
URC97034

An Approach to Building a Traceability Tool for Software.
Development

Nelly I)elgadcr and ‘Tom Watson
Departl]lent of Computer Science

Th12 University of Texas at El Paso

111 Paso, TX 7996s
ndclgado, t,w~atsol-l(~cs.~lt,ep.edu

1 Introduction

It is clificult in a large, complex comprrtmr program to ensure that it meets the specified requirements. As the
program evolves over time, all program constraints originally elicited during the requiretnmts phase must be
maintained. in additio~l, during tile life cycle of the progrmn, requirements typicaily change ancl the program
must, consistently reflect those changes. IInagine the following scenario. Company X wants to develop a
system to automate its assembly lillc. With such a large system, there are many cli Kerent stakeholders,
e.g., managers, experts such as industrial and mechanical engineers, and end-users. Requircmcmts would be
elicited from all of the stakcholders involved in ttle systmn with each stakeholder contributing their point
of view to the rcx{uirernents. For example, some of the requirements provided by an industrial engineer
may concern the movement of parts through the assenlbly line. A point of view provided by the electrical
engineer may I>e reflected in constraints conccrni]lg rnaxirnum power usage. End-users may be concerned
with comfort and safety issues, whcr-eas managers are concerned with the efficiericy of the operation. With
so many points of view af~ect, ing the requirements, it, is cliflicult to manage them, communicate information
to relevant stalceholdms. wd it, is iilcely tl~at conflicts in the requirements will arise. [n the coding process,
the irnplcmerltors will malcc adciitional assunlptions and interpretations on the design and the requirements
of tile system. During ally stage of clevelopmellt,, stakeholders may request that a requirement be added
or changed. in such a dynamic enviromlwnt, it is difficult to guarantee that the system will preserve the
currer]t set, of recluirernents.

Tracing, the mapping between ol>,jects in the artifacts of the system being developed, addresses this issue.
Artifacts encompass docunlellt,s such as the system definition, interview transcripts, rnemorancla, the software
requirelnents specification, user’s manuals, the functional specifications, design rej)orts, and system code.
‘1’racing helps 1) validaf,c system features against, the requirement specification, 2) idcnf,ify error sources and,
most irnportarrt.ly, 3) manage change [4]. with so many people involved in the development of the system, it
becomes necessary to identify tile reasons behind the design requirements or the implementation decisions.

‘This paper is concerned with an approach that maps documents to constraints that, capture properties
of and relationships between the o}jjects being nlodeled by the program. Section 2 provides the reader with
a background on traceability tools. Section 3 gives a brief c!escription of the context rnouitoring system on
which the approach suggested in this paper is based. Section 4 presents an overview of our approach to
providing traceability. The last section presents our future direction of research.

2 Background

The typical approach to maintaining traceability, especially for complex systems, requires that all system
artifacts created at various stages of the development process be linked to the requirements [5]. In such an
approach, there must be hyperlinks (physical links) between ali artifacts and recluirernents. These links should
provicle bidirectional, vertical and horizontal t.raceabilit,y. Bidirectional traceability refers to the ability to
trace both backward and forwarcl. Vertical traceabi/itrj al}ows the user to trace between documents developed
from difFerent life cycles, whereas, horizontal traceability refers to the links between related objects created in
the same life cycle [5]. Each document must have a logical structure so that the tracing tools will understand
the interrelationships between cliffcrent software documents and have the ability to update the links as the

197

system evolves [6]. Wit h a large volume of docurnent.s, however, it is difficult to maintain and llpdat, e t,lle
links between the artifacts.

Through the links, tracing can also provide inforvnation concerning accountability for requirements,
design, and implementation decisions, ‘The ability (,o t,rack pro,jects and manage design rationale are other
uses for traceability. The rest of this sect, ion cfeals with the traditional approach to tracing, i.e., tracking the
requirenlents to the implementation.

Some approaches to building a traccabilit,y tool include: an object-oriented approach, a graph-basecl
approach, and an approach that involves the management through a project database. In the object-
oriented approach, users define the classes of artifacts and the relationships between them. The classes of
artifacts provicle the logical structure necessary for the documents to be traced. ‘lhe relationship classes
provide the structure for defining links and their relations. Tile useof relations instead ofsirnplel inkslets
developers distinguish among different links hetwcen the same objects. Also, hy using properties of relations,
this approach crm relate objects that are notdirectly linked [4].

‘rhe graph-based approach takes both the coarse-grain level and the fine-grain level of the system into
account. on the coarse-grain level, [inks represent clepcndenc.ies between whole documents. On the fine-grain
level, the structure of the clocurnents are taken into account. 130th levels are necessary to provide for adequate
traceability. The collection of document.s is represented by the use of hierarchical graphs. Operations on the
graphs are defined by means of a formal language based on a graph rewriting system [6], On the coarse-grain
level, ail project doculncmt.s and the relations hetvvcen the docur~lcnt,s are represented in the graph, On the
fine-grain level, links represent the relation between individual objects in documents. These objects may be
cc)ntained in the same document or in separate documents.

The project databmse model involves a database management system and an object-hasecl model of
software life cycles. All of the docurncmts created during the cicvelopment of the system are stored in a
project clatahase [3]. Similar to previous approaches, this ai)proach requires that docunlents and relations
tare highly structured. Using a predefine document structure and a set of document relationships, documents
are developed to allow the management of links. ‘rl~rough the use of ii datahasc, stored documents can be
written in either natural or formal languages. Key words ancl key elerncnts need to be ic[erltifird as (he user
creates the docunlents to provide points for t,racillg across documents [3].

These approaches to dcve]opiug trareahilit,y tools all have ol)e thing ill coin]morl-t,hcy link all artifacts to
reqllirmncnt,s. The advantage to tlaving direct links’ hetwcell all artifacts is that one can trace the systcrn and
ensure that the syst,crn requirerncllt,s have been met,, thus providing more compleh? coverage of the system.
In a system with thousands of interrelated otjjects, l~owever, gett i[lg all of the in forlnation availah]e may not,
be useful. ‘1’oo much inforn~ation could provide the user with ar] over abundance of irrelevant data [4].

3 An Overview of the Context Monitoring System

Context monitoring is an approach for managing properties and relationships on data of
monitoring consists of the following:

a program. Context

● the specification of integrity constraints on data or objects being rnodcled by a software system, and

● a constraint satisfiability nlec]lanism that verifies their enforcement during the program’s execution.

Integrity constraints are the conditions that data maintained in a knowledge base must satisfy as it evolves.
Specified in a typed first-order logic language [2:, they formalize properties about data objects and the
program.

Fig. 1 provides an overview of the context, monitoring system. The constraints capture properties,
relationships, restrictions and limitations on data or objects of the program and may be used to reflect the
interpretations and assrrmpt,ions that, are made about the objects during development. The constraints are
elicited from numerous sources, clenotecl by S’i in the figure, that includes the customer, domain experts,
analysts, and rnernbers of the design, implementation and maintenance team.

The constraints reside in a repository with links to the documentation. This may be in the form of a
data dictionary, requirements definition, software requirements specification, design document, user’s manual,
program documentation, memoranda, interview transcripts, or videotape transcripts. The documents may
reside in a project database or maintained as separate text files. If a document is not kept on-line, then
the linked file would contain merely the location of tile document and the location of the constraint in that
document,

198

(Reasoning
P-}Iechanisrn Analysis

EHmli
‘-T--!----T-’

s] ~~ . . . Sn

vElaboration
Mechanism

Display output

Figure 1: Overview of the context monitoring system.

The constraint satisfiability mechanism provides clynarnic verification that, the actual behavior of the
program corresponds to the intended behavior of the program. When a constraint violation occurs, the
lrlorlitoring~ -llccllar]isrrl captures ~he state of the machine, bot,h prior to the violation and at the timeof the
violation. A violat, ion may be all indication of one of the following:

●

●

●

●

●

The program does not maintain theconstraint.

The input data does not meet specifiecl properties.

Conflicting constraints exist, which cause at least oneoft.he constraints to be violated.

A change to the program has violated an existing constraint,

The environmental context in which the program is running has clla.nged, invalidating the assumption
made while designing and coding the program.

The user is supplied with informat,iori concerning the Violation through the elaboration mechanism. Be-
cause the documents are linked to the constraints, the user has access to the source(s) of the constraint,
justifications, and other information that, may be contained in t,he documentation. The reasoning mechanism
is a tool that groups related constraints for analysis and determines potential inconsistencies between con-
straints apart from the program itself. This permits static analysis of the knowledge collected from multiple
sources before too much time has been invested in the design and/or implementation.

It is important to note that with this approach, the constraints are not embedded in the program, but
are maintained independent of the program. Separating the integrity constraints ensures that changes in the
code CIO not inadvertently change a constraint and, tllrougb constraint satisfiability, that added or changed
code cloes not violate existing constraints.

4 Traceability Using Context Monitoring

The approach suggested here provides a way for linking between requirernents, constraints, and parts of
the program that, manipulate constrained variables. A distinguishing characteristic is that the developer
does not have to create p}}ysical links between requirements and the implementation. ‘This simplifies tracing
because constraints are not embedded in the program and, as a result, the user does not have to worry about
changes in the code that may alter links. Tracing in the context monitoring system only involves physics!

199

links bctwmn the constraints stored in the repository and the documents as shown in Fig. 2. Although this
approach does not provicle links bctwccn all requirelnents and prograin segments, it does provide a way to
link asigniflcant, subset of the requirements.

Another characteristic of this traceability approach addresses fluctuating and conflicting requirements,
a ma,jor issnc in software development [I]. Consider a case where conflicting constraints are specified on a
requirement. In such a case, the satisfiability mechanism will detect a violation if it is impossible for the
program to satisfy both requirements. Through traceability, the user will have access tothesourccs of the
colistraint providing a basis for resolving the col)flict. In addition, the traceability tool is not, preoccupied
with managingc onstra,ints. Because theconstraints are not embedded in the program, even ifirnplemcntatiou
completely changes, t,he links hetwecn constraints and tl~e documents remain the same unless the constraints
are deleted.

‘1’lle approach presented in this paper provides the means to physically link the constraints LO the various
requirement documents through bidirectional hypcrlinks. Because only those parts of the requirements and
documents t]]at specify a constraint arc Iinkecl to the corresponding formal constraint and links are not
maintained in the cocle, the number of links to be managecl is reduced. In other words, constraints shoulcl
always be tied directly to a document.

[F~\m
L-D-r’E =’:::::01

I

r - - - - - - - -1 --+ Horizontal links
1

‘n

with in a document

:
--+ jinks between

ocumqnts or
constraints and

1

3

documents
L - - - - - - +

Figure 2: Tracing in the context monitoring environment.

The context monitoring system provides fc)r Liclirectiollal, vertical and horizontal traceability, and also
allows the user to check for accountability, desig[l rationale and dependencies. Pro$ject tracking, however,
cannot be done with this approach. Two situations may occur. One is that a violation occurs cluring
program execution and the user wants to cletermine the source of the constraint. Through the elaboration
mecl~anisml it is possible to return to the repository based on the constraint, violated; therefore, the user can
link back to the document. A second situation is when the user recprests information concerning the impact
of a requirement, or a constraint on a program. In this case, the satisfiability mechanism gives information
on the code that is affected by this constraint, providing a virtual link between the constraint. and the code.
Si rnilarly, this procedure can be followed to go from the code to the constraint repository. C3early, the links

200

between the constraints and the docurnerlts are fine-grain and the virtual links between the constraints and
the program code are coarse-grain, (making the links between the code and any documents coarse-grain as
well). As a result, any queries 011 the coarse-grain links will lead the user to candidate areas of interest in
eit, hcr the code or the documents. Recall that the relationship between these documents is based on tkle
constrained variables.

Related constraints from different clocument,s are linked together providing both horizontal and vertical
traceability. This allows the user to cteterrni~le if a constraint is supported by more than one document
or decision. These links rtlay be contained in the same dor-urnent, or across multiple documents providing
horizontal traceability with a tine-grain level.

Because all constraints in the system can be linked back to a decision in the documentation through
vertical links, design rationale can be easily tracecl, Provided that the documents contain the information
on whom originally specified the requirement, the resulting constraint can be linked to this requirement,
providing accountability to the decision makers.

5 Summary

The traceability tool in the cont,ext monitoring system allows virtual links from the code to the constraints
providing tracing between requirements that specify relationships between properties of objects on the sys-
tem. The advantage to this approach is that the systcm does not, have to provide hard links directly to the
code; therefore, when modifications are made in the code, links are not inadvertently affected. Additionally,
this allows the user to trace only the relevant information corresponding to a constraint. One disadvantage to
this approach is that it, is not possible LO ensure that all system requirements are met because the constraints
capture only those part,s of the requirements that specify properties and relationships between objects.

Future research in the area of traceability tools in context ruonitoring includes many different goals. First,
we must determine the best met,hod for storing the documents of the system. As shown in the discussion
of traceability tools in section 2, t,his ~rrust be a highly structured approach to allow the system to process
1 I}(J doclllllellt, links. Some possible approaches to providing this structure include the ot)jcct-oriented, tfle
graph-based and the project database management approach.

The next objective is to develop a prototype to nlodel the proposed traceability tool. This prototype
will provide tile tracing technique to tl)c context monitoring systenl. The elaboration Illechanism, constraint
repository and documents will be included in the implementation of this prototype.

Acknowledgments. This work was supported by NASA under contracts NAG-1012 and NCC W-0089, and
NSF grant no. CIIA-9522207.

References

[1] Curtis, B., 11. Krasner and N. Iscoe, “A Field Study of the Software Design Process for Large Systems”,
communications of the ACM, 31 (11), pp. 1268-1287. Nov. 1988.

~1] Gates, A. and F. Fernandm, “Builclirlg Systems with Integrity Constraints,” LO be published in T h e
Proceedings of the Second World Conference on Integrated Design and Process Technology, Dec. 1-4,
1996, Austin, Texas.

[3] Horowitz, E. and R. Williamson, ‘{SODOS: A Software Documentation Support Environrnent-lts Use”,
IEEE Transactions on Sofiware Engineering, SE- 12(1]), pp. 1076-1087, Nov. 1986.

[4] Pinheiro, F. and J. Goguen, “An Object-Oriented Tool for Tracing Requirements”, IEEE Sojlwarel pp.
52-64, Mar. 1996.

[5] Ramcsh, B. and M. Edwards , “Issues in the Development of a Requirements Traceability Model”,
Proceedings of the IEEE International Symposium on Requirements Engineering, San Diego, CA: IEEE
Computer Society Press, 1993, pp. 256-259.

[6] Westfechtel, B., “A Graph-Based Approach to the Construction of Tools for the Life Cycle”, IEEE, pp.
2-13, June 1992.

