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Abstract
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our

methodology does not require solving two-point boundmy  value problems online and may not require it off-line either.
The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories.
Wb compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law
when applied to Zermelo’s ship steering problem.

L Introduction
Optimal control PIYSOIL 1996; Kirk, 1970] is one of oldest approaches to control engineering. It has many advantages:
(1) State and control constraints can be include explicitly. (2) The cost fimction  to be minimized can be often given
a simple intuitively appealing inteqxetation.  (3) Optimal control is a very geneml methodology applicable to multi-
input-mtdti-output,  nordina, stochastic, or infinite-dimensional systems. Hence, optimal control theory provides a
unified approach to stating and solving very general control problems that are at the same time physically intuitive.
Unfofiunately,  optimal control theory suffers from a major disadvantage; namely, solving optimal control problems is in
geneml compuationally  difficult except in very special cases where a closed-form expmsion  of the control law can be
obtained. These cases include many nonlinear second-order systems and the celebrated linear quadratic regulato~  In
general however the neceswuy conditions have no closed-form solution and are at least as difficult to obtain as to solve a
nonlinear two-instant boundmy  value problem (for the control of a system described by deterministic nonlinear ordimty
differential equations. When the plant is stochastic or infinite-dimensional, the numerical difficulties are compounded.)

The absence of simple  closed-form solutions and online numerical solutions of the general open-loop control
problem means that there is no general feedback implementation (except in the neighborhood of an optimal reference
trajecto~  using the well-known neighboring optimal control Pryson  and Ho; 1975].) The lack of feedback
implementation is in our opinion the main reason why interest and research conducted in optimal control has greatly
diminished.

On the other band, fuzzy-logic controllers (FLCs) are essentially feedback control laws. While theses controllers
crmbe easily made to incorpomte the heuristic knowledge of the control enginee~  and this can be an advantage in cases
where this is about the only knowledge available, designing a FLC using detailed, mathematical, and exact descriptions
of the plant is not very well-undemtood  or pmcticed.

Clearly, using alt available knowledge about the system should in principle yield control laws with superior
performance. Hence, we investigate in this paper the possibility of designing fuzzy logic controllers that approximate
optimal control laws; from another point of view;  we investigate feedback implementation of optimal control laws
using f~-logic  controlled

To illustrate this approach we consider the Zermelo’s  problem; that is, the problem of docking a ship going at
constant water speed in minimum time in a region of strong water currents using the heading angle as the control i nput.
W obtain a family of open-loop solutions of this problem and use it to train the OSC. The resulting trained engine
will then be a feedback implementation of (a least-squares approximation of) Zermelo’s optimal control. The Sugeno
controllers ~uckley,  1993] are capable of approximating any continuous map within an arbitrmy accuracy.

This paper is oqynized  as follows. Section 2 provides the necessa~  background information on the optimal
control of the ship steering problem. Section 3 discusses the training procedure used in designing the Sugeno-type
controller from the data obtained from the optimal trajectories. Section 4 discusses the generation of training data and
the elimination of angle discontinuity. Finally, section 5 summarizes the used procedure and shows simulation results.

2. Zermelo’s Optimal Control Problem
The objective of Zermelo’s problem is to find a minimum-time path through a region of position-dependent vector
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velocity ~yson  and Ho, 1975]. In this problem, a ship must travel in minimum time through a region of strong
currents denoted by the two component vector V(Z)

where (ZI, X2 ) represent the position of the ship in rectangular coordinates and (v1, VZ) are the velocity components in
the same coordinate system, and the control u is the steering angle O, or u = 0. The magnitude of the ship’s velocity
relative to the water, V, is a constant. The problem is to steer the ship in such a way as to minimize the time necessmy
to go from an arbitrary position Z. to a specified docking position Zf.

The purpose of the genemlized  Sugeno controller is to approximate the steering angles needed to generate these
minimum time paths as a function of z.

The equations of motion a~ as follows:

[1[xl ‘?)1 +Vcas(?x= — 1 [ 1Cos 6’
iiz —

vZ+Vsin  O =?J(r)+v ~ino (2)

where u = 0 is the heading angle of the ship’s axis relative to the coordinate axes and is the control signal. The
Hamiltonian of the system is:

and the Euler-Lagrange equations are Al = – ~, ~Z = – ~, and O = ~ whose solution is tan 0 = ~. The
optimal trajectories satis@ the boundary conditions z(to)  and $(tf ) specified. Since the Hamiltonian  is not an explicit
function of time, H = constant is an integral of the system. Furthermo~,  since the objective is to minimize time, this
constant is O. W have five equations to solve for the unknowns z(t), A(t) fort E [0, tf], and for tf.

Following ~~son and Ho, 1975], we can simplify the two-point boundary problem by solving for ~ to obtain

&= sin28~
-+sinoms’(%-%)-cos’o%

(4)

Equations (4) and (2) are the necessary conditions satisficdby  this new and reduced-ordertwo-point bounda~value
problem. The four boundary conditions are: $(to), and Z(tf) am specified. They are used to solve for {z(t), t?(t)}
from to to tf and for tf itself. Note that if v(z) were constant, then O would  be a constant. In other wotis, the
minimum time paths are straight lines. If v(z) vanes, it is possible for some of the optimal trajectories to intersect at
conjugate points z.. For these trajectories to be considcmd  optimal solutions, the control, u“ (t) = 0’ (t), must satisfy
the following stiicient conditions

~2H (z”(t), 0“ (t), A*(t),t)  = v
LW2 V+vlcos O+vzsin  O

(5)

which is clearly is positive &finite if

V>vlcos O+vzsin  O orif  V>llVl[=J- (6)

For further discussion of Zermelo’s  problem see ~ryson and Ho, 1975].

3. Approximation using the Sugeno Controller
A genemlized Sugeno-type  controller [Buckley, 1993] is a fuzzy engine mapping a vector x = [zl, %2,. -., Z.JT E W
into u E W where z is interpreted as being a state vector or a measurement and u as a control action. The inference is
of the form:

(7)Rk” IFq isA~ andz2 isA$ and..,andz.  isA~ THENu =yk = ~k(~)

where Xa is the Zth component of the input vector% and is a crisp value, A! specifies which among the fuzzy attributes
of z~ is tested by rule k, and Pk is a polynomial inzl, Z2, . . . . Zm assigned to u by the kth rule. The ndcs of the original
Sugeno controller (OSC) have the following form

Rk : IF Z1 is A~and zz is A~and...sn is A:, THEN u = yk = C$ + cfzI + +c~z. (8)

where c$, c;,. . . , ~ are the consequence cocfticients  of the kth fuzzy rule. For further discussion of Sugeno-type
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controlled see ~uckley,  1993]. Buckley proved that a Sugeno-type  controller can approximate any continuous real-
valued function in the output space to any degree of accuracy ifi (a) the input fuzzy sets have continuous membership
functions and (b) a continuous T-norm is being used in the nde evaluation process. This is the universal approximating
propexty of the Sugeno-type controller

Ne~ we consider approximating the trajectories of the optimal feedback control law by the original Sugeno
controller. ‘lb do so, we need to determine the coefilcients  c/j, ~, etc. In this pape~ we use subscripts to index vectors
and superscripts to identi&  components within a vector  In geneml, the output ti for the inputs Zl,...,zm  is obtained by
the centroid method of defuzzification.

Let (z~, u~)be the j~h training input/output pair out of a total of J pairs. In this pape~ these training data are obtained
from the generated optimal trajectories. Then the consequence parameters can be obtained by solving a recursive least
squaw parameter identification problem ~hkagi and Sugeno,  1985] where we determine the unknown coefficients by
minimizing the error index

J

mi n J = ~(u~ – ti~)2 (9)
cl ,=2,..

j =1

where uJ is the output of the optimal feedback control law and tij is the ouh.mt  of the Su~eno  controller. The necessarv.
conditions satisfied by the solution is ZC = U where

c=
c ’

[14,+= : u=
~~1“~K

where Zisa JxK(n+l) matriXwhere  X~ = [l, #l, .--, z/

u’

u’

and

II
/3’c3x’

, ~ = P2@x2. . .
pJr8xJ

(lo)

f%= lh(~j), and d = P(d) (11)

~present  the truth values of the rules evaluated at the vector x~. The least squares solution for C can be calculated
recursively by using the following procedure [Thgi and Sugeno,  1985 and Lj~g  and Soderstrom,  1986]. Denote the
jth row vector of matrix Z defined in (??) by .zj and the jth mw of U by uj. Them C can be then computed using the
iteration.

(c(.i+l) = @ + s(~+l)  .  ~:+1 .  .J+l  _ ~j+l  .  c(j) ) (12)

s(~) . $+1 . ~j+l  . s(~)
sti+l) = s(j) _

1 + Zj+l . s(j) . .24’+1 (13)

.th iteration (i.e., after the -jth training pair haswhere S(j) is a square (n(k + 1) x rz(k + 1)) covariance matrix at the j
been acquired and used), and C(j) the comesponding  coefficient vector Then C(’) at the final iteration is the least
squares solution. The initial estimates, C(o) and S(o),  are chosen as C(o)  = O and S [o) = d where o is a large
number and 1 is the identity matrix

Note that if rule 1 never fi~s (i.e. ~~ = O for all j), Then Z is not full rank and ZC = U has no unique lcast–
squares solution. Hence, if a rule never fires for the training data given, this rule should be eliminated to make the
solution of the least squa~s problem unique. Also, this rule will not be applicable or relevant in all trajectories similar
to the training data.

When the generalized Sugeno  controller is used, the above procedwe  remains la~ely  unchanged except that X
now becomes for the case of n = 2

and the definition of ck is to updated accordingly so that @ defined in Eq, (7) can be expressed in the form Vk = Xck.

4. Methodology and Procedure
This section proposes a technique to approximate a feedback implementation of optimal controls. It uses the data
genemted  from the optimal control law to identify the coefficients of the generalized Sugcno controller Here, we do
not need to solve the two-point boundary-value problem for a afiitrary  but given Zo; we only need to gcncmte a family
of optimal solutions of z(t) in which an optimal trajecto~  reaches the final docking position z ~ at some final steering
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angle Of, To generate one such trajectory, we use integrate Equations (4) and (2) backwards in time from z(t ~ ) = Zf
(the docking position) and O(tf) = Of for any desired tf until t = O. Optimal solutions are generated for two cases
Of ~1 (T)  and V2 (Z).

W consider the simple case where the current velocity varies linearly. The objective is to find the minimum-
time path from a certain point X. to a docking position at the origin. The velocity components of the currents are the
following:

v
VI(z)  = —-p, V2(Z) = o (15)

W% generated 18 trajectories for tf = 0.6 seconds. The txajcctories along with their time and O contourx are shown in
Figures 1-2. The magnitude of the ship’s velocity relative to wate~ V, is chosen to be 10 and h, a constant parameter,
is chosen to eqyal 2. The optimal solutions for this case can be obtained in closed-form ~ryson  and Ho, 1975], but
our figures are generated by backward integration.

The map O = O(z) modulo 27T has a discontinuity due to the modulo  opemtion.  For example, a training trajecto~
can start with an initial heading angle of 330°, and the angle increases gradually until it reaches 360° (at which O
becomes O“) and end at the final heading angle of 10°. The discontinuity occurs at the transition point of 360°/00.
Sugeno  Engines encounter ditllcu]ties  in approximating discontinuous maps.

To eliminate this proble~ we use two Sugeno  engines to approximate the sine and cosine of the heading angle as
a fhnction  of the state and then to combine them after the approximation. Hence, we approximate U1 (z) = cos 0,

and UZ(Z) = sin O using two Sugeno engines and then we combine the two approximates using the formula

( )
6 = arctan  ~ for use in Eq, (2).

5. Simulation and Results
Now we summari ze the procedure followed in this paper and show and discuss the results.

1.

2.

3.

4.
5.

Generate the training data

– Starting from the docking position Zf and a large t f, integrate Eqs. (2) and (4) backwards in time from final
conditions z(tf ) = Zf and r3(tf ) = #f till t = O. This will gcncratc  one extremum (actually optimum)
trajecto~ for eve~ choice of Of.

– During an integration record the state z(t) and the control O(t) as the input and the output training data. The
optimal time-to-go for that state is tf – t.

– Generate a set of trajectories by choosing a set of final values 19f that is fine enough as to cover the regions
of interest in the state space with enough optimum trajectories. Figtues  I and 2 show the generated optimum
trajectories for me 1 along with the associated time and control contours.

Perform the least-squmes  recursion to obtain the consequence coetlicients  C. There are two sets of coefficients,
one for the. sine, one for the cosine.
Generate the testing data set. This is achieved by choosing a set of initial conditions z(O). We considered two
testing sets:

– One set was generated by taking the values of the state at the end of the backward integmtion  conducted in
step 1 above. Wk refer to this as Testing Set 1. If the approximation was perfect, the feedback control law will
regenerate the optimum trajectories of step 1.

– Another set was generated more or less randomly near the edge of the region of interest.
Simulate the feedback-controlled ship motion.
Consider the two performance rncasures.

(a) The approximation error index J defined in Eq. (9).
@) How close the trajectories of the feedback-controlled ship matched the trajectories of the optimally-controlled

ship.

W used five attributes for each input variable. Therefore, there are 25 possible rides, but six of these rides could be
eliminated. The original Sugeno Controller yielded a very good approximation. The optimum tmjcctories  and those
generated from the approximate feedback law (using Testing Set 1) am shown in Figure 3. The average error index for
the OSC is 7.2901.
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Figure 1: Optimal trajectories with equal-time contours.

6. Conclusions
Sugeno approximation and learnin~from-example  we~ shown to yield a powerful and easy-to-use method to
implement optimal control in feedback. Since the lack of readily-available feedback implementation is a major
limitation of optimal control, this new method is promising and encouraging.

In our approach optimal control theoxy is used to genemte  a set of optimal state and control trajectories usually
by backward integmtio%  thus alleviating if not elimimting  the need to solve two-point boundmy value problems.
Next, Sugeno  Fuzzy Engines are taught to abstract and approximate the state-to-control mapping from these example
trajectories. The original Sugeno engine was used to implement in feedback Zermelo’s optimal control.
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Figure 3: Trajectories generated by the optimal and approximate control laws.
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