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Summary

This report provides a comprehensive summary of the research work performed over the dura-

tion 03/00-11/00 on the co-operative research agreement NCC-1-400 between NASA Langley

Research Center and Kansas State University.

This summary briefly lists the findings and also suggests possible future directions for the

continuation of the subject research in the area of GPC and NGPC.



Brief Summary

Model Predictive Control

History of Model-based Predictive Controllers(MPC) goes back to late 70's when the

process industry showed a keen interest in using these control methods. The control for-

mulation at the time was mainly heuristic and algorithmic [1-2], and exploited the increasing

potential of digital processors. These controllers were closely related to the minimum time

optimal control methodology. The receding-horizon principle which is central to the most of

the MPC algorithms came about as early as early 60's [3]. MPCs became quite popular in

the process industries where computational speed was not a major concern. Also, many MPC

algorithms were used on multivariable systems with constraints but no formal proofs of sta-

bility or robustness were available. Another parallel development took place using ideas from

adaptive control which led to the development of self-tuning controllers [4] and extended hori-

zon adaptive controllers (EHAC)[5]. This continued evolution of MPCs led to the emergence

of the Generalized Predictive Control (GPC) methodology in late 80's [6] which incorporates

all major features of the predictive controllers in a unified framework. The various versions

of the same common idea give rise to the following different types of predictive controllers:

Multistep Multivariable Adaptive Control (MUSMAR)[7], Multipredictor Receding Horizon

Adaptive Control (MURHAC) [8], Predictive Functional Control (PFC) [9], and Unified Pre-

dictive Control (UPC)[10].

MPC has also been formulated in the state-space setting [11], which not only allows the use

of well established state-space theories for analysis but also provides the ease for extensions to

multivariable systems. Moreover, it facilitates the use of stochastic theories and treatment of

actuator/sensor noise. The well developed estimation theory from state space methods can be

easily incorporated without much complication. The perspective gained by working in these

different domains made it possible to devise some simple tuning rules for ensuring stability

and robustness for MPC systems. As a simple analogy, MPC controller can be viewed as an

observer-based controller wherein its stability, performance, and robustness is determined by

the observer dynamics, which can be fixed by adjustable parameters, and regulator dynamics,

determined by MPC parameters such as weightings, horizon lengths, etc. Although, in [12],
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somespecific stability theoremsare given for GPC using the state-spacesetting the general

stability results for GPC were lacking. Recently, in 90's, stability of GPC under end-point

constraints wasshownin [13],[14],wherethe equality constraints wereimposedon the output

after a finite horizon. The work in the robustnessarea for GPC hasmainly hinged on the

explicit modeling of the uncertaintiesand designingthe controller for the worst-casescenario.

II. Research issues in MPC

The existing technologyof MPCs is not matured enoughevenfor the caseof linear systems

for aerospaceindustry to usein its current form. Thelimitations of industrial MPC technology

aresummarizedin [15]. Much work still needsto be donein this area. Followingare someof

the main issuesthat needfurther investigation.

Over-parameterization:

Guidelinesfor choosinga"minimal" representationof the system(in the parameterspace)

is still an issuewhich needsfurther investigation. Most of the commercial products use the

step or impulse responsemodelsof the system that are known to be over parameterized.

Moreover,suchmodelsaxenot valid for unstablesystemsand systemswith integrators.

Optimization of cost function:

The high computational cost is one of the inherentdrawbacksof the MPCs. In an effort

to minimize this cost many optimization routinesusedin MPC computationsaredesignedto

yield sub-optimal solutions rather than the optimal solution. Also, it is not known how close

this sub-optimal solution is to the optimal solution. In certain situations thesesub-optimal

solution may not be acceptable.In high-speedapplication on the other hand there may not

be any other choicethan to acceptsuchsolutions.

Uncertainties:

Sincethe crux of the MPC lies in the accuracyof the predictor model it is very important

that the predictor model is obtainedvery carefullyand asaccuratelyaspossible.Since,in most

cases,analytically derived models havehigh degreeof approximation, system identification

techniquesareusedto minimize theseerrors. However,it isdifficult to usesuchtechniquesfor

open-loopunstablesystems.Moreover,despitethe useof best availablemodelingtechniques

existenceof modeling errors and parametric uncertaintiesis unavoidable. This necessitates
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systematicmethodologyfor handling uncertaintiesin the system. The techniquesof handling

uncertaintiesin MPC frameworkare still under developmentand warrant more work.

Tuning parameters:

Although there hasbeen someattempt in devising rules for picking tuning parameters

of MPC, the correlation of tuning parametersand closed-loopbehavior is not very clear.

Only empirical results areavailable (for example,seeour earlier work in [16]). Useof tuning

parametersfor providing robustnessand stability is still the subject of research. Moreover,

tuning under constraints is another challengingproblemthat needsfurther investigation.

Stability and robustness analysis:

There aresomerecentresultson the stability of MPCs, however,the results are limited to

a very restricted classof systemsunder nominal conditions. The issueof stability robustness

is wide open and needsmuchattention.

III. Nonlinear MPC and neural networks

The central idea of MPC doesn't assumethat the system to be controlled has to be

linear. That means,conceptually the ideaof MPC architecture can beextendedto nonlinear

systems,as well. However,this extensionis not that trivial. There aremany open issuesdue

to nonlinear nature of the plant:

Model: The availability of a "good" nonlinear plant model is the main problem. The iden-

tification techniquesare not advancedfor nonlinear systemsas they are in the linear case.

Neural networks offer onepossiblesolution to this problem.

Theoretical basis: The theoretical foundation for analysisof stability and robustnessof

nonlinearMPCs is still in its infancy and needssignificant work.

Computational complexity: The computationalburden for nonlinearMPC is considerably

higher comparedto linear casewhich prohibits their usein real-time applications.

Neural networks as predictors:

Over the last decade,Artificial Neural Networks (ANN) havegained increasingattention

of researchersfrom various fields. In past, neural networks were mainly used in pattern

recognitionand function approximationproblems. However,in subsequentyears,the rangeof

neural networksapplicationshasconsiderablyexpanded.The application areaof our interest



is the control of dynamical systems. In particular, the focus will be on the useof neural

networksin systemidentification, modeling,and control. Applicability of neural networksin

theseareasis due to their approximation capabilities. The ability of ANN to approximate

any nonlinear function to arbitrary precisionis central to their use in controls. It is this key

property of neural networks which makesANNs a viable tool for identification, modeling,

and control of dynamical systems. The structure of multilayer neural network comprising

nonlinearactivation functions, feedbackmechanism,and useof delay nodesmakesit possible

to modelany dynamical system.The keyresult, which statesthat the multilayer feedforward

networkswith only onehiddenlayerarecapableof approximatinganycontinuousfunction ona

compactsetin avery precisesense,wasprovedindependentlyby many researchers.This result

is basedon the famousStone-Weierestrasstheoremfor approximation of a function. Although

neural networks with only one hidden layer were provedto be the universal approximators,

no result exists to date which givesthe theoretical basis for selecting the number of hidden

nodesrequired (or equivalently the numberof basisfunctions required) in the hidden layer.

Artificial neural networkshavebeenshownto performwell in the identification and control

of linear time-invariant (LTI) systems. Becauseof their ability to learn any nonlinear map,

they can be effectivelyused for identification and control of nonlinear dynamical systemsas

well. In general,for nonlinear systems,the control theory is not asdevelopedas it is for the

linear systems;only systematic methods available to date for analysisof such systemsare

Lyapunov-basedtechniques. In recent years,someresearchershavedemonstrated the useof

neural networks in the control of nonlinearsystems.One drawbackwith the existing neural

network literature for nonlinear systemsis that the results are based mostly on empirical

methods and no comprehensivetheoretical foundation is available. In addition, most of the

reported methods aread-hocand are applicablefor a small classof systems.

IV. Research issues in ANN

The function approximationcapability of ANNscanbeexploited to usethem aspredictors

in MPC architecturefor nonlinearsystems.WhenMPC usesneural network asa plant model,

the resulting MPC architecturewill be calledasNeural MPC (NMPC). In particular, if ANN

is used in the GPC framework it will be referred to as NGPC. In our earlier work [16],
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control of flexible joint link usingNGPC wasaccomplished.Sometheoretical aswell assome

empirical resultswerealsogivenfor tuning of NGPC parameters.A methodologyfor modeling

uncertainty wasalsopresentedfor linear aswell asnonlinearsystems.Useof ANNs in MPC

architecturehasseveralissuesthat needto be researched.Someof theseissuesarespecificto

ANNs as predictors and someothers relate to assessmentof their stability and their role in

MPC framework.

Type and size of ANN:

There doesn't exist any result which givesa clearchoiceof the type and sizeof ANN for a

particular application which will give a minimal representationof the systemwith prescribed

prediction accuracy. The choiceof number of hidden layers/nodesand activation function

also becomesimportant factor in ensuringthe stability of learning dynamicsof the network.

The problembecomesevenmore involved if the on-line learning is required.

Stability of MPC with ANN as predictor:

Stability of NMPC isprobably the most difficult challengeat this stageof researchin MPC

and ANN. It is important that the stability issuesrelated to ANN and MPC are thoroughly

understoodbeforethe stability of NMPC canbeassessed.

IV Accomplishments and Future Work

(a) Stability analysis: the work completed includes characterizationof stability of receding

horizon-basedMPC in the setting of LQ paradigm. It has been shownthat finite horizon

LQ formulation canbe usedto analyzeunconstrainedand constrainedrecedinghorizonMPC

problems. In the caseof constrained problem, however,stability is dependenton solution

trajectories of finite horizonproblemreachinginto the feasibleregionwherethe infinite horizon

LQ problem has finite solution [17].

The current work-in-progressincludes analyzing local as well as global stability of the

closed-loopsystem under various nonlinearities; for example, (i) actuator nonlinearities (ii)

sensornonlinearities,and (iii) other plant nonlinearities. Actuator nonlinearities include three

major typesof nonlinearities: saturation, dead-zone,and (0,oc) sector.

(b) Robustness analysis: It is shown that receding horizon parameters such as input and

output horizon lengths have direct effect on the robustness of the system. It has been shown



empirically that in most casesparametric uncertainties can be handled by increasing the

output horizon.

(c) Code development:A matlab code hasbeendevelopedwhich can simulate variousMPC

formulations. This codecan facilitate comparisonof various MPCs and will also serveas a

validation tool for NNET software. The current effort is to generalizethe code to include

ability to handle all plant types and all MPC types.

(d) Improvedpredictor: It isshownthat MPC designusingbetter predictors that canminimize

prediction errors. It is shownanalytically and numerically that Smith predictor can provide

closed-loopstability under GPC operation for plants with deadtimeswherestandardoptimal

predictor fails.

(e) Neural network predictors: When neural network is used as predictor it can be shown

that neural network predicts the plant output within somefinite error bound under certain

conditions. Our preliminary study showsthat with proper choiceof update laws and network

architecturessuchbound canbe obtained. However,muchwork needsto be doneto obtain a

similar result in generalcase.Future work wilt addressthis issue.
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