Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and David E. Knapp, Editors

Volume 24

BOREAS HYD-3 Subcanopy Incoming Solar Radiation Measurements

J.P. Hardy and R.E. Davis

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

July 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.**
 English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and David E. Knapp, Editors

Volume 24

BOREAS HYD-3 Subcanopy Incoming Solar Radiation Measurements

Janet P. Hardy and Robert E. Davis
U.S. Army Cold Regions Research and Engineering Laboratory (CRREL)

July 2000
BOREAS HYD-3 Subcanopy Incoming Solar Radiation Measurements

Janet P. Hardy, Robert E. Davis

Summary

The BOREAS HYD-3 team collected several data sets related to the hydrology of forested areas. This data set contains solar radiation measurements from several pyranometers (solar radiometers) placed on the snow surface in jack pine (1994) and black spruce and aspen forests (1996) in the BOREAS SSA. An array of radiometers was used to collect data for 3-4 consecutive days in each forest type to study the hypothesis that energy transfer and snow water equivalent would vary spatially as a function of canopy closure. The quality of the data is good, because the days were generally clear and the radiometers were checked daily to remove anything that landed on the radiometers. The data are available in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS HYD-03 Subcanopy Incoming Solar Radiation Measurements

1.2 Data Set Introduction
This data set contains solar radiation measurements from several pyranometers (solar radiometers) placed on the snow surface in jack pine (1994) and black spruce and aspen forests (1996) in the BOREal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA). In each forest, data were collected for 3 to 4 days.
1.3 Objective/Purpose

This study was undertaken to predict spatial distributions of energy transfer and snow properties important to the hydrology, remote sensing signatures, transmissivity of gases through the snow and their relation to forests in boreal ecosystems. This data set provides a measure of the variability of incoming solar radiation on the snow surface in the various forests. These data will aid in validating a radiative transfer model that predicts the radiation environment beneath a discontinuous forest canopy. The model output will be used to assist in predicting the timing of snow melt in the forest.

1.4 Summary of Parameters

Parameters measured with respect to this documentation are subcanopy incoming solar radiation.

1.5 Discussion

This study was conducted under the hypothesis that energy transfer and snow water equivalent would vary spatially as a function of canopy closure. Net solar radiation has been long known as the primary driving force in snow melt models, yet this parameter is difficult to quantify at the forest floor because of the high spatial variability in radiation transmission through the discontinuous canopy. For this reason, an attempt was made to quantify that variability by operating several (9 in 1994 and 10 in 1996) pyranometers. These pyranometers were run over 3 days of clear sky conditions in 1994 and 4 days in 1996.

The quality of the data is good, because the days were generally clear and the radiometers were checked daily (except in the SSA Old Aspen (OA) in 1996). Any snow that landed on the radiometers was brushed clear, and data for the period were deleted.

1.6 Related Data Sets

- BOREAS TF-02 SSA-OA Tower Flux Data
- BOREAS TF-01 SSA-OA Tower Flux Data
- BOREAS TF-05 SSA-OJP Tower Flux Data
- BOREAS TF-09 SSA-OBS Tower Flux Data
- BOREAS HYD-03 Subcanopy Meteorological Data

2. Investigator(s)

2.1 Investigator(s) Name and Title

Robert E. Davis
Research Physical Scientist
U.S. Army Cold Regions Research and Engineering Laboratory (CRREL)

2.2 Title of Investigation

Distributed Energy Transfer Modeling in Snow and Soil for Boreal Ecosystems

2.3 Contact Information

Contact 1:
Janet P. Hardy
U.S. Army CRREL
72 Lyme Road
Hanover, NH 03755-1290
(603) 646-4306
jhardy@crrel.usace.army.mil
3. Theory of Measurements

In 1994, nine random measurements of incoming solar radiation were made at the snow surface at the SSA-Old Jack Pine (OJP) site to assess the variability in radiation caused by the forest structure. The pyranometers were randomly placed; some measurements were made directly adjacent to tree stems, some in small canopy gaps. These measurements took place over a period of 3 days, and each day, the pyranometers were randomly relocated.

In 1996, 10 random measurements of incoming solar radiation were made at the snow surface at SSA-Old Black Spruce (OBS) and SSA-OA to assess the variability in radiation caused by the forest structure. The pyranometers were randomly placed; some measurements were made directly adjacent to tree stems, some in small canopy gaps. These measurements took place over a period of 4 days, and each day the pyranometers were randomly relocated, except in SSA-OA.

4. Equipment

4.1 Sensor/Instrument Description
Eppley Precision Spectral Pyranometer, measuring wavelengths between approximately 285 and 2,800 nm. This instrument is believed to be the most accurate radiometer produced commercially for the measurement of sun and sky radiation. The pyranometer comprises a circular multijunction thermopile that is temperature compensated to operate effectively at temperatures of -50 °C.

4.1.1 Collection Environment
In all cases, data were collected during the winter, most often during a clear sky period with the lowest air temperatures above the operating threshold of -50 °C. During the 1996 measurement in SSA-OBS, light snowfall landed on the radiometers. The radiometers were brushed clear of snow, and data collected while the radiometers were snow covered were deleted.

4.1.2 Source/Platform
Ground.

4.1.3 Source/Platform Mission Objectives
The mission objective was to measure the variability of incoming solar radiation on the snow surface in SSA-OJP (1994) and SSA-OBS and SSA-OA (1996).
4.1.4 Key Variables
- Total (direct and diffuse) solar radiation beneath the forest canopy.
- Horizontal wind speed at 2 meters above ground beneath the forest canopy.
- Wind speed magnitude vector at 2 meters above ground beneath the forest canopy.
- Wind direction at 2 meters above ground beneath the forest canopy.
- Standard deviation of wind direction.
- Thermal radiation down.
- Canopy temperature.
- Trunk temperature.
- Air temperature at 2 meters above ground.
- Snow surface temperature.

4.1.5 Principles of Operation
The pyranometer outputs a voltage proportional to the incoming radiation; the signal is monitored and data are processed on a Campbell Scientific data logger (CR10). In 1994, measurements were made once every minute and averaged to give a 10-minute output. In 1996, measurements were made every 10 seconds and averaged to give 1-minute output.

4.1.6 Sensor/Instrument Measurement Geometry
Sensors were located on the snow surface using either a foam block (1994) or the radiometer case (1996) for support on the snow surface. Sensors were leveled daily using the bubble level mounted on the radiometer base.

4.1.7 Manufacturer of Sensor/Instrument
Eppley Laboratory, Inc.
12 Sheffield Ave.
Newport, RI 02840
(401) 847-1020

4.2 Calibration
All pyranometers were new in 1994 and were therefore factory calibrated, with reference to Eppley primary standards, just prior to deployment in the field in 1994.

4.2.1 Specifications
Pyranometers
Sensitivity: 9 microvolts per Watt per square meter.
Receiver: circular 1 cm² in area.
Linearity: +/- 0.5% from 0 to 2,800 Watts per square meter.
Cosine: +/- 1% from normalization 0-70° zenith angle +/- 3% from normalization 70-80° zenith angle.

4.2.1.1 Tolerance
See Section 4.2.1, Specifications.

4.2.2 Frequency of Calibration
The manufacturer of the pyranometers recommends calibration after a cumulative use of 2 years. These radiometers were new at the beginning of the Focused Field Campaign-Winter (FFC-W) 1994 and therefore are well within calibration. Because they have been used for only ~20 days per year and stored in their dark case when not in use, the calibration should be valid for several years at the current rate of usage.

4.2.3 Other Calibration Information
Available from the manufacturer.
5. Data Acquisition Methods

Each pyranometer was placed on a styrofoam block (1994) or its carrying case (1996) and randomly set on the snow surface. Because of the random placement, some pyranometers were in forest gaps and others were adjacent to tree stems. Data were recorded on a Campbell Scientific data logger. In 1994, the data logger was programmed to measure incoming solar radiation every minute and output 10-minute averages. In 1996, the data logger was programmed to measure incoming solar radiation every 10 seconds and output 1-minute averages.

6. Observations

6.1 Data Notes
None given.

6.2 Field Notes

1994 Field Campaign
Radiometers were randomly relocated at the following times:
- 08-Feb-1994 between 1700 and 1730 Greenwich Mean Time (GMT).
- 09-Feb-1994 between 1930 and 2000 GMT.
- 10-Feb-1994 radiometers removed around 1800 GMT.

1996 Field Campaign
Radiometers were randomly relocated at the following times:
- 28-Feb-1996 between 2230 and 2245 GMT.
- 29-Feb-1996 between 2230 and 2242 GMT.
- 01-Mar-1996 between 2229 and 2246 GMT.
- 02-Mar-1996 between 2230 and 2239 GMT.
- 01-Mar-1996 at 1802 GMT: the radiometers were cleared of a thin dusting of snow (1802 begins good data).
- 03-Mar-1996 at 1730-1736 GMT: the radiometers were cleared of a thin snow cover.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
1994: SSA-OJP (within 50 meters of tower).
1996: SSA-OBS (within 50 meters of tower).
1996: SSA-OA (within 50 meters of tower).

Tower locations

<table>
<thead>
<tr>
<th>Tower</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-OJP</td>
<td>104.69203W</td>
<td>53.91634N</td>
</tr>
<tr>
<td>SSA-OBS</td>
<td>105.11779W</td>
<td>53.98718N</td>
</tr>
<tr>
<td>SSA-OA</td>
<td>106.19779W</td>
<td>53.6289N</td>
</tr>
</tbody>
</table>
7.1.2 Spatial Coverage Map
None given.

7.1.3 Spatial Resolution
The radiometers covered an area approximately 10 m x 10 m.

7.1.4 Projection
All latitude/longitude locations are given in the North American Datum of 1983 (NAD83).

7.1.5 Grid Description
None.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage

7.2.2 Temporal Coverage Map
SSA-OJP: 06-Feb-1994 - 10-Feb-1994

7.2.3 Temporal Resolution
1994: 10-minute averages
1996: 1-minute averages

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_1</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_2</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_3</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_4</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_5</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_6</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_7</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_8</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_9</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_10</td>
</tr>
<tr>
<td>POSITION</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-III, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and III is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) when the data were collected.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_1</td>
<td>The sub-canopy radiation at radiometer #1.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_2</td>
<td>The sub-canopy radiation at radiometer #2.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_3</td>
<td>The sub-canopy radiation at radiometer #3.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_4</td>
<td>The sub-canopy radiation at radiometer #4.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_5</td>
<td>The sub-canopy radiation at radiometer #5.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_6</td>
<td>The sub-canopy radiation at radiometer #6.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_7</td>
<td>The sub-canopy radiation at radiometer #7.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_8</td>
<td>The sub-canopy radiation at radiometer #8.</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_9</td>
<td>The sub-canopy radiation at radiometer #9.</td>
</tr>
<tr>
<td>DOWNSHORTWAVE_RAD_10</td>
<td>The sub-canopy radiation at radiometer #10.</td>
</tr>
<tr>
<td>POSITION</td>
<td>The arrangement of the radiometers during a particular period of time.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-??? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>

7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_1</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_2</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_3</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_4</td>
<td>[Watts][meter^-2]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_5</td>
<td>[Watts][meter^-2]</td>
</tr>
</tbody>
</table>
7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_1</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_2</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_3</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_4</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_5</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_6</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_7</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_8</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_9</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_10</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>POSITION</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missing Data Value</th>
<th>Unrel Data Value</th>
<th>Below Data Limit</th>
<th>Detect Not Colctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-90A-FLXTR</td>
<td>SSA-OJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>HYD03-SCR01</td>
<td>HYD03-SCR01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>06-FEB-94</td>
<td>08-MAR-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2359</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_1</td>
<td>-4.726</td>
<td>625.3</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_2</td>
<td>-4.524</td>
<td>544.2</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_3</td>
<td>-5.118</td>
<td>482.5</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_4</td>
<td>-6.792</td>
<td>522.2</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_5</td>
<td>-3.638</td>
<td>568</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_6</td>
<td>-5.053</td>
<td>577.3</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_7</td>
<td>-5.711</td>
<td>646.8</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_8</td>
<td>-5.7</td>
<td>560.3</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_9</td>
<td>-6.698</td>
<td>592.7</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DOWN_SHORTWAVE_RAD_10</td>
<td>-6.16</td>
<td>611.5</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>Blank</td>
</tr>
<tr>
<td>POSITION</td>
<td>1</td>
<td>9</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missing Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Cllctd -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.
Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record
The following are wrapped versions of data records from a sample data file on the CD-ROM.

 SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, DOWN_SHORTWAVE_RAD_1, DOWN_SHORTWAVE_RAD_2, DOWN_SOLAR_RAD_3, DOWN_SHORTWAVE_RAD_4, DOWN_SHORTWAVE_RAD_5, DOWN_SHORTWAVE_RAD_6, DOWN_SHORTWAVE_RAD_7, DOWN_SHORTWAVE_RAD_8, DOWN_SHORTWAVE_RAD_9, DOWN_SHORTWAVE_RAD_10, POSITION, CRTFCN_CODE, REVISION_DATE

8. Data Organization

8.1 Data Granularity
The smallest unit of obtainable data is the data collected at a given site on a single day.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.
Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae
 Not applicable.

9.1.1 Derivation Techniques and Algorithms
 Not applicable.

9.2 Data Processing Sequence
 Not applicable.

9.2.1 Processing Steps
 Not applicable.

9.2.2 Processing Changes
 Not applicable.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
 Not applicable.

9.3.2 Calculated Variables
 Not applicable.

9.4 Graphs and Plots
 Three plots are included in this documentation showing the variation in the measured data for the 3- or 4-day period at each site. For example, the plot of SSA-OBS solar radiation data shows the data for incoming radiation for all 10 pyranometers for the 4-day period, yielding 40 lines. The time of day on these plots is given in local time.
10. Errors

10.1 Sources of Error
Assuming an operative instrument (each pyranometer was calibrated prior to use in the field), the sources of error include: a pyranometer that is covered by snow and the pyranometers losing their leveled orientation because of snow settling beneath the support boxes (pyranometers were releveled daily after being relocated).

10.2 Quality Assessment

10.2.1 Data Validation by Source
Data were plotted and qualitatively compared to incoming solar radiation data obtained from above the canopy at SSA-OJP and SSA-OBS. Additionally, data collected during the time the radiometers were shuffled (see Section 6.2, Field Notes) were removed.

10.2.2 Confidence Level/Accuracy Judgment
Great care was taken to level the pyranometers during installation. Quantification of the accuracy beyond the manufacturer's accuracy is difficult.

10.2.3 Measurement Error for Parameters
See Section 4.2.1.

10.2.4 Additional Quality Assessments
Visual review of plots and comparisons of instantaneous data with expected values while in the field were made.
10.2.5 Data Verification by Data Center
Data that were loaded into the data tables were spot checked against the original ASCII data that were submitted to check for data loading errors.

11. Notes

11.1 Limitations of the data
All data were collected during periods of essentially clear skies. The magnitude of solar radiation cannot be compared between the SSA-OJP and SSA-OBS or SSA-OA because SSA-OJP data were collected during early February when the solar altitude is lower than in early March when OBS and OA data were collected.

11.2 Known Problems with the Data
None.

11.3 Usage Guidance
A single measurement from one pyranometer alone cannot represent the receipt of radiation on the forest floor. The data set is intended for validation of a radiative transfer model.

11.4 Other Relevant Information
None given.

12. Application of the Data Set
This data set can be used to understand the variability of solar radiation receipt in both coniferous and deciduous forests and could be used in validating models that predict radiation in forests.

13. Future Modifications and Plans
None.

14. Software

14.1 Software Description
Any spreadsheet or graphics software can be used to process these data.

14.2 Software Access
None given.
15. Data Access

The subcanopy incoming solar radiation measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: omldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics
http://www-eosdis.ornl.gov/ [Internet Link].

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products

Contact BOREAS Information System (BORIS) staff.

16.2 Film Products

Contact BORIS staff.

16.3 Other Products

These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

Manual available from manufacturer:
Eppley Laboratory, Inc.
12 Sheffield Ave.
Newport, RI 02840
(401) 847-1020

Data logger manuals available from:
Campbell Scientific, Inc.
P.O. Box 551
Logan, UT 84321
(801) 753-2342
(801) 752-3268 (fax)

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>BOREAS</td>
<td>BOREal Ecosystem-Atmosphere Study</td>
</tr>
<tr>
<td>BORIS</td>
<td>BOREAS Information System</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk-Read-Only Memory</td>
</tr>
<tr>
<td>CGR</td>
<td>Certified by Group</td>
</tr>
<tr>
<td>CPI</td>
<td>Certified by Principal Investigator</td>
</tr>
<tr>
<td>CPI-???</td>
<td>CPI but questionable</td>
</tr>
<tr>
<td>CRREL</td>
<td>Cold Regions Research and Engineering Laboratory</td>
</tr>
<tr>
<td>DAAC</td>
<td>Distributed Active Archive Center</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EOSDIS</td>
<td>EOS Data and Information System</td>
</tr>
<tr>
<td>FFC-W</td>
<td>BOREAS Focused Field Campaign - Winter</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper-Text Markup Language</td>
</tr>
<tr>
<td>HYD</td>
<td>Hydrology</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>NAD83</td>
<td>North American Datum of 1983</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSA</td>
<td>Northern Study Area</td>
</tr>
<tr>
<td>OA</td>
<td>Old Aspen</td>
</tr>
<tr>
<td>OBS</td>
<td>Old Black Spruce</td>
</tr>
<tr>
<td>OJP</td>
<td>Old Jack Pine</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>PANP</td>
<td>Prince Albert National Park</td>
</tr>
<tr>
<td>PIR</td>
<td>Precision Infrared Radiometer</td>
</tr>
<tr>
<td>PRE</td>
<td>Preliminary</td>
</tr>
</tbody>
</table>
20. Document Information

20.1 Document Revision Dates
Written: 23-Apr-1997
Revised: 06-May-1999

20.2 Document Review Dates
BORIS Review: 12-Jan-1998
Science Review: 15-Jul-1997

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment and cite the following papers:
The BOREAS HYD-03 subcanopy meteorological data were collected and processed by Janet P. Hardy and Robert E. Davis of US Army CRREL. Their efforts in making these data available are greatly appreciated.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
The BOREAS HYD-3 team collected several data sets related to the hydrology of forested areas. This data set contains solar radiation measurements from several pyranometers (solar radiometers) placed on the snow surface in jack pine (1994) and black spruce and aspen forests (1996) in the BOREAS SSA. An array of radiometers was used to collect data for 3-4 consecutive days in each forest type to study the hypothesis that energy transfer and snow water equivalent would vary spatially as a function of canopy closure. The quality of the data is good, because the days were generally clear and the radiometers were checked daily to remove anything that landed on the radiometers. The data are available in tabular ASCII files.