The horizontal axis

is the jobs, sorted by the generation a perfect individual was found. The verticle axis is the generation.

Thus, all curves will be monotonically increasing.

Finding Small Molecules

First we compare JavaGenes performance finding three small molecules using a population size of 25

and a maximum of 1,000 generations:

Finding Benzene, Cubane, and Purine

800 -

= 600-
O

,i

_ 400-

e,,-

¢_ 200 -

0 --

I l l

E

y cubane

benzene

l|llllllllllllllllllllllllll

job, sorted by generalion target found

Note that two benzene jobs did not find the target at all, even though benzene was usually found in just a

few generations. The jobs that could not find benzene lost all of the cycles in the population in the first

generation created by crossover. When a population consists entirelx of non-cyclic molecules, the

crossover operator can not generate cycles.

Finding Larger Molecules

Now we compare JavaGenes performance finding three larger molecules using a population of 500 and

a maximum of 5,000 generations. Note that there are two separate runs looking for diazepam.

Finding Diazepam, Morphine, and Cholesterol



5000 diazepam

4000 Scholesterol

'_ 3000 morphine //.,._--

_ diazepam

2000

1000

I I I I I I I I l I

job, sorted by generation target found

Although each run consisted of 31 jobs, only 7 jobs found morphine and 10 jobs found cholesterol. The

two diazepam runs found the target 7 and 10 times respectively. Note that JavaGenes performance is

much poorer on these larger molecules. Presumably, this is because the size of the

space-of-all-molecules explodes combinatorially as molecule size increases. We also noticed that some

populations lost all of the rare elements in the target. For example, diazepam has only one chlorine and

one oxygen atom. Several of the diazepam jobs lost all of one these elements from the population and

were forever doomed. Interestingly, jobs that lost all oxygen and/or chlorine from the population did so

within about 400 generations. Using vertex mutation should avoid this situation, but this paper is

concerned with the properties of the crossover operator.

Now we compare JavaGenes performance finding the same three molecules using a population of 1,000

and a maximum of 10,000 generations.

t-
O

,i

Q
e-
cD

Finding Larger Molecules with a Larger Population

10000 -
morphine

8000 -

6000

4000

2000

0

/

- _erol

I _ I l I I I I I I I l ] 1 I I I t I

job, sorted by generation target found

Performance is improved with a larger population and more generations, but 20 jobs still failed to find

diazepam. 17 couldn't find morphine, and 12 failed to find cholesterol.

Effects of Population Size

We now' examine the effects of population size by showing the results of searching for purine with a



population size of 25, 50, and 100:

e--
©

03
e-
03

4OO

2OO

0

800 -

600 -

I I

Finding Purine With Different Population Sizes

 /oo
J

-- 1 O0

I I 1 I I I I I I I I I I I I I I I I I I I I I I I | I I

job, sorled by generalion large! found

As expected, increasing the population size improves performace. Interestingly, with a population size

of 25 and 50, the last job to find the target molecule took about the same number of generations. This is

probably a random event, suitable for publication in the Journal of Irreproducable Results.

Variability Between Runs

Since each job uses a different random number seed, results are somewhat different. To illustrate this

variability, we made five runs looking for purine using identical parameters (except the random number

seed). Population size was 100.

400

,._ 300

200
loo

0

Identical Runs Finding Purine

I I I I I I I I I I I I I [ [ I I I 1 I I : 1 I I I I I I

job, sorled by generation target found

The variability between runs is quite small for this moicular target. Most of the difference appears in the

last two or three jobs to find purine from each run. To see if variablitx was different with a more

difficult target, we compare two runs searching for diazepam using a population size of 500 and a
maximum of 5,000 generations:

Identical Jobs Finding Diazepam



5000 -

,_ 4000
3000

2000

1000

0 I I I 1 I I I I

job, sorted by generation target found

I I

Note that although each run consisted of 31 jobs, only 7 and 10 jobs, respectively, were able to find

diazepam in 5,000 generations. Nonetheless, although one run clearly out-performed the other, the
results of the two runs are roughly comparable.

Finding Circuits

JavaGenes was able to successfully find small circuits that implement delay and parity functions. We

compare results finding parity using a population of 600 and finding delay with populations of 200 and

600. In all cases, the maximum number of generations was 5,000:

Finding Circuits

5000 - delay600

t-
(3

,B

(D
e--

4000

3000

2000

1000

0

parity f

delay200
I 1 t I I ] I | [ I I I I I I 1 } [ I I 1 I

job, sorted by generation perfect circuit found

Note that only 22-24 (out of 31 ) jobs succeeded in finding a proper circuit in each run. Results are very

similar for most of the successful jobs with substantial variability onlx for the worst performing jobs that

succeeded. In spite of many attempts, we were never able to evolve a perfect 1-bit add circuit. The

source of the problem is unclear.

Progress of a Run

This figure shows the fitness of the best individual for each of 31 jobs searching for morphine.

Population size was 500 and the maximum number of generations allowed was 5,000. Each data point



was 10 generations apart. In other words, fitness data were collected from the population every 10

generations.

1.00 -

31 Jobs Searching for Morphine

e-

0.75

0.50

0.25

0.00

I

I

general ion
5000

The initial random populations all had a best individual fitness near 0.9, but quickly inproved to around

0.25. Most jobs then leveled off with long periods of no improvement, occasionally punctuated by

sudden bursts of increasing fitness. Notice that morphine was often found even when the previous best

fitness was quite poor, as evidenced by the long verticle lines ending at the x-axis.. This indicates that

fitness improved very rapidly over the course of a few tens of generations.

We now examine the mean fitness of each job in the same run:



1.00 -

0.75 -

= O50

0.25

0.00

generalion
50O0

The mean fitness of each job dropped rapidly from about 0.96 to somewhere near 0.6 and stayed there

with only very minor improvement. This may be caused by the extremely destructive nature of the

crossover operator, which can be expected to generate many very unfit children from fit parents. Since

every generated child was placed back into the fixed-size population, there was no guarantee that the

individual replaced had lower fitness than the child. It might be interesting to develop a procedure that

rarely replaces individuals if the child has worse fitness. One might expect the average fitness to

continue to improve as evolution proceeds.

Effect of the "Coin Flip" Step

As mentioned before, [Globus, et al. 1999] provided results from the crossover algorithm, but with a bug

that effectively eliminated the "flip coin" step in fragment combination. The results discussed above

used code with additional modifications beyond the bug fix, primaril} in the way that the initial

population was generated. Table 1 compares performance before and after the bug fix. with no other

code modifications. Input parameters were identical except for the number of jobs per run and the

random number seeds for each job. The numbers in parentheses refer to results from [Globus, et. al
1999].

Table 1: Finding Small Molecules With and (Without) "Coin Flip" Step



31 runs for

each

molecule

(20 with

bug)

Benzene

Cubane

Purine

Population
size

Median

generations to find

target

100 (200)

100

1001

3 (39.5)[

20 (46.5)[

38 (245)]

Minimum

generations to find

target

0 (2)

4(13)

6(19)

Number of runs

that failed to

find target

0 (8)

0 (0)

0 (4)

Maximum

generations

10 (1000)

140(NR)

269(1000)

NR = not recorded. Because of job-to-job variability, and because man), runs did not complete, median,

rather than mean, generations to find the target is used, a procedure suggested by [Ciaerbout and Muir

1973].

Diazepam, morphine, and cholesterol were never found more than once each in [Globus, et al. 1999].

The difference in results before and after the bug fix show the importance of the "flip coin" step.

Comparison with Random Search

The great fear of search algorithm research is that, after months or years of effort, one's cherished

algorithm will do no better than random search. To see if our crossover operator was better than random

search, we searched for purine under three conditions: crossover alone, generating random molecules

using the same algorithm as for the initial population (random search), and a 50-50 mix of crossover and

random search. Twenty-one runs of 1000 generations on a population of 200 were conducted in each

case. The [Giobus, et al. 1999] algorithm was used. The fixed algorithm should do even better.

Comparison With Random Search

case . ]lnumberof runs that found purine median generations to find purine

random search ]l 0 N/A
,,r

crossover alone I 21 37

50-50 mix of crossover and 21 48
random search

Clearly the crossover operator is better than random search.

JavaGenes can clearly find molecules and simple circuits. The algorithm consistently finds molecules

but has great difficulty with circuits. Even the simple delay and pant 3 circuits were not always found.

Summary

Algorithms and software to evolve graphs using genetic algorithm techniques were developed and

applied to pharmaceutical drug and digital logic circuit design. Results suggest that the softv,'are can

indeed discover a variety of molecules and ver3, simple circuits. Significant additional work will be

required to determine if applying genetic algorithms using a graph representation to molecular design is

beneficial, but our results are encouraging. Unfortunately, our results suggest that digital circuit design

may be extremely difficult using JavaGenes or similar software. Even the simple delay and parity



circuits were difficult to evolve. Our results do, however, demonstrate that genetic algorithms can be

applied to directed graphs.

Chemists have known for over a century that graphs are the most natural representation for molecules,

just as logic designers use graphs to represent circuits. Furthermore, the space-of-all-graphs is not well

understood or characterized. Therefore, it is reasonable to presume that searching for graphs using

genetic algorithms will be profitable in a number of domains. We hope that our crossover operator will
make a contribution.

Acknowledgments

Many thanks to Daniel Tunkelang, formerly of Carnegie Mellon, for providing his Jiggle code

[Tunkelang 1998]. Jiggle arranges arbitrary graphs for easy viewing. Thanks to NWP Associates, Inc.

for providing their Student T-Test code. Thanks to Rich McClellan, University of California at Santa

Cruz, for providing the mol file reading and atomic element code. Thanks to Gail Felchle for much of

the graphics art work. Thanks to ??? for reviewing this paper. This work was funded by NASA Ames
contract NAS 2-14303.

References

[Baeck, et al. 1997] Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel, "Evolutionary

Computation: Comments on the History and Current State," IEEE Transactions on Evolutionary

Computation, volume 1, number 1, pages 3-17, April 1997.

[Carhart, et al. 1985] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan, "Atom Pairs as

Molecular Features in Structure-Activity Studies: Definition and Application," Journal of Chemical

Information and Computer Science, volume 23, pages 64-73.

[Cheeseman, et al. 1991] Peter Cheeseman, Bob Kanefsky, William M. Taylor, "Where the Really Hard

Problems Are," Proceedings of the 12th International Conference on Artificial hTtelligence, Darling
Harbor, Sydney, Australia, 24-30 August 1991.

[Claerbout and Muir 1973] J. F. Claerbout and F. Muir, "Robust Modeling with Erratic Data,"
Geophysics, volume 38, pages 826-844.

[Corey and Wipke 1969] E. J. Corey and W. Todd Wipke, "Computer-Assisted Design of Complex

Organic Syntheses," Science, volume 166, pages 178-192, 10 October 1969.

[De Jong 1990] K. A. De Jong "Introduction to the Second Special Issue on Genetic Algorithms."
Machine Learning, 5 (4), 1990.

[Forrest and Mitchell 1993] Stephanie Forrest and Melanie Mitchell. "What Makes a Problem Hard for

Genetic Algorithm? Some Anomalous Results in the Explanation." Machine Lea_Tzing. volume 13.
pages 285-319.

[Globus, et al. 1999] A1 Globus, John Lawton, and Todd Wipke, "Automatic Molecular Design Using

Evolutionary Techniques," Nanotechnology, volume 10, number 3, September 1999. pages 290-299.



[Globus,et al 2000] AI Globus,Eric Langhirt,Miron Livny, RavishankarRamamurthy,Marvin
Solomon,SteveTraugott,"JavaGenesandCondor:Cycle-ScavengingGeneticAlgorithms." submitted
to JavaGrande2000.

[Holland 1975]JohnH. Holland,Adaptation in Natural and Artificml Systems, University of Michigan
Press.

[Kinnear 1994] Kenneth E. Kinnear, Jr., "A Perspective on the Work in this Book," Advances in Genetic

Programming, edited by Kenneth E. Kinnear, Jr., MIT Press, Cambridge, Massachusetts, pages 3-20,
1994.

[Koza 1992] John R. Koza, Genetic Programming: o12 the Programming of Computers by Means of
Natural Selection, MIT Press, Massachusetts, 1992.

[Koza, et al. 1997] John R. Koza, Forrest H. Bennett III, David Andre, Martin A. Keane and Frank

Dunlap, "Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming," IEEE

Transactions on Evolutionary Computation, volume 1, number 2, pages 109-128, July 1997.

[Koza, et al. 1999] John R. Koza, Forrest H. Bennett, Martin A. Keane, Genetic Programming II1 :
Darwinian Invention and Problem Soh,ing, Morgan Kaufmann Publishers, ISBN: 1558605436.

[Litzkow, et al. 1988] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter of Idle

Workstations," Proceedings of the 8th blternational Conference of Distributed Computh2g Systems, pp.
104-111, June 1988. See http://www.cs.wisc.edu/condor/.

[Lohn and Colombano 1998] Jason D. Lohn and Silvano P. Colombano, "Automated Analog Circuit
Synthesis Using a Linear Representation," Second b2ternational Conference on Evoh'able Systems:

From Biology to Hardware, Springer-Verlag, 23-25 September 1998.

[Nachbar 1998] Robert B. Nachbar, "Molecular evolution: a Hierarchical Representation for Chemical

Topology and its Automated Manipulation," Proceedings of the Third Annual Genetic Programming

Conference, University of Wisconsin, Madison, Wisconsin, 22-25 July 1998. pages 246-253.

[Quarles, et al. 1994] T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli,

SPICE 3 Version 3F5 User's Manual, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, CA. March 1994.

[Teller 1998] Astro Teller, "Algorithm Evolution with Internal Reinforcement for Si2nal

Understanding," Computer Science PhD Thesis, Carnegie Mellon University. Publication Number:
CMU-CS-98-132.

[Tunkelang 1998] Daniel Tunkelang, A Numerical Optimization Approach to Graph Drawing,
Dissertation, Carnegie Mellon University, School of Computer Science, December 1998.

[Weininger 1995] David Weininger. "Method and Apparatus for Desi_ning Molecules with Desired

Properties by Evolving Successive Populations," U.S. patent US543-_796, Daylight Chemical
Information Systems, Inc.


