Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jaime Nickeson, Editors

Volume 72
BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

R. Zimmerman, K.C. McDonald, and J.B. Way

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

August 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jaime Nickeson, Editors

Volume 72

BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

Reiner Zimmerman, Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK), University of Bayreuth, Bayreuth, Germany
Kyle C. McDonald, Jet Propulsion Laboratory, Pasadena, California
JoBea Way, Jet Propulsion Laboratory, Pasadena, California

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

August 2000
BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

Reiner Zimmermann, Kyle McDonald, JoBea Way

Summary

As part of its efforts to determine environmental and phenological states from radar imagery, the BOREAS RSS-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the SSA-OBS (Picea mariana) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31-May-1994 until 27-September-1994. The data are stored in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

1.2 Data Set Introduction

This data set consists of continuous, in situ tree xylem sap flow measurements on five black spruce trees at the Old Black Spruce (OBS) tower site, located in the BOREal Ecosystem-Atmosphere Study (BOREAL) Southern Study Area (SSA), near Candle Lake, Saskatchewan, Canada. Xylem sap flux was measured continuously from 31-May-1994 until 27-September-1994.

The five trees measured were located near the main tower at the BOREAS SSA-OBS site in a mixed Picea mariana/Larix laricina/Pinus banksiana stand approximately 10-20 m from the main tower site hut. Picea mariana was the dominating tree species in the stand. All five trees measured were Picea mariana (black spruce) of varying tree dimensions.

Tree xylem sap flow was measured with a thermal constant energy input method (Granier et al., 1992), which consists of an inversely connected pair of copper-constantane thermocouples and a
heated probe that releases 200 mWatt on a probe length of 20 mm. Tree xylem flux was measured in the tree bole between 1.55 and 1.8 m height above the moss layer. Each tree had a heated probe of 20 mm in length and 2 mm in diameter inserted horizontally into the stem. Insertion depth was from the cambium layer on 20 mm into the xylem.

The xylem sap flow measurements were logged automatically by a data logger (Delta-T DL-2). The data points stored indicate the average of measurements for a time interval between two data storage points. Storage time is indicated as the time at the end of each measurement/averaging interval. Data from the thermocouple pair were postprocessed to obtain the heat flux density of the xylem water passing the inserted heated probe.

1.3 Objective/Purpose
These measurements were taken to give information on water consumption by Picea mariana trees, the dominating tree species at SSA-OBS. In combination with the dimensional properties of the five measured trees (given in the information below) and the stand structural information, these data may be used to scale up water consumption by Picea mariana to a stand level for the time period 31-May-1994 until 27-September-1994.

In combination with meteorological and soil water content information, these data may be used to 1) analyze the climatic and pedological control of water loss by Picea mariana trees on a short-term (diurnal) and long-term (seasonal) time scale and 2) calculate canopy conductance for water vapor exchange. These data may then be used for validation of results from gas exchange and soil-vegetation-atmosphere transform (SVAT) models for water and carbon exchange from trees.

1.4 Summary of Parameters and Variables
Each line of the data file contains time and date information and xylem flux data taken at the same time for each of five trees.

1.5 Discussion
Xylem sap flux density (XFD, unit: grams of H₂O per square meter of hydroactive xylem per second = g/m²/s) in the youngest, distal part of the hydroactive xylem was derived from continuous measurements of heat dissipation properties in the hydroactive xylem of tree boles at approximately 1.6 to 1.8 m height above the ground. A constant thermal energy input method with a point source heating device of 20 mm in length and a diameter of 2 mm (Granier, 1985) was used. The apparent temperature difference between the stem tissue and a heated probe (constant heat dissipation of the sensor: 200 mWatt) inserted in the outer xylem was monitored every 30 seconds, and a 30-minute mean was stored for each sensor. The sensor setup was covered with a radiation shield to avoid external radiative thermal load on the setup. The tree dimensions, diameter at breast height, height, and projected canopy area, were measured for the five trees.

1.6 Related Data Sets
BOREAS RSS-17 Dielectric Constant Profile Measurements
BOREAS RSS-17 Stem and Air Temperature Measurements
BOREAS RSS-17 1994 ERS-1 Level-1 Backscatter Change Images

2. Investigators

2.1 Investigator(s) Name and Title
Principal Investigator:
Dr. JoBea Way
Jet Propulsion Laboratory

Co-Investigator:
Dr. Kyle McDonald
Jet Propulsion Laboratory
Dr. Reiner Zimmermann
Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK)

2.2 Title of Investigation
Monitoring Environmental and Phenologic State and Duration of State with SAR as Input to Improved CO\textsubscript{2} Flux Models

2.3 Contact Information

Contact 1:
Dr. Reiner Zimmermann
Bayreuth Institute for Terrestrial Ecosystem Research (BITOEK)
Plant Ecology II
University of Bayreuth
D-95445 Bayreuth
GERMANY
+49-921-555624
+49-921-555799 (fax)
reiner.zimmermann@bitoek.uni-bayreuth.de

Contact 2:
Dr. JoBea Way
Jet Propulsion Laboratory
Mail Stop 300-233
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
USA
(818) 354-8225
(818) 354-9476 (fax)
way@lor.jpl.nasa.

Contact 3:
Dr. Kyle McDonald
Jet Propulsion Laboratory
Mail Stop 300-233
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
USA
(818) 354-3263
(818) 354-9476 (fax)
kyle.mcdonald@jpl.nasa.gov

Contact 4:
Prof. Dr. Ram Oren
Duke University
Nicholas School of the Environment
Durham, NC 27706
USA
ramoren@duke.edu
3. Theory of Measurements

Calculation of Xylem Flux with the Granier Method

The following discussion depends to a large extent on Gülpen (1996) and Granier (1985):

3.1 General Principles of Measurement

The constant current heating of a wire wrapped around the upper needle of the xylem sensor setup causes a constant warming of the wood around the needle.

The constant electrical current applied to a constant electrical resistance causes a constant energy release. Combining the equation for Ohm’s law (1):

\[U = R \times I \] \hspace{1cm} (1)

- \(U \): Electrical voltage (Volts)
- \(R \): Electrical resistance (Ohms)
- \(I \): Electrical current (Amps)

and the equation for electrical power (2):

\[P = U \times I \] \hspace{1cm} (2)

- \(P \): Electrical power (Watt)

results in equation (3):

\[P = R \times I \times I \] \hspace{1cm} (3)

The electrical resistance of the heated wire coil that is inserted into the wood is determined by the dimensions and electrical properties of the wire type.

The sensors used were 20 mm in length; the electrical resistance of the heating coil is typically 10.2 Ohm. The constant current controller unit supplies the wire with 0.140 mAmpere. Thus, the energy release for this type of sensor can be calculated by using equation (3):

\[P = 10.2 \times 0.140 \times 0.140 = 0.200 \]

The total energy release of this sensor type is 200 mW at a length of 20 mm. This is 10 mW per mm of sensor length.

The preference of constant current control over constant voltage control for the heating coil power supply has a practical reason: the variation of the electrical resistance in the connecting cables between the power supply and the heated sensor coil (caused by varying cable length, changes in environmental temperature conditions, direct radiation load from the Sun, or corrosion) does not affect the heating coil energy release when constant current is applied to the entire setup.
The warming at the heated sensor needle is at its maximum if no water transport takes place. Thus, the temperature difference between the heated sensor and the reference sensor will be at its maximum at no flow conditions in the xylem. If xylem flux starts, the heated sensor will be cooled by the xylem water, which is at average stem temperature passing by the heated sensor. In this case, the measured temperature difference between the heated sensor and the reference sensor will decrease. The degree of cooling at the heated sensor is proportional to the intensity of xylem sap flow. This is the underlying principle of calculating the xylem sap flow with this sensor arrangement from a measured temperature difference between a heated sensor and a reference sensor.

The formula obtained is based on a study by Granier (1985). For the calculation of the xylem flow, two parameters must be defined. The term XYLEM FLUX is a quantitative expression of xylem water passing through a single tree or through an entire stand of trees (=transpiration), while XYLEM FLUX DENSITY is the xylem flow related to an area through which the xylem sap is passing at a given point. The area is typically the cross-sectional area of hydroactive xylem in a tree stem. The xylem flux density (grams of H2O per square meter of hydroactive xylem per second = g/m²/s) is the measured parameter obtained by using the Granier method in the data set included here.

The xylem flux density measured can then be scaled up to a tree or stand level if the tree or whole stand cross-sectional areas of the trees are known. At this point of scaling up water flow in trees, it has to be taken into account that the xylem flux density varies with microclimatic conditions, tree water status, tree size, and xylem depth as well as tree species. For scaling up purposes, it is typically necessary to measure and analyze the above-mentioned parameters before the transpiration of trees and entire stands can be calculated.

3.2 Theory of Heat Exchange Between Heated Sensor and Xylem Tissue

It is assumed that the energy that is produced by the heated sensor will be entirely transferred by the surrounding aluminum tube to the xylem tissue:

\[h \times S \times (T - T_{inf}) = R \times I \times I \] (4)

- \(h \) = Heat exchange coefficient (W/m²/°C)
- \(S \) = Heat exchange surface (m²)
- \(T \) = Temperature of heated sensor (°C)
- \(T_{inf} \) = Temperature of unheated wood material (°C)
- \(R \) = Electric resistance (Ohm)
- \(I \) = Electric current (A)

This means that the heat loss from the heated sensor to the wood depends on both: a) the contact surface between the heated sensor to the wood and b) the temperature difference between the heated sensor and the surrounding wood material.

The contact surface area \(S \) remains a constant because it is given by the size of the sensor and by the surrounding aluminum tube. The exchange of heat energy between the heated sensor and the wood material, however, is determined by the heat exchange coefficient \(h \).

The heat exchange coefficient \(h \) can be calculated according to equation (5):

\[h = R \times I \times I / S \times (T - T_{inf}) \] (5)

At zero xylem sap flow condition, the temperature of the heated sensor is at its maximum. The heat exchange coefficient at zero xylem sap flow condition (\(h_{zero} \)) can be calculated according to equation (3):

\[h_{zero} = R \times I \times I / S \times (T_{max} - T_{inf}) \] (6)

\(T_{max} \) = Temperature of the heated sensor at zero xylem sap flow (maximum temperature measured at sensor).
The actual heat exchange coefficient \(h \) changes with the onset of xylem sap flow:

\[
h = h_{zero} \left(1 + \alpha \frac{u}{\beta} \right) \quad (7)
\]

\(u \) = xylem flux density (mass of xylem water per area of hydroactive xylem in g/m²/s)

\(h_{zero} \) = Heat exchange coefficient at \(u = 0 \) (zero xylem flow)

The variables \(\alpha \) and \(\beta \) are empirically measured calibration factors for a material (in this example, xylem woody tissue) that describe at a given xylem flow density the change of the relationship of the actual heat exchange coefficient, \(h \), at any given xylem flow to the heat exchange coefficient at zero flow, \(h_{zero} \).

For the calculation of the xylem flux density, \(u \), the equation (7) can be rearranged:

\[
u = \left(\frac{1}{\alpha} \frac{h - h_{zero}}{h_{zero}} \right)^{1/\beta} \quad (8)
\]

Integration of equations (5) and (6) into equation (8) results in:

\[
u = \left(\frac{1}{\alpha} \frac{T_{max} - T_{inf} - (T - T_{inf})}{(T - T_{inf})} \right)^{1/\beta} \quad (9)
\]

This means:

\[
u = \left(\frac{1}{\alpha} \frac{T_{max} - T}{(T - T_{inf})} \right)^{1/\beta} \quad (10)
\]

Within equation (10) the term (11) is a measure of the degree of cooling of the heated sensor. The term is also proportional to the xylem sap flux.

\[
(T_{max} - T) / (T - T_{inf}) \quad (11)
\]

Granier (1985) calls this term (11) the "flow index, K."

The Granier sensor method does not measure absolute temperatures at the heated or the reference sensor. Rather, it measures the temperature difference between both sensors.

Technically, this temperature difference is measured by a pair of copper-constantane thermocouples that are connected at the constantane ends. The inverted thermocouple array produces a predictable voltage output at the two copper ends when both thermocouple junctions are exposed to different temperatures. For copper-constantane thermocouples the voltage output increases at approximately 40 microvolts per degree Celsius within ambient temperatures for plant life.

For the temperature difference measurements, the equations (12) and (13) are valid:

\[
T_{max} = T_{deltaMax} + T_{inf} \quad (12)
\]

\[
T = T_{deltaActual} + T_{inf} \quad (13)
\]

\(T_{deltaMax} \) = Temperature difference at \(u = 0 \) (zero xylem flow) when the probe temperature is at its maximum temperature elevation above ambient material (wood) temperature.

\(T_{deltaActual} \) = Actual measured temperature difference
From this, the flux index K according to Granier (1985) can be calculated:

$$K = \frac{(T_{\text{deltaMax}} + T_{\text{inf}}) - (T_{\text{deltaActual}} + T_{\text{inf}})}{(T_{\text{deltaActual}} + T_{\text{inf}}) - T_{\text{inf}}}$$ (14)

This can be rearranged as:

$$K = \frac{T_{\text{deltaMax}} - T_{\text{deltaActual}}}{T_{\text{deltaActual}}}$$ (15)

The derivation of a flux index K from the theoretical consideration of heat exchange between an inserted and actively heated xylem flux probe and the surrounding xylem tissue demonstrates the characteristics of the xylem flux measurement method according to Granier (1985):

- The measurement of xylem flow is achieved by calculation of the xylem flux density u, which is proportional to the flux index K.
- The flux index K is calculated by using the factors alpha and beta. These two factors can be empirically derived by experiments for woody xylem tissue. The factors are independent of the ambient temperature conditions.

3.3 Determination of the Calibration Factors Alpha and Beta

Because the flux index K is proportional to the xylem flux density u (equation (10)), the following relationship exists:

$$K = \alpha \cdot u^\beta$$ (16)

The variation of the flux index K was experimentally investigated for obtaining a calibration for his system. Because of large anatomical differences, the calibration factors were determined for various xylem types and tree species by Granier (1985). Data were obtained for Pseudotsuga menziesii, Pinus nigra and Quercus pedunculata, and Picea abies (Granier, 1985), and for Quercus robur, Malus domestica, and Castanea sativa (Lu, 1992). The aim of these studies was to obtain a relationship between K and the gravimetrically measured xylem flux density in order to be able to calculate the factors alpha and beta. The experiments were performed using stem segments through which water was percolated by applying various hydrostatic pressures. The xylem flow was measured gravimetrically, and the xylem flux density was recalculated from the xylem flow. The xylem flux density was then compared with the measured flux index K.

The relationship between K and u was determined by a linear regression model that delivered the factors alpha and beta. It was found that all tree species studied showed the same relationship between u and K. The regression model had a r^2 of 0.92 and a replication of $n = 53$ samples (Granier, 1989; Lu, 1992). Further studies supported the general validity of this model (Granier, 1989; Lu, 1992).

From these experiments, the following relationship between K and u (g/m²/s) was derived:

$$K = 0.0206 \cdot u^{0.8124}$$ (16a)

For u (g/m²/s), the following equation is obtained:

$$u = 118.99 \cdot K^{1.234}$$ (17)

This is the general form of the equation used for calculation of xylem flux density when the flux index K is measured with the Granier method.
3.4 Calculation of Tree and Stand Transpiration

The xylem flux density is related to the xylem flow (transpiration) of a whole stem or an entire stand of trees as follows:

\[u = \frac{F}{SA} \]

\(u = \) xylem flux density (g/m²/s)
\(F = \) xylem flow (transpiration) (g/s)
\(SA = \) hydroactive sapwood cross sectional area (m²)

Equation (16) is valid if the hydroactive xylem depth is equal to or larger than the sensor insertion depth. If the hydroactive xylem depth is smaller than the sensor depth (e.g., with most ring porous trees), the flux density must be corrected to its actual and higher value.

The xylem flow for a tree or an entire stand can be calculated from the knowledge of the xylem flux density \(u \) and the total hydroactive sapwood area of the tree or the forest stand. This assumption implies that no xylem flux density variations exist with tree dimensions, canopy structure, and xylem depth.

\[F = u \times SA \]

4. Equipment

4.1 Sensor/Instrument Description

Technically, the heated sensor consists of two units:

- A Teflon-insulated constantan wire with a known electrical resistance that is wrapped around a steel syringe. The wire releases a constant amount of heat energy. The external size of the sensor is a 2-mm diameter, 20-mm length of inserted heating coil.
- A thermocouple of a pair of copper and constantan wires connected together at its tip. The tip is at the center of the sensor setup inside the steel syringe. The thermocouple measures the temperature of the sensor and is electrically insulated from the heated wire and the steel syringe.

An external direct current power supply with a controller for constant current output is connected to the heating wire coil. The heated wire has a known and constant electrical resistance. Furthermore, a constantan wire, a nickel-copper alloy, does not change its electrical resistance at varying temperatures as regular metal wires typically do.

4.1.1 Collection Environment

Data were collected from May 1994 until September 1994. Air temperature was typically above 0 °C, and conditions varied widely diurnally from cool and clear to overcast and rain.

4.1.2 Source/Platform

Black spruce trees.

4.1.3 Source/Platform Mission Objectives

This study was undertaken to obtain water flux information from the tree canopy in order to allow validation of water exchange models.

4.1.4 Key Variables

Xylem flux density (XFD) in grams of water per square meter of hydroactive xylem per second.

4.1.5 Principles of Operation

Continuous thermal measurement with constant power input.
4.1.6 Sensor/Instrument Measurement Geometry
Insertion depth of sensors was horizontal and central with a depth of 20 mm into the outer ring of the hydroactive xylem from the cambium layer on.

4.1.7 Manufacturer of Sensor/Instrument
Custom made by:
B. Stumpf
Technical Precision Instruments
Trebgest, Germany

4.2 Calibration
No field calibration of the sensors is necessary. Constant current power supply of sensors was checked during installation and removal of the sensors. All constant current source controllers were stable during operation and varied within less than 1% of 140 mAmp.

4.2.1 Specifications
Sensors were running on 140 mAmp at 10.204-Ohm heating wire resistance. Energy release over 20 mm in sensor length was thus 200 mAmp.
Thermocouple wires used are copper-constantan. Two thermocouples were connected copper-constantan-copper and given 40 μVolt per 1 °C of temperature difference measured at the two joints at 20 °C ambient temperature.

4.2.1.1 Tolerance
Measurement depends on the accuracy of thermocouple measurements and natural temperature gradients in the measured stem.

4.2.2 Frequency of Calibration
Not applicable.

4.2.3 Other Calibration Information
Not applicable.

5. Data Acquisition Methods
Temperature difference from the xylem flux sensors was automatically logged on a data logger (DL-2 with LAC-1) in double ended mode, autoranging on (Delta-T Devices, England).
Data were downloaded on a PC laptop and processed using Dataman (Ce Huang, Duke University, USA), Sigmaplot 4.0 (Jandel Inc., USA), SPSS (USA), and Excel 4.0 (Microsoft, USA).

6. Observations

6.1 Data Notes
All sensors worked without problems for the entire time period of observation. There was a period from 16-July through 27-July when the data were reported every 10 minutes instead of every half hour.

6.2 Field Notes
None given.
7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
The five trees measured had the following dimensional properties:

<table>
<thead>
<tr>
<th>Tree#</th>
<th>DBH (mm)</th>
<th>TH (m)</th>
<th>PCA (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree1</td>
<td>138</td>
<td>10.0</td>
<td>2.12</td>
</tr>
<tr>
<td>Tree2</td>
<td>90</td>
<td>6.5</td>
<td>2.00</td>
</tr>
<tr>
<td>Tree3</td>
<td>99</td>
<td>8.2</td>
<td>1.22</td>
</tr>
<tr>
<td>Tree4</td>
<td>45</td>
<td>6.9</td>
<td>0.57</td>
</tr>
<tr>
<td>Tree5</td>
<td>20</td>
<td>12.7</td>
<td>5.30</td>
</tr>
</tbody>
</table>

The measurement site was located at the SSA OBS flux tower site, approximately 20 meters northeast of the tower. The North American Datum of 1983 (NAD83) coordinates of the SSA-OBS flux tower are given below:

<table>
<thead>
<tr>
<th>Site Id</th>
<th>Grid Id</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Easting</th>
<th>Northing</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA-OBS-XYL01</td>
<td>G8I4T</td>
<td>105°.11779°W</td>
<td>53°.98717°N</td>
<td>492276.5</td>
<td>5982100.5</td>
<td>13</td>
</tr>
</tbody>
</table>

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
The spatial resolution of a given measurement is one tree.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage

7.2.2 Temporal Coverage Map
Not applicable.

7.2.3 Temporal Resolution
Sap flux was measured every 1 minute and averaged into 30-minute ensembles. The 30-minute ensembles are presented. There was a period from 17-July through 27-July when the fluxes were reported every 10 minutes instead of every half hour.
7.3 Data Characteristics

7.3.1 Parameter/Variable

The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T1</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T2</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T3</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T4</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T5</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>

7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) at the end of the period when the data were collected.</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T1</td>
<td>The mean xylem sap flux density aggregated from one minute measurements made at the SSA-OBS site at tree 1, which has a dbh of 138 mm, a height of 10 m, and a projected canopy area of 2.12 m^2.</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T2</td>
<td>The mean xylem sap flux density aggregated from one minute measurements made at the SSA-OBS site at tree 2, which has a dbh of 90 mm, a height of 6.5 m, and a projected canopy area of 2.0 m^2.</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T3</td>
<td>The mean xylem sap flux density aggregated from one minute measurements made at the SSA-OBS site at tree 3, which has a dbh of 99 mm, a height of 8.2 m, and a projected canopy area of 1.22 m^2.</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T4</td>
<td>The mean xylem sap flux density aggregated from one minute measurements made at the SSA-OBS site at tree 4, which has a dbh of 128 mm, a height of 7.5 m, and a projected canopy area of 2.2 m^2.</td>
</tr>
</tbody>
</table>
at tree 4, which has a dbh of 45 mm, a height of 6.9 m, and a projected canopy area of 0.57 m².

The mean xylem sap flux density aggregated from one minute measurements made at the SSA-OBS site at tree 5, which has a dbh of 180 mm, a height of 12.7 m, and a projected canopy area of 5.30 m². The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).

The most recent date when the information in the referenced data base table record was revised.

7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T1</td>
<td>[grams][meter^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T2</td>
<td>[grams][meter^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T3</td>
<td>[grams][meter^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T4</td>
<td>[grams][meter^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T5</td>
<td>[grams][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Datalogger]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Datalogger]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T1</td>
<td>[Measurement probe/Datalogger]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T2</td>
<td>[Measurement probe/Datalogger]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T3</td>
<td>[Measurement probe/Datalogger]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T4</td>
<td>[Measurement probe/Datalogger]</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T5</td>
<td>[Measurement probe/Datalogger]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS Staff]</td>
</tr>
</tbody>
</table>
7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Detect Limit Value</th>
<th>Data Not Collect Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-OBS-FLXTR</td>
<td>SSA-OBS-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>RSS01-XYL01</td>
<td>RSS01-XYL01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>31-MAY-94</td>
<td>28-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0000</td>
<td>2350</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T1</td>
<td>.001</td>
<td>17.737</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T2</td>
<td>.001</td>
<td>19.602</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T3</td>
<td>.001</td>
<td>30.61</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T4</td>
<td>.001</td>
<td>15.176</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_XYLEM_FLUX_DENSITY_T5</td>
<td>.001</td>
<td>12.407</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>17-JUL-98</td>
<td>17-JUL-98</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.

Maximum Data Value -- The maximum value found in the column.

Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.

Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.

Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Collect -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.

N/A -- Indicates that the value is not applicable to the respective column.

None -- Indicates that no values of that sort were found in the column.
7.4 Sample Data Record
The following are wrapped versions of data record from a sample data file on the CD-ROM.

```
SITE_NAME,SUB_SITE,DATE_OBS,TIME_OBS,MEAN_XYLEM_FLUX_DENSITY_T1,
MEAN_XYLEM_FLUX_DENSITY_T2,MEAN_XYLEM_FLUX_DENSITY_T3,MEAN_XYLEM_FLUX_DENSITY_T4,
MEAN_XYLEM_FLUX_DENSITY_T5,CRTFCN_CODE,REVISION_DATE
'SSA-OBS-FLXTR', 'RSS17-XYL01', 01-JUL-94, 0, 3.252, 3.218, 6.049, 1.514, 5.602, 'CPI', 17-JUL-98
'SSA-OBS-FLXTR', 'RSS17-XYL01', 01-JUL-94, 100, 3.244, 4.005, 5.207, .935, 5.745, 'CPI', 17-JUL-98
```

8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by BOREAS Information System (BORIS) is all of the measurements for a given site on a given day.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9 Data Manipulations

9.1 Formulae
Data of xylem flux density do not need further processing.

9.1.1 Derivation Techniques and Algorithms
See Section 3.

9.2 Data Processing Sequence

9.2.1 Processing Steps
See Section 5.

9.2.2 Processing Changes
None.
9.3.1 Special Corrections/Adjustments
Not applicable.

9.3.2 Calculated Variables
See Section 3.

9.4 Graphs and Plots
None.

10. Errors

10.1 Sources of Error
Human errors while staring into the tube and passing out and hitting the keyboard.

10.2 Quality Assessment

10.2.1 Data Validation by Source
The data were checked for consistency and outliers

10.2.2 Confidence Level/Accuracy Judgment
Good.

10.2.3 Measurement Error for Parameters
None given.

10.2.4 Additional Quality Assessments
We provided only those data that were of good quality. Faulty data and data acquired during time periods for which our measurement technique was not robust (e.g., data acquired during periods when the tree was frozen or undergoing freeze/thaw transitions) were not included in the supplied data set.

10.2.5 Data Verification by Data Center
BORIS staff reviewed the data files during the data base loading process.

11. Notes

11.1 Limitations of the Data
None.

11.2 Known Problems with the Data
None, as long as no frost condition in the tree bole occurs. Data from periods of frost in the tree boles are not presented.

11.3 Usage Guidance
None given.

11.4 Other Relevant Information
None given.
12. Application of the Data Set

These measurements were taken to give information on water consumption by Picea mariana (black spruce) trees, the dominating tree species at SSA-OBS. In combination with the dimensional properties of the five measured trees (given in Section 7.1) and the stand structural information, these data may be used to scale up water consumption by Picea mariana to a stand level for the time period from 31-May-1994 until 27-September-1994.

In combination with meteorological and soil water content information, these data may be used to:

- Analyze the climatic and pedological control of water loss by Picea mariana trees on a short-term (diurnal) and long-term (seasonal) time scale.
- Calculate canopy conductance for water vapor exchange.

These data may then be used for validation of results from gas exchange models for water and carbon exchange from trees.

13. Future Modifications and Plans

No modifications are planned.

14. Software

14.1 Software Description

Data were downloaded on a PC laptop and processed using Dataman (Ce Huang, Duke University, USA), Sigmaplot 4.0 (Jandel Inc., USA), SPSS (USA), and Excel 4.0 (Microsoft, USA).

Data collection and transformation from binary data to ASCII data were performed in the field with software from Delta-T, Cambridge, UK.

Processing of the data was performed by Reiner Zimmermann with custom software Dataman written by Huang Ce for a PC-DOS computer in TURBOBASIC at Duke University, North Carolina, USA.

Data transformation, data check, and data visualization were done with customized program routines for SIGMAPLOT 4.0 (Jandel Scientific) for DOS by Reiner Zimmermann at BITOEK, Bayreuth, Germany.

14.2 Software Access

Dataman is available upon request from Huang Ce, Nicholas School of the Environment, Duke University, North Carolina, USA.
15. Data Access

The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

- ASCII - American Standard Code for Information Interchange
- BOREAS - BOREal Ecosystem-Atmosphere Study
- BORIS - BOREAS Information System
- CD-ROM - Compact Disk-Read-Only Memory
- DAAC - Distributed Active Archive Center
- EOS - Earth Observing System
- EOSDIS - EOS Data and Information System
- GIS - Geographic Information System
- GMT - Greenwich Mean Time
- GSFC - Goddard Space Flight Center
- HTML - HyperText Markup Language
- NAD83 - North American Datum of 1983
- NASA - National Aeronautics and Space Administration
- NSA - Northern Study Area
- OBS - Old Black Spruce
- ORNL - Oak Ridge National Laboratory
- PANP - Prince Albert National Park
- PDP - Portable Dielectric Probe
- RSS - Remote Sensing Science
- SSA - Southern Study Area
- SVAT - Soil-Vegetation-Atmosphere Transfer
- URL - Uniform Resource Locator (a World Wide Web address)
- UTM - Universal Transverse Mercator
- XFD - Xylem Flux Density
20. Document Information

20.1 Document Revision Date(s)
Written: 01-Jun-1997
Last Updated: 05-Aug-1999

20.2 Document Review Date(s)
BORIS Review: 10-Sep-1997
Science Review: 11-Jul-1998

20.3 Document ID

20.4 Citation
When using these data, please acknowledge the efforts of R. Zimmermann, K.C. McDonald, J.B. Way, and R. Oren and include citations of relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
As part of its efforts to determine environmental and phenological states from radar imagery, the BOREAS RSS-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the SSA-OBS (Picea mariana) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31-May-1994 until 27-September-1994. The data are stored in tabular ASCII files.