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ABSTRACT

7 The present document is a final technical report under the NCC-1-233 res;:arch program
(dated September 15, 1998; see Appendix 5) carried out within co-operation between United
States' NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues
similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and
1998, respectively.

The report provides results of "The study of stability of compression-loaded multispan
composite panels upon failure of elements binding it to panel supports"; these comply with

requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.
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INTRODUCTION

The previous studies in [1, 2] paid major attention, firstly, to postbuckling behavior of
composite panels and, secondly, to the problem of evaluating strength and buckling of a built-up
structure with consideration of postbuckling deformation of some components. These studies
relied on the assumption that the thin-walled elements are attached to supports by links which do
not fail until the structure becomes destroyed.

However, the links may turn out to have inadequate strength, and the structure can fail
due to fracture of the links between the panel and supports. This outcome is evidenced by static
strength testing of a number of real structures. Figure 0.1 demonstrates airplane wing fracture;
one can see that the upper, compression-loaded panel has failed because of fracture of links
between the panel and ribs when the load was much less than the critical value obtained under
the assumption that the buckling nodal lines rest on the ribs.

The present research suggests the approach which enables predicting the panel failure
load as a function of strength of particular links between the panel and supports.

Let us detail now the essence of the problem.

One knows that the major load for upper panels in a large-aspect-ratio wing is the

longitudinal compression caused by general bending. Therefore, parameters of upper stiffened

panels (including the rib spacing) are specified on the basis of critical stress resultants N,

which are computed under the assumption that ribs are nodal lines for the buckled panel.
This approach is valid if strength of links between the continuous panel and rib/spar

flanges is sufficient for the buckling mode above.

However, if not, the panel may buckle at a load N, less than N:, , upon failure of links
along one or more supports.

Thus, there appears the problem of predicting the necessary strength of links between a
compression-loaded panel and the supports (i.e., ribs and spars) — such that the panel buckling
nodal lines be on supports; this problem is rather challenging in case a high stress must be
applied to a monolithic composite stiffened panel. |

The problem is treated here by using the energy method proposed in [3] for analyzing
behavior of a compression-loaded composite plate with delamination.

Note that analyzing the strength of links between the panel and intermediate supports is
different from the usual problem of searching for the necessary stiffness of compliant support;
the latter formulation proceeds from buckling shapes caused by mutual deformation of the

supports and permanently attached panel.



Part 1. The method for studying stability of compression-loaded
stiffened multispan composite panel after failure of elements
binding it to transverse and longitudinal supports

1.1. Solution to the problem of postbuckling behavior of
unsupported part in compression-loaded multispan panel upon
failure of support links

Let us consider a rectangular flat orthotropic panel incorporated in a thin-walled wing
torsion box (Fig. 1.1). The panel is attached to rib flanges, and its sides, to spar flanges. Panel
parameters are

— L, the length,

— b, the width,

- a, the rib spacing;
clearly, L=kpa where k,, is the total number of panel bays. At the ends the panel is
compressed with stress resultants N, .

The subcritical (flat) state of the panel (the state I in Fig. 1.2) is characterized with the

resultant N, and the in-plane displacement A ,.

At a certain value of N, the panel can buckle over a certain length ¢ =ka (where k is an

integer), which process makes the panel be separated from k - 1 ribs — refer to state I in Fig. 1.2.

The other buckling mode is panel buckling over a certain length ¢ with separation from
k —1 ribs and two longitudinal supports (that is spars) — refer to state III in Fig. 1.2.

If the panel is connected to ribs and spars by rather strong links, then the major buckling
shape is the usual sinusoidal surface whose nodal lines are on ribs and spars — see state III in Fig. 1.2;
in this case the critical load N:r is calculated by usual formulas.

Let us address now panel buckling with transition from state I to state IT (Fig. 1.2).

Assume that the panel in its subcritical condition is compressed with the stress resultant N, ;

the panel ends have a mutual longitudinal displacement A , . The panel energy U is equivalent
1 :
to the triangle area ENonx’ Fig. 1.3. Upon failure of rib links the panel buckles over a

portion of length ¢, and the load gets decreased to =N=xo. With the state II implemented, the

displacement A , does not change. The total initial compression energy U transforms into



— compression energy Up and

- bending energy Gb ,
and the panel has an out-of-plane displacement f . The difference of energy between states I and II,
R=U—(§p+l-}b) (1.1)
is released when the links fail. Energy balance equation (1.1) is represented graphically in Fig.
1.3; here, R is the work for destroying the links between the panel and ribs during buckling over

the length £=ka.

Thus, energy balance equation (1.1) and the condition A y = const for the transition

from state I to state II make it possible to determine Ny, and the final out-of-plane
displacement f. The buckling surface length £=ka is evaluated by minimizing N, with

respect to k.

We should relate the compression energy U and the mutual displacement A  to other

variables in the problem.
Strains and stress resultants in the midsurface of the orthotropic panel are interrelated as
follows:
ex = A Ny +A1p Ny, &y =ApNy +App Ny, ¥=A33Nyy, (1.2)

¥

where Aqy, Asz, Ajzand A, are cocos of compliance of the panel in its plane. The mutual

end displacement may be expressed as,
Ay =LAj Nyg- (1.3)

Compression potential energy is,

A
U=Lb—2“—N,2w. (1.4)

To compute the bending energy component Uy, anfi the compression energy component

Gp , we consider the panel buckled over the length ¢. Assume that the plain (not buckled) parts

of the panel clamp the transverse edges {x =0} and {x = £ } of the separated part.

In case the panel is torn off the ribs only, the out-of-plane displacement is expressed as,

19 ¢ )
2 —[—sin% . (1.5)

The midsurface stress resultants are determined by solving the deformation compatibility

w = fsin

equation from [4]:
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52 " oxdy -2-,[’(w,w), | (1.6)

where we use the nonlinear operator

2

1,(7( ) ( 3w J 62w *w
—Llw,w) = -

2 oxdy) ox? ay?

and midsurface strains are

6u (6w) ov (6w)_ 6u av ow Ow

LA AL 1.7
ox 2 \ax & =5y T2 oy, (1.7)

x = =5y Tox T ox oy

Now, stress resultants N, Ny and ny are expressed in terms of the function ®:

P P 20 18
X_ay2’ )’_62’ Xy & axay’ :

and substituted (with ey, €y, and y from (1.7) and w from (1.5)) into the formula (1.6) to

N

obtain the following equation:

i
L(®) =5 L (W, W), (1.9)
where
5 Py .
e =Aqy—+2A +A , 1.10
1() 2,4 3532 o2 116y4 (1.10)

1
A3 =A12 +5A33.

The relation (1.5) is to be substituted in the right-hand side of (1.6) to obtain

1 £2 n ,_( 2mx 4nx  2my  2mx 21ty) '
2,[’(w w) 2 a‘| cos 7 -cos 7 +§os b —Cos 7 cos= =/, (1.11)
where
_t
o=
The general solution to (1.9) looks like this:
= y2
<D=<I>1—Nxo-i-, o (112)
where '
f2 2 2nx 1 4nx) 9 2my 2nx 2my
o) =3—2[a 52(COST—E COST)+<1_2 cos—b——a O3 cos—,~ cos— = |,
1 1 1
y=—, O=—, & 7

A22, 3—A22+2A3a2+A11a



Taking into account (1.12), the stress resultants N,, Ny, and N,, in (1.8) can be

represented in terms of coordinates:

= 2my 2mx  2my | ]
N 4
Ny =—Nxo—t (SICOST—53O. cos—,~ cos— = b )
2nx 1 4mx 2mx 2my
N, = —t?a? [82 (COST—ZCOSTJ o3 cos—,~ cosT] ’ (1.13)
2nx | 2ny
ny—ta83sm75mb J
where
f2
t" = _8— 2—2

The equation of bending for the orthotropic panel in question may be written on the basis
of [4]:

*w *w o*w Pw 82 Pw ,
Dj; —5 +2D; ——— 4D _N -N 2N ——=0, (L14)
Woaxt T P ox2oy? T R gyt T X a2 T Y 52 UV By gy (1.14)

where Dj1, Dy;,and Dj are the panel bending stiffnesg parameters; these could by using [2]

be related to stiffnesses of the orthotropic skin and stiffeners.

The dependence of panel out-of-plane displacement on the external load ﬁxo is

evaluated by solving Bubnov-Galerkin equation:

£hb
I=6[J sin? ——sm?dx 0,
where X is the left-hand side expression in (1.14). By allowing for (1.5) and (1.13), we derive,
2¢

b 2
_¢ r 2 2mx . my 4 . 2TX . My
I—ff20 (!{32 [—(8D11+2a D3)cos 7 smb +a” Dy, sin ¢ S ]—

— 2nx 2ny 27X 1ry 2nx 1 4mx
4
—[Nxo +2t2(61 —530. COS.VE—)cos“B‘]COS"é' sin b -t a [52(008—7 Zcos _Zﬁ) -

2nx 2 X 2 2
—830057005%}sm2%sm%—2t a483 sm2$sm%cosn—by}sm E}sm%dxdy 0.

By estimating the integrals and stipulating f # 0, the following relation appears:

2 2
n 1 3, =t 17
4£ (D“+2(1 D3+16a DZZ)_NXO"'?[SI"’(I (1682+ 83)]



Hereinafter, the new symbols are utilized:

2 .
n_"Du n n=_4_(112&+1 4D22)
Ng = 3 ke, ke 2 oo Dy, The D)

0<a=k2<4qamll
*=%% Dy’

1 17 1
54 = 5(51 +Ea482 +5a463) ,

(1.15)

In these terms,
1 /1=
t2=—(Nxo-N§,). (1.16)
84

The mutual in-plane displacement of the edges {x =0} and {x =L} is,

- L
= Ou
Ax-"'oaxdx-

Herein, the component from (1.7)

au _ L[a_wjz
ax  x"2ox)

should be substituted; and formulas (1.2), (1.5), and (1.13) have to be taken into account to

produce

= L= Lk 2 2mx
Ay =ENXO+ ({ t2 (cos-—:—y+4sin2—[- sinz%) dx,

or, substituting t2 from (1.16):
- L _ o == - M
Ax =8—[(54 +£)Nxo—eNE,], (1.17)
4
where 54 =8, /8, and £=¢/L.

To determine external load Ny, applied to the buckled portion, we make use of the

condition A 4 = const in case the panel comes from state I into state II. Allowing for (1.3) and

(1.17), the result is,

i 84 Nyo + £ Ng

X0 5+ 0 , . (1.18)

Potential energy U of the compression-bent panel is to be subdivided into the bending

energy component Uy and the midsurface deformation energy component Up:

U=Up+Up. (1.19)
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The bending energy component may be written as
£ b 2.)2 2., A2 (2 JZ ( 2 )2
== 1 0w 0w 9w o°w o‘w
Up == D +2Djy——=+Dyy | =—=| +4D dxdy .
b 26..('!. 11[ J 12 6)(2 ayz 22 6y2 33 dx dy

By substituting w from (1.5) into the above expression, we obtain

4 tb
2 2 nx 1 X\ .
Ub = 2-£— fzj | [(D“cosz-%x-—Dlz'az cosTnxsin27+zD22a4 sin4-€—) smz% +

2
+D33,oz2 sin271rx cosz%:ldx dy.

Upon estimating the integrals and taking into consideration (1.15) and (1.16) the energy is

APPYLT n

Ub=QNH( -NE),
04

Or, with (1.18) in mind, we can write

= ¢b_ 5 N,-NI
Up =— NI X0~ _a 1.20
775, 84+ 70 (1.20)

The midsurface deformation energy component is represented by
= Lb

U =1H(A N2 + Az Ny + 241, Ny Ny +A33 Ny 2) dxd
ono 118x 22Ny 12 Nx Ny 33 Nxy Y

here, equation (1.13) for stress resultants is substituted:

<

Lb 22 4 ¢ b 5 2my 2mx 1 4mx
p= 25 Nxo —2—({6"{51005 T+52 cosz-€—+igcosz—g— +
2mx 2 2 2
+ 903 a‘{(a“A“ +2a2A,2 +A22) 00527 cosz—bni+on Aj; sz_;:x_ smz—:y-}}dxdy.

Upon estimating the integrals and taking into consideration (1.16) the energy expression

becomes

T R LU
B DR D

= Lb|- =2 = 2
Up =E[84NXO+E(NXO —(,NE,) J

or, due to (1.18), the relation (1.21) appears:

= Lb 54N Z(NH)
" (1.21)

P= 25, 54
Now substitute (1.20) and (1.21) in (1.19) to derive the total potential energy for the

panel in state II:

=0 Lb|_ , m\2
U = 251[1\1 -54+Z(NXO—NC,)J. (1.22)
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Relations (1.4) and (1.22) should be inserted in (1.1) to obtain
Ayg
2(84+12)
We may express work R released during fracture of links between the panel and k -1

: 2
b (N -NE ) =R. (1.23)
ribs:
R=yrb(k-1), (1.24)
where v¢ is the specific work necessary to separate the panel from a rib over a unit length of the

rib flange.

For the moment when the panel becomes separated from ribs, the stress resultant N, is

determined from (1.23) and (1.24):

k-1]2(84+2)y¢
Nxo=Ng+\/ ” [ (aA“ . (1.25)

Both left-hand and right-hand sides in (1.25) could be undimensionalized by dividing

these by the critical load N:r =NCI¥ for buckling between ribs (refer to state IV in Fig. 1.2); the

critical load is obtained in the usual way by approximating the out-of-plane displacement with

the formula w = fsinE sinly- :

a b
n? Dy D3 Doy
Ng =—>-kg kW—l+2ao D“+a§ D (1.26)
where
a Dll
==, 0<a,<44—L .
o =1 5, (1.27)
Upon these transformations, obtain
N=NI=NZ+{pl X, (1.28)
where
— N —n NI Y¢ 1 w2 p k-1{- &k
N=—2 Ng=—5Z, X=-""L y ==A,INY), pl=—-—|5,+—.(1.2
v Ne=gi X=gms v =g An(NG ) B == Ber -] a29)

The y variable is the specific energy that would be accumulated in a panel with a unit
length, which is compressed with the stress resultant Ng ; also, the undimensionalized value X
is the relative energy spent to separate the panel from a rib.

In order to determine the minimum possible value N=N" we must minimize (1.28)

with respect to k, where k=2, 3, ..., k.
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-

Now we should analyze panel buckling with transition from state I to state I (Fig. 1.2) -
that is, panel buckling with separation over the length £ =k a from k -1 ribs and two spars to

which the panel is attached by its side edges. - -
Upon the separation from spars the longitudinal edges are free. Displacement w may be

expressed as,

wet s . (130

With links between the panel and spars broken, the panel buckles over the length ¢, and
load decreases to =.N',“, - During transition from state I to state III the displacement A , does not

vary. So the panel buckling critical stress resultant is

2
n“D .
Ng =—k, kI (1.31)

Now we use analogy with theories of [5] for the angle of the tangent to the midsurface of
the buckled panel in the longitudinal direction and take into account (1.30) to obtain
$=03,,

ﬁxo—NIII 2mx
e= 8.—2, 9 = . ==
V NI er = ST

To derive the displacement w, we utilize the boundary condition {w =0 at x =0 and x =¢ }:

where

X
4 5 TX
=019, ds =6 —sin“—,
w 6[“ nsm 7

This relation is compared with (1.30) to have,
2 £ Neo-Ng (132
8 ¢? Ngo | '
The stress resultants N, Ny , and ny for state III are

Ny =-Ny,, Ny =N, =0. (1.33)

The mutual displacement of edges {x=0} and {x=L} is written with due

consideration of (1.2), (1.5), (1.33), and (1.32):

- L N 0)|
= Ou Nyo - N =
Ax=—I§dx=2€-x°—m°’+LA”Nxo. (1.34)

0 cr
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The external load -I;leo of the buckled panel may be evaluated by using the condition

A = const for the panel transition from state I to state IIl. With (1.3) and (1.34) in force, we

have
= g N, +2Z/NO
Non = - X0 - 1.35
X0 Ecr +24 (1.35)
where
eq =Ay NI, (1.36)

From (1.32) and (1.35):

2 = Nxo—NgrI

= W. (1.37)

The bending energy component is expressed as,

Now substitute w from (1.30) and allow for (1.36) and (1.37) to obtain

m
Nxo - Ncr

= A
Up =2 b =1L 4NII <
2 Eor +2¢

(1.38)

The relation (1.33) is now taken into account to derive the compression energy

component for the plate midsurface:
= b L 5
Up == JA| NZdx.
29

Herein, we substitute stress resultants from (1.33) and (1.35):

— 2
= A“ BcrNxo +2£Ng
Up=Lb = . 1.39

P 2 ( € +24 (1.39)
With relations (1.4), (1.38), and (1.39) obtained, eqL;ation (1.1) may be re-written as
A” Eor + ?

b
2 (eq/2+2)

. (N,“,-Ng‘})2 =R.

Real panels are characterized with the interrelation €, <<#, s0

A 2
Lb%(Nxo-Ngl) =R. (1.40)

Let us decompose R into two summands:

R =R; +R,, (1.41)
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where
Re=veb(k-1), R,=27v,ak, (1.42)

Y, is the specific energy necessary to separate the panel from a unit length of the spar.

Here, we substitute (1.41) and (1.42) in (1.40) and take into analysis that t=k/ km

2k k-1
m
Nyo = N¢r +\/aAnkm ( " Y¢ +2aoyr) . (1.43)

Both left-hand and right-hand sides of (1.43) may be divided by the critical stress
resultant N;_r =Ng for panel buckling within a single bay with no separation from ribs and

spars (refer to state IV in Fig. 1.2):

N=NT=NT +pEX (1.44)
where X corresponds to (1.29) and

Yr —m N m 1 - s _ Xr
= , Ngc = , — | k{l+2a,X;)-1}, X;=—. 1.45
Y=oy, N Poi [kl+200%:)-1]. Xe=F. a4

For particular values of o, and ratio X; we should determine the value of k (with
k=1, 2, ..., ky) which provides the minimum N level.

The maximum load N that may be carried by the panel not separating from supports

(with panel parameters and link fracture energy prescribed) corresponds to the lower value

among N7 and N (as provided by (1.28) and (1.44)) while assuming that N < 1. Note that
both (1.28) and (1.44) have been obtained under the assumption of N, < Ng; so the relations

are alJlowed to be united as

NT if NT<N™ and N, <NIY,
N={N" if N'>NT and N, <N, (1.46)
1 if min (ﬁn, ﬁm) >1.

Let us use X, to denote the minimum possible value of the relative link fracture energy

X for links between the panel and a rib; this X, value at the X, /X ratio specified ensures

N =1 (see (1.46)), and no greater X value could increase the failure load. From (1.28), (1.44),
and (1.46) we obtain

{xg, £ X115 xII
c =

X0, if i <xi”
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1 =11 \2 m _ - 1 =111)2
xT = max —-—(I—N ) , X =  max -—(I—N ) .
“ k=2,3,...,k_{ gl “ T k=1,2,.k. | pT “
These formulas utilize the k values which ensure N—g <1 and ﬁ? <1, respectively.
When X 2 X, , the panel is attached to supports strongly enough for the panel to buckle
between ribs (i.e., to come to the state IV) with no separation from ribs and/or spars. Thus, the
critical value X, of link fracture relative energy at X, prescribed is an important indicator of

strength of joints between the panel and its loﬁgitudinal and transverse supports.
In particular, the present methodology may be employed to evaluate link fracture energy

for a skin and the longitudinal and transverse stiffeners.

1.2. Dependence of ultimate load on panel parameters and link
fracture energy available: A parametric study

In the general case an orthotropic panel may be described as a composite skin (with a

thickness h and a symmetric stacking) stiffened with stringers. The material characteristics of

the orthotropic skin include E7,E9,G®, uf, and p9 - that is, elastic and shear moduli and

Poisson's ratio. Stringer parameters include the following set:
-bg=b/ (ns + l) , the stiffener spacing,
— ng, the total number of stiffeners,
— Eg, the stiffener Young modulus,

— Fg, the stiffener cross-sectional area,

— I, the stiffener cross section inertia moment, and .

— 25, the distance from the stiffener cross section centroid to the skin midsurface.

For the panel the compliance cocos are

L ! B Hy 1
Alj==v, Ap=—— Ap=-—Ll-pa, =_H2 -
WTER (2TER AT pp ATy Antg
where
E,=E%(1+r), E —EOH—F =y _}1_8 o _ oEg
1=K R R MM B2 =177 H2=H Eo’

E.F
G=G°, r=r{1-pfps), r= 'S .
(1-uf3) E? hb,



16

The panel bending stiffness is determined through skin and stringer stiffnesses as

follows:
Dy = Df) + Dy, Dy, = D3y, D3 = D3 = Dy, +2Ds;3,
where
EQh3 ESh3 GO L3
Df; = ——, D= s o1: Di=D3= TH
12(1— H] uz) 12(l—u1 uz)
. Efh E,I; EF 2 1
Dy = 5o hi+ ot (zs-1y)7, D12=Df2=§(P3Df1+u?Dgz),
1-pru2 s s '

and h; is the distance from the skin midsurface to the centroid of the cross section of the

stiffener with the neighbouring skin.
By analyzing formulas (1.28) and (1.44) it can be concluded that, with X and X, /X

specified, the value of N (and the integer k which minimizes ﬁ) depends on the following
parameters:

Ap A3 Dy Dy

An’ Apn’ Dy’ Dy

It is easy to write similar parameters for a plain (unstiffened) orthotropic panel:

Co, kp,

B &
Elo, E?,

In case the panel is isotropic the N value does only depend on o, kpy, and .

%o, kK, BT

Thus, the total number of parameters influencing N is rather large. In this connection we
limit ourselves to analysis of a few typical versions that help nevertheless to detail the entire
methodology. '

Firstly, let us consider a 10-bay panel (with k, =10) attached to ribs and spars; assume
that the rib spacing is much less than the distance between spars (here, o, =0.2). At the
initiatory stage, we presume in addition that the relative strength of panel/spar links is notably
greater than that of panel/rib links (X, X >>1) — this means that, as the load is growing, the
panel may separate from ribs only. We will address three versions of panel design:

— isotropic panel,

- homogeneous orthotropic panel, and

— inhomogeneous orthotropic panel (stiffened in the longitudinal direction).

Figure 1.4 represents the dependence of N on X for the isotropic panel in which
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Dy _An _Du_A4s
Dy An D3 Ap B | |
If the available link fracture energy X grows, the ultimate load N gradually increases, which is
accompanied with shortening of the separation zone length £ =k a. For example, within the
interval { X 56 <X <X4s5} the panel buckles and separates from four ribs (k =35), whereas
within the interval { X356 <X <X}, from three ribs (k=4). When X 2>X the panel
buckles between ribs and obtains the shape corresponding to state IV in Fig. 1.2. From Fig. 1.4 it
is seen that the isotropic panel is characterized with X =0.53.
Figure 1.5 depicts the same kind of dependence for the homogeneous orthotropic panel
(that has a composite skin with a symmetric layup arid no stiffeners) in which

D A D
L2 587, o34, 2463,
D22 A“ D3 All

The panel dimensions are the same as in the previous example. Here, we have the critical

value X =0.71, which is higher than that in the isotropic structure.

Figure 1.6 shows the «N—X» diagram for the orthotropic panel (with a composite
skin and stiffeners) in which the in-plane dimensions are identical to those in previous

versions; here,

D A D A
—AL_70.1, 22346, =888 =563,
Dy Aq D, Ap

Here, the structure has the critical value X = 0.77, which is slightly higher than that in

the unstiffened composite panel.

By comparing values of X for the three versions, it is clear that increasing the
longitudinal stiffness results in greater X, values.

Of interest is the dependence of X, on the relative rib spacing a,, .

Figure 1.7 demonstrates how X, of the isotropic panel depends on a; Figures 1.8
and 1.9 show similar functions for the homogeneous comp'osite skin and the orthotropic panel
with the stiffnesses reported above.

From Figures 1.7 through 1.9 it is seen that X ; notably decreases as o, grows.

Below, we consider the same panels but assume that these could buckle in accordance
with models II and III. The ratio X / X =y, /y¢ for these examples reaches various levels:

- 6.0 for the isotropic unstiffened panel,

— 4.0 for the composite unstiffened panel, and



— 3.0 for the composite stiffened panel.

Figures 1.10 through 1.12 represent relevant « N — X » diagrams. The curve corresponding
to state I intersécts (at a certain point X = Xp;_, ) with the curve for state IIl. For the panel
versions under consideration the X, value are on the curve corresponding to state II.

Figures 1.13 through 1.15 demonstrate the X¢r dependence on a,,. As for the isotropic
panel the curve corresponding to state II intersects the state I curve at the point with a, = 0.23.
Consequently, if the available X value is below Xers whereas o, <0.23, then the buckled
panel may separate from ribs only — state II. If, however, the available X value is below X,
but oy >0.23, the buckled panel separates from ribs and spars — state ITI. And the structure with
X > X buckles between ribs with no failure of links to both the ribs and spars - state IV. As
for homogeneous composite and structurally orthotropic panels (with the respective X, /X
values written above) the coordinate a, of intersection of curves corresponding to states II and
IT is slightly larger than that for the isotropic panel (here, 0y =031 and o, =0.34,
respectively).

| To conclude the investigation, we carried out studies on dependence of N on X and
X on o, for panels with different lengths —at k, =7, 8, 9, 10.

Figure 1.16 depicts the dependence of N on X for the isotropic panel at oy =02, The
bright circles on the curves denote panel transition from type III buckling to type I buckling.

Figure 1.17 demonstrates how X for the same panel depends on « . These curves
suggest that decreasing the total number of bays in the generic panel decreases X¢r » other things
being equal. This is associated with the fact that, with the total number of bays decreased, the
potential energy of the unbuckled panel portion (whose length is L - ¢) decreases as compared
with the total energy of the entire panel upon buckling.

Figure 1.18 shows dependence of X o On o, for the composite stiffened panel whose
stiffnesses are represented in the Figure.

Figure 1.19 provides the computed results on X as a function of the "relative stiffness
capability” in the longitudinal direction — Dy Dyy; the o, parameter assumes certain values:

0.2, 0.25, 0.3, 0.35, and 0.4. In the case of Dj; D3y >20 the parameter is seen not to influence
Xer-

Rl et
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Part 2. Fracture energy and strength of links between the multispan
panel and supports: Critical values for ensuring traditional buckling with
nodal lines being on the supports

Part 1 above introduced the notion of "specific link fracture energy X" for a compression-
loaded multispan panel attached to supports; also, Part 1 provides analytical expressions and some
parametric analyses that establish dependenceé of the panel failure load on X . To carry out real
analyses, one should be able to determine X for particular sﬁpports and joints. There exist
various designer solutions in respect of supporting elements and types of panel-to-support joints.
In addition, the "panel—joint—support" syétem fails at its weakest point. So the link fracture
energy is recommended to be determined by resorting to special experiments with real structure
parts; experimenters should record

~ the load-displacement diagram, «q — A », and

- the ultimate load q

(here, q is the linear density of the peeling-off load normal to the panel surface and applied to
the line of joint between the panel and the support, and A is the displacement in the q

direction). This diagram must be obtained while increasing the load q from zero to "panel-

A

P
support” link fracture. The area outlined by this diagram, Iq dA is the equivalent to the link
0

fracture energy; here, A is the displacement at fracture.

However, the experimenting with real structural parts is difficult to implement for a
number of reasons. In this connection we propose the method for theoretically determining the
link fracture energy while assuming that the weakest point in the "panel-support" system is the
joint (i.e., a bolted or riveted joint or an adhesive bond) whereas the support itself is rather stiff.

If the support is a beam-like rib transferring its load to spars, then the rib deformation energy,

b 2 b 2
M%(qp) aQ“(qp)
bw ‘J 2E; ¢ +] 2GF &Y 2.1)

can be added to the fracture energy of the joint, as this energy is released at the failure time

instant. In the above equation the symbols M(q p) and Q(q p) are the bending moment and the
shear force at the load qp, respectively, and EJ and GF are the rib bending and shear

stiffnesses, respectively.
Let us preliminarily address a simplified approach to bolt/rivet fracture energy, provided

that the joint fails because of breakage of the rod of a bolt or rivet.

E MR L]

ey
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2.1. The method to evaluate link fracture energy for bolted and riveted
joints. Relation to load-displacement diagram and bolt/rivet fracture
load '

To carry out real analyses, designers should evaluate parameters y ¢ and y,. We suggest
the method for determining these on the basis of experimentally obtained «q — A » diagram;
here, q is the linear density of the tensile load that tears the panel off the rib/spar, and A is a
characteristic displacement in the joint subjected to tension. The specific fracture energy (per
unit length of the joint) is,

A

P
Y= Iq da, (2.2)
0
where A, is the characteristic displacement at fracture time instant.

If the panel is attached to the supports by using bolts and/or rivets, and the fasteners fail
due to rod breakage, then y may be approximately computed on the basis of fhe «C—€»
diagram for the bolt/rivet material.

Assume that the «o — € » diagram for tension of a bolt/rivet has the shape represented in

Fig. 2.1; here, we employ the following notation: o is the yield stress; €5 =6, E; and Sp
and €, are the ultimate stress and the relative elongation at fracture, respectively.

With this, the rivet/bolt fracture energy and the y value may be calculated as,

A=HFSy and y=—cr1HFSd, 2.3)
where
H and F are rivet/bolt rod length and cross-sectional area, respectively,
c is the rivet/bolt spacing in a row,

n is the number of rivet/bolt rows in the joint, and

€
p
S4= Ic de is the area occupied by the «o —¢e» diag'ram; the area may be approximately
0
computed as,
Sqg=0pepn, (2.4)
where 7 is the «o — € » diagram filling ratio:

1 G02 €2
= |1+ - 5<n<l. .
n 2[ p Sp) , 05<n<l (2.5)
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Thus, to determine y , we should substitute the integral (2.4) into the formula (2.3):

7=nqup’ (26)
note that
ch
Gp=—2—n and A,=Hs,. @.7)

By substituting (2.6) into (1.29) and (1.45), we obtain relative link fracture energy values
X (for ribs) and X, (for spars):

_ 2Nt 9pt Apr _ 2N dpr Apr 2.8
- vy’ re VACHE 28)
All(Ncr ) All(Ncr )

Here, qpf, Qpr» N, Mr» Apf, and Ap, are the characteristics introduced above for evaluating

joints between the panel and ribs and spars, respectively.

The values X and X, enable one to use either plots in Figs 1.10 through 1.12 or
immediate computation in order to establish

— the load at failure of the compression-loaded multispan panel and

— the real buckling mode (that is, II, III, or IV).

There exists an opposite problem: one may want to ensure such a buckling surface shape
between ribs that links do not fail; in this situation the condition X > X . makes it possible to
determine the required parameters of bolts and rivets, as (2.7) includes fracture characteristics

Cp and Ep> bolt/rivet section area F , spacing ¢, and number of rows n .

2.2. Finite element analysis of link fracture energy for bolted joints

A joint is a system of discrete, irregular components which are in contact. A joint may
fail not only because of the bolt/rivet rod breakage consi‘dered in 2.1 but also due to head
separation and/or breakage of a plate/support near the bolt/rivet head. In this connection the
discrete link fracture energy should be established by utilizing Finite Element Methods (FEM).
The joint with the neighbouring portions of a rib and/or spar should be "dissociated" into finite

elements, and for each element we must determine the stress tensor cjj and the strain tensor €j;;

the joint is assumed to be loaded with tension due to detachment of the parts. In this case the
energy accumulated by the components during the system deformation to failure is described by

the following expression:

e
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t':-l!’
A= [ [oyde;av, (2.9)
Vo

where V is the total volume of all elements in the unit, and €p is the breaking strain (let us

assume that the structural system is destroyed if the breaking strain is attained in at least one point).

It is obvious that the problem of establishing stresses and strains within the unit is
notably nonlinear - due to two circumstances:

— the components are in a variable contact and

— materials are physically nonlinear, which is of importance in structures with heavy
loads.

Each of these problems is traditionally solved by employing stepwise approximation
methods, which require much more computation costs than dealing with linear problems. Here,
we propose an efficient means for determining contact stresses and allowing for material
nonlinearity within FEM.

Method for solving contact problems

The principal set of equations is obtained by minimizing the Lagrange energy functional
and looks like this:

(K]{8} ={R}, (2.10)
where {8} is the nodal displacement vector, {R} is the external load vector, and [K] is the
structure stiffness matrix. To solve the set (2.10) we must specify boundary displacement
conditions for a certain part of the domain:

=0, 2.11)

Let us consider two bodies of arbitrary shapes (i and"j are indices to identify the relevant
bodies) in the Cartesian coordinate system OXY (Fig. 2.2).

Let S;; and S jc be the assumed surfaces of contact, i.e., those portions of the bodies i
and j that can interact during loading. The surface Sic at every point Cy (k is a point number,
k=1, 2, ...) has an outward normal nj . Points Cy and C jk having identical second indices

will hereafter be referred to as conjugate points if these could establish mutual contact. As noted
in [6], whether points are conjugate can only be determined with a fair degree of accuracy and

prior to solving the problem if the pattern of contact deformation is obvious and the bodies have
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rather simple geometries. If it is not the case, the contact area will be outlined by employing an
algorithm based on criteria of mutual nonpenetration of bodies.

Introduce radius vectors r,; and Toj to idenﬁfy initial positions of the points C;, and
Cjk , respectively (Fig. 2.2). Aﬁer loading, positions of these points in the three-dimensional
space will be defined by the relations,
{fik}={foi}+{5ik}, {rjk}={roj}+{5jk}’ (2.12)
where {8,1(} and { ) jk} are displacement vectors of the conjugate points of the i-th and j-th
bodies. The criterion of contact of the points Cik and Cj can be written as,

({rac) - {r5e}) {nac} =0lc, s, - @.13)
After considering equation (2.12), from equation (2.13) we obtain the compatibility

condition:
({fik} - {fjk}) {ny} =({5jk} ‘{5&}) {nix )

For conjugate noncontacting points the following condition should hold:

({rlk} - {l'jk}) {n,k} <0

which, in its essence, expresses the condition of mutual nonpenetration of bodies. In the

Cpes, - (2.14)

Ciy €S, > (2.15)

projection on the normal ny , the condition (2.14) becomes
8 +807 =5, 2.16)

where 8&1) and Sgﬁ) are displacements of conjugate points of the bodies i and j along the

outward normal; af,“) is the initial (positive or negative) interference between the conjugate
points as measured along the normal n ik - The equations of equilibrium of isolated bodies i and ]

(with no contact between these) in block matrix notation are

Kin  Kip {Bil}_{Pi} K Kpa ][85] [P
Ki2l Kizz 8i2 Qi ’ Kj2] Kj22 812 - QJ ’ 2.17
where

5jy and 8 are displacements of nodes (on the bodies i and J» respectively), that do not

contact mutually,

O, and & j2 are displacements of nodes which contact one the other,

tea Appe .
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P; and P; are prescribed external loads, and
Q; and Q; are contact forces to be found.

Now we resort to the Gaussian elimination procedure for block matrices to describe

unknown displacements of contact nodes:

&)} ={r7}. [Kj]{Sj}={Rj}, (2.18)
where
[K;]=[Kizz _KiZIKi_lllKilz]’ [K}]=[Kj22 —Kj21Kj_111Kj12 ,
(2.19)
R:|=[Q; -K;,KLP; R}|=[Q;-K i, K7P;
1‘Q1 2™ {111 o J—Q] w1ty
Assume that the conjugate (k-th) nodes of the i-th and j-th bodies al;e interrelated in

a local coordinate system:

[Y] {2;{}%8?;} | (2.20)

[c] -I[c]
[7]=[_ ] '[C]}’ (2.21)

Qix and Qi are the contact forces applied to the conjugate points,

where

C, O
[C]= 0 C in two-dimensional problems,
i §
c, 0 o |
[c]l=| o Cg¢ 0 | inthree-dimensional problems, and ' ' (2.22)
0 0 C,

Ch, Cé , and Cﬂ are link stiffnesses along the loc'gl coordinate system axes n, £, and
n, respectively.
Let us introduce [A], the direction cosine matrix relating the local coordinate system

(n, & m) to the global one (x, y, z). Expressions (2.18) and (2.20) should be summed up to

produce the equilibrium equations for the bodies in contact:

Kt (V] _ 0 ' R‘
K -0y {S{H } .23
-1y K1y G (R,
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Values in the [y °] matrix characterize link stiffnesses in the general coordinate system:

[y &)= (A" [CT [Mi5]- (2.24)
If the i-th body has interference, {8, }, the right-hand side of the first equation in (2.19)

should be complemented with the load summand
{Ro} =[K;]{8,}. (2.25)
In case the bodies are not in contact, we obtain [y°] =0, and the formula (2.23) is re-

written as,

(2.26)

* -1
[Ki] 0 {5i}_ [“Kilz Kin Pi]
*1 18 - we=1 o]l

0 [KJ] ] [‘KJIZ Kin PJ]
The latter system for unknowns {&;} and {6 j} may be solved immediately. But when there

occurs a contact, the system (2.23) is to be solved using the following algorithm

1. Specify the contact nodes and their stiffness matrices [Cik ]
2. Compute the direction cosine matrix [A] for the contact nodes.

3. Calculate the substructure stiffness matrices and right-hand side vectors — in

accordance with (2.18).

4, Use (2.18) to derive equilibrium equations (2.19) for contact points, by utilizing the

Gaussian elimination procedure.

5. Use (2.17) to determine along-the-normal interference &g between nodes:
Srk =8jk —8ik ok
6. Find the forces R applied to the body i due to the interference &gy :

{R i } =[K;{ORrk }; add the forces to the external load vector of the body.

7. Utilize expressions (2.24) in order to transform link stiffness matrices into the global

coordinate system; add these to the structural stiffness matrix (2.23).
8. From the relation (2.23) determine the contact node displacement vectors {Bi} and
(851

9. Use (2.22) to compute contact force components along normals:

Qk =Cx A (Bjx -8 x)- (2.27)
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10. Check up the nonpenetration condition (2.16) being met. If yes, go to item 11 below;

otherwise, repeat the analysis starting from item 5.

11. Terminate the iterations and calculate stresses by employing usual FEM relations.

Allowance for materials plasticity

If at least one component in the joint behaves nonlinearly, the contact problem is much
more difficult to solve. To describe physical nonlinearity, we use the strain theory of [7].
The problem is solved under the assumption that the structural displacement are small in

comparison with overall dimensions. To outline the contact area, the above algorithm is

involved. The coefficients K; of the equilibrium system (2.23) for the interacting elements:

: * 0 _v® d; R
[Ki ®)]+[Y'] [y { }z ; (2.28)

-y eI+ B (R
become dependent on nodal displacements; so these should be determined by resorting to a
successive approximation procedure in couple with the stepwise (incremental) loading method.
The algorithm for treating the elastic-plastic contact problem has been detailed in [8]. To
improve iterations for outlining the plastic deformation zones, we utilize the secant modulus E
correction approach similar to the Reference [9] overrelaxation method for linear algebraic

systems. The correction is implemented as follows;
]
Eg =Eg +0(Egs —Eg),
where i is the plasticity iteration number and o is the relaxation factor which is varied within

the iterative cycle:

o=1+Aa/i%. (2.29)

To define an optimum © value, additional numerical experiments have been mounted

for various problems. The parameter aw involved with (2.29) was changed from 0 to 0.8,

whereas o was specified to be from 0.5 to 4.0. Iterations were terminated when a relative error
had been less than 0.005.

It turned out that the minimum numbser of iterations is required in most problems when

A® =0.6 and a=2.0. These values were utilized to solve the problems reported here.
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Example problems

bar 3. The right-hand side of this Figure demonstrates deformed bolt rod and head after the
force P had been applied.

Cnom = P/(td) and O is the principal tensile stress at a point. In the Figure we provide
eXperimental data for h d = 0.4,0.5, and 0.6, The Mmost severe stress appears at the point B — on

the fillet between the bolt rod and head. Therefore, it is at thjs point where the primary failure
should be expected to occur; at a higher load the bojt head will be broken,

Figure 2.7c demonstrates axial stress profiles over the external and internal surfaces of
the cylinder. Points show the experimentally obtajned values. The theory and experiment may be

regarded as converging well.



Computing the link fracture energy

The link fracture energy can be determined by using (2.9). Integrals in (2.9) may be
estimated by the followiﬁg procedure. The external load in subdivided into a number of
increments. As the load grows, each element in the unit is evaluated in what concerns stress and
strain tensor components; their algebraic products are summed up for each increment by
utilizing the trapezoidal technique. The volume integral is the sum over all element of the joint.

Let us address tension of an aluminum bolt whose dimensions are represented in Fig. 2.8.
The bolt material has the following characteristics: E=7200 kg/sq.mm, ultimate stress

o p =38 kg/sq.mm, assumed yield limit ¢, =24 kg/sq.mm, and elongation at rupture, Ep = 0.1.

The tensile «o —€» diagram of the material (see Fig. 2.1) is modeled by two straight
lines: the first line approximates elastic bolt behavior, whereas the second line runs from the
assumed yield limit point to the ultimate state point to approximate behavior of materials in the
case of notable plastic deformation. |

Figure 2.8 depicts dependence of bolt fracture energy on stress . We fepresent three
versions. In the first version the bolt head rests on the support (b) manufactured of the same
material. In the second version the head is in contact with an absolutely rigid support (c). In the
third case we consider the bolt rod only. The analytical model for the joint under consideration is
similar to the one demonstrated in Fig. 2.4 — except for the fact that, instead of flat (two-
dimensional) finite elements, we used axisymmetric ones. Established as a failure criterion is the

strain intensity €, = 0.1. In Fig. 2.8 it is seen that the link fracture energy (symbolized with

crossed squares) is slightly greater for the bolt contacting with the deformable support (1), than
the value for the bolt resting on the rigid support (2). However, link fracture energy for the two
versions is much less than that for the separated bolt rod (3); this is so due to the considerable
stress/strain concentration at the bolt head-to-rod fillet.

Now address the second example: a skin 2 attached to a rib or spar 3 by a single-row
screw joint; one of the screws 1 is depicted in Fig. 2.9. Thc; skin thickness is 6 mm, the screw
diameter is 8 mm, and the screw rod length is 20 mm.

When computing, we assumed that the rib/spar 3 is made of aluminum alloy, the screw

is made of either steel or aluminum alloy; the steel has E=21.000 kg/sq.mm, o p =60 kg/sq.mm,
692 =40 kg/sq.mm, and €, =0.1. The skin is made of aluminum alloy in the first version,

and of a composite material in the second version. The composite skin includes 24 layers each

0.25 mm thick. A substack of 4 layers has a quasi-isotropic layup (see [11]): [0, +45, -45, 90].



Characteristics of a layer may be seen in the mid-column of Table 2.1; the subscript 1
designates the fiber direction, and the subscript 2, the transverse direction; p stands for tensile
load, and ¢ is for compression. Characteristics of the entire stack are reported in the rightmost

column of Table 2.1.

Table 2.1
Layer data Stack data
kg/sg.mm kg/sq.mm

E, 13000 5200
E, 700 5200
G1a 590 2000
H12 0.36 0.29
S1p 153 51
G2p 34 51
O1le 120 40
G2 34 40
T12s 6.0 30

The metallic materials (that is, steel and aluminum alloy) are assumed to become
broken when the strain reaches its limit; for the composite material (whose fibers and matrix

behave linearly to failure) we use the Tsai criterion from [12]:

2 2 2
Sl o102 03 Th_,

s s? s3 s?

where S = 155 is the limiting shear stress, and S; and S, are the ultimate normal stresses along

-

and transverse to fibers, respectively:

{Glp at 6120, {czp at 6, 20,
S, =

oy at oy <0, G, at o5 <0.

Mechanical propetties of the quasi-isotropic plate are obtained by using the Tsai method in [13].
Figure 2.10 demonstrates the deformed model (composed of axisymmetric finite
elements). Figure 2.11 represents dependence of link fracture energy on the force P (which is

calculated by integrating the distributed load p over the skin surface area).



30

From Fig. 2.11 it is clear that link fracture energy for the aluminum skin and the steel
screw (b) is approximately twice that for the structure with an aluminum screw (a). Failure
mode implémented is also depending on the screw material: the aluminum screw fails due to
head separation, whereas the steel screw survives the skin.

The composite skin (represented by lines ¢ and d) gets broken at the screw head when the
separation force is at a rather low level. The fracture energy in this structure may be increased to
the line b by resorting to usual designing solutions (detailed, for example, in [14]): increasing

the screw head diameter, increasing the plate thickness around the joint area, etc.

2.3. Establishing parameters necessary to ensure a specified
panel-to-support link strength
- Consider panel separation from support in case the support (rib) deformation energy is
comparable with the link fracture energy for a bolted or riveted joint. The work for separating
the panel from a rib may be written as,

YE=Ypf +Vbf> (2.30)
where y ¢ is the specific work of breaking the fasteners between the panel and the rib (the work

is referred to a unit length of the rib flange) and y ¢ is the specific potential energy of rib

deformation at the panel separation instant.
We can model the rib as a beam simply supported by spars at edges {y=0} and {y=b}.
At the moment which immediately precedes the panel separation from the rib, the latter is

loaded with a uniformly distributed transverse force qp - The rib deformation potential energy

Uyr is computed by using (2.1) where

q q
M=-2(y*-y). @==F(y-b), @31)

g is the coefficient depending on the rib cross-section shape; the coefficient may be assumed

to be equal to 1.0 for a web-like rib.
By substituting (2.31) into (2.1) and integrating, we obtain the following expression that
relates the specific potential energy vy s = Upg/b to the load Qp:

Ybf =Cbfdp (2.32)
where
b? 10 (EJ);

Cof =T | 1+ 5
P 240(EN) | T b2 (GFy ),

(2.33)

AR )



The coefficient cps quantifies the rib compliance under in-plane bending and shear.

The specific fracture work (referred to a unit length of the joint) can be written as
follows:

Y of =cpfq§. (2.34)
The coefficient c,¢ quantifies the compliance of fasteners between the panel and the rib when
loaded to failure. A particular expression for cpf depends on both the panel/rib joint type and
the failure mode. For example, if a panel is attached to supports by bolts or rivets and if a bolt or
rivet is destroyed due to breakage of the rod, then, in accordance with (2.6) and (2.7), we obtain

__ngeeHy
Cof =T o m
anprspf

Here, Egpr =0pf [epf 5 Opf and €pr are respective values of fasteners at failure; Fyr is the

(2.35)

bolt or rivet cross-sectional area; and c; and ng are the fastener spacing and the number of

fastener rows, respectively.
However, fracture may be because of bolt head breakage and/or skin tear at the bolt head,;

in these situations the ¢ coefficient can be computed on the basis of data from finite-element
analyses, similar to those in Figs 2.8 and 2.11.
With (1.29) derived, we have
' 1 2
Tf =53A11(Ncr ) X
Upon substitution of (2.30), (2.32), and (2.34), the relation (2.36) between the failure load ap

and the link fracture energy X appears:
qp = Jx/c, (2.36)

- - - 2¢ 2
- pf - Cof
C=Cpf +Cbf, Cpf = 5 Cbf = .
P
PP aAy aA )

If one knows parameters of the rib and fasteners (ﬂfé}t is, ¢ is known) the formula (2.36)

in which

(2.37)

can be utilized to calculate the relative per-unit-length load a p applied by the panel to the rib

through the fasteners.
In accordance with (1.28) and (1.44), the panel coming from state I into state S (with S

being either II or III) is loaded with the compressive stress resultant

N=N5 +B5X,

from here and (2.36), the expression is,

N=Ny +q,yepS . (2.38)
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Figure 2.12 represents «N—q p” diagrams for three versions of the stiffened panel in which the

skin has the following characteristics:

DO AO ,DO AO
D2 A7) D3 ‘ A7

the three panels have identical values of bending stiffness ratio D;;/D3; =70 and coefficients

@, =03 and c=150; whereas, the panels differ in the ratio A,, /Ay :

Ay

—==3.44, 4.30, 5.72.
Diagrams in Fig. 2.12 suggest that if the longitudinal stiffness of the panel stringers is increased,
then a particular N value (that is a minimum relative load which separates the panel from ribs)

takes place at a lower load a p applied to the panel/rib fasteners.

Upon computing the available ap values the plots in Fig. 2.12 can be employed to

determine whether the panel separates from ribs under the compressive load. If ap <(ap)
cr

then the joint will become broken at a load N <NCIY . However, if ap > (C_lp) then the panel
cr

buckles between ribs at N = N‘I:Y.

If one would specify rib and fastener parameters which ensure the panel to buckle

between ribs, then the parameter ¢ should be determined from the condition ap > (qp) . Let
cr

us consider now the dependence of (a p) on some of the panel parameters.

cr
Compute X=X by using (1.47) and (1.48) and substitute the value into (2.36) to

derive the dependence of critical (a p) values on o, for the panel concept versions involved;
cr

see Fig. 2.13. For each value of A,,/A;; within the interval {03<0, <045} the (ap)
Ccr

variable does only slightly vary with Q-
A similar kind of picture for (ap) as a function of Dy1/Dyy for the above values of

cr

A /Ay, 0,=0.3, and c=150 may be seen in Fig. 2.14. It is clear that (ap) does not
cr

almost depend on Dy /Dy, when this ratio is above 50. This fact allows us to derive a unified

e g~
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relation between (ap) and relative compliance ¢ of the panel-to-rib joint for a 020.3 and
cr

Dy /D, 250; the relation is demonstrated in Fig. 2.15.

There exists a really essential interval of variation of the relative panel-to-rib joint

compliance: 100< ¢ <400 ; here, the critical value of the relative failure load (qp) varies from
cr

0.04 to 0.08 — this means that the panel-to-rib joint will fail under a load exceeding 4% - 8% of the

critical compressive load ﬁg; note also that the stiffer the rib, the higher the failure load

(a p) and the stronger the fasteners must be.
cr

The function depicted in Fig. 2.15 makes it possible to specify parameters of usual ribs

and fasteners so as to ensure the panel to buckle between ribs without breaking the joint.
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CONCLUSION

The NCC-1-233 programme (in Appendix 5) dated September 15, 1998, has been the
basis for the investigation of how compression-loaded multibay panels manufactured of

composite materials buckle upon failure of joints with supporting elements.
The following principal results should be noticed here:

— a new method for studying the buckling of a multibay stiffened panel made of
composites is proposed; it allows for destruction of panel joints with transverse and

longitudinal supports in the course of buckling;

— the solution to the problem is derived; parametric research on failure load dependence

on available link fracture energy and other panel parameters has been conducted;

— notions of critical link fracture energy and link strength for a multibay panel are
introduced; the critical values outline the domain within which the panel buckles with

nodal lines being on supports;
— techniques to compute the link fracture energy for some types of joint are proposed;

— a relation of link fracture energy to the load diagram and failure load of the joint is
established; and

— a methodology for calculating the support/fastener parameters necessary to ensure a
strong joint between the panel and supports is presented; usual web-like ribs and
fasteners are shown to be necessarily designed so as to carry a load which is 4% to 8%

of the longitudinal compressive critical force for the panel.

The present study method makes it also possible to solve the following problems of
practical interest: how the compression-loaded composite pa{nel buckles upon local separation of
stiffeners from the panel and how strong the joint between the skin and stiffeners should be for
the separation not to occur before the general buckling takes place.

By proceeding in a similar way, thé problem of compression-loaded sandwich panel
buckling with separation of the composite skin from the core over a certain (local) portion can
be solved. .

Efforts including solution of these and some related problems may be a continuation of

the composites study programme within cooperation between NASA and TsAGI.
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