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Abstract 

An advanced breadboard PPU for a low power ion 
propulsion system incorporating mass reduction 
techniques was designed and fabricated. As a 
result of sin1ilar output current requirements, the 
discharge supply was also used to provide the 
neutralizer heater and discharge heater functions by 
using three relays to switch the output connections. 
This multi-function supply reduces to fo ur the 
number of power converters needed to produce the 
required six electrical outputs. Switching 
frequencies of 20 and 50 kHz were chosen as a 
compromise between the size of the magnetic 
components and switching losses. The advanced 
breadboard PPU is capable of a maximum total 
output power of 0.47 kW. Its component mass is 
0.65 kg and its total mass 1.9 kg. The total 
efficiency at full power is 0.89. 

Introduction 

Ion propulsion systems have the advantage of high 
specific impulse when compared to chemical and 
other electric propulsion systems. This can lead to 
reductions in launch vehicle class, increased 
payload mass fraction, and/or spacecraft life. There 
is a potential need for high specific impulse 
propulsion for small spacecraft. Applications that 
might benefit from this technology include Earth-
orbit magnetospheric mapping satellite 
constellations, low Earth-orbit satellites, 
geosynchronous Earth-orbit (GEO) satellite north
south stationkeeping, and asteroid orbiters using 
spacecraft of 50 to 500 kg and within the order of 
0.2 to 0.5 kW.' Some inherent problems of using 
electric propulsion with small spacecraft include 
cost, limited power, volume, and thermal control 
capacity. This makes simplicity, size, weight and 
high efficiency critical requirements for the 
implementation of this technology. 
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Development of a low power xenon ion thruster 
continues at NASA Glenn Research Center 
(NASA-GRC) under NASA's On-Board 
Propulsion Program.2

•
3 This design builds on the 

NST AR 30-cm thru ter, incorporating features 
such as a ring-cusp magnetic circuit, partial-conic 
discharge chamber, and non-ferromagnetic 
materials. 4 Figure I shows a picture of an 
engineering model thruster. 

In addition to the thruster, a breadboard power 
processing unit (PPU) was initially developed for 
the 0.2 kW-class ion propulsion system.5 Low 
mass and volume, high efficiency and simplicity 
were the major design drivers. The PPU would 
supply the six electrical outputs required by the ion 
thruster using a nominal input voltage of 28 ± 4 
V DC' since the small spacecraft for which this 
system is targeted are anticipated to have 
unregulated low voltage busses. The breadboard 
PPU was designed, fabricated , successfully tested 
on resistive loads, and integrated with a laboratory 
model thruster. Figure 2 shows a picture of the 
breadboard PPU. Six power converters, switching 
at 20 kHz, were used to produce the six required 
outputs. The beam supply, which processes 65 to 
80 percent of the total thruster power, has an 
efficiency of up to 91 percent while the total PPU 
efficiency was in excess of 89 percent at a 
maximum power of 0.3 kW. The component mass 
was 1.4 kg and the total mass of the breadboard 
was approximately 2.2 kg. 

To comply with revised output power requirements 
of up to 0.47 kW, an advanced breadboard PPU 
was designed and fabricated based on the prior 
design. This paper documents the design process 
and performance characteristics of the advanced 
breadboard PPU. It also includes the results of 
resistive load tests for efficiency and regulation. 



PPU Design 

Ion PPUs can be very complex. A typical PPU 
includes up to six power supplies and electronics 
for additional functions as shown in Figure 3. The 
beam and the accelerator supplies provide high 
voltages to accelerate the ions. The discharge 
supply provides cun-ent to the discharcre cathode to 
. . 0 
IOfilze the xenon propellant. The neutralizer keeper 
supply provide current to the neutralizer cathode 
to neutralize the ion beam. The heater supplies 
raise the temperature of the cathode to emission 
temperature during ignition. Finally, the 
housekeeping supply provides power to the pulse
width-modulation (PWM), recycle, telemetry, and 
control circuits. 

Low mass and high efficiency are the typical 
design drivers for any PPU. However, the power 
level and application could weigh these differently. 
For low power systems, low mass tends to be 
slightly more important than high efficiency. 
Additionally, cost and complexity should be low to 
appeal commercial users. 

The mass of a PPU is mainly determined by the 
number of power converters, the switching 
frequency, and the power level. In a hard
switching converter design, increasing the 
switching frequency to reduce mass is only 
beneficial to the point where the switching losses 
become the primary loss mechanism. Beyond this 
point, soft -switching or resonant designs are 
needed to reduce switching losses. However, these 
techniques add complexity to the converter. 

Major impact on PPU mass can be obtained by 
using multiple outpu t power supplies or even more 
by using multiple function power supplies. There 
are many ways of inlplememing these two 
techniques and several have been documented.6-9 
One multiple output option includes combining the 
beam and accelerator outputs and the discharcre 
and neutralizer outputs. However, this approa~h 
makes the two outputs track each other makincr it 
difficult to throttle the thruster. A solution to ~his 
problem is adding a secondary regulation stage for 
one of the outputs which can become as complex 
as having separate converters for each output. 
Another multiple function supply technique 
consists in using the neutralizer or discharcre 
supplies to provide heater power.9 The main 
difficulty of this technique is that it requires some 
switches for the converter output and it could 
increase the duration of the thruster starting 
sequence. 
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Figure 4 shows a block diagram of the NASA
ORC advanced breadboard PPU. It consists of fo ur 
power supplies to operate the thruster, a 
housekeeping power supply, a control circuit to 
sequence the power supplies , and a recycle circuit 
to extinguish arcs in the thruster during operation. 
Since the NASA-GRC 8-cm ion thruster has very 
sinlilar input cun-em specifications for the 
discharge and heaters, it was decided to use a 
multi-function discharge supply to also power the 
cathode and neutralizer heaters. This design 
reduced by two the number of power converters in 
the PPU compared to the prior design. Table I 
summarizes the output specifications of all the 
power supplies. The maximum total output power 
of the unit is 0.47 kW. Another difference between 
the advanced and the prior PPU design is a higher 
switching frequency of 50 kHz on all the power 
converters, except the bean1 supply, to reduce the 
size of the magnetic components while maintainincr o 

low switching losses. 

The PPU was built on five multi-layered printed 
circuit boards (PCB) with surface mount 
components. One PCB contains the discharcre 
supply including the output relays. Anoth~r 
includes both the neutralizer and accelerator 
supplies. The beam supply consists of two PCBs. 
One houses the PWM circuit, the housekeeping 
supply, and the recycle circuit. The second 
includes the MOSFETs, output rectifiers, and 
filters. The fifth board will include the control 
circuit. The beam power transformer, which is the 
largest and heaviest component, is mounted to the 
side-wall of the aluminum enclosure that houses 
the PPU to provide a good heat-sink. A 
photograph of the advanced breadboard PPU is 
shown in Figure 5. 
Bean1 Supply 

The most important converter in the PPU is the 
beam supply. This is the converter that crenerates 
high output voltage and processes up to 80 percent 
of the total power in the ppu. High efficiency on 
the beam supply is critical to obtain high total 
efficiency in the PPU. 

A full-bridge topology was selected because of the 
power level for this converter. A simplified 
diagram of the topology is shown in Figure 6. 
Even though rather complex when compared to 
other switching topologies, the full-bridcre topolocry 
.00 

IS robust for high power applications. It also 
requires a simpler transformer with good core 



utilization factor, lower voltage transistors on the 
power stage, and could be modified to implement 
soft-switching techniques. The high output voltage 
was obtained by fo ur secondary windings 
connected in series reducing the required vo ltage 
rating for output diodes. A switching frequency of 
20 kHz was used on this converter to reduce 
switching losses that can be severe at higher 
switching freq uencies and to minimize the effect of 
parasitic components caused by the high step-up 
ratio of the power transformer. 

The full-bridge topology uses peak current-mode 
PWM control on MOSFETs 2 and 4 and 50 percent 
duty-cycle on MOSFETs land 3. This is 
accomplished by a circuit built of discrete 
components including OPAMPs, logic gates, and 
flip/flops. Feedback isolation is implemented 
using a differential amplifier for output voltage and 
a current transformer for primary current. High 
side drivers with a charge pump circuit provide 
gate drive for the power MOSFETs. 

The power transformer was built using a 3C85 
ferrite EC core. The primary was wound using 
multiple strands of magnet wire to minimize skin 
effect and each of the four secondaries were wound 
in a single layer to minimize winding capacitance. 
Both, input and output filter inductors were wound 
in a 3F3 ferrite pot core. 

Discharge and Neutralizer Keeper Supplies 

The discharge supply fo llows the beam supply in 
power output. Even though its power fraction is 
smaller than the beam supply, it is still important to 
maximize its efficiency. A forward topology with a 
reset winding was selected for the discharge supply 
based on the power level and its simplicity. A 
simplified diagram of this topology is shown in 
Figure 7. The forward converter requires only one 
switching transistor compared to two required by a 
push-pull or a half-bridge or four required by a 
full-bridge . Also, it does not require high-side 
driving capabilities. A switching frequency of 
50 kHz was chosen to minimize mass. Current 
mode control PWM was used in the design for its 
good regulation and over-current protection. This 
was implemented using a commercial PWM 
controller which has flight heritage. 

The power transformer, the input inductors, and 
output inductors were built using 3F3 ferrite pot 
cores which work well for high frequency 
applications and have low core losses. Pot cores 
also offer the advantage of shielding from magnetic 
fields and being easy to wind and heat sink. The 
output current ripple specification was relaxed 
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compared to prior designs to reduce the size of the 
output inductor. 

Cathode ignition is triggered by an inductively
coupled capacitor-discharge pul e ignitor used in 
prior programs. 1O It provides a 600 V pulse with a 
duration of lOllS and a freq uency of 10 Hz. Figure 
8 shows a fan1 ily of ignition pulses at 24, 28, and 
32 V input to the discharge supply. 

The discharge supply i a multi-function supply 
providing power not only to the discharge anode 
but also to both the discharge and neutralizer 
cathode heaters. This is implemented by three high 
voltage relays on the output of the converter to 
switch the connections. To reduce stress on the 
relays, they are never operated while the discharge 
supply is on. 

The neutralizer keeper supply provides current to 
the neutralizer anode to provide a path for electrons 
from the cathode to this anode to "keep" the 
neutralizer discharge lit and ready to neutralize the 
ion beam. Although, it processes less power than 
the discharge supply and because of sin1ilar output 
characteristics, the same forward topology, PWM 
control, magnetic core types, and ignitor circuit 
were used for this converter to maintain PPU 
simplicity. 

Accelerator Supplv 

The accelerator supply proces es very little power 
but at relatively high voltage. A f1yback topology 
was chosen for thi supply for its simplicity, power 
level, and output voltage requirements. Figure 9 
shows a simplified diagram of the topology. Like 
the forward topology, only one switching transistor 
i required. Also, inherent to the f1 yback topology, 
an output inductor is not required. 

Current mode control PWM was also implemented 
with a commercial controller and the magnetics 
were built with 3F3 ferrite pot cores. In addition, 
the accelerator supply should be capable of 
providing a current surge of about 50 rnA fo r 
100 ms during high voltage recycle events. This 
avoids, during thruster ignition and recycles, 
loading down the power supply and causing 
electron backstreaming that could trigger another 
recycle. This is in1plemented by sizing the output 
capacitor to provide the surge requirements. 

Recycle and Control Circuits 

Momentary short circuits in the thruster are 
possible during steady-state operation. A recycle 
circuit monitors beam power supply output. When 
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high current is detected, it cycle the high voltage 
supplies to extinguish the short circuit. A 
equential circuit ba ed on the design for the 

breadboard PPUs designed at NASA-GRC fo r the 
ST AR Program was used.6.

s This circuit is simple 
and has proven reliable in other designs. One 
additional feature is the capability of increasing 
neutralizer keeper current during a recycle to 
maintain a constant total emission CUlTent and 
avoid possible extinction. 

A sequential circuit or state machine with three 
select bits is included to control and sequence the 
PPU outputs. The control sequences implemented 
are cathode conditioning, thruster ignition, throttle
up , and throttle-down. A summary of these 
equences is shown in Figure 10. The cathode 

conditioning sequence cycles the discharge power 
supply to provide heater outputs first to the 
neutralizer and then to the discharge cathode to 
remove impurities prior to initial operation. The 
thruster ignition sequence turns on the discharge 
supply into the neutralizer heater and then turns on 
the neutralizer keeper supply. Then, it switches the 
discharge supply into the discharge heater. This is 
followed by switching the discharge supply to the 
anode, and then turning on the discharge supply. 
Finally, it turns on the beam and accelerator 
supplies to start thrusting. The throttle-up and 
throttle down sequences adjust the power into the 
thruster by changing the supply setpoints up to 
eight operational levels. On the throttle-up 
sequence, accelerator voltage is increased first, 
then the beam voltage, and finally the discharge 
current. The throttle-down sequence decreases the 
output in the opposite order. This reduces the 
possibility of triggering a recycle during these 
sequences. 

Telemetry 

The telemetry outputs for the breadboard PPU are 
minimized to reduce complexity. The only 
telemetry included are beam voltage and CUlTent to 
provide the means of calculating specific impulse 
and thrust. Thi is the only telemetry that is 
considered critical to monitor mission progress. 
Discharge and neutralizer telemetry consists of bits 
that indicate if the output currents have exceeded 
certain values. 

Test Procedure 

The power converters were performance tested for 
efficiency and regulation. This was done using 
resistive loads and a high bandwidth power 
analyzer to measure voltages and currents. The 
power supplies were operated until thermal 
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equilibrium was reached and then input vo ltage and 
load were varied t.hrough the complete range. 
Efficiency for the individual converters was 
defined as the ratio of output to input power. Total 
PPU efficiency wa calculated including 
housekeeping power. Load regulation was defined 
as the ratio of the difference between output at low 
and full load and the output etpoint. Line 
regulation was defined as the ratio of the difference 
between output at low and high input voltage and 
the output setpoint. 

Results and Discussion 

All output specifications, according to Table 1, 
were verified. Both, line and load regulations were 
measured at better than 0.1 percent. Power 
convers ion efficiency was measured for all the 
power supplies at a nominal input voltage of 28 V. 
Figures 11 through 13 show the efficiencies for the 
beam, discharge, and neutralizer supplies. For the 
beam supply it was plotted as a function of output 
current for various output voltages and for the 
discharge and neutralizer supplies as a function of 
output voltage for multiple output currents. The 
beam supply has a maximum efficiency of 0.94 at 
1200 V and 200 mA output. In the case of the 
di scharge supply, efficiency reached a maximum of 
0.89 at an output of 32 V and 1 A. The neutralizer 
demonstrated efficiencies as high as 0.88 at 32 V 
and 200 mA. Finally, the accelerator efficiency 
was measured to a maximum of 0.25 at 300 V and 
1 mA. The total efficiency of the advanced PPU 
including housekeeping power and operating at full 
power is 0.89. The efficiency at power levels 
representative of thruster operation at 0.3 , 0.2, and 
0.1 kW was 0.90, 0.87, and 0.84, respectively. 

Conclusion 

An advanced breadboard PPU which builds on a 
prior design was fabricated and tested. This design 
includes a multi-function discharge/heater power 
supply that reduces to four the number of power 
converters required. A switching frequency of 50 
kHz was used for the discharge, neutralizer, and 
accelerator supplies to reduce the size of magnetic 
components. However, the optimum frequency of 
the beam supply was 20 kHz because of excessive 
switching losses. The advanced breadboard was 
built using five multi-layer PCB with surface 
mount components, installed in an aluminum 
chassis. A maximum total efficiency of 0.89 at 
maximum power of 0.47 kW was obtained. The 
component and total masses were 0.65 and 1.9 kg, 
respectively. The advanced breadboard PPU was 
tested on resistive loads for regulation and 
efficiency. All design criteria were met. 



A sequential circuit that control the operation of 
the power supplies during cathode conditioning, 
thruster ignition, and throttling up and down was 
also designed and tested. Future work will include 
integrating all the power supplies and the controller 
into the PPU and testing with the engineering 
model thruster. 
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BEAM ACCEL DISCHARGE NEUT HEATERS TOTAL 
Inpu t 24 - 32 V 24 - 32 V 24 - 32 V 24 - 32 V 24 - 32 V 

Voltage 
Output 600 - 1200 V - (300- 150) V 16.0 - 32.0 V 16.0 - 32.0 V 7.0V 
Voltage 
Output 0.07 - 0.3 A 0.5 - 1.0 rnA 0.5 - 3.0 A 0.2 - 0.5 A 4.0A 
Current SO rnA surge 

for 100 rns 
Output 42 - 360 W 75-300rnW 8 - 96 W 3.2 - 16 W 28W 53 .3 - 472.3 W 
Power 

Reg. Mode Constant Constant Constant Constant Constant 
Voltage Voltage Current Current Current 

Line/Load < 1 % < 1 % <1 % < 1 % < 1 % 
Reg. 

Output <5 % <5 % <10 % < 10 % < 10 % 
Ripple 

Table 1. Advanced Low Power Ion PPU Specifications 

Figure 1. 8-crn Engineering Model Xenon Ion Thruster 
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Figure 2. Low Power Breadboard PPU 
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Figure 5. Advanced Low Power Breadboard PPU 
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Figure 6. Full Bridge Topology Schematic 
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