
I

An Arbitrary First orcler Theory
Can Be Represented by a Logic Program: a Theorem

Olga Kosheleval~2

1 Department of Ekctrica] and Computer k!ngineering
and 2 Knowledge Representation Laboratory

IJniversity of Texas at El Paso
El ~FiSO, TX 79968

email olga~ece. utep. edu

Abstract

How can we represent knowledge inside a computer?
For formalized knowledge, classicaf logic seems to be the most adequate tool. Classicaf logic is behind

all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence.
There is only one serious problem with classicaf logic: due to the famous Giiiel’s theorem, classicaf

logic is algorit hmicafly undecidable; aa a resrdt, when the knowledge is represented in the form of logicaf
statements, it is very difficult to check whether, based on this statement, a given query is true or not.

To make knowledge representations more algorithmic, a speciaf field of logic programming was in-
vented. An important portion of logic programming is algorithmically decidable. To cover knowledge
that cannot be represented in this portion, severaf extensions of the decidable fragments have been pro-
posed. In the spirit of logic programming, these extensions are usually introduced in such a way that
even if a general afgorithm is not avaifable, good heuristic methods exist.

It is important to check whether the already proposed extensions are sufficient, or further extensions
is necessary. In the present paper, we show that one particular extension, namely, logic programming
with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable
sense) an arbitrary first order logicaf theory.

1 Introduction

Intelligent data processing is extremely important in space applications. One of the main problems
with space-related data processing is that the amount of data grows so fast that, by some estimates, only
about 10’%o of the data is being processed.

We humans also get lots of information, but our brain is accustomed to filtering out the irrelevant
information and processing only the relevant one. To use this experience, we need to use intelligent data
processing techniques.

For that, we must be able to represent our knowledge in the computer in such a way that we will be able
to use this knowledge for processing data.

Classical logic is the natural way of representing human knowledge, but classical logic is non-
algorithrnic. How can we represent knowledge inside a computer?

For ~orrnaiized knowledge, the most adequate tool seems to be classicaf logic (see, e.g., [6, 2, l]). Clas-
sical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial
Intelligence.

There is only one serious problem with classical logic: due to the famous Gtidel’s theorem, classical logic is
algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements,
it is very difficult to check whether, based on this statement, a given query is true or nol.

Logic programming: an attempt to make logic algorithmic. To make knowledge representations
more algorithmic, a special field of logic programming was invented.

Extensions of traditional logic programming. An important portion of logic programming is algorith-
mically decidable.

431

To cover knowledge that cannot be represented in this portion, several extensions of the decidable frag-
ments have been proposed.

In the spirit of logic programming, these extensions are usually introduced in such a way that even if n
general algorithm is not available, good heuristic methods exist.

An important problem: are the existing extensions sufficient? It is important to check whether the
already proposed extensions are sufficient, or further extensions is necessary.

What we are planning to do. In the present paper, we show that one particular extension, namely, logic
programming with classical negation, introduced by M. Gel fond and V. Lifschitz [3, 4], can represent (in
some reasonable sense) an arbitrary first order logical theory.

Moreover, we will capitalize on the fact that logic programming can describe transitive ciosure that cannot
be represented in traditional first order logic, and show that this logic programming formalism can describe
extensions of first order theories obtained by adding this notion of a transitive closure.

The preliminary results of this paper first appeared as a draft 15].

The structure of this paper. To make this result more accessible to general readers, we will briefly recall
the main definitions of classical logic and of logic programming with classical negation.

2 Basic definitions

2.1 Classical (first-order) logic: a reminder

Definition 1. Suppose that we are given three sets C, V, and P with [Cl < No, IVI < No, and IPI < No, and
a function ar from P to the set N of non-negative integers.

,e Uements of the set C wdl be called constants and denoted by c1, . , Cn, . . .

● Elements of the set V are called variables and denoted by ZI, . , Zn, . . .

● Elements of P will be called predicate symbols and denoted by P,, . . . Pn, .

● The value ar(F’i) will be calied the arity of a predicate Pi:

— a predicate of arity 1 is called unary;

— a predicate of arity 2 is called binary;
— a predicate of arity 3 is called ternary;

— etc.

● By an atom, we mean an expression of the type P(z, y), where P E P, each of the symbolsx, y
is either a constant or a variable, and the number of these symbols x, y coincides with the arity of
the predicate symbol P.

● If all the symbofs x, y in the definition of an atom are constants, then this atom is called a ground
atom.

● By a first order jorm ula we mean a closed formula A that is formed from atoms by using logical
connective (V, &, -I, +,=) and quantifiers Vxi and 3xi.

● By a first order theory T we will mean a finite set of first order formulas {A l, At }.

Definition 2. For an arbitrary first order theory, we can defirre a model m a set U (called a Universe}, and
relations ~i on this set U (for all Pi that occur in T) that satisfy all the formulas Aj from the theory 7’.

We say that a formula 1’ follows from T, and denote it T ~ F, if F is true in all modefs of 7’.

2.2 Adding transitive closure (TC) to the first order logic

Definition 3.

● By a TC-jormula we mean either a (ciosed) first order formuia, or an expression of the type TC(Pi, Pj),
where .Pi and Pj are binary predicates.

● By a 7’C-theory we mean a finite set of ‘TC-formulas {Al, At].

● For a TC-theory T, by its jirst order part !f’, we mean the set of all first order formulas from 7’.

● By a model of a Tc-theory T we mean such a model of ~, that if TC(P; , Pj) G T, then ~i is a transitive
closure of Fj.

● If a formula F is true in all models of a TC-theory ‘T, then we say that F follows from T, and denote
it by T+F.

2.3 Facts and queries

Motivations. Each theory represents a general description of the objects that we are interested in. E.g., it
may describe a linear ordering. To be more specific, we must, add some knowledge about our specific object.
This knowledge is usually presented in the form of facts, i.e., atomic statements.

After we add this knowledge, we may ask whether some basic statement is true for the resulting theory
or not. So, we arrive at the following definition:

Definition 4.

● By a fact we mean a ground atom or its negation. Facts will be denoted by F1 , Fn, . .

● By a query we also mean a ground atom or its negation. Queries will be denoted by Q.

L’omment. In logic, what, we call a fact, or a query, is usually called a hteral

2.4 Definitions of generalized logic programs: a reminder

In the present paper, we consider logic program with classical negation in the sense of [3, 4].
We want to formulate logic programs that are equivalent to first order theories. It turns out that for that

purpose, we must use additional (auxiliary) constants, predicates and functional symbols. So, we arrive at
the following definitions:

Definition 5. Suppose that in addition to the sets C, V, and P, we have denumerabie sets ‘R, B, and 3,
and a function arity : F + N such that for every n E N, there are infinitely many f E 3 with arity(f) = n,

e Elements of the set B will be called auxihary constants and denoted by bl, bn, . . .

e Elements of the set R w;]] be called auxiliary predicates and denoted by I?l, &, . . .

e Elements of ~ wdl be called auxdtary functional symbols and denoted by g], . . ., gn, . . . For each f E F,
the value arity(f) is called an arity off.

* A term is defined in the usual manner, starting from constants, auxiliary constants and variables, and
applying function symbols of appropriate arity.

● By a generalized atom we mean an expression of the type P(tl, t.), where P E P U’R is a predicate
or auxiliary predicate of ari ty n, and t ~ are terms.

● A generalized literal is a generalized atom p or the expression of the type -Ip, where p is a generrdized
atom; an expression ?p is caHed classica 1 negation.

● A rule is an expression of the type A +-- Ell , f?m, where A is a generalized literaf, m > 0, and e a c h
of 13i is either a generalized IiteraJ, or an expression oft he type not p for some generalized literal p,

● Rules with m = () are called jacls. A fact A +- can also be written as A.

● A finite set of rules is called a generalized logic program, or a logic program with c!assacal negation.
Such programs will be denoted by P, Pi, etc.

433

.
.

● We say that a query Q is true for a program ‘P (and denote it by P l-- Q) ifQ belongs to any consistent
answer set of P (in the sense of [3, 4]),

Comments

o Please note that in the formulation of the query, we only allow the symbols from the original theory,
auxiliary symbols are not aHowed.

● Since in this paper, we will only use logic programs with classical negation, we will call them, without
confusion, simply logic programs.

3 Main result

THEOREM. There exists an algorzthm that transform every TC-theory T into a logic program PT with
ciassical negation so that for an arbitrary finite set of facts {Fl, F’n), and for an arbitrary query Q,
Q is true in T+{ Fl,..., ~}~} ijand onlyif Q it true lnPT+{F~ -,..., F,,+}.

ComrnenL We would like to emphasize once again that we allow the use of auxiliary predicates, constants
and function symbols while describing the rules of the logic program, but not in queries or facts. So, in this
Theorem, we still apply Definitions 4 to describe facts and queries. According to these definitions, facts and
queries are ground atoms (or negations of ground atoms) that are formed only from the original predicate
symbols Pi and original constants c,.

4 Description of the algorithm and the main idea of the proof
Let us describe the algorithm that transform a theory into a logical program.

4.1 Case of first order theories

At first, we will consider the case when the TC-theory does not contain any statements about the transitive
closure, i.e., when it is actually the first order theory. We will illustrate this case on the example of the
foHowing theory that [iescribes dense order:

Step 1: general description. First we make a skolemizaiion of the axioms of the given first-order theory
(for definitions, see, e.g., [6, 2, 1]).

Step 1: example. In our example, skoiemization leads to the following axioms (universal quantifiers are,
for simplicity, omitted):

X<yl!. zy<z+x<z;

X<y--+-y <x;

lx < x’

z < f(z, y) & f(z, y) < y.

Step 2: general description, Every axiom is represented in conjunctive normal form [6, 2, 1]), and each
of the resulting conjunctions is written separately.

434

Step 2: example. In our exampIe, we will get the following set of disjunctions:

(TT < y) V(=y< Z)V(Z < z);

(-W < 7J)v(7y< r);

(7T < z);

(x< f(x, ?J));

(.f(~, !4) < v)
Step 3: general description. On this step, we translate every disjunction al V . . . Van into the foliowing
n rules:

an +--a1,7a2, an_l.

an_~ ~yal,~az,...,az,anan.

. .

a1~1a2, an.

Step 3: example. In our example, we will get the following program (in classical logic, it is a usual practice
to have a predicate symbol iike < in between the arguments, but in logic programming, the predicate symbol
is usuaily in front; to follow this tradition, we will use a notation L(x, y) instead of z < y):

L(X, z) - L(x, y)j L(y,z).

T5(y, z) f-- L(z, y), TL(x, 2).

-L(z, y) +-- L(y, z), -L(z, z).

-.L(z)y) +-- I.(y, x).

mqy, z) - l-.(z, y).

+(x, z).

L(z,f(z,y)).

L(.f(x, y), y).

Step 4: general description. Finally, to obtain a program TT that is “equivalent” to the original theory
T (in the sense of Theorem 1) we add, for each of the predicates P(z, ..., y) from the resulting program,
two statements called Closed World Assumption (CWA):

P(x,y)+not 7P(z. y)., y).

Step 4: example. In particular, in our example, we add the following two statements:

L(x, y) +-- not -L(x, y).

7L(z, Y) - not L(~ly).

Idea of the proof. We need to prove that for any finite set of facts { F,,. . . . Fn }, and for an arbitrary
query Q, Q is true in T+ {Fl, f“,,} if and onIy if Q it true in ~T + {F1 t-, . . ., Fn -}.

For classical logic, Q is true in T+{ F’l, F,, } iff the theory T’ = T+ {Fl, Fn) + -Q is inconsistent.
The inconsistency of the theory is equivalent to the inconsistency of its skolemization, so, it is sufficient
to check whether the skolemized version S(T’) is inconsistent, i.e., whether Q is deducible from the theory
T“ = S(T) + {Fl,. . . . Fn}, i.e., whether Q is true in a~l models of T“. It is sufficient to consider Herbrand
models of T“.

It is easy to show that every Herbrand mode] of T“ is a consistent answer set of the corresponding logic
program (minimality follows from the present of the two close world assumptions), and vice versa, every
consistent answer set represents a Herbrand modeI of T“. This observation concludes the proof.

435

.

4.2 Theories with transitive closure

if a theory T contains statements about transitive closure, then we need to add the following additional step
to our algorithm:

Step 5. If the original theory T contains the expression TC(ii, B) for some binary predicate symbols A and
B, then we:

● add an auxiliary predicate aAB to the set R of auxiliary predicates; and

● acid the following rules to the logic program obtained on Step 4:

CYAB(Z’, Y) +- f3(X, y), ClAB($/, Z).

Comment. It is easy to show that the “standard” way of representing transitive closure in Iogic programming
will not work. Indeed, traditionally, the fact that predicate arw (ancestor) is a transitive closure of the
predicate par (parent) is expressed as follows:

anc(z, y) +- par(z, y).

mc(x, y) + par(r, z), anc(z, y).

~anc(z, y) - not anc(z, y).

However, if we add the facts
~par(a~, aj) +-

for all i,j, and
arlc(al,az) +

then we get P + F I* anc(al, az), but in this model, the transitive closure par” is empty, and is, therefore,
different from ans.

4.3 General comment

The proof given above shows that the correspondence between theories and logic programs is even more
straightforward that follows from our Theorem: Namely, if we add a new axiom At+l to the theory ‘T, then
a logic program ~hat corresponds to the resulting theory ~, can be obtained from T by adding rules that
correspond to At+l.

Acknowledgments. This work was partly supported by the NASA Pan American Center for Environmental
and Earth Studies (PACES). The author is thankful to Chitta Baral, Ann Gates, Michael GeJfond, Wadik
Kreinovich, Luc Longpr6, Arthur R,amer, and Scott Starks for their help and encouragement.

References

[1] J. J3arwise (cd.). Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977

[2] H. B. Enderton. A mathematical introduction to logic. Academic Press, N. Y., 1972.

[3] M. Gelfond and V. Lifschitz: “Logic programs with classical negation”, In: D. Warren and P. Szeredi
(eds.), Logic Pr-ograrnming: Proceedings o-f ihe 7th lntemational Conference, 1990, pp. 579-597.

[4] M. Gelfond and V. Lifschitz “Classical negation in logic programs and disjunctive databases”, New
Generation Computing, 1991, Vol. 9, pp. 365 385.

[5] O. Kosheleva, Any theory expressible in first order logic extended by transitive closure can be represented
by a /ogic program, Draft, October 1992.

[6] *J. R. Schoenfield. Mathematical logic. Addison-Wesley, 1967.

436

