Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jeffrey A. Newcomer, Editors

Volume 10
BOREAS AFM-6 Boundary Layer Height Data

J. Wilczak

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

June 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jeffrey A. Newcomer, Editors

Volume 10
BOREAS AFM-6 Boundary Layer Height Data

James Wilczak, National Oceanic and Atmospheric Administration
Environment Technology Laboratory

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

June 2000
BOREAS AFM-6 Boundary Layer Height Data

James Wilczak

Summary

The BOREAS AFM-6 team from NOAA/ETL operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the SSA near the OJP site. This data set provides boundary layer height information over the site. The data were collected from 21-May-1994 to 20-Sep-1994 and are stored in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS AFM-6 Boundary Layer Height Data

1.2 Data Set Introduction

The data were collected by the BOREal Ecosystem-Atmospheric Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-06 team during 5 months from late spring to summer in 1994. Boundary layer data were measured by the National Oceanic and Atmospheric Administration (NOAA)/Environment Technology Laboratory (ETL) 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler. The data were collected near the Southern Study Area (SSA)-Old Jack Pine (OJP) flux tower.

1.3 Objective/Purpose

The BOREAS field work objectives were to measure continuous hourly profiles of wind velocity and temperature in the atmospheric boundary layer (ABL) and lower troposphere, to measure the depth of the daytime convective boundary layer, and to measure the occurrence of precipitation, all using a 915-MHz radar wind/RASS profiler. The data were then to be used to document average boundary
layer structure, and especially changes in boundary layer structure during the course of the boreal summer growing season.

1.4 Summary of Parameters
The AFM-06 boundary layer height data include date, time, and boundary layer height.

1.5 Discussion
NOAA/ETL operated a 915-MHz wind profiling radar and surface meteorological station near the SSA-OJP from 21-May-1994 through 20-Sep-1994. The data provided by the instrumentation are vertical profiles of wind speed and direction and virtual temperature, as well as boundary layer depth (Zi) and the presence of precipitation. These measurements were made with 100-m vertical resolution with the lowest measurement height at 150 m above ground level (AGL). The maximum height sampled was 3,850 m AGL, although on many days the maximum height of the wind measurements was in the range of 2-3 km due to weak signal strength in the region of the lower troposphere above the ABL.

1.6 Related Data Sets
BOREAS AFM-06 Mean Wind Profile Data
BOREAS AFM-06 Mean Temperature Profile Data
BOREAS AFM-06 Surface Meteorological Data

2. Investigator(s)

2.1 Investigator(s) Name and Title
Robert Banta, Brooks Martner, James Wilczak NOAA Environmental Laboratory

2.2 Title of Investigation
Outer Boundary Layer Effects on Surface Fluxes of Momentum, Heat, Moisture, and Greenhouse Gases from the Boreal Forest

2.3 Contact Information

Contact 1:
James Wilczak
NOAA/ETL
325 Broadway
Boulder, CO 80303
(303) 497-6245
jwilczak@etl.noaa.gov

Contact 2:
Jeffrey A. Newcomer
Raytheon ITSS
Code 923
NASA GSFC
Greenbelt, MD 20771
(301) 286-7858
(301) 286-0239 (fax)
Jeffrey.Newcomer@gsfc.nasa.gov
3. Theory of Measurements

The above measurements were obtained by measuring the zeroth, first, and second moments of the radar Doppler spectrum. The zeroth moment is the signal power. The range-corrected signal power can alternatively be expressed in terms of the turbulence structure parameter CN2. It is well-known that the vertical profile of CN2 exhibits a sharp peak at the midpoint of the inversion transition region, due to local mixing of relatively cool, moist boundary layer air with warmer and dryer air aloft. Our measurements of Z_i were obtained from the peak value in the vertical profile of CN2 from a vertically pointing radar beam. The first moment of the Doppler spectrum is the Doppler velocity. The vertical profile of wind velocity was measured by combining the Doppler velocities measured along three radar beams: one vertical, and two oblique beams pointing at elevations of 75 degrees, oriented 90 degrees apart. The vertical profile of virtual temperature was measured using the RASS, in which an array of acoustic speakers surrounds the radar and generates a sound pulse. The radar signal reflects off of this acoustic wave front, and the measured Doppler shift indicates the velocity of the sound pulse, which is proportional to the virtual temperature of the air. The second moment of the Doppler spectrum, or spectral width, can provide a measure of the strength of the turbulence within the boundary layer. The second moment has not been directly used in the present analysis. Finally, the presence of precipitation is determined by using both signal power and the vertical velocity. Rain and snow have much greater signal power than does clear air, and nearly uniform downward velocities. Rain can be distinguished from snow by its greater reflectivity, and by its greater fall velocity. Because of the high sensitivity of the profiler, it is capable of detecting small amounts of rain that might not be measured by a traditional surface rain gauge. The profiler detects only the presence of precipitation, however, and at present cannot give a quantitative measure of rainfall amount.

4. Equipment

4.1 Sensor/Instrument Description

915-MHz wind profiling radar with RASS.

4.1.1 Collection Environment

The 915-MHz profiler was used during various ambient weather conditions that occurred at the BOREAS SSA-OJP site.

4.1.2 Source/Platform

Ground-based.

4.1.3 Source/Platform Mission Objectives

The ground supported the needed instrumentation.

4.1.4 Key Variables

Inversion height.

4.1.5 Principles of Operation

Standard Doppler radar techniques.

4.1.6 Sensor/Instrument Measurement Geometry

One vertical beam, two oblique beams 15 degrees from vertical at an elevation of 75 degrees.

4.1.7 Manufacturer of Sensor/Instrument

Wind Profiler: NOAA/ETL (contact: James Wilczak at the address found in Section 2).
4.2 Calibration

4.2.1 Specifications
None given.

4.2.1.1 Tolerance
None given.

4.2.2 Frequency of Calibration
None given.

4.2.3 Other Calibration Information
None given.

5. Data Acquisition Methods

During the course of 1 hour, the radar makes 18 cycles through each of the three radial beams, averaging for 60 seconds on each beam. These measurements require a total of 54 minutes. Prior to this, the RASS temperature profile is measured on the vertical beam during the first 5 minutes of the hour. During BOREAS, the RASS temperature observations consisted of 15 measurements, each 15 seconds in length. Each of these individual radial measurements of both wind and temperature is then quality controlled through an automated pattern recognition scheme, and then the measurements are combined into a single value of wind and temperature reported for each hour.

6. Observations

6.1 Data Notes
The wind profiler operated unattended for most of the 4-month observation period.

6.2 Field Notes
The wind profiling radar and surface meteorological station were located at a site 1.0 km south and 1.6 km east of the OJP tower flux site. The radar site was in a clearing in the jack pine forest, with fetches (clear distances) of 200 m to the north, 500 m to the south, 150 m to the east, and 1 km to the west. Ground cover within the clearing consisted of grass, brush, and young jack pine trees, approximately 1-2 m tall.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
The North American Datum of 1983 (NAD83) coordinates of the site are:

Lat. = 53.91 °N
Long. = 104.40 °W
Alt. = 511 m above sea level

This location is the SSA, 1.0 km south and 1.6 km east of the OJP flux tower.
7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
Beamwidth = 9.9 degrees (one-way, 3 dB)
Range resolution = 101 m
Range limits = 0.112-3.889 km AGL (38 range gates)

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
Measurements were made from 21-May-1994 through 20-Sep-1994.

7.2.2 Temporal Coverage Map
Not available.

7.2.3 Temporal Resolution
Measurements were made every hour during the period.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>TIME_OBS</td>
</tr>
<tr>
<td>INVERSION_HT</td>
</tr>
<tr>
<td>PARM_VALUE_FLAGS</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
</tr>
<tr>
<td>REVISION_DATE</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>The Greenwich Mean Time (GMT) when the data were collected.</td>
</tr>
<tr>
<td>INVERSION_HT</td>
<td>The measured inversion height.</td>
</tr>
<tr>
<td>PARM_VALUE_FLAGS</td>
<td>Contains values or codes that indicate special conditions for the data parameters. See data set documentation for descriptions of these codes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR</td>
<td>Height was measured with rain was present during part of the hour.</td>
</tr>
<tr>
<td>DV</td>
<td>Height was measured with virga was present during part of the hour.</td>
</tr>
<tr>
<td>GC</td>
<td>Height was lost in ground clutter.</td>
</tr>
<tr>
<td>MI</td>
<td>Height was not measured</td>
</tr>
<tr>
<td>OK</td>
<td>Height was measure without incident.</td>
</tr>
<tr>
<td>PD</td>
<td>Height became poorly defined above 500 meters.</td>
</tr>
<tr>
<td>RN</td>
<td>Height was not measured due rain.</td>
</tr>
<tr>
<td>VI</td>
<td>Height was not measured due to virga.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRTFCN_CODE</th>
<th>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>INVERSION_HT</td>
<td>[kilometers]</td>
</tr>
<tr>
<td>PARM_VALUE_FLAGS</td>
<td>[none]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source
The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by NOAA/ETL]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by NOAA/ETL]</td>
</tr>
<tr>
<td>INVERSION_HT</td>
<td>[Supplied by NOAA/ETL]</td>
</tr>
<tr>
<td>PARM_VALUE_FLAGS</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range
The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unreal Data Value</th>
<th>Below Data Limit</th>
<th>Data Value</th>
<th>Detect Not Collectd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-OJP-RDR01</td>
<td>SSA-OJP-RDR01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>AFM-06-RDR01</td>
<td>AFM-06-RDR01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>21-MAY-94</td>
<td>20-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2300</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>INVERSION_HT</td>
<td>0</td>
<td>3.8</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PARM_VALUE_FLAGS</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>16-AUG-96</td>
<td>16-AUG-96</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missng Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.

Data Not Cllctd -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record

The following are wrapped versions of data records from a sample data file on the CD-ROM.

SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, INVERSION_HT, PARM_VALUE_FLAGS, CRTFCN_CODE, REVISION_DATE
'SSA-OJP-RDR01', 'AFM06-RDR01', 21-MAY-94, 0, -999.0, 'MI', 'CPI', 16-AUG-96
'SSA-OJP-RDR01', 'AFM06-RDR01', 21-MAY-94, 100, -999.0, 'RN', 'CPI', 16-AUG-96
'SSA-OJP-RDR01', 'AFM06-RDR01', 21-MAY-94, 200, -999.0, 'RN', 'CPI', 16-AUG-96
'SSA-OJP-RDR01', 'AFM06-RDR01', 21-MAY-94, 300, -999.0, 'RN', 'CPI', 16-AUG-96

8. Data Organization

8.1 Data Granularity

The smallest unit of data tracked by the BOREAS Information System (BORIS) was the data collected at a given site on a given date.

8.2 Data Format(s)

The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.
9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms
None given.

9.2 Data Processing Sequence

9.2.1 Processing Steps
During the course of 1 hour, the radar makes 18 cycles through each of the three radial beams, averaging for 60 seconds on each beam. These measurements require a total of 54 minutes. Prior to this, the RASS temperature profile is measured on the vertical beam during the first 5 minutes of the hour. During BOREAS, the RASS temperature observations consisted of 15 measurements, each 15 seconds in length. Each of these individual radial measurements of both wind and temperature is then quality controlled through an automated pattern recognition scheme, and then the measurements are combined into a single value of wind and temperature reported for each hour.

9.2.2 Processing Changes
None given.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None given.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
None given.

10. Errors

10.1 Sources of Error
During spring and autumn seasons, it is possible that the profiler winds can be contaminated by the presence of migrating birds. These errors are now well understood, and can be recognized from large values of signal power, spectral width, and sudden changes in wind speed occurring near sunset and sunrise. Periods of contaminated winds have been hand edited from the data set. Birds do not directly affect RASS temperatures, although they could have a secondary effect by contaminating vertical velocity, which is used to correct RASS temperatures. No corrections for contaminated vertical velocities on RASS have been made.

10.2 Quality Assessment

10.2.1 Data Validation by Source
See Section 10.2.3.

10.2.2 Confidence Level/Accuracy Judgment
See Section 10.2.3.
10.2.3 Measurement Error for Parameters
During the first 3 days and last 3 days of operation, ETL personnel were at the site taking balloon intercomparisons. These assessments have shown typical values of agreement of the balloons with profiler, typically 1-2 m/s and 1 deg C. Wind velocity differences between 915-MHz wind profilers and precision research aircraft have been found to be on the order of 0.9 m/s.

10.2.4 Additional Quality Assessments
None given.

10.2.5 Data Verification by Data Center
BORIS personnel verified that the delivered data agreed with the information provided by the AFM-06 team.

11. Notes

11.1 Limitations of the Data
None given.

11.2 Known Problems with the Data
None given.

11.3 Usage Guidance
None given.

11.4 Other Relevant Information
None given.

12. Application of the Data Set
These data could be used in conjunction with the other AFM-06 data sets to get a detailed characterization of the atmosphere above the SSA-OJP site.

13. Future Modifications and Plans
None given.

14. Software

14.1 Software Description
None given.

14.2 Software Access
None given.
15. Data Access

The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: omldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics
http://www-eosdis.ornl.gov/ [Internet Link].

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans

The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products

None.

16.2 Film Products

None.

16.3 Other Products

These data are available on the BOREAS CD-ROM series.
17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation

None.

18. Glossary of Terms

None.

19. List of Acronyms

- ABL - Atmospheric Boundary Layer
- AFM - Airborne Fluxes and Meteorology
- AGL - Above Ground Level
- ASCII - American Standard Code for Information Interchange
- BOREAS - BOReal Ecosystem-Atmosphere Study
- BORIS - BOREAS Information System
- CD-ROM - Compact Disk - Read-Only Memory
- DAAC - Distributed Active Archive Center
- EOS - Earth Observing System
- EOSDIS - EOS Data and Information System
- ETL - Environment Technology Laboratory
- GIS - Geographic Information System
- GMT - Greenwich Mean Time
- GSFC - Goddard Space Flight Center
- HTML - HyperText Markup Language
- NAD83 - North American Datum of 1983
- NASA - National Aeronautics and Space Administration
- NOAA - National Oceanic and Atmospheric Administration
- NSA - Northern Study Area
- OJP - Old Jack Pine
20. Document Information

20.1 Document Revision Dates
Written: 07-Jun-1996
Last Updated: 24-Aug-1999

20.2 Document Review Dates
BORIS Review: 29-Jan-1999
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please include the following acknowledgment as well as citations of relevant papers in Section 17.2:
Wind profiler (and/or surface meteorological) data provided by Dr. James Wilczak, NOAA Environmental Technology Laboratory

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Abstract

The BOREAS AFM-6 team from NOAA/ETL operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the SSA near the OJP site. This data set provides boundary layer height information over the site. The data were collected from 21-May-1994 to 20-Sep-1994 and are stored in tabular ASCII files.