URC97055

Fast Fuzzy Arithmetic operations
Michael Hampton'and Olga Kosheleva?

Departments of ! Computer Science and
2Kleciricaland Computer Engineering
The University of Texas at [l Paso
El Paso, TX 79968, USA
emails' mhampton@cs.utep.edu
2plgaQece.utep.edu

Abstract

In engineering applications of fuzzy logic, the main goa is not to simulate the way the experts really
think, but to come up with a good engineering solution that would (ideally) be better than the expert's
control, [n such applications, it makes per feet sense to restrict ourselves to simplified approxi m ate
expressions for membership functions. If we need to perform arithmetic operations with the resulting

fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple
membership functions.

In other applications. especialy the ones that are related to humanities, simulating experts is one of
the main goals. In such applications, we must use membership functions that capture every nuance of

the expert’'s opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the
corresponding fuzzy numbers become a computational problem.

In this paper, we designa new agorithm for performing such operations. This agorithm is applicable
in the case when negative logarithms — log{u(x))of membership [unctions g(x)are convex, and reduces
computation time from O{n?)to O(= log(n)) (where n is the number of points rat which wc know the
membership functions p(z)).

1 Formulation of the Problem

Depending on the goal, applications of fuzzy logic can be naturaliy divided into two classes:

« Engineering applications like fuzzycontrol in which fuzzy logic is usedas a tool for achieving a certain
goal: a better (smoother and safer) control of a car, a better heating, etc. In such applications,
the expert’s knowledge described by fuzzy rulesis used not to simulate the way experts solve these
probiems, but to design éeféer cont rol strategies,

» Applications to humanities (psychology, linguistics, etc.) in which fuzzy logic is used to describe and
simulate the human behavior, the human decision-making processes, etc., and thus predict the way
humans will react in different sSituations.

In both types of applications, we have to deal with fuzzy numbersr, i.e, quantities whose values we do not
know precisely, and instead, we only have expert (fuzzy) knowledge about these values. This knowledge is
usually described in terms of membership funclions p.(z)that assign to every real numberz the expert’s
degree of belief p,(z)e [(), }]that the actual (unknown) value of the quantity r is equd to z.

The formalism {(membership functions) is the same, but, depending on the application, wc treat these
membership functions differently:

eln engineering applications, we do not need to describe theezact opinion of the experts, because we
are going to smprove this description (b-j some fine-tuning) anyway. Therefore, it is quite sufficient to
use membership functions that approximately describe expert’s opinions. To simplify computations,
usualy, the simplest approximations are used, most often triangular or trapezoid membership functions
(see, e.g.,[2)).

319

¢ In humanities applications, if we use oversimplified approximations to membership functions, we will
end up having very crude models of human behavior For such applications, we, therefore, need accurate
descriptions of membership functions. and these descriptions can be very comnplicated.

1.1 Fuzzy Data Processing and Fuzzy Arithmetic Operations: If We Must Use
Precise Membership Functions, We Have a Computational Problem

Fuzzy data processing. We want to use the expert (fuzzy) knowledge about the values 7t,....r,of
some quantities to predict the value of some quantity r that is related to r;. I n this paper, we will consider
the simplest case when “related "means that we know the exact form of the dependency r= f(ri,..., ra)

between Tiand r, and the only uncertainty in ris caused by the uncertainty in the values of r;.

For example, when we formalize the expert's opinion about possible candidates for a position, we may
know that this opinion depends on the values of n characteristics i of the candidate, we have expert (fuzzy)
knowledge about the values of Ti, and we know that the final opinion depends onthe total evaluation
r=wi-r1+ .+ war, With known weights wi.

In such situations, we must transform the fuzzy knowledge about the valuesr; into a fuzzy knowledge
about r = f(r;, ..., ;). This transformation is caled fuzzydate processing.

Fuzzy arithmetic operations. In the computers, usually, only elementary arithmetic operations (+, -,
-, 1) are hardware supported. Therefore. every data processing algorith m written in a high-level program-
ming language is parsed, i.e., represented as a sequence of elementary arithmetic operations. For example,
computing an expression z1{Z2 + z3) is decornposed into two steps: Computing 2 + 3 and multiplying
the result by *1.

Inview of this decomposition, in order to implement. an arbitrary data processing algorithm with fuzzy
inputs, it is sufficient tobe able to apply elementary arithmeiic operations o = +, — ., to fuzzy numbers.
The formulas for these operations come from the extension principle (see, eg., [3]): In particular, if we use
an algebraic product a - b as a fuzzy analogue of &, we arrive at the following formula for t=ros

ple) = sup (ue(y) Ba(2)).)

Y,z Yoz==x
[n particular, for o = +, we have

pe(x) = sup(pr(y) - pslx — y)). (2)
Y

For simple membership functions, fuzzy arithmetic operations are computationally easy. For
example, if we use Gaussian membership functions

pe(T) = exp{(x - ar)*/(or)?),

ps(x) = exp((z - a, 2/ (o %),
then (2)leads to a Gaussian membership function for ¢: p (x) = exp((z — @)2 /oy)?) with

. _ag{o) 4 a,(0,)7?
(o)t + (g,)2

and ()% =(0,)"2+ (0,)-2 3, 5] hese are computationally very simple formulas to implement.
There are simple formulas for several other cases (see, eg., {3]and references therein).

For complicated membership functions, fuzzy arithmetic operations are computationally com-
plicated. When wc cannot use approximating simple expressions, then we cannot use simplified formulas
that stem from the use of these expressions, and therefore, wc have to use the formula (2). This formula is
straightforward, so, we can simply use it to compute p;(z). To find out how long it would take to compute
tte(x), let us estimate the number of computational steps that arc required to compute g, (x).

Of course, in reality, wc can only know the values of pr(z)and p,(x) for finitely many values . Let us
denote the total number of such values byn. In this case, it iS reasonable to compute only » values of u.(x).
For each of thesen values, according to the formula (2), we must find the largest of n products. Computing
each product takes 1 elementary computationalstep, computing the largest of n numbers requires that we
don -- 1 comparisons. So, the total number of computation steps that needs to be done to compute one
value Of pi(z) IS 2n - 1 =0(n).

320

If we have n parallel processors at our disposal. then we can use each processor Lo compute its own value
of y;(z} and thus, compute all these valuesin linear time.

In many rea-life situations, however, we only have one computer. In such situations, to compute all n
values of the desired membership function u(z), we need O(n?) computationa steps.

The more accurately we wish to represent the expert's opinion, the larger nwe need to take. For large
n,0(n?) is too long. Can we perform fuzzy arithmetic operations faster?

In [4], an approximate algorithm is given that performs arithmetic operations with fuzzy numbers in time

O(nlog(n)).

1.2 What We Are Planning to Do

In this paper, we design a new fast algorithm that computes the precise value of the resulting membership
functions in O(nlog(n))timne.

This algorithm is applicable when the negative logarithms —log(u(z)) of the membership functions
p(z) are convex. This class of membership functions includes many irnportant classes such as Gaussian
membership functions.

2 Fast Addition of Fuzzy Numbers

2.1 Main Ildea

Let us describe, step-by-step, how we can simplify the problem of computing the sum of two fuzzy numbers.

First simplification: reformulation in discrete terms. We only know the membership functions p,(x)
and u,(z) in finitely many points. and usually, these points are of the type zi= ¢ Ax. In this case, the
formula (2) takes the following form:

t; = 1Jnax(rj Sij) ©)

where we denoted ¢ = p (i Az),r,=pu. (2. Az), and s;= p, (i Az).

Further simplification: reducing multiplication to addition. The formula (3) can be simplified even
further if we recall that the equality ¢=r - s is equivalent to ‘T = R + S, where T = - In(t), R = = In(r),

and S = —in(s). In view of this equivalence, and taking into consideration the fact that — in(z) is a strictly
decreasing function, we can reformulate the formula (3) as follows:
Ii =min(R; + Si—j), (1)
J
where we denoted 7; = — In(t;), R; = — In(r;), and Si = — In(s;). We will describe how, given the two

sequences R; and Si, we will be able to compute the elements T; fast. Then, if we know the values r; =
pr(i-Az) and s; = p#s(i Az), we willbe able to compute the values Ri and Si,compute T; = — In{i;), and
then reconstruct the desired values ¢; = u;(i Az) as i = exp(—T3).

How to compute the formula (4)?

Final simplification: a local criterion for the maximum. For a given i, when does the sum .=
Rj+ S;_; atains its minimum’? If it does attain the minimum for some j, this means that the value of this
sum for this particular j is not larger than the values of this sum for j—1 and for j+1:37.<3". ; and
2 <Y 541 If we denote Dj=3%";- ;-1 then these two inequalities takethe form

D; <0; Djz >0. ©®)

We can use binary search to find the desired j. Since the function — In{u. (X)) is convex, the sequence
R; is dso convex, and therefore, the differences R;—R;_, are monotonicaly increasing with j. Similarly,
the differences Si—(j—1y— Si—j are drictly decreasing with j. Therefore. the difference D;=(R;— ;1) -
(Si—j—Si-(j—1)) is increasing with j.

Hence, we can find the desired value j that satisfies the condition (5) by using binary search: This will
be an iterative process on which, on each step, wc will havelower and upper bounds for the desired value j.
We start with the lower and upper bounds that encompass all possible values of 7. Then, on each iteration.
we:

321

. take a midpoint m = {1lower + upper)div?2 between the current lower and the upper bounds;
« compute D, for this midpoint m,and
. compare the resulting value D, with 0.

Depending onthe result of this comparison, we do the following:

o If D= 0,then, due to the monotonicity of the sequence D,,,we have Dy 1> D)= O, i.e,
Dpmy1> 0. Hence, this m satisfies the condition (5). Using monotonicity of D;, one can easily show
that in this case,

— either m is the only value for which {(5)in true (in which case, it is the only possible minimum of
an)Y
— or Dj= 0 not only for j = m, butalso for several values of j that are neighboring tom,in which
case, there arc several minima with exactly the same value of 3.
In both cases, the value of 3~ for the midpoint mis the desired minimum.

o If Dyy> 0, this means, due to monotonicity of the sequence D;, that j <m.In this case, We can take
m as the new value of the variable upper.

e Similarly, if Dy, < 0, this means, due to monoteonicity of the sequence D;, that m < J- In this case,
we can take m as the new value of the variable lower.

This algorithm takes O(n log(n)) steps. On each iteration of the binary search, we reduce the size in
half. In k iteration, we go down from nto <n/2* possible values. When n/2* <1, we are down to a single
point, and thus, wc have localized the desired j. The inequality n/2F < 1 is achieved when k = log,(n), so,
we need O(log(n)) points to find the desired j and thus, to compute the desired valuc of Ti for this particular
1.

To compute the values of 7; for 71 different i's, we thus need n -O(log(n))= O(n 1gm) computational
steps.

22 Resulting Algorithm

GIVEN: the values p,(r) and p,{x) for n equally spaced values i =r' . Ax.

ALGORITHM:
. First, for each of n values z;, we corupute the vatues i = — In{p. (2:}) and S; = — In(g, (2:))-
« For each i, we:

— apply binary search to find the index j for which the non-decreasing sequence

Dj= (Rj—R;) —(Si—j—Si_(;-1,) passes from the non-positive to non-negative values,
compute TiasR; + Si-j for this very j;
‘compute #t(Zi) asexp(—T;).

3 Algorithms for Other Arithmetic Operations

3.1 Subtraction

To compute =7 —s, we can represent it as?{ = r+4 (=S). Since we know the membership function u,(z) for
s, we can easily compute the membership function p_,(z) for —s as p_s(z) = ps(—<). Then, wec can apply
the above algorithm to compute the desired membership function for {=r—s=r+ ({—s).

322

32 Multiplication

IT the quantities r and s both take only positive values, then,to compute r s, we can use the formula
r s = exp(ln(r) + In(s)):

« From the membership functions for r and s, we can easily compute the membership functions for in(r)
and In(s) as phn(ry(z) = pr(In(z)) arid pings)(2) = p,(In(z)).

« Applying the agorithm presented above,we compute the membership function sy for In(t) = In(r)+
In(s).

. Finaly, from pun(sy, we compute p:(y)as pe(y) = puin(ey(exp(y)).

3.3 Division

Division t=r/s can he expressed as t=r(1/s}. So, todivide two fuzzy numbers, we can use the following
algorithm:

. First, we compute the membership function for 1/sas pi1/.(x) = us(1/2).

e Then, wc use the agorithm for multiplication to compute the membership function for
t=r-(1/s} =r/s.

3.4 Computational Complexity

For all these operations, the major part is computing the sum of fuzzy numbers that takes O(n log(n)) steps.
Therefore, the computational complexity of computing the difference, product, or ratio of two fuzzy numbers
is dso O(nlog(n)).

4 What If A t-Norm (&—Operation) Is Different From Algebraic
Product?

4.1 Fuzzy Arithmetic Operations: Case of a General t-Norm

For an arbitrary &—operation fg (a, b), the extension principle for addition leads to the following formula:

pe(x) = qup Je (e (¥} 21 (2 —). (3)

4.2 Strictly Archimedean t-Norms and Reduction to the Case of Algebraic
Product
Idea. [t is known {see, eg., [3]), that if an &—operation satisfies some reasonable conditions, then it can
represented i n the form
Ju(a,b) = 71 (¥(a) . $(b)) G

for some strictly increasing function ¥ :[0,1] — [0, 1] (&—operations that satisfy these “reasonable” condi-
tions are called strictly Archimedean).
Since the function ¥ is strictly increasing, the value fg (pr (y), pts(z —y)) is the largest iff the value

V(o (e (Y), s (2 — v))) is the largest, so.
P(pe(z)) = sup (o prly), s (z 7)) (5)

From (4), we conclude that ¥(fe (- (y), 1ts(x —y))) = ¥(ptr(y)) - ¥(pts(z — y)). Therefore, (7) can be rewritten
as
Upe(2)) " sup Bl () Wit (= - y)). (8)
Yy

If we denote v, () = ¥ e {2)), vs(z) = Y- (), and vy(s) = Y(ue(x)), then this formula will take the form

vi(z) = SIYlp(z/r(y) ve(z7Y))! 7

323

which is exactly like the formula (2) that we already know how to compute fast. From v(z)= ¥{u:(x)). we
can compute pu(z)by applying an inverse functionv ™" p,(z) = v~ H(vy(z)).
So, to compute p:(z), we can apply the following algorithm:

Algorithm.
« For every z, compute v (z) = ¢{u.-{z))andv,(z) = ¥(ps(z)). This takes O(n) steps.

« Apply the agorithm (described in the previous section) to u,(x) and v, (x); this agorithm will take
O(n log(n)) computational steps and return nu.(z).

e Apply the inverse function 1~'to v (z), resulting in p(z) =%~ !(1u(x)). This is done value-by-value.
so, for O(n) values of z, it takes O(n) steps.

Computational Complexity. The resultingalgorithm requires
0(N) + O(rlog(n)) + O(n) = O(nlog(n))

computational steps.

4.3 Other Arithmetic Operations

For other arithmetic operations with fuzzy numbers (—, . . /), we have a similar reduction to the case of
algebraic product that leads Lo similar O(n log(n)) agorithms.

Acknowledgments. This work was supported by the Office of Naval Research Grant No. NO0G14-83-1-
1343 and, partialy, by the National Science Foundation Grant No. CDA 9522903, and by the NASA Pan
American Center for Environmental and Earth Studies (PACES). Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not necessarily reflect the view
of the funding agencies.

The authors are thankful to Ann Gates, Vladik Kreinovich, Luc Longpré, and Scott Starks for their
encouragement.

References

[1] Th.H. Cormen, Ch. L. Leiserson, R,. L. Rivesti, Introduclion {o algorithms, MI'T Press. Cambridge, MA,
1990.

[2] K. Hirota and M. Sugeno. industrial Applications of Fuzzy Technology in the World. World Scientific,
Singapore, 1996.

[3] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Upper Saddle
River, NJ, 1995.

[4] O. Kosheleva, S. D. Cabrera, G. A. Gibson. and M.Koshelev, “Fast Implementations of Fuzzy Arith-
metic Operations Using Fast Fourier Transform (F FT)”, Proceedings of the 1996 IEEE International
Conference on Fuzzy Systems. New Orleans. September 8-11, 1996, Vol. 3, pp. 1958-1964.

[5} V. Kreinovich, C. Quintana, and I.. Reznik. Gaussian membership functions arc most adequate in rep-
resenting uncertainty in rmeasurements. Proceedings of VA FIPS5°92: North A merican l'uzzy Information
Processing Society Conference, PuertoVallarta, Mexico, December 15-17,1992, NASA Johnson Space
Center, Houston, TX, 1992. pp. 618-625.

324

