Assessment of Spectroscopic, Real-Time Ion Thruster Grid Erosion-Rate Measurements

Matthew T. Domonkos
Glenn Research Center, Cleveland, Ohio

Richard E. Stevens
Whitworth College, Spokane, Washington

September 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
Assessment of Spectroscopic, Real-Time Ion Thruster Grid Erosion-Rate Measurements

Matthew T. Domonkos
Glenn Research Center, Cleveland, Ohio

Richard E. Stevens
Whitworth College, Spokane, Washington

Prepared for the
36th Joint Propulsion Conference and Exhibit
cosponsored by the AIAA, ASME, SAE, ASEE
Huntsville, Alabama, July 16–19, 2000

National Aeronautics and
Space Administration

Glenn Research Center

September 2000
ASSESSMENT OF SPECTROSCOPIC, REAL-TIME ION THRUSTER GRID EROSION-RATE MEASUREMENTS
MATTHEW T. DOMONKOS

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Oh 44135

Richard E. Stevens
Whitworth College
Spokane, WA 99251

ABSTRACT
The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.

NOMENCLATURE

\[\begin{align*}
A &= \text{accelerator grid area, } m^2 \\
F_b &= \text{correction factor for peaked beam current density} \\
f_d &= \text{fraction of erosion products emitted with downstream velocity components} \\
M &= \text{atomic mass of erosion species, kg} \\
m_l &= \text{mass loss, kg} \\
n_{\text{Mo, max}} &= \text{maximum molybdenum number density adjacent to accelerator grid, } m^{-3} \\
t &= \text{time to lose mass, s} \\
\bar{v}_e &= \text{mean velocity of efflux, m/s}
\end{align*} \]

INTRODUCTION
The dramatic success of the NASA Solar Electric Propulsion Test Applications and Readiness (NSTAR) 30-cm ion thruster on Deep Space One has proven that the technological barriers to the use of primary electric propulsion have been overcome.\(^1\)\(^2\)\(^3\) The NSTAR ion thruster demonstrated life to 8192 hours with a xenon throughput of 88-kg in a ground test, and the ongoing extended life-test (ELT) has logged over 11,000-hours and 96-kg of xenon to date.\(^1\)\(^2\) Despite these triumphs, the user community requires still more throughput and at higher thrust and specific impulse than that demonstrated by the NSTAR ion engine.\(^4\) In addition to the Comet Nucleus Sample Return (CNSR) mission which plans to use four NSTAR derivative thrusters, NASA Glenn Research Center (GRC) is also actively developing a 5-kW ion thruster, a 30-kW Interstellar Precursor ion thruster, a 100-300-W ion thruster, and a hollow cathode micro-ion thruster.\(^5\)\(^6\) To reduce the real and perceived risks associated with new propulsion systems, ground based life-tests will continue to be conducted for the foreseeable future. With the cost of qualifying thrusters for spaceflight measured in millions of dollars and multiple years, accurate and timely evaluation of thruster performance and predicted life is critical to the deployment of advanced ion thruster systems. This paper presents the ongoing work being conducted at NASA Glenn Research Center to assess and to develop real-time, spatially resolved erosion diagnostics in support of advanced ion thruster research.

The discharge cathode and both the accelerator and screen grids in ion thrusters have exhibited sputter erosion.\(^1\) In the NSTAR configuration, the accelerator grid appears to be the primary life-limiting component, although anomalous erosion in the vicinity of the cathode tip has been observed in a 2000-hour test conducted at GRC\(^1\)\(^2\) and the ongoing ELT. The anomalous cathode erosion is the subject of another study,\(^9\) and the present work focuses on
grid erosion. Sputtering from discharge chamber ion impingement is the primary mechanism for erosion of the screen grid. In principle, screen grid erosion is a function of the ion current and energy, both of which can be measured accurately. In practice, the prediction of screen grid life is complicated by the relatively poor understanding of the sputter yield near threshold voltages and the possible presence of high energy ions emitted from the discharge cathode. Accelerator grid erosion also occurs via ion bombardment. Kerslake first presented the theory of charge exchange ion production being responsible for accelerator grid wear. As the beam ions flow downstream, some of them undergo resonant charge-exchange collisions with propellant or background atoms. The newly formed fast neutral atom continues its downstream trajectory largely unaffected by the collision, while the resulting slow ion, born deep in a potential well, undergoes electrostatic acceleration toward the negatively biased accelerator grid. The charge-exchange ion then collides with the accelerator grid, sputtering grid material according to the sputter yield. The most probable locations for the formation of charge exchange collisions result in sputter erosion which enlarges the grid apertures and also creates the familiar “pits and grooves” erosion pattern on the downstream surface. Accelerator grid lifetime may be defined either by the point where electron backstreaming can no longer be prevented by the existing power supplies due to aperture enlargement, or by structural failure due to the “pits and grooves” material loss. The former mechanism is believed to dominate grid erosion in space where neutrals for charge exchange collisions come only from the thruster, and not the facility gas.

This paper describes the initiation of an effort to develop real-time, spatially-resolved grid erosion diagnostics at the NASA Glenn Research Center. A background into erosion-rate diagnostics is presented. Next, a preliminary experimental investigation is summarized. Initially, emission spectra were collected and analyzed to evaluate the thruster environment and to assess which techniques are appropriate for the screen and accelerator grids, respectively. In addition, the screen grid was biased to enhance its erosion, and thereby strengthen the emission spectra. The results of the emission spectroscopic measurements are discussed. Finally, a proposed experimental architecture for an accelerator grid lifetime measurement based on a LIF density diagnostic is presented.

BACKGROUND

Erosion measurements can be categorized by the following: the number of hours of operation required to measure the erosion, whether it is sensitive to the type of erosion, the level of component handling, the spatial resolution, and the ability to predict grid lifetime from the data. Many erosion measurement techniques only provide useful results after the grids have been operated for several hundred hours. Ideally, the erosion measurement can differentiate aperture enlargement from the “pits and grooves” wear. Relatively few erosion diagnostics are conducted in situ, without disassembling the thruster. The typically peaked profile of the ion current density leads to a radial variation in erosion, and the spatial resolution capacity of the erosion diagnostics vary. The peak ion current density determines the point of failure in the accelerator grid, although the distribution of sputtered efflux is of interest for spacecraft designers in assessing integration. The ability to predict grid life varies with the diagnostic, and direct measurements of grid shape or operating characteristics are typically the most accurate measurements by this criterion. Ion thruster grid erosion measurements are discussed relative to these figures of merit in this section. Many techniques have been implemented to measure ion thruster grid erosion, and Table 1 summarizes the attributes of the most widely used methods. Observation of the pervenance limit or the electron backstreaming limit of the grids provides an indirect measure of accelerator grid aperture enlargement. As the apertures enlarge, ion impingement on the accelerator grid occurs at smaller total accelerating voltage values, and the threshold bias to prevent electron backstreaming through the grids becomes more negative. As the accelerator apertures erode, mass loss analysis of grid erosion has been used extensively to estimate grid lifetime. Since neither the screen nor the accelerator grid erode uniformly, mass loss analysis must be used in conjunction with another method or modeling to determine grid life. Destructive analysis has been performed to examine the topographical nature of grid erosion. While destructive analysis enables direct examination of the erosion profile, the technique is impractical for acceptance testing or time-resolved measurement. Beattie and Poeschel pioneered the use of erosion witness badges which employ alternative thin layers of different color.
Table 1 - Assessment of Erosion Measurement Techniques.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Parameter Measured</th>
<th>Time (hours)</th>
<th>Mechanism Differentiation</th>
<th>Grid Handling</th>
<th>Spatial Resolution</th>
<th>Ability to Predict Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perveance Limit</td>
<td>Accelerator Grid Current</td>
<td>100's</td>
<td>No. Only for aperture diameter.</td>
<td>None</td>
<td>None</td>
<td>Good</td>
</tr>
<tr>
<td>Electron Backstreaming</td>
<td>Beam Current</td>
<td>100's</td>
<td>No. Only for aperture diameter.</td>
<td>None</td>
<td>None</td>
<td>Good</td>
</tr>
<tr>
<td>Mass Loss</td>
<td>Mass</td>
<td>100's</td>
<td>No</td>
<td>Removal from Thruster</td>
<td>None</td>
<td>Poor</td>
</tr>
<tr>
<td>Destructive</td>
<td>Profile and Aperture Diameter</td>
<td>100's</td>
<td>Yes</td>
<td>Removal from Thruster and Destruction</td>
<td>Yes</td>
<td>Good (single data point only)</td>
</tr>
<tr>
<td>Witness Badges</td>
<td>Profile</td>
<td>100's</td>
<td>No. Only for “Pits and Grooves”</td>
<td>Removal from Thruster</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>Accelerated Wear Tests</td>
<td>Mass and/or Profile</td>
<td>100's</td>
<td>Perturbs In-Space Mechanism</td>
<td>Removal from Thruster</td>
<td>Yes</td>
<td>Poor</td>
</tr>
<tr>
<td>QCM / Deposition Slides</td>
<td>Sputter Material Deposit</td>
<td>100's</td>
<td>No</td>
<td>None</td>
<td>None</td>
<td>Poor</td>
</tr>
<tr>
<td>Profilometry</td>
<td>Profile and Aperture Diameter</td>
<td>100's</td>
<td>Yes</td>
<td>None if in situ</td>
<td>Yes</td>
<td>Excellent</td>
</tr>
<tr>
<td>Microscopy</td>
<td>Profile and Aperture Diameter</td>
<td>100's</td>
<td>Yes</td>
<td>Removal from Thruster</td>
<td>Yes</td>
<td>Excellent</td>
</tr>
<tr>
<td>Emission Spectroscopy</td>
<td>Density</td>
<td>~ 1</td>
<td>Possible</td>
<td>None</td>
<td>Yes</td>
<td>Good (Screen Grid Demonstrated)</td>
</tr>
<tr>
<td>LIF Density</td>
<td>Density</td>
<td>~ 1</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
<td>Good (Accel Grid)</td>
</tr>
</tbody>
</table>

Metals to indicate relative wear rates.16,17 The witness badges consisted of alternating thin layers of the target material (molybdenum) and a different colored metal (copper) which also erodes much more quickly than the target metal. The badges were spot welded to the grid surface. After several tens of hours of operation, the witness badges were examined, and the amount of erosion was measured by counting the number of layers that had been removed in an area. This diagnostic was limited by the thickness of the deposited layers, and whether the deposited molybdenum in the badge had the same sputter yield as the bulk material in the grids was left undetermined. An accelerated wear-test was conducted by Brophy, Polk, and Pless14 in order to highlight the erosion of two-grid optics, however the elevated facility pressure used to hasten the wear altered the dominant erosion mechanism. With elevated background pressure, charge exchange collisions occur further downstream of the thruster, and as the charge-exchange ions are born farther from the thruster, they are more likely to be focused onto the web and beyond the active area of the grid. Accelerated wear-tests constitute an erosion measurement technique only when combined with one or more of the methods described here. Several investigations have used the arrival rate of erosion products at a quartz crystal microbalance or deposition slides to estimate a bulk erosion-rate.18,19 Material deposition is an indirect erosion measurement, and the ability to predict grid lifetime is consequently limited. The source of the material cannot be determined precisely, and typically the material composition must be determined independently. Profilometry and microscopy have been used to examine erosion topography in a non-destructive manner.2,13,15,20,21,22 The principle for both profilometry and microscopy is to determine the erosion profile based on the focal point of an optical system. The use of a laser range sensor enables

NASA/TM—2000-210459 3
profilometry to be conducted in situ, while microscopy is performed manually after the grids have been removed from the thruster. Both techniques provide a great deal of spatial resolution and can be used to determine aperture enlargement.

While each of the previously mentioned methods to determine grid erosion and life has advantages, they all share the same disadvantage: the thruster must be operated for at least several hundreds of hours before an accurate erosion-rate can be inferred. Use of an in-situ profilometer during the 8192-hour NSTAR wear-test showed that the “pit and groove” erosion-rates were independent of the operational hours accrued.2 This fact means that a real-time erosion-rate measurement will yield a representative “pit and groove” wear-rate, and the grid lifetime may be calculated from these data.2 Examination of the permeance limit and electron backstreaming limit data from the 8192-hour wear-test implies that the beginning-of-life aperture enlargement rate was slightly higher than that after approximately 2000-hours.4 Since permeance and electron backstreaming limits are indirect measures of grid aperture erosion, additional work must be performed to establish whether the aperture enlargement rate is constant over time. Under conditions where erosion-rates are expected to be constant over time, real-time erosion rate measurements mitigate the need for extended duration testing to determine wear-rates and are limited only by the minimum level of detectable erosion. Background information on three real-time erosion-rate diagnostics is discussed below.

Optical emission spectroscopy was proposed by Rock, Mantieniek, and Parsons25 as a means to measure ion thruster screen grid erosion in real-time. Although ion thruster discharge chamber plasmas typically fail to meet the conditions for local thermodynamic equilibrium, a kinetic steady state model was used in which a set of rate equations describing the population of excited states was solved, yielding relative densities. By examining the relative intensities of a set of neutral molybdenum emission characteristics of an ion thruster over a wide range of operating conditions. The results will be used to determine which transitions to target for future investigations.

EXPERIMENTAL APPARATUS

Emission spectra from the GRC test-bed ion thruster, a NSTAR derivative, were collected at a number of operating conditions. The goal of the spectroscopic investigation was to examine the emission characteristics of an ion thruster over a wide range of operating conditions. The results will be used to determine which transitions to target for future investigations.

GRC Test-Bed Ion Thruster

Geometrically, the GRC test-bed ion thruster, shown in Figure 1, is nearly identical to the NSTAR thruster. The significant differences from the NSTAR configuration are the use of an aluminum discharge chamber and titanium optics for these tests. The power processing unit was modified to allow operation to 5-kW, and Table 2 represents the ideal throttle table for the engine. During this investigation, the thruster was operated at throttling levels 28, 19, 15, 12, 10, 8, 4, and 0. The maximum beam voltage and current were 1500-V and 2.70-A, respectively. For further details concerning the thruster, the reader is referred to Patterson et al.5

Propellant Feed System

High purity xenon was supplied to the thruster using an inert gas feed system, designed for performance assessments of 30-cm thrusters. The feed system has an in-situ propellant flow-rate calibration capability which agrees with a National Institute of Standards and Technology (NIST) traceable bubble flow-meter to within four percent. Propellant flow rates were controlled to within 0.1-sccm for the discharge, discharge cathode, and
neutralizer. The quality of the feed system ensured that only trace amounts of contaminant gases, which would complicate spectral identification, reached the discharge.

Figure 1 - Schematic of the test-bed Ion Thruster with the Internal Fiber Optic Probe.

Vacuum Facility

The tests were conducted in Vacuum Facility 11 (VF-11) at GRC, shown in Figure 2, which is 2.2-m in diameter by 7.9-m long. The chamber is made of aluminum, and the interior is lined with stainless steel sheets. The facility was held between 1.9 and 7.5 x 10^{-4}-Pa during these tests by 4 0.9-m diameter and 3 1.2-m diameter gaseous helium cryopumps which provided a pumping speed of approximately 110,000 L/s on xenon. Non-condensable gases, such as helium, were removed from the chamber by a turbo-molecular pump.

Optical Diagnostics

Fiber optics with a core diameter of 200-μm and approximately 25-m long were used to deliver the emissions from the thruster to a 0.5-m spectrometer equipped with a fiber optic coupler. A fiber optic probe was mounted flush with the wall of the discharge chamber as shown in Figure 1. Spectra were also collected in a 50-mm by 6-mm slab perpendicular to the thruster axis, immediately downstream of the grids, however, these emissions proved too weak to be collected using fiber optics. The spectrometer entrance slit dimensions were set to 1-mm wide by 2-mm high to accommodate the relatively weak signal from the fiber optics. A 2400-lines/mm holographic grating optimized for ultraviolet wavelengths was used to enhance the transmission of the erosion product spectra, much of which lies between 300 and 400-nm. A photomultiplier tube with detection capability over the range from 180 to 900-nm was used to measure the signal. The spectra were collected with a computer data acquisition system, and scans were typically conducted going from 350 to 650-nm in 0.5-nm increments with a 0.3-s integration time. The system linearity and resolution were calibrated using a mercury Plucker tube. Using a tungsten filament lamp, magnitude calibrations were conducted before and after testing to correct for any deposition of eroded material on the fiber. The calibrations showed the deposition to be negligible, and the system, including the fiber optic, was sensitive well into the ultraviolet as illustrated in Figure 3.

Figure 2 - Vacuum Facility 11 at GRC.

The uncorrected spectra, collected at throttle level 28, is depicted in Figure 4. The majority of the peaks represent neutral and singly-ionized Xe. The spectra in the near-UV is enlarged to illustrate that some structure was observed in the emission at these wavelengths. In cases where the resolution prevented a clear distinction between xenon and titanium, the line was assumed to be xenon due to its relative abundance in the discharge chamber. Emission wavelengths, Einstein coefficients, and degeneracies
Table 2 – Ideal Throttling Table for the Test-Bed Ion Thruster.

<table>
<thead>
<tr>
<th>Throttle Level (TH)</th>
<th>Thrust (mN)</th>
<th>Thruster Input Power (W)</th>
<th>Engine Efficiency</th>
<th>Beam Voltage, (V_b) (V)</th>
<th>Beam Current, (J_b) (A)</th>
<th>(L_0) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>165</td>
<td>4595</td>
<td>0.698</td>
<td>1500</td>
<td>2.70</td>
<td>3953</td>
</tr>
<tr>
<td>27</td>
<td>159</td>
<td>4427</td>
<td>0.696</td>
<td>1500</td>
<td>2.60</td>
<td>3944</td>
</tr>
<tr>
<td>26</td>
<td>153</td>
<td>4256</td>
<td>0.695</td>
<td>1500</td>
<td>2.50</td>
<td>3934</td>
</tr>
<tr>
<td>25</td>
<td>147</td>
<td>4088</td>
<td>0.693</td>
<td>1500</td>
<td>2.40</td>
<td>3923</td>
</tr>
<tr>
<td>24</td>
<td>141</td>
<td>3919</td>
<td>0.691</td>
<td>1500</td>
<td>2.30</td>
<td>3913</td>
</tr>
<tr>
<td>23</td>
<td>135</td>
<td>3751</td>
<td>0.688</td>
<td>1500</td>
<td>2.20</td>
<td>3899</td>
</tr>
<tr>
<td>22</td>
<td>129</td>
<td>3583</td>
<td>0.686</td>
<td>1500</td>
<td>2.10</td>
<td>3887</td>
</tr>
<tr>
<td>21</td>
<td>123</td>
<td>3415</td>
<td>0.683</td>
<td>1500</td>
<td>2.00</td>
<td>3872</td>
</tr>
<tr>
<td>20</td>
<td>117</td>
<td>3247</td>
<td>0.683</td>
<td>1500</td>
<td>1.90</td>
<td>3876</td>
</tr>
<tr>
<td>19</td>
<td>108</td>
<td>3009</td>
<td>0.678</td>
<td>1500</td>
<td>1.80</td>
<td>3842</td>
</tr>
<tr>
<td>18</td>
<td>104</td>
<td>2832</td>
<td>0.671</td>
<td>1400</td>
<td>1.76</td>
<td>3710</td>
</tr>
<tr>
<td>17</td>
<td>101</td>
<td>2655</td>
<td>0.664</td>
<td>1300</td>
<td>1.76</td>
<td>3573</td>
</tr>
<tr>
<td>16</td>
<td>96.4</td>
<td>2478</td>
<td>0.656</td>
<td>1200</td>
<td>1.76</td>
<td>3431</td>
</tr>
<tr>
<td>15</td>
<td>91.4</td>
<td>2298</td>
<td>0.627</td>
<td>1100</td>
<td>1.74</td>
<td>3205</td>
</tr>
<tr>
<td>14</td>
<td>86.7</td>
<td>2177</td>
<td>0.630</td>
<td>1100</td>
<td>1.65</td>
<td>3220</td>
</tr>
<tr>
<td>13</td>
<td>82.4</td>
<td>2059</td>
<td>0.639</td>
<td>1100</td>
<td>1.57</td>
<td>3247</td>
</tr>
<tr>
<td>12</td>
<td>77.7</td>
<td>1939</td>
<td>0.636</td>
<td>1100</td>
<td>1.48</td>
<td>3228</td>
</tr>
<tr>
<td>11</td>
<td>72.5</td>
<td>1818</td>
<td>0.631</td>
<td>1100</td>
<td>1.38</td>
<td>3218</td>
</tr>
<tr>
<td>10</td>
<td>67.7</td>
<td>1697</td>
<td>0.632</td>
<td>1100</td>
<td>1.29</td>
<td>3221</td>
</tr>
<tr>
<td>9</td>
<td>62.6</td>
<td>1578</td>
<td>0.620</td>
<td>1100</td>
<td>1.19</td>
<td>3183</td>
</tr>
<tr>
<td>8</td>
<td>57.3</td>
<td>1457</td>
<td>0.613</td>
<td>1100</td>
<td>1.09</td>
<td>3175</td>
</tr>
<tr>
<td>7</td>
<td>52.0</td>
<td>1330</td>
<td>0.607</td>
<td>1100</td>
<td>0.99</td>
<td>3156</td>
</tr>
<tr>
<td>6</td>
<td>46.8</td>
<td>1209</td>
<td>0.598</td>
<td>1100</td>
<td>0.89</td>
<td>3144</td>
</tr>
<tr>
<td>5</td>
<td>41.5</td>
<td>1089</td>
<td>0.584</td>
<td>1100</td>
<td>0.79</td>
<td>3119</td>
</tr>
<tr>
<td>4</td>
<td>36.3</td>
<td>969</td>
<td>0.568</td>
<td>1100</td>
<td>0.69</td>
<td>3086</td>
</tr>
<tr>
<td>3</td>
<td>31.1</td>
<td>846</td>
<td>0.546</td>
<td>1100</td>
<td>0.59</td>
<td>3027</td>
</tr>
<tr>
<td>2</td>
<td>26.9</td>
<td>724</td>
<td>0.537</td>
<td>1100</td>
<td>0.51</td>
<td>2942</td>
</tr>
<tr>
<td>1</td>
<td>23.6</td>
<td>603</td>
<td>0.493</td>
<td>850</td>
<td>0.51</td>
<td>2566</td>
</tr>
<tr>
<td>0</td>
<td>20.2</td>
<td>483</td>
<td>0.445</td>
<td>650</td>
<td>0.50</td>
<td>2163</td>
</tr>
</tbody>
</table>

were obtained from the National Institute of Standards and Technology (NIST) Physical Reference Data.\(^{29}\) Energy levels and some relative intensities were obtained from Striganov and Sventitski.\(^{30}\)

EMISSION SPECTROSCOPY RESULTS

The primary goal of the spectroscopic investigation was to determine the prevalence of erosion product spectra in the emissions from a thruster under various operating conditions. While the emission in the beam proved too weak to be observed using the fiber optic scheme mentioned previously, the spectra in the discharge chamber contained a number of lines as shown in Figure 5. The spectra has been separated in 100-nm sections in Figure 5 for clarity in the designation of the peaks. Throttle condition 15 is shown in Figure 5 because it is the NSTAR maximum power condition and therefore provides a reference point to a thoroughly evaluated operating point. The results of the 8192-hour wear-test showed a slight chamfering of the upstream face of the molybdenum screen grid apertures, resulting in an estimated mass loss of 0.23-g.\(^{2}\) The emission spectrum is comprised mostly of singly ionized xenon lines, with a lesser degree of neutral xenon and low-level atomic titanium and nitrogen (background gas) emissions. The lines shown in Figure 5 are representative of those seen at each of the other throttle conditions.

Several of the neutral titanium lines were examined to determine the scaling of their intensity with the beam current, and the results are presented in Figure 6. The line strength increased with current. Since the line intensity is, in general, a function of
Figure 3 - Magnitude Calibration of the Fiber-Optic/Spectrometer System with a Tungsten Filament Lamp

Figure 4 - Sample Discharge Chamber Spectra Obtained from the Internal Fiber Optic Probe. (TH28)
Figure 5 - Detailed Spectra at TH15 with Line Identification.
atom density, electron density, and electron energy distribution function for a collisionally excited population, trends in titanium density cannot be discerned from the data in Figure 6 without additional information on the electron population in the discharge chamber. The technique by Rock, Mantenieks, and Parsons23 can be applied to the titanium atom population in the discharge, however the accuracy of the density estimate is limited by the few transitions observed. To bolster the effectiveness of this technique with a titanium screen grid, additional titanium lines must be detected. The scatter in the intensity of the titanium lines with the beam current emphasizes the necessity for additional transitions to give the technique a better statistical foundation.

ANALYSIS AND DISCUSSION OF EMISSION SPECTROSCOPY FOR EROSION MEASUREMENTS

The geometry of the ion thruster precludes examination of the discharge chamber environment without significant modifications; in order to perform LIF measurements in the discharge chamber, Williams et al.8 used three windows mounted to the conical section of an NSTAR derivative thruster. The use of a fiber optic probe mounted to the discharge chamber was non-intrusive and required only a minor modification to the discharge chamber. However, the plasma induced fluorescence of the erosion products yielded relatively weak signals. The minimal level of erosion product lines in the emission spectra is the result of both a low erosion-rate and the limited amount of light collected by the 200-μm diameter fiber optic. Since the maximum discharge voltage in these experiments was 26.2-V, few doubly charged ions were expected to be created, and the erosion-rate was expected to be low. The value of 18-eV for the sputtering threshold of titanium by xenon was used despite the contentious nature of these measurements.3132 Depending on the size of the anode fall voltage, ions in the discharge chamber had sufficient energy to sputter the titanium screen grid. Qualitatively, the discharge chamber emission spectra support these suppositions.

In an attempt to enhance the signal of the erosion products in the discharge chamber, the screen grid was biased 10 and 20-V below cathode to increase the ion impingement energy. The results however were inconclusive. While perturbing the discharge in order to test the detection limits of the emission spectroscopy diagnostic is useful in the preliminary stages of development, the goal is to develop a passive erosion-rate measurement technique. In order to determine the erosion-rate inside the discharge chamber from the emission spectra, improved collection optics must be employed. This is the domain of future research. The goal will be accomplished either with miniature collection optics for the fiber optic probe or by using direct viewing of the discharge chamber through the grids. The latter method, as performed by Rock, Mantenieks, and Parsons23 with a mercury ion thruster, appears to be reasonable based on the weak emission from the beam plasma.
QUANTITATIVE EROSION MEASUREMENTS

Although the spectroscopic investigation of the discharge chamber yielded encouraging initial results, the accelerator grid lifetime remains the most immediate life issue for thruster engineers and is the focus of an ongoing erosion-rate diagnostic development project at Glenn Research Center. The weak emission in the beam plasma was insufficient to decipher the character of the plasma, not to mention the erosion products. In this region, interrogation must be accomplished with either greatly improved collection optics or LIF. For LIF to be a viable erosion diagnostic, the laser-induced fluorescence must be much greater than the plasma-induced fluorescence (PIF) and the absolute density of sputtered material must be determined. Gaeta et al. developed a ratio for the intensity of LIF to PIF. Since the rate of radiative excitation is proportional to the laser intensity in an optically thin plasma, the laser power determines the signal-to-noise ratio. Based upon the formula reported by Gaeta et al.,

\[\frac{n_{Mo, max}}{n_{PIF}} = \frac{m}{M \pi \lambda v_e} \]

where \(m \) is the mass loss in kg over a period of time \(t \), \(M \) is the atomic mass in kg, \(A \) is the entire grid area, \(v_e \) is the average velocity of the sputtered material, \(F_b \) is the correction factor for the radial distribution of ion current, and \(f_d \) is the fraction of sputtered material which is ejected with velocity components in the downstream direction. The average velocity of the sputtered atoms was estimated to be between \(4 \times 10^5 \) and \(1 \times 10^6 \) m/s based on the data of Stuart, Wehner, and Anderson. This bracket a wide range, but molybdenum is expected to be closer to the lower limit due to its atomic mass. The radial distribution of ion current was varied from 1 (uniform) to 1.3 (slightly peaked on axis), and 50 to 100 percent of the ejected material was assumed to flow downstream. Using the mass loss of 10.81 g in the NSTAR 8192-hour test, the number density near the accelerator grid was estimated to be between \(1.5 \times 10^6 \) and \(1.1 \times 10^7 \) cm\(^{-3}\). Accurate density measurements using laser-induced fluorescence have been reported as low as \(10^6 \text{cm}^{-3} \). Orsito et al. provided a detailed sensitivity and error analysis for the reported LIF density diagnostic, and the primary limitation on the sensitivity was the collection optics and detector. Nevertheless, Gaeta et al. were able to detect the molybdenum fluorescence signal at 390-nm with the accelerator grid at -200-V, a condition similar to the NSTAR beginning-of-life value of -180-V.

Despite the lack of precedence for a quantitative LIF density diagnostic in the range of densities expected from long-lived accelerator grids, a quantitative laser-induced fluorescence density diagnostic is currently in development at GRC. Going beyond previous works, the LIF density measurements include a calibration cell and computer modeling to relate the density distribution to an erosion-rate and lifetime of the grid. Figure 7 summarizes the execution of the diagnostic. The following paragraphs discuss the diagnostic in detail.

Laser-induced Fluorescence

The laser-induced fluorescence erosion material density diagnostic currently being developed at GRC will initially incorporate a small interrogation region determined by the focusing optics. The laser system currently consists of a pulsed Nd:YAG laser which is used to pump a dye laser. The diagnostic will be evaluated with molybdenum grids due to the heritage of this grid material with NSTAR and the previous LIF erosion measurement works. Orsito et al. pumped the \(a^2S_3 \rightarrow z^2P_3^0 \) transition at 345.64-nm which fluoresces primarily at 550.6-nm (\(2^2P_3^0 \rightarrow a^2S_3 \)). This method is advantageous because the detector will be unaffected by scattering from the laser, and the fluorescence is more than 1-nm from the nearest xenon (I, II, or III) line. Ultimately, the LIF diagnostic will also be used to evaluate the lifetimes of both titanium and carbon-carbon composite grids. Titanium has several ultraviolet transitions which may be useful for the LIF erosion diagnostic. A cursory examination of the spectra of carbon indicated that the most attractive lines for LIF were also within the ultraviolet. To generate beams at these wavelengths, the output of the pulsed dye laser will be frequency doubled. In most cases, the fluorescence is also in the ultraviolet, and an intensified CCD (ICCD) array with photon-counting capability will be used to collect the signal.
Grid Lifetime Limited by Erosion

Real-Time Diagnostics

- Quantitative Emission Spectroscopy and Laser Induced Fluorescence
- Spatial Distribution of Eroded Material Density Proportional to Signal
- Density Calibration:
 - Sputtering Facility
 - Vapor Pressure
- Spatial Distribution of Erosion Product Density

Lifetime Models

- Physical Simulations and Probabilistic Failure Analysis
- Physical Simulations Use Experimental Results for Boundary Conditions and Validation
- PFA Uses Experimental Data for Statistical Foundations: Additional Data Increase Accuracy

Accurate and Cost-Effective Grid Lifetime Prediction

Calibration

Two calibration techniques for the LIF erosion material density measurement apparatus are currently under examination at GRC. The premise of both techniques is to produce a known density of erosion product neutrals which can be measured using the collection optics that will be used with the thruster. One method uses a high flux sputtering source to erode the target material. The erosion will be measured using a highly accurate balance, a mass loss technique. This method is advantageous because the environment is similar to the beam of the thruster.

The density of eroded neutrals must be calculated using a model for their emission, and this is a source of uncertainty in this calibration technique.

An alternate calibration method employs knowledge of the vapor pressure of the target species at elevated temperatures (1600 to 1900-K). Assuming the vaporized atoms are emitted in thermal equilibrium with a surrounding container of the same material, the number density near the surface is calculated using the ideal gas law. Laser induced fluorescence signals collected from this standard are corrected for thermal effects to yield an absolute...
calibration based on the number density of erosion products. Using a small tube of the target material, the internal density and pressure are expected to be relatively uniform near the midpoint if the tube temperature distribution is uniform. In practice, the tube will exhibit some variation in temperature axially if it is supported at its endpoints. Provided the axial temperature variation near the midpoint is small, the non-uniformity can be ignored. This issue is currently under investigation. Although the vapor pressure method is advantageous in terms of simplicity and the accuracy to which the density of the target species is known, care must be exercised either in the design of the fluorescence collection scheme to minimize the amount of graybody radiation viewed from the container or in choosing the fluorescence transition such that it is much larger than the graybody radiation of the tube. The calibration methods are undergoing evaluation.

Modeling the Results to Predict Lifetime

Since the LIF diagnostic yields a measurement of the density of the eroded material near the grid, a model must be developed to calculate the erosion-rate and grid lifetime from the LIF results. Both physical models and probabilistic failure analysis have been used to predict grid erosion and lifetime. The strength of physical models has always been that, following a successful validation, different operating conditions can be simulated with relatively little additional time or cost. The drawback of the physical models has been the difficulty in validation and the associated uncertainties in predicting untested geometries or conditions. Particle simulation techniques employed to study grid erosion appear to be the best candidate for incorporation of the LIF density data to yield a grid lifetime model. The ability of a probabilistic failure model to incorporate new data as it is generated to refine predictions argues for the use of this technique. The scope and details of the modeling for the LIF density diagnostic are the subject of future work.

The discharge chamber spectra were useful for species identification.

With improved collection, the model presented by Rock, Mantenieks, and Parsons may prove adequate to describe erosion processes within the discharge chamber. This model uses the excitation state of a species with much greater density to infer the distribution of the erosion species. Using the emission spectra to determine the erosion-rate results in a very passive measurement.

Based on a literature review, laser-induced fluorescence appears to be the best option for a real-time erosion-rate diagnostic for the accelerator grid. The experimental approach being executed at GRC was presented. The LIF portion of the diagnostic will be conducted in a manner similar to previous efforts. In addition, the diagnostic being developed at GRC will include calibration and modeling to relate the density measurement to the life of the grid.

REFERENCES

The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.