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Abstract

Measurements are never absolutely accurate; w a result, after each mesaurement,  we do not get the
ezact value of the measured quantity; at best, we get an in terual of its possible values.

For dynamically changing quantities z, the additional problem is that we cannot measure them
continuously; we can only measure them at certaiu discrete moments of time tl, t 2, . . . . If we know that
the value Z(tj ) at a moment tj of the last measurement was in the interval [$–(tj  ), X+ (tj )], and if we
know the upper bound D on the rate with which z changes, then, for any given moment of time t, we
can conclude that z(t) belongs to the interval [Z–(tj  ) — D . (t — tJ), Z+ (tJ) + D . (t — tl)]. This interval
changes linearly  with time, an is, therefore, called a linear interval  function.

When we process these intervals, we get an expression that is quadratic and higher order w.r.t. time
t. Such “quadratic” intervals are difficult to process and therefore, it is necessary to approximate them
by linear ones.

In this paper, we describe an algorithm that gives the optimal approximation of quadratic intervaf
functions by linear ones.

1 Introduction: intervals, linear and quadratic interval func-
tions, and why it is necessary to approximate

The need for indirect measurements. In many real-life problems, we are interested in the values of a
quantity y that is difficult or impossible to measure directly. For example:

e in astrophysics, we cannot directly measure the mass or the temperature of the star;

o in geophysics, we cannot directly measure the amount of oil in a given area, etc.

In all these situations, we measure some related quantities xl, . . . . z. that can be measured directly, and
then use the known relationship y = ~(zl, . . . . Zn) between xi and y and the results ii of measuring ~i to
estimate y as j = j(il, . . . . in). For example:

e to measure the temperature of the star, we measure its brightness xl, . . . . Zn on different wavelengths,
and then try to fit the resulting spectrum into a black-body radiation spectrum corresponding to the
temperature y;

e to estimate the amount of oil y in a given area, we measure the geophysical characteristics of different
parts of it, and use known equations to estimate y.

In contrast to a direct measurement of xi, this two-stage process of direct measurements followed by data
processing is called indirect measurement.

In space sciences, and especially in their applications to environmental and earth sciences, indirect mea-
surements are the main method of measurement.
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The  main problem: estimating accuracy of the result of data processing. After the data processing
is over, the main problem is: how accurate is the result j of data processing?

For example, suppose that we estimate the amount of oil in a given area, and we got j = 100 mln ton.
Our further actions will depend on the accuracy of this result:

. if the accuracy is high, e.g., if the actual amount of oil is 100 + 1, then we will probably start drilling;

● however, if the accuracy is low, and the actual value if, say, 100 + 100, then it may make more sense

to undertake further, more accurate, measurements.

The inaccuracy in y comes from two sources:

. First, the model y = ~(zl, . . . . Zn ) that is used in data processing is often inaccurate. This inaccuracy
is the easiest to take into consideration: if we know the upper bound Am on the error y – ~(zl, . . . . Zn)
of this model, and if we know the values of ~i, then we can conclude that the actual value of y belongs
to the interval [ij – Am, ij+ Am], where j = ~(zl, . .,xn).

. Second, the measurement results ii are also inaccurate and therefore, may differ from the actual values
of the measured quantities Zi. This error is much more difficult to estimate, and this is what we will
be doing in the present paper.

Intervals. Measurements are never 100% precise. Thus, if, as the result of measuring a certain quantity
x;, we get a measurement result ii, it does not necessarily mean that the actual value Za of this quantity is
exactly equal to ii.

The manufacturer of the measuring instrument usually supplies it with the upper bound Ai for the
measurement error Axi = ii – zi; in order words, the manufacturer guarantees that lAxi  I < Ai.

In this case, if we have measured a quantity zi and the measurement result is ii, then the only information
that we have about the actual value is that this actual value cannot differ from ii by more than Ai, i.e.,
that this actual value must be within the interval [ii – Aa, ii + As].

If we know these intervals, then the set Y of possible values of y = ~(zl, . . . . Zn) can be described as
follows:

Y={ f(zl, . . ..xn)lzle[$.,  zf], . . ..zn E[x., z:]}. (1)

Comments.

e Sometimes, in addition to the upper bound for the error, we know the probabilities of different error
values. However, in many real-life cases, we do not know these probabilities, and the upper bound Ai
is the only information about the measurement error Axi that we have.

● Computations that take this interval uncertainty into consideration are called interval computations
(see, e.g., [1, 2]).

Linear interval functions. In some cases, the values zi do not change with time. In these cases, the only
inaccuracy is caused by the inaccuracy of the direct measurement.

However, in many real-life situations, the measured values change with time. For such dynamically
changing quantities xi, there is an additional source of uncertainty: namely, we cannot measure a quantity
continuously; we can only measure it at certain discrete moments of time t 1, tz, . . . Hence:

e If we are interested in the value of zi (tj ) at one of the moments of time tj in which we have actually
measured ~i, then the inaccuracy of the direct measurement is the only source of the measurement
error, and we get the interval [x,~(tj ), z~(tj )] of possible values of ~i(tj ).

e However, if we are interested in the value xi(t) of the quantity ~i at a moment of time t in which no
direct measurement of xi was performed, then we must use one of the measured values, and get an
additional error component caused by the change of xi between the moment tj of the last measurement
and the desired moment t. There are two methods to take this additional error into consideration:

If we know the upper bound Di on the rate with which z changes, then, for any given moment
of time t, we can conclude that ~i(tj) — Di . (t — tj) < Zi(t)  < Zi(tj) + Di . (t — ~3). Hence, from
the fact that ~~(tj ) < ~i(tj ) < ~+(tj ), we conclude that the value Zi(t) belongs to the interval
[x~(f), z~(t)], where z ; (t )= z~(tj) - G (t -tj) and z~(t) = %~(tj)  + Di (t -tj).
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- In some cases, simultaneously with measuring the values ~i (tj ), we can directly measure the rate
ii(tj)  with which these values change; e.g.,

* simultaneously with measuring coordinates Zi(t) of a robot, we can measure its velocity ii(t);
* simultaneously with measuring the velocity ~i @), we can measure the acceleration ii(t); etc.

In these case, if we know the interval of possible values [i,: (tj ), XT (tj )] of the rate, and we know
that the upper bound S’i on the second time derivative, we can conclude that:

* for all t E [tj, tj+l],  the values ii(tj ) belong to the intervals [v–, v+],  where
v-  = ~~(tj) – Si (tj+l – ~j) and V+ = i>(tj)  + Si . (tj+l  – tj), and therefore, that

* for each of these moments of time, the actual values of xi(t) belong to the interval
[X-(t), Z+(t)], where Z-(t)= ~~(tj) - V- . (t -- tj) and Z+(t)= ~~(tj) + V+ ~ (t - tj).

In general, the only information that we have about the actual value of x(t) is that z(t)  E x(t) =

[x-(t), z+(i)].  In other words, instead of a single interval,  we have an interval function that assigns an
interval x(t) to each moment of time t.

In our cases, the endpoints z– (t) and z+(t) of this interval are linear functions and therefore, it is natural
to call this interval function linear interval  function.

For linear data processing, linear interval functions remain linear. If the algorithm ~(z 1, . . .,x. )
is a linear function, then, as a result of applying this algorithm to the interval linear functions, we get an
estimate ( 1 ) that is either a linear or a piece-wise linear function of time t.

In [3, 4, 5], such linear interval functions were effectively used in electrical and electronic engineering
analysis of circuits with linear elements.

For non-linear data processing, we need an approximation. In most real-life situations, however,
data processing algorithms are non-linear. As a result, if we start with the intervals for xi(t) that are linear
in time t, we end up with intervals for y(t) whose dependence on t is much more complicated. For example:

e if we add or subtract two intervals that are linear in time, we still get the result that is linear in time;
but

● if we multiply two intervals that are linear in time, then their endpoints also get multiplied, and, as a
result, we get an interval function [y– (t ), y+(t)] in which the endpoints are quadratic functions of time
(i.e., we get quadratic interval  functions).

If we multiply more, we get cubic, quartic, etc. functions. In principle, there is nothing wrong with this
complexity, except for the fact that while a linear interval function requires only 4 numbers to store (2
coefficients of the lower endpoint and 2 coefficients of the upper endpoint), quadratic functions require 6
coefficients, cubic functions require 8, etc. The more complicated the function becomes, the more memory
we need to store these coefficients, and the longer it takes to process these functions.

Thus, since we are often limited both in processing time and in memory (especially if the processing is
done in an on-board computer), we must approzimat e the given complicated interval function by a simpler
one.

In other words, if we have an interval function y(t) = [y– (t ), y+ (t )] that is known to contain the actual
value y(t), we want to be able to find a simpler interval function z(t) = [z– (t ), z+(t)] that for each t, contains
the entire interval y(t) and is, thus, guaranteed to contain the actual value y(t).

Of course, this approximation comes at a trade-off we simplify the expression, but we make the interval
wider (and therefore, lose some information). Therefore, the narrower the approximating interval function,
the better.

What we are planning to do. The simplest approximation problem of this type is the problem of
approximating a quadratic interval function by linear ones. In this paper, we will present an optimal solution
to this problem.
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2 When is the approximation optimal?
tion of the problem

Definition 1. Let  an interval [t-, t+] be fixed.

Mat he mat ical formula-

e

e

e

●

By an interval junction, we mean a mappingx that puts into correspondence to each numbert E [t-, t+]
an interval x(t) = [x-(t), z+(t)].

If both functions z- (t) and z+(t) are linear  functions oft (i.e., if z*(t) = z; + Z; . t), we say that the
interval fun ction is linear.

If both functions z–(t) and x+(t) are quadratic functions oft (i.e., if z+(t) = Z$ + z; t + z; . tz),  we

say that the interval function is quadratic.

We say that a linear interval function z(t) = [z-(t), z+ (t )] approzimat es a quadratic interval function
y(t) = [y-(t), y+(t)] if y(t) ~ z(t) for all t.

Comment. The narrower the intervals, the better. So, our goal is to minimize the worse-case width of the
approximating interval, i.e., the value W(z) = max,(zt(t) – z- (t)).

We will see that in some cases, for a given quadratic interval function y(t), there are several approximating
linear interval functions z with the same value of W(z). If two different approximating functions have the
same worst-case widths, then it is reasonable to choose the one for which the best-case width w(z) =
mint (z+ (t) — z– (t )) is the smallest. Thus, we arrive at the following definition:

Definition 2.

0 For every interval function z(t):

– by its worst-case width, we mean a value

w(z) = rm:+](z+(t) – z-(t)) .

– by its best-case width, we mean a value

w(z) = r&j:+ l(z+(q – z-(t)).

e Let a quadratic interval function y be fixed. We say that a linear function z is an optima! approximation
of y

—

—

—

if the foJJowing conditions are satisfied:

first, z is an approximation of y.

second, among all linear approximations to y, the function z has the smallest value of the worst-
case width W(z);

third, if there exist several linear approximations u to y, with the same smallest value of the
worst-case width W’(u), the function z has the smallest value of the best-case width w(z).

What we are planning to do. In this paper, we will describe the optimal linear approximation to an
arbitrary quadratic interval function.

The resulting formulas will depend on the signs of the coefficients (y; and y;) at the quadratic term tz. In
each of the resulting four csses, we will describe the geometric idea that leads to the optimal approximation,
and give the explicit formulas for this approximation.

Derivation of the solution. In this case, both functions y- (z) and y+(z) are “pointing inward”.
If z(t ) is a linear interval approximation to the given quadratic interval function, then, from y(t ) ~ z(t), it

follows, in particular, that z-(t) < y-(t) for all t c [t-, t+]; therefore, z-(t-) < y-(t-) and z-(t+) < y-(t+).
Since  y; < 0, the quadra~lc  function y – (t) is  concave and hence,  from z – ( t– ) < y– ( t– ) a n d

z– (t+) < y– (t+), i.e., from the fact that the line z– (t) lies below the two endpoints of the graph of y– (t), it
automatically follows that the entire graph of y– (t) is above the line z– (t ). Sol it is sufficient to guarantee

that at the endpoints, the values z- (t+) do not exceed the corresponding values of y- (t+).
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For fixed z+(t), the resulting intervals are the narrowest when the line z- (t) is at the highest possible
location. Thus, to minimize the widths of the intervals, we must move both points z- (t*) up as much as
possible. The highest possible location for z- (t-) is y- (t-), and the highest possible location for z- (t+) is
y-(t+). Thus, y-(t) is a a straight line going through y-(t*), i.e., a secant.

Similarly, .2+ (t) is a secant of y+(t).

Solution. In the optimal approximation, the function z– (t) is the secant of y- (t), i.e., a straight line whose
endpoints are the endpoints of the quadratic function y– (t) on this interval. Similarly, z+(t) is a secant of
y+(t), i.e.,

z-(t) = y–(t–)  + Y-(~+)– Y-(~-)  .(t_t-)

t+ – t-

Z-(t) = y+(t-) +
y+(t+) –y+(t-) . (t _t_),

t+ – t-

(2)

(3)

Derivation of the solution. The arguments given for Case 1 show that in this case, the function ,Z- (t)
is still the secant. With z– (t) fixed, it is sufficient to find the upper function z+(t) for which the resulting
approximation is optimal.

Let us first guarantee that the worst-case width is indeed the smallest possible. If this width is equal
to IVo, this means that z+(t) < z– (t) + Wo, and therefore, that y+(t) < z+(t) < z- (t) + IVo. Thus, to
guarantee that IV. takes the smallest possible values, we must choose W. as the smallest possible value for
which y+(t) s z– (t ) + W.  for all t E [t –, t +]. In other words, as W’., we take the maximum of the function
y+(t) – z-(t) on the interval [t-It+].

The maximum of the concave quadratic function y+(t) – z- (t) = (y~ – z;) + (y~ – z:) . t + y; t2 is
attained at the point where its derivative is equal to O, i.e., at the point

If this maximum is attained at the internal point tm of this interval, then at tm, the line z- (t) + W’. is a
tangent to y+(t), and therefore, there is no way to find a lower line without increasing the worst-case width
W(z). So, in this case, z+(t) = z-(t)+ IVo.

If the maximum is attained in one of the endpoints, e.g., at t+, then, we can, keeping the straight line
~~ (t) at the point (t+, y+ (t+)), lower its other end and still get the same worst-case width. The lowest value
of the best-case width is attained when we lower the other end to the lowest possible position in which it is
still above y+(t), i.e., to the position of a tangeni to y+(t).

Solution. For the optimal approximation, the lower line z- (t) is a secant (2). To determine the upper line
~+(t), we aPPIY the formula (4) to compute the value  &. Then:

● If tm E [t–, t+], we take z+(t) = z–(t) + (y+(tm) – .z-(tm)),

o Iftm  > t+, then z+ is the tangent to y+ at t+:

z+(t) = y+(t+)+(yf +2y; .t+)(t –t+).

o If tm < t–, then Z+ is the tangent to y+ at t–:

z+(t) =y+(t–)+(yf +2y; .t–)(t–t–).

(5)

(6)

This case is similar to case 2, so we can immediately give a solution:

Solution. For the optimal approximation, the upper line z+(t) is a secant (3). To determine the lower line
z–(t), we compute the value tm = —(y; — z~)/(2y~). Then:

o Ift~ c [t–,  tf], we take z-(t) = z+(t) – (z+(t~) – y-(tm)).
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o If tm > t+, then z– is the tangent to y– at t+:

z - ( t )  =  y–(t+) +(y; +2y; t+)(t –t+). (7)

o If tm < t–, then z– is the tangent to y– at t–:

z-(t) = y-(t-) +(y; +2y; t-)(t –t - ) . (8)

6 Case 4:g; <0, zJ<0

Derivation of the solution. In this case, both functions y- (z) and y+(x) are “pointing outward”.
As a first step of constructing the optimal linear approximation z(t), let us first make sure that we have

the smallest possible value of the worst-case width. For every t c [t-, t+], from y(t) ~ z(t), we can conclude
that the width of z(t) is at least as large as the width of the interval y(t ). Thus, the worst-case width W(z)
of the approximating linear function z(t) cannot be smaller than the worst-case width W(y) of the original
(quadratic) interval function y. Since we are minimizing W’(z), it is therefore desirable to choose z in such
a way that its worst-case width is exactly equal to W(y).

The worst-case width W(y) is a maximum of the quadratic width function y+ (t) – y- (t) on the interval
[t-, t+]. By differentiating this difference, one can easily get an explicit expression for this maximum point
t~ (see below).

If this maximum point t~ is inside the interval [t-, t+],  then at this point t ~, both approximating lines
Z -(t) and z+(t) must be tangent to the corresponding functions y– (t ) and y+(t), because otherwise, in at
least one of the directions, the width will increase.

If this maximum t~ is attained at one the endpoints, e.g., for t+, then we must have z- (t+) = y- (t+)
and z+ (t + ) = y+ (t+). In this case, to guarantee the smallest possible best-case width, we must place z+(t)
as low as possible (i.e., along the tangent to y+), and z– (t ) as high as possible, i.e., similarly, along the
tangent to y- (t).

As a result, we arrive at the following formulas:

Solution. Compute tM = –(y~ – y; )/[2(y~ – y; )]. Then:

e If tM E [t-, t+], then z- is the tangent to y– at tM, and z+ is the tangent to y+ at tM: z-(t) =
y-(tJ.f)+ (y; +2y; .tiyf)(t –tJf); z+(t) = y+(t~)+ (y< + 2y; .t&f)(t –tJf).

e If tJf > t+, then z– is the tangent (7) to y– at t+, and z+ is the tangent (5) to y+ at t+;

●  IftM<t–, then z– is the tangent (8) to y- at t_ and z+ is the tangent (6) to y+ at t_.
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