
Efficient Merge and Insert Operations for Binary

Heaps and Trees

Christopher Lee Kuszmaul _

1 Summary

Binary heaps and binary search trees merge efficiently. We introduce a new

amortized analysis that allows us to prove the cost of merging either binary

heaps or balanced binary trees is O(1), in the amortized sense. The standard

set of other operations (create, insert, delete, extract minimum, in the case

of binary heaps, and balanced binary trees, as well as a search operation for

balanced binary trees) remain with a cost of O(log n).

For binary heaps implemented as arrays, we show a new merge algorithm

that has a single operation cost for merging two heaps, a and b, of O([a] +

min(log [bI log log]bI , log [a[log [b[)). This is an improvement over O([a I +

log lal log Ib]) [11].

The cost of the new merge is so low that it can be used in a new struc-

ture which we call shadow heaps, to implement the insert operation to a

tunable efficiency. Shadow heaps support the insert operation for simple

priority queues in an amortized time of O(f(n)) and other operations in

time O((log n log log n)/f(n)), where 1 <](n) < log log n.

More generally, the results here show that any data structure with opera-

tions that change its size by at most one, with the exception of a merge (aka

meld) operation, can efficiently amortize the cost of the merge under con-

ditions that are true for most implementations of binary heaps and search

trees.

2 Introduction

A binary heap is a tree structure where a given node satisfies the heap

property, the key for a node is smaller than the key of the children of the

node. A binary heap can be implemented as a contiguous array, A where

"MRJ Technology Solutions

t _odorr:_nas.nasa.gov

we define the root as All], the left child of A[i] as A[2i] and the right child

as A2i + 1].

A binary search tree satisfies the search tree property where a given node's

key is larger than that of its left child and smaller than that of its right

child. A binary search tree is virtually always implemented using pointers,

but may have a variety of constraints on how the tree is composed. In this

paper we concern ourselves with balanced binary search trees, which satisfy

the additional requirements[3].

Binary heaps and binary search trees are data structures that allow the

efficient implementation of certain operations that are valuable in a variety

of applications [4].

Binary heaps efficiently support:

• create(H): Create an empty structure called H.

• insert(z, H): Insert key x into H.

• delete(p, H): Delete key pointed at by p from H.

• extract_rain(H): Remove and return the key in H with smallest value.

Binary search trees, in addition to the above, efficiently support:

• search(k, H): Locate an element of H with a key value of k.

• next(p. H): Given a pointer p to a key in H, find the next larger key
in H.

• prey(p, H): Given a pointer p to a key in H, find the next smaller

key in H.

Each of the operations can be supported efficiently (O(log IHl) steps) by

the proper choice of implementation of a binary heap, or else by a binary

search tree. Now consider the merge operation.

• Merge(Ht, /-/2): Return a structure with the contents of H1 and /-/2

combined, destroying H1 and/-/2.

Merge is not supported efficiently for binary heaps implemented using

arrays, nor for binary search trees. Note that the join operation seen in [12],

only supports binary search trees where the maximum key in one is less than

the minimum key in the other.

2

However.aswewill show,mergeissupportedefficientlyin theamortized
sense.In theremainderof thispaperwediscussthememoryallocationissues
in choosingbetweena pointerbasedand an array basedheap(section3)
what wemeanby amortizedanalysis(section4), and the requirementsfor
a mergeto beefficient in anamortizedsense(section5). We will alsosee
in section.5that binary heapsimplementedasarraysand balancedbinary
searchtreesareefficientin the amortizedsensefor merging. Vv'ewill also
introducein section6 a newmergealgorithmfor binary heapsimplemented
asarrays,with anefficiencythat exceedsthat foundin [11].Wecallthis new
mergethe "medianshadowmerge'. Next, wewill showhow to implement
insertusingmergeby makinga slight modificationto thebinary heapdata
structure(section7). This insert has a very low amortized cost, which can be

balanced against the efficiency of the other operations that heaps support.
We discuss the tradeoffs between the cost of insertion and other operations

in section 8.

3 On memory Allocation

An alternative to the array based implementation of a binary heap is to

employ a pointer based method, where a node stores the memory addresses

of its children. The advantage of this alternative is flexibility of storage of

the heap, which makes it easier to prove efficiency. Also, a pointer based

heap avoids deallocation and reallocation of the scale called for by the array

based method, and so may avoid fragmentation problems.

The array based method uses less memory (as a lower bound), and the

memory used for each heap is contiguous, each of these features can im-

prove performance on cache based computer architectures. The array based

method also tends to free large regions of memory during deallocation, rather

than isolated words as may happen in the deallocation of a single node of

a pointer based heap. As such, in some scenarios, the array based method

may produce less fragmentation than the pointer based method.

Which method is more efficient with respect to memory allocation thus

remains an open question beyond the scope of this paper. Certainly, we

know that without garbage collection, the proportion of memory that can

be wasted is no more than O(logn), [15] and with garbage collection, the

proportion can be made arbitrarily small [1]. In any case, it is certainly

worth while to find the best possible uses of array based method as well as

the pointer based method.

4 On Amortized Analysis

To show that the amortized cost of a given set of operations is O(f(n)),

we must show that the worst case cost of an entire sequence of rz opera-

tions never exceeds O(nf(n)). For simple data structures, this can be done

directly by considering all possible combinations of operations, and identi-

fying the most expensive sequence. Usually, such an analysis shows that

expensive operations must be preceded by a large number of inexpensive

operations. However the complex interrelationships between the operations

considered in this paper make it difficult to prove that expensive operations

are inherently infrequent.

We use potential functions to simplify the analysis. A potential function's

value depends on parameters that describe the state of a data structure. The

change in the value of the potential function after an operation corresponds

to (and in some sense offsets) the cost of the operation in question. If an

inexpensive operation results in an increase of the potential function, but

the increase of the potential function is within a constant factor of the actual

cost of the operation, then the amortized cost of the operation is unchanged.

Meanwhile. if an expensive operation results in a decrease of the potential

function that offsets the cost of the expensive operation, then the amortized

cost of the expensive operation may be small. For such an analysis to remain

valid, the potential function must stay nonnegative, and begin with a value

of zero. For more on amortized analysis and its origins see [13].

5 How to get an efficient merge

Consider the following potential function:

v9 = (}-'_iv0]Hi[)(log(Y_'_0 tHi[)) - }--_._v__0 [Hil log [Hil

Where H, is the i'th heap in the set of all heaps that have been created,

and there are N heaps. On operations that change the size of a heap by one

or less. kI, changes by O(log N). Thus the amortized cost of all binary heap

operations other than merge is O(logN). A merge of two heaps, a and b

results in a change of @ equal to

([a I + Ibl)log(la I -,-Eb])- [a I logla I -lbl log lbl.

Any merge with an actual cost within a constant factor of this has an

amortized cost of zero. We use the series expansion of an increment for log

and can conclude the change of • is at least lal log(lbl /lat). Throughout

this paper we will assume lal _< Ibl.
For binary heaps implemented as arrays, [11] has established a time to

mergeheapa and heap b in O(]a] + log [a] log]b]) steps. Since this is less

than the drop of _I' due to the merge, the amortized cost for a merge is O(1).

For balanced binary search trees, [3] has established a time to merge tree

a with tree b in O(a[log(]b]/[a])) steps, which is within a constant factor

of the change of _IJ. so again the amortized cost for the merge is O(1).

6 The shadow merge algorithm

Now we present a new algorithm for merging binary heaps implemented as

arrays. The cost of this merge is O([a[+ min(log Ibtlog log [bl, log lbl log [al)).

The classic heapi_" algorithm takes an unordered array and makes it into

a heap in time proportional to the size of the array [4]. A naive merge would

concatenate two heaps to be merged, and then run the make heap operation

found in [4] on the resulting array.

naive_merge(a,b)

c = concatenate(b,a);

return(make_heap(c));

The concatenate can be viewed as a sequence of table inserts, which has

an amortized cost of O([al) [4], so the cost of the naive merge is O(]bi) , since

the make heap dominates the cost of the naive merge. As observed in [11],

this naive merge does not take advantage of the inherent structure of the

heaps that exist prior to the merge.

Now consider c, the concatenation of b and a, as seen in the naive merge

code. If we view c as a heap, the only nodes in c that may not satisfy the

heap property (or whose descendents may not satisfy the heap property) are

the ancestors of the final lal nodes. These ancestors are what we refer to as
the 'shadow" of a.

There are not very many nodes in the shadow. We will show that the

number of such nodes is O(]a I + log(lbt))

The concatenated a occupies indices in c in the range [lb[+ 1: Ibl + lal]

inclusive. The parents of these nodes occupy the range [(Ibi + 1)/2 : (Ibl +
lal)/2] where division rounds downward. The parents of those nodes are

computed similarly until the root node of the heap is reached. The number

of nodes then. that may have a non heap as a descendent is F'}tV'd°g([a[+]b[) 2+'J _,A..,i=0

(lal)/2 i) (Except for at most two isolated nodes at each end of the range,

Path

O(log(size

I_- ;[

size(b)

Figure 1: The concatenated heap, and the two parts of its shadow: the path

and the subtree. The large triangle represents the original heap, b. The leaf

nodes at the base of the small triangle represent the heap to be merged,

a, and so there are lal nodes at the base of the small triangle. The small

triangle and the zig zagging line leading to the top of the large triangle

represent the ancestors of the leaf nodes at the base of the small triangle -
the shadow of a.

every node that is a potential ancestor of a non heap has a similar sibling).

This sum is O(lal + log(Ibl)) QED.

Let us divide the shadow into two parts. The first part, which we will

call the path. is the set of nodes such that the number of nodes at any given

depth in heap c is at most 2. The second part, which we will call the subtree,

is the remainder of the shadow, and is characterized by the fact that the

number of nodes in the shadow at a depth d is at most 3/4 the number of

nodes at a depth d + i. The size of the subtree is O([al) while the size of

the path is O(log(Ibi)).

The shadow merge algorithm involves two steps. First it extracts the

smallest lpathl nodes from the shadow, in sorted order. These nodes replace

the nodesthat originally are in the path. Becausethe nodesare sorted,
wecanguaranteethat for any two nodeswith index i and j in the path,

if i < j then c[i] < c:j]. This ensures that the heap property is preserved

in the path. and that the largest element in the path is smaller or equal to
the smallest element in the subtree. The second step is to ensure the heap

property is satisfied in the subtree - this ensures that the entire array c is a

heap.

6.1 Extract and Sort lpathl nodes

Because the path has at most two nodes at a given level in b, it can be

transformed into a sorted array in O(loglbl) steps. The subtree can be

transformed into a single heap (still isolated from b) in O(lal) steps. The

task is then reduced to replacing any elements in a sorted array that are

larger than any elements in a heap, and to keep the array sorted.

If the sorted array is larger in size than the heap, then we begin at the

smallest element, e, in the sorted array, e is inserted into the heap, and the

smallest element of the heap then replaces e. This step can be optimized if

e is smaller than the smallest element in the heap.

If the sorted array is smaller in size than the heap, then we extract the

IpathI smallest elements of the heap, using the standard algorithm on page

187 of [4]. We then sort this result and combine it with the sorted array to
obtain the desired result.

combine(sortedarray, heap)

I if(size(sortedarray) > size(heap))

2 for(i = i; i <= size(sortedarray); i = i+l)

3 insert(sortedarray[i], heap);

4 sortedarray[i] = extract_min(heap);

5 else

6 heaptop = extract_k_smallest(heap, size(sortedarray));

7 sort(heaptop);

8 sortedarray = merge_sorted_lists(heaptop, sortedarray);

Lines 1,and 5 obviously have cost O(1). The loop specified at line 2 iter-

ates O(log Ib[) times, and each of lines 3 and 4 in the loop require O(log la[)

steps. Thus. if the heap is smaller than the sorted array, the cost of the

combineis O((log]b[) (log]a[)). This case leads to the same complexity as is

found in [11].
If the heap is larger than the sorted array, then we extract the smallest

O(log Ib]) elements from the heap in O(lal) steps (line 6). Vv'e then sort

these elements in O(log]b[log log]b[) steps (line 7). Finally we merge the

sorted lists (line 8) in O(log]b]) steps. This case thus has a cost of O(lal +

log]b[log log ibl). A practical code would probably avoid this case unless the

heap was much larger than the sorted array, but the inclusion of this case
allows us to establish a more efficient asymptotic performance for insertion

using merge.
All that now remains is to enforce the heap property on the remainder

of the shadow -- the subtree.

6.2 Heapify the subtree

To heapify the subtree we operate very similarly as the standard build heap

algorithm. We use the heapify subroutine of [4].

subtreeheapify (heap, start, end)

if start + 3 > end, return

For each parent of each node in the range [start:end]:

heapify that parent node

subtreeheapify(heap, start/2, end/2)

Subtreeheapify makes it the case that every node in the subtree satisfies

the heap property, provided the set of nodes in the range passed to it are

roots of heaps. The termination condition guarantees that every node in the

subtree is heapified.

The proof that subtreeheapify is correct and runs in time O(end- start)

is virtually identical to the corresponding proof for the build heap algorithm

in [4]. The time to build a heap out of the subtree is O(lal) steps, and is

achieved by calling:

subtreeheapify(c, size(b), size(b) + size(a));

After having concatenated a and b into c.

7 Shadow Heaps

Our new data structure, which we dub a shadow heap, is an array that

satisfies the heap property for the first heapsize indices, and does not for

the next tablesize indices. This can be viewed as a heap adjacent to an

unordered table. On insertion, the new element is placed into the table. If

the table is too large, we make it into a heap and merge it with the rest of
the structure.

insert(key, structure)

table_insert(key, structure.table);

if (tablesize > threshold)

make_heap(structure.table);

merge(structure.heap, structure.table);

The other operations besides insert are modified in an obvious way, with

an added cost proportional to tablesize. The value of threshold is modified

after each operation to conform to some function of heapsize. In the case of

the insert, the larger threshold is, the lower the amortized cost. In the next
section, we calculate this cost in detail.

8 The amortized efficiency of shadow heaps

We will show the amortized efficiency of creation, insertion, deletion, dele-

tion of the minimum, finding the minimum, reducing the value of a key, and

merging two shadow heaps.

For each shadow heap,H, we employ the following potential function.

(H) = tablesize(l+min(log [H] log log [HI, log [H l log tablesize)/threshold)

When tablesize = threshold, kOequals the cost of a merge of a heap of

size]H l with a heap of size threshold. For purposes of our analysis, we

assume that threshold is a 'well behaved' function of [H l -- in particular,

since threshold is smaller than [H[, we assume that any change in [HI results

in no larger a change in threshold.

• On creation, • does not change, so the amortized cost is the actual

cost: O(1).

On insertion, we have two cases to consider: one when the merge

is employed, and the other where it is not. If the merge is done,

the actual cost is exactly equal to the drop in the potential function,

so the amortized cost is O(1). If the merge is not done, then the

actual cost is O(1), while the potential function increases by O(1 +

min(log 1HI log log [HI, log IHI log tablesize)/threshold).

9

Oil deletion,deletionof the minimum,and finding the minimumthe
actualcostis O(tablesize + log [HI), and the potential function will in-

crease only if the value of threshold shrinks. But threshold will shrink

at most by one on these operations, and since tablesize is at most as

large as threshold, the potential function will grow by _t(log]HI) ' so
the actual cost is the amortized cost.

To reduce the value of a key (where we know where the node for the

key is). the potential function does not change. The amortized cost is

thus the actual cost of O(log IHI).

To merge two shadow heaps, a and b we can insert the lal elements of

a into b. with the corresponding amortized cost.

We can see that the amortized cost of these operations depends on

threshold. The interesting range is when log IHI __ threshold __ log IH] loglog IHI.

A merge of heap a and heap b costs O(lal) insertions, the cost of an insert is

O(log [H I log log IH[/' threshold), and the other operations cost O(threshold).

As such, one can select the efficiency of the insert operation to match its

frequency, so in some applications one can have insertion cost of O(1) while

retaining a cost of O(log [HI) for the other operations.

9 Summary and Conclusion

Shadow heaps can support insert operations with an efficiency between O(1)

and O(log log [HI) , where the product of the cost of an insert and the cost of

other priority queue operations is O(log IHI log log IHI). This efficient insert

may be applicable to variations of Prim's algorithm, or in the derivation of

an efficient operation that reduces the key of a node in a heap.

In general, simple data structures like binary heaps implemented as ar-

rays. and balanced binary search trees merge efficiently, in the amortized

sense. We feel splay trees also can also merge efficiently using a recursive

algorithm that splits one tree using the root of the other, but we cannot

prove it. Further, we suspect that a reduce_key operation can be made to

perform in O(1) steps using shadow heaps, or similar simple structures.

10

References

[1] Y. Bekkers, J Cohen editors International Workshop on Memory

Management number 637 in Lecture Notes in Computer Science, St.

Malo. France. September 1992 Springer-Verlag.

[2] M. R. Brown. "Implementation and Analysis of Binomial Queue Al-

gorithms'. SIAM Journal on Computing 7(3):298-319, 1978

[3] M.R. Brown, R.E. Tarjan, 'A Fast Merging Algorithm'. Journal of

the ACM, 26(2):211-226, 1979

[4] T. Cormen, C. Leiserson, R. Rivest Introduction to Algorithms MIT

Press. Cambridge Massachusetts.

[5] R. W. Floyd. Algorithm 245 (TREESORT). Communications of the
ACM. 7:701. 1964.

[6] M. L. Fredman, R. E. Tarjan. 'Fibonacci heaps and their uses in

improved network

optimization algorithms.' Journal of the ACM, 34(3):596-615, 1987.

[7] D.W. Jones, 'An Empirical-Comparison of Priority-Queue and Event-

Set Implementations'. Communications of the ACM, 29(4):300-311,
1986

[8] C.L. Kuszmaul, Amortized Analysis of Binary Heaps, Masters Thesis,

Department of Computer Science, University of Illinois, 1995

[9] C.L. Kuszmaul, Splay Heaps Merge Efficiently, Submitted to IEEE

Transactions on Computing, May 1997.

[10] R.C. Prim. 'Shortest connection networks and some generalizations.

Bell System Technical Journal, 36:1389-1401, 1957.

[11] J. Sack, T. Strothotte. 'An Algorithm for Merging Heaps'. Acta In-

formatica 22(2):171-186, 1985

[12] D.D. Sleator, R.E. Tarjan. 'Self-Adjusting Binary Search Trees'.

Journal of the ACM, 32(3):652-686, 1985

[13] R. E. Tarjan. 'Amortized computational complexity'. SIAM Journal

on Algebraic and Discrete Methods, 6(2):306-318, 1985.

11

q.

[14] J. W. J. Williams. Algorithm 232 (heapsort). Communications of the

ACM. 7:378-:348, 1964.

[15] P. R. Wilson. M. S. Johnstone, M. Neely, and D. Boles. Dynamic

Storage Allocation: A Survey and Critical Review Proceedings. 1995

International Workshop on Memory Management, Kinrose Scotland,

UK, September 27-29 1995, Springer-Verlag LNCS.

12

