A new probe to change Curie temperature of PbTiO$_3$ sensors

R. S. Katiyar and Meng Jinfang *

Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931-3343, USA

High temperature Raman spectra of nanocrystalline Pb$_{0.8}$Ba$_{0.2}$TiO$_3$, Pb$_{0.8}$Sr$_{0.2}$TiO$_3$, Pb$_{0.8}$La$_{0.2}$TiO$_3$ and PbTi$_{0.75}$Zr$_{0.25}$TiO$_3$, have been measured, as a function of particle size. There appears respectively a distinct temperature-induced soft mode phase transition in every sample whose Curie temperature can be determined from the mean-field theory. The detailed Curie temperature shift in modified PbTiO$_3$ ceramics by Ba, Sr, La and Zr, has also been investigated as a function of particle size. This study will favor preparations of high efficiency PbTiO$_3$ sensors with an adjustable Curie temperature.

I. INTRODUCTION

It is well known that pyroelectric infrared sensors show good sensing characteristics. Differing from photon sensors, they can be used at room temperature and their IR response does not depend on the wavelength of the IR radiation used. By combining these promising pyroelectric effects with sophisticated silicon IC technology, a realization of silicon monolithic IR sensor at near ambient temperature could be expected for a wide variety of applications. Nowadays, various kinds of pyroelectric materials like LiTaO$_3$ or TGS single crystals are commercially available. Among these materials, PbTiO$_3$ is a good candidate for IR detector because it has a large spontaneous polarization $P_s (75 \mu C/cm^2)$ and a small dielectric constant (~ 100) along the polarization axis 1. PbTiO$_3$ is a perovskite type ferroelectric isomorphous with BaTiO$_3$ and its tetragonality (c/a$=1.06$) is also very large 2. But the Curie temperature T_c of PbTiO$_3$ single crystal is quite high, around 490 $^\circ$C. For better sensitivity of detectors, the Curie temperature must be close to the operating temperature. In this sense, if the Curie temperature of PbTiO$_3$ could be reduced to about 160 $^\circ$C by ionic substitution, its pyroelectric efficiency at room temperature can be strongly influenced. Obviously, the decrease of the Curie temperature T_c of PbTiO$_3$ can be realized by the substitution of of Pb or Ti ions. However, the substituted composition must have a suitable quantity in order to have appropriate T_c with high property coefficients. The experimental results show that the part substitution of Ba for Pb will lead to a decrease in Q and e_{33}/e_0, but an increase in k_p and a good frequency-temperature property. Practically, for materials used as ceramic wave fillers and sonar emission vibration pickup, a high Q will be needed, But, in general, the material with a high Q has a low k_p. In materials with high ε there appears a large $tanh$ and the materials with high k_p will probably lead to an unstable physical property. This reveals that it is very difficult to get an idea sensor with an appropriate T_c and high property coefficients only by dopants. Thus, it is essential to probe other ways to resolve this contradiction. So far, effects of particle size on physical properties and the Curie temperature T_c of materials have been widely received an increasing interest and attention$^3-9$. For example, investigations for PbTiO$_3$ show that its Curie temperature can be lowered to room temperature as particle size is decreased to 12.6-20 nm. In this paper, we have made a detailed study for the modified PbTiO$_3$ by Ba, Sr, La and Zr as a function of particle size using Raman scattering spectroscopy.

II. EXPERIMENTAL

Nanocrystalline Pb$_{0.8}$Ba$_{0.2}$TiO$_3$ (PBT20), Pb$_{0.8}$Sr$_{0.2}$TiO$_3$ (PST20), Pb$_{0.8}$La$_{0.2}$TiO$_3$ (PLT20) and PbTi$_{0.75}$Zr$_{0.25}$TiO$_3$ (PZT25) with different particle sizes were separately prepared, using a sol-
gel process in which barium acetate, lanthanum acetate, strontium acetate, lead acetate, zirconium and titanium butoxide were used as the precursor materials. The processes involved dissolving the metal-containing compounds in the solvent, hydrolyzing and polycondensing the resulting solution into various gels, and finally heat treating these gels at different temperatures and for different time intervals to form nanocrystalline powders. Chemical phase analysis was done using powder XRD measurements. The average grain size was calculated from the full width at half maximum (FWHM) of the (111) diffraction peak using the Scherrer equation $d_{XRD} = K \lambda / \beta(\theta) \cos \theta$, where $K \approx 1$. Raman spectra of the samples were measured using a Spex 1403 Raman spectrometer with a double monochromator, a standard photon-counting technique and an Ar+ ion laser.

III. RESULTS AND DISCUSSIONS

Raman spectra of PBT20, PST20, PLT20 and PZT25 with particle sizes of 60 nm, 37 nm, 54 nm and 44 nm are respectively shown in Fig. 1a - d. These spectra reveal the tetragonal structure of nanocrystalline materials at room temperature, similar to one observed for bulk PbTiO3 (PT). In earlier work, Ishikawa et al. had investigated samples with different average sizes as a function of temperature T_c, the T_c was indirectly measured as the temperature at which the frequency (ω_0) of the soft E(TO) mode (ω_0→0 as $T→T_c$) vanished. T_c was found to decrease with decreasing particle size with $d_{crit} = 12.6$ nm. On the other hand, in the case of bulk materials, the first phase transformation in PbZrxTi1-xO3 (PZT) systems was found to occur at $x=0.52$ - 0.15, whereas no phase transformation was observed in bulk Pb1-xSr3TiO3 (PST) and Pb1-xBa3TiO3 (PBT) systems as x is increased from 0.0 to 1.0 16-17. Recent investigations on nanocrystalline PST, PBT, PZT and PLT with particle sizes of 37 nm, 60 nm, 44 nm and 54 nm have shown that a phase transformation occurs at $x=0.7, 0.7, 0.4$ and 0.4 respectively 18-20. According to these facts mentioned above, the samples used in present experiment are confirmed to have a tetragonal ferroelectric structure at ambient temperature.

From Fig. 1, it is found that the low frequency phonon mode of every sample, the E(TO) soft mode, shows a decrease in frequency, i.e. “softening”, and widening in linewidth, on increasing temperature, as observed in pure bulk PbTiO3. The dependence of the squared frequency of the soft mode upon temperature for PBT20, PST20, PLT20 and PZT25 is respectively displayed in Fig. 2a - d, revealing a nearly linear temperature dependence, in accordance with the soft mode theory in the mean-field approximation 21.

It should be noted that, because of a strong stray light in these materials, especially in PBT20, it is very difficult to measure the lowest frequency of the soft mode close to T_c. This is merely done by extrapolation of the observed data. The Curie temperature of pure PbTiO3 is found to decrease on decreasing the particle size. Thus, it is reasonably considered that PBT20, PST20, PLT20 and PZT25 also undergo a similar temperature-induced soft mode as in pure PbTiO3.

A detailed particle size dependence of the Curie temperature in the above mentioned materials has been performed and illustrated in Fig. 3a-d. One may notice that the transition temperature from cubic (CP) to tetragonal (TP) is shifted towards a lower temperature with decreasing particle size in nanocrystallines.

A careful observation reveals that the particle size corresponding to a Curie temperature of 20 °C in PBT20 and PST20 is smaller than that in PLT20 and PZT25. The particle size dependence of Curie temperature in PZT25 is also found to have a slow change above the particle size of 40 nm, which differs from that in PBT20, PST20 and PLT20. This may originate from many factors, for example, different chemical properties of Ba, Sr, La and Zr as well as their different ion radii (Ba2+ -0.143 nm, Sr2+ -0.127 nm, La3+ -0.122 nm, Zr4+ -0.079 nm) will lead to various distortions of TiO6 octahedra thereby changing the short-range forces responsible for the phase transitions. In addition, the particle size dependence of T_c may result from different substitution forms of Ba, Sr and La ions for Pb ions at A sites, and Zr for Ti ions at B sites in ABX3 perovskite oxides.
The softening and widening of the soft mode caused by decreasing particle size, as observed by increasing pressure, have been measured in many nanocrystalline materials including PbTiO$_3$. As particle size of materials is decreased, the surface stress on particles will produce an additional effect on atoms inside particles due to some interfaces and spherical particle distribution. The additional effect is similar to that of hydrostatic pressure on atoms. Hence, the decrease of the Curie temperature with reducing particle size results from effects of surface stress of spherical particles.

IV. CONCLUSIONS

High temperature Raman spectra for PBT20, PST20, PLT20 and PZT25 with various particle sizes have been measured and their Curie temperature can be determined by the temperature dependence of the squared frequency of the soft mode which is consistent with the mean field approximation. The Curie temperature is found to shift towards a lower temperature with decreasing particle size and it depends upon the substitution forms of doping ions for the ions at A and B sites in ABO$_3$ perovskite materials. The surface stress from small particles plays an important role in lowering Curie temperatures relative to the corresponding bulk materials. Our study will offer a physical basis for preparing PbTiO$_3$ sensors with an adjustable Curie temperature.

* On leave Department of Physics, Henan University, Kaifeng, P. R. China

ACKNOWLEDGMENTS

The work was supported by the NASA-NCCW-0088 and NSF-OSR-9452893.

REFERENCE

Fig. 1 Raman spectra of nanocrystalline materials at various temperatures
A. $\text{Pb}_{0.8}\text{Ba}_{0.2}\text{TiO}_3$
B. $\text{Pb}_{0.8}\text{Sr}_{0.2}\text{TiO}_3$
C. $\text{Pb}_{0.8}\text{La}_{0.2}\text{TiO}_3$
D. $\text{PbTi}_{0.75}\text{Zr}_{0.25}\text{O}_3$
Fig. 3 The particle size dependence of Curie temperature for nanocrystalline...
Fig. 2 The temperature dependence of the squared frequency of the soft mode