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Abstract

This paper introduces a hybrid co-evolutionary system for global motion planning within un-
structured environments. This system combines the concept of co-evolutionary search along with
a concept that we refer to as the visibility-based repair to form a hybrid which quickly transforms
infeasible motions into feasible ones. Also, this system makes use of a novel representation scheme
for the obstacles within an environment. Our hybrid evolutionary system differs from other evo-
lutionary motion planners in that (1) more emphasis is placed on repairing infeasible motions to
develop feasible motions rather than using simulated evolution exclusively as a means of discovering
feasible motions, (2) a continuous map of the environment is used rather than a discretized map,
and (3} it develops global motion plans for multiple mobile destinations by co-evolving populations
of sub-global motion plans. In this paper, we demonstrate the effectiveness of this system by using
it to solve two challenging motion planning problems where multiple targets try to move away from
a point robot,
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1 Introduction

Evolutionary Algorithms (EAs)} are search methods that evolve a population of candidate solutions
through the use of natural selection. EAs typically solve difficult problems for which traditional search
paradigms yield unsatisfactory results. EAs have been successfully applied to a variety of areas such
as design optimization, machine learning, constraint satisfaction, and constrained optimization [9]. Re-
cently. there has been a growing number of successful applications of EAs to the area of motion planning
[2.3, 6, 9, 11]. The Motion Planning Problem [5, 7] can be stated as follows. Given an environment
E(R, X, T, O)where R represents some robot, X represents the starting point (or point of origin), T
represents the goal or destinat ion point and O represents a set of obst acles, find a collision free (feasible)
path from X to T (path planning phase) that R can traverse (navigation phase), Many of the evolution-
ary motion planning systems rely on simulated evolution almost exclusively as a means of discovering a
feasible motion for R.

This paper introduces a hybrid co-evolutionary system for global motion planning within unstructured
environments. This system combines the concept of co-evolutionary search along with a concept that we
refer to as the visibility-based repair to form a hybrid which quickly transforms infeasible motions into
feasible ones. Also, this system makes use of a novel representation scheme for the obstacles within an
environment. Our hybrid evolutional y system differs from other evolutionary motion planners in that
(1) more emphasis is placed on repairing infeasible motions to develop feasible ones rather than using
simulated evolution exclusively as a means of discovering feasible paths, (2) a continuous map® of the
environment is used rather than a discretized map, and (3) it develops global motion plans for multiple
mobile destinations by co-evolving populations of sub-global motion plans. In this paper, we demonstrate

J[6,9]also use use continuous maps
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(a)A Visibility Graph (6) A Putial Visibiliy Graph
Figure 1: Full and Partial Visibility Graphs

the effectiveness of this new hybrid system by using it to solve two challenging motion planning problems
where multiple targets try to move away from a point robot.

The remainder of the paper is organized as follows. Section 2 provides a brief introduction to the
concept of visibility-based search. In Section 3, we present our hybrid co-evolutionary system called
GEPOA-II (a Global Evolutionary Planning and Obstacle Avoidance system) in detail and, in Section
4, reintroduce our test suite. In Section 5, we present our results and conclusions and, infection 6, we
discuss some directions for future research.

2 Visibility-Based Search

A visibility-based search algorithm can be regarded as any search procedure that uses a visibility graph
(VG)[3, 5] to aid in the discovery of feasible paths. A VG is a graph, (V, F), where V is the set of
all vertices of the obstacles within an environment including the coordinates of the robot (or starting
position) and the destination, and F is the set of all edges connecting any two vertices in V that do not
pass through any obstacles within the environment.

Figure la shows an example of a visibility graph. Notice that X is connected only to the vertices
that are reachable by way of a straight-line segment that does not cut or pass through (or violate) any
obstacles. Notice also that the vertices which are visible to X are connected, in similar fashion! to
other vertices that are visible to them (again by way of straight-line segments). Once a VG has been
constructed for a given environment, usually an A* search algorithm is used to find the shortest path
between starting and destination points.

It is not always necessary to construct a complete VG for an environment. Some researchers have
experienced a great deal of success with using partial VGs(PVGs) [3]. Figure Ib shows an example of
a PVG. An advantage of using a PVG rather than a VG is that a PVG requires less computation. One
disadvantage of using a PVG is that it may not contain an optimal path. Both of these methods perform
poorly on path planning problems with dynamic environments.

3 GEPOA-II

GEPOA-II is a co-evolutionary version of a successful hybrid evolutionary planner named GEPOA-I 4.
We developed GEPOA-II in an effort to take advantage of the decompositional nature of global motion
planning. In GEPOA-II, global motion planning problems are decomposed into smaller, sub-global
problems. A number of EAs are then used to quickly develop sub-global motion plans (one EA for each
sub-problem) which are combined to represent a global motion plan. In this section, we discuss seven
salient attributes of GEPOA-II. These attributes are as follows: the representation of environments, the
concept, of visibilit y-based repair, the representation of candidate paths (CPs), the visibility-based repair
algorithm, the evaluation funct ion, the selection algorithm, and the evolutionary operators. We conclude
this section by providing the parameter settings for three GEPOA-II hybrids that will be tested with a
test suite of two path planning problems.

3.1 Representation of an Environment
An obstacle within an environment is represented as a set of (%’L] intersecting line segments, where ;

represents the number of vert ices of obst aclei. Each line segment / ;, connects two distinct vertices v(1, 4)
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Figure 2: obstacle Representation in GEPOA-II

and (i, j + | & ]) (where j <[%:1) of obstacle i. Associated with each vertex within the environment, is
a value which ‘represents the number of obstacles that the vertex is contained by. This value is referred
to as the ‘containment value’ (CV) of a vertex. If a vertex lies along the boundary of an environment its
C'V is assigned a value of co.

Figure 2 provides an example of how obstacles are represented in GEPOA-II. Notice, in Figure 2.that
the four sided obstacle (Obstacle 1) is represented by only two lines in GEPOA-IL. Line 1 of Obstacle
1 connects vertices v(1, 1) and »(1,3) while Line 2 connects vertices v( 1, 2) and »(1, 4). Obstacle 2 has
five sides and is represented in GEPOA-II using three lines. Line 1 connects v(2, 1) and v(2,3), Line
2 connects v(2, 2) and v(2, 4), and Line 3 connects v(2, 3) and v(2, 5). Since each of the vertices are
contained by only one obstacle, the CV for each vertex is 1.

3.2 Visibility-Based Repair

Visibility-based repair (VBR) is performed as follows. When an obstacle, o;, lies along a straight-line
segment between two nodes P and Q, each line of o; is checked to see if it is intersected by P@). If a line
of o; is intersected by P@ then a repair node is created using the following set of rules:

Rule 1: if the CVs of a line's vertices are both equal to one, then the repair node is selected to be a
point along an extention®of the vertex which is closer to the point of intersection;

Rule 2: if the CVs of a line’s vertices are different, then the repair node is selected to be a point just
outside of the vertex which has the lower CV;

Rule 3: if the CVs of a line’s vertices are greater than one and equal, then the repair node is selected
to be a point just outside of the vertex which is farther from the point of intersection.

Figure 3 shows an example of how VBR can be used to transform an infeasible path into one that
is feasible. In Figure 3a, an infeasible path X PT is shown. The path X T is infeasible because the
line segment X P passes through Obstacle 1 and the line segment PT passes through Obstacle 3. Before
proceeding further, notice that each vertex in the environment shown in Figure 3a has a CV of one.

Using VBR, the line segment X P can be repaired to X AP.Since X P intersects Line 1 of Obstacle
1, a repair node corresponding to a point just outside of either v(1,1) or v(1,3) must be selected. By
applying Rule 1, Node A, which corresponds to a point just outside vertex v(1, 1), is selected as the repair
node.

Similarly, the line segment P7 can be repaired to PBCT. Again Rule 1 must be applied to Line 1
and Line 2 of Obstacle 3. The repair node that results from the intersection of P7 and Line 1 is Node
B. The repair node that results from the intersection of PT" and Line 2 is Node C“. Figure 3b shows the
result of using VBR on X PT. The repaired, feasible version of XPT is XAPBCT.

3.3 Representation of Candidate Paths

An individual representing a candidate path (CP) contains two fields. The first field is a chromosome
which contains a gene corresponding to the cartesian coordinates of each node of the path (where each
node of a path is connect by a straight-line segment). The second field is called the seed. The seed of an
individual is the gene that will be crossed or mutated to created an offspring. Initially, an individual will
have only three genes: the start gene, the seed gene and the destination gene. Repair genes are inserted

2 The distance outside of an obstacle at which a repair node is placed is & USEr specified parameter.
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a) Before Visibility-Based Repair b) After Visibility-Based Repair
Figure 3: Visibility-Based Repair

into the chromosome by the visibility-based repair algorithm each time a straight-line segment of an
individual is found to pass through an obstacle. The third field is a value referred to as the violation
distance. The ‘violation distance’ represents the euclidean distance of the CP which cuts through one or
more obstacles. The fourth field records the euclidean dist ante of the path from the start to destinat ion.

3.4 The VBR Algorithm Used by GEPOA-II
Given a CP, the VBR algorithm used by GEPOA-II works as follows. Each obstacle within the environ-
ment is checked with each straight line segment from the start gene to the destination gene of the CP
until a segment is found that passes through the obstacle. The infeasible segment is repaired via VBR
and the process is repeated using the next obstacle.

For an example of how this repair algorithm works, notice once again Figure 3. When given the path
X PT the algorithm works as follows. Obstacle 1 is checked to see if it is violated by segment X P. Since
it is, a repair gene (Node A) is generated and Obstacle 2 is then considered. Obstacle 2 is checked to see
if it is ‘cut’ by segment X A. Since it is not ‘cut’ by segment X A, Obstacle 2 is checked with segment
AP then segment PT. Since there are no more segments to inspect, Obstacle 3 is considered. Obstacle
3 is checked to see if it is ‘cut’ by segments X A, and AP. Finally, Obstacle 3 is checked to see if it is
‘cut’ by PT. Since it is, two repair genes are generated (Nodes B and C) and the algorithm terminates.

3.5 Evaluation and Selection

The evaluation function computes the euclidean distance of each straight line segment of the path that
an individual represents as well as the euclidean dist ante of each segment oft he path that passes through
one or more obstacles, called the violation dist ante. GEPOA-II uses a modified version of tournament
selection, with a tournament size of 2, to select individuals to become parents. The selection process is
as follows. Two individuals are randomly selected from the current population. If the violation distances
of the two are different then the individual with the smaller violation distance is selected to be a parent.
If the violation distances are the same then the individual with the smaller ‘overall’ distance is selected.

3.6 The Evolutionary Operators

GEPOA-II uses three operators to create and/or refine individuals. The first operator, the VBR algo-
rithm, is applied to parents representing infeasible CPs25% of the time as well as all newly created
offspring. The other two operators, (1) a version of Radcliffe’'s Crossover [10] that we refer to as seed
crossover and (2) a version of uniform mutation we refer to as uniform seed mutation, are applied only
to feasible CPs.

Seed crossover is as follows. Given two seed genes 31=($1,y1)and82=($2,y2),aseed gene for
an offspring, sofs = (rnd(z1,22)+ N(0, 4.0), rnd(y1,¥2) + N(0, 4.0)), is created where rnd is a uniform
random number generator and N (O, 4.0) is a gaussian random number with zero mean and a standard
deviation of 4.0. The resulting offspring, (X, so¢j, T), has a chromosome containing three genes: a gene
corresponding to the start node, the seed node, and the goal node. The offspring then undergoes VBR
and may have additional repair genes added by the VBR algorithm.

In uniform seed mutation, either the x or y coordinate of a parent is mutated using uniform mutation
to create a seed gene for an offspring. A resultant offspring created by seed mut at ion is similar to one
created by seed crossover in that it also has a chromosome cent aining three genes. Once again the
offspring undergoes VBR and may have additional repair genes added by the VBR, algorithm.
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Figure 4: The Two Test Environments

3.7 Attribute Settings for Three Co-evolutionary Hybrids

Three GEPOA-II co-evolutionary hybrids with population sizes of 5, 10, and 20 were tested with a test
suite of two motion planning problems. These three hybrids differ only in the size of the two populations
that they co-evolve. The first of the two populations co-evolved by these hybrids contains motions from
the point robot to the first target. The second population contains motions from the first target to the
second target. The hybrids randomly generate their initial populations, use a seed crossover rate of 0.5
and a uniform seed mutation rate of 0.5. For each generation, only one offspring is create. This offspring
replaces the worst fit individual in the population.

Every ten generations R is advanced a maximum of one unit along the shortest path to 77 developed
by the system. The amount of advancement is based on the change of direction of R. If no change
of direction is needed, R is advanced one unit. If the change of direction is 90° or greater, R is not
advanced. After R has been advanced, T is allowed to move a half unit in a direction (north, south,
east, or west) furthest away from the current position of R, and 7% is allowed to move a half unit in a
direction furthest away from 73°. This process is repeated until R reaches T3. At this point, the second
population is used exclusively to navigate R to T5.

4 The Test Suite

Figure 4 shows our test suite of two motion planning problems that will be solved by the three hybrids
described above. In each of the test environments, X represents the starting point, T represents the
first mobile destination, and “+” represents the second mobile destination. In Test Environment 1, T is
located at(8.0,19.5) and “4”is located at (1.0,19.0). In Test Environment 2, T is located at (1. 0,10.0)
while “+” is located at (1.0,19.5).

5 Results and Conclusions

Each hybrid was run 50 times on each of the test environments. Each run was alotted a maximum of
200 moves. A run was considered successful if the robot reached both targets. On each run, the hybrids
never failed to find a feasible solution within the initial population. Also, the motion plans evolved by
the hybrids allowed the robot to reach the target 100% of the time. This is an indication of how effective
visibility-based repair can be.

The results of the performances of the hybrids on both of the test environments are presented in
Figures 5 an 6. They are organized into a matrix where the columns (from left to right) correspond to:

« the population size of the hybrid (P),

« the average length of the first feasible solution found (Ln.1%¢) from R to T to +,

« the standard deviation of the length of the fist feasible solution found during each successful run (o(Ln.1%)),
. the average number of moves needed to reach the first target (MovesT), and

« the standard deviation of the number of “moves need to reach the first target (o(Movesl)).

« the average of the total number of moves needed to reach the first and second target (Total), and

« the standard deviation of the total number of moves needed to reach the first and second targets (o(Zotal)).

In Figure 5, one can see that as the larger the population size the better the performance. This
is especially the case when viewing the Total column. However larger population sizes require more

3Eachtime Ty ,or T2ismovedeach individual in the population is re-evaluated.
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Ln.1% | o(Ln.1%") | Moues 1 | o(Movesl) | Total | o(Total)

5 | 34.125 3.250 34.960 7.665 73.260 14.574
10 | 32.718 1.844 33.980 7.928 68.980 13.568
20 | 31..746 1.293 31.600 1.918 62.780 9.876

Figure 5: p_f,,..nces on Test 1

P | Lnd*t | o(Ln.1*") | Movesl | o(Movesl) | Total | o(Total)
5 | 38.313 1.432 50. 920 19.573 84.060 | 21.018
10 | 37.077 0.823 49.000 21. 832 81.940 | 23.298
20 | 36.593 0. 664 44, 460 14. 147 75.680 | 13.945

Figure 6: Per formances on Test 2

computational effort. This is due to the fact that each time R, T', or “+” moves every individual in both
populations must be updated. This means that P = 20 performs four times the computational effort
than P =5. In Figure 6, one can see once again that P =20 has the best performance. One interesting
observation is that the differences in the performances of the three hybrids on Test Environments 1and
2 with respect to T'otal have remained virtually the same. It will be interesting, in future efforts, to see
if this constant remains over a larger test suite of problems.

6 Future Work

At present, we are particularly interested in (1) improving the search efficiency of small population
evolutionary motion planners and (2) reducing the computational effort of larger population evolutionary
motion planners. We also experimenting with a number of specially designed order-based and relational
crossover operators [1, 8] that make better use of knowledge gleaned from the environment. Because of
the speed at which these GEPOA-1I hybrids develop feasible paths, our future work will be devoted to
the development of hybrid motion planning systems that make use of VBR as well as other traditional
motion planning concepts. This will allow for the development of evolutionary hybrids that incorporate e
the best of both traditional and evolutionary motion planning concepts.
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