Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Andrea Papagno, Editors

Volume 171
BOREAS TE-17 Production Efficiency Model Images

Scott J. Goetz, Samuel N. Goward, Stephen D. Prince, Kevin Czajkowski, and Ralph O. Dubayah
University of Maryland, College Park

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
BOREAS TE-17 Production Efficiency Model Images
Scott J. Goetz, Samuel N. Goward, Stephen D. Prince, Kevin Czajkowski, Ralph Dubayah

Summary

A BOREAS version of the Global Production Efficiency Model (http://www.inform.umd.edu/glopem/) was developed by TE-17 to generate maps of gross and net primary production, autotrophic respiration, and light use efficiency for the BOREAS region. This document provides basic information on the model and how the maps were generated. The data generated by the model are stored in binary image-format files.

Note that the files of this data set on the BOREAS CD-ROMs have been compressed using the Gzip program. See Section 8.2 for details.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TE-17 Production Efficiency Model Images

1.2 Data Set Introduction
The Boreal Forest Production Efficiency Model (Boreal-PEM) is composed of a suite of models that provide estimates of the variables needed to drive a production efficiency model (i.e., one based on restrictions in the conversion "efficiency" of absorbed photosynthetically active radiation (APAR) in terms of unstressed gross primary production (GPP) through short-term environmental physiology).
1.3 Objective/Purpose
The purpose of the production efficiency modeling for the BOReal Ecosystem-Atmosphere Study (BOREAS) was to use remotely sensed observations to estimate GPP and net primary production (NPP) at the spatial resolution of the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) for the entire BOREAS region. Higher resolution maps would be possible with, e.g., Earth Observing System (EOS) instruments (launched 1998) or with sensors on aircraft platforms. The advantage of satellite data was that, once the component models were validated, consistent measurements could be made across the entire region. Thus, this approach captured gradients of land use intensity and climate. In addition to NPP and GPP, Boreal-PEM provided the data needed to model above-ground biomass and canopy conductance (e.g., maps of air temperature, vapor pressure deficit (VPD), etc.). In combination with land cover and deforestation maps, the remotely sensed measurements of NPP can yield estimates of the impact of land cover change on carbon storage, which is a focus of the follow-on work.

1.4 Summary of Parameters
A number of surface variables required to implement Boreal-PEM are retrieved on a daily basis using surface "parameter retrieval" algorithms. These include surface radiometric temperature (Ts), ambient air temperature (Ta), atmospheric precipitable water vapor amount (U), surface absolute humidity, VPD, fractional PAR absorption (FPAR), APAR, standing above-ground biomass, and a cumulative surface wetness index (CSI). Other variables related to the efficiency of light utilization, or the carbon yield of APAR, include the proportion of vegetation cover types that utilize the C3 or C4 photosynthetic pathways. This is derived using long-term climatological information and modeled biomass.

1.5 Discussion
Boreal-PEM consists of linked models of canopy radiative transfer, canopy utilization of APAR, and physical environmental variables that have a multiplicative effect on stomatal control. The model is entirely driven with satellite-retrieved surface variables (e.g., APAR, air temperature, soil moisture, absolute humidity, etc.). The resulting "stressed" GPP is reduced to NPP through carbon expenditures associated with autotrophic respiration derived from standing above-ground biomass. The model results closely approximated surface measurements of both physical and biological variables, including NPP, within the BOREAS study areas and were clearly associated with land cover type (i.e., broadleaf deciduous, needleleaf evergreen, etc.).

1.6 Related Data Sets
BOREAS Level-3b AVHRR-LAC Imagery: Scaled At-sensor Radiance in LGSOWG Format
BOREAS Level-4b AVHRR-LAC Ten-Day Composite Images: At-sensor Radiance
BOREAS Level-4c AVHRR-LAC Ten-Day Composite Images: Surface Parameters
BOREAS RSS-04 1994 Southern Study Area Jack Pine LAI and FPAR Data
BOREAS RSS-07 Regional LAI and FPAR Images From Ten-Day AVHRR-LAC Composites
BOREAS RSS-14 Level-1 GOES-7 Visible, IR and Water-vapor Images
BOREAS RSS-14 Level-1a GOES-7 Visible, IR, and Water-vapor Images
BOREAS RSS-14 Level-2 GOES-7 Shortwave and Longwave Radiation Images
BOREAS RSS-14 Level-1 GOES-8 Visible, IR and Water-vapor Images
BOREAS RSS-14 Level-1a GOES-8 Visible, IR and Water-vapor Images

2. Investigator(s)

2.1 Investigator(s) Name and Title
Samual N. Goward (PI), Professor and Chair
Stephen D. Prince, Professor
Scott J. Goetz, Research Scientist
Kevin Czajkowski, Research Scientist
Ralph O. Dubayah, Assoc. Professor
2.2 Title of Investigation
Biospheric Dynamics in the Boreal Forest Ecotone

2.3 Contact Information

Contact 1:
Dr. Scott J. Goetz
Dept. of Geography
University of Maryland
College Park, MD 20742-8225
(301) 405-1297
(301) 314-9299 (fax)
sgoetz@geog.umd.edu.

Contact 2:
Samual N. Goward
Dept. of Geography
University of Maryland
College Park, MD 20742-8225
sg2l@umail.umd.edu

Contact 3:
Stephen D. Prince
Dept. of Geography
University of Maryland
College Park, MD 20742-8225
sp43@umail.umd.edu

Contact 4:
Kevin Czajkowski
Dept. of Geography
University of Maryland
College Park, MD 20742-8225
kczaikow@geog.umd.edu

Contact 5:
Ralph O. Dubayah
Dept. of Geography
University of Maryland
College Park, MD 20742-8225
rdubayah@geog.umd.edu

Contact 6:
Andrea Papagno
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-3134
(301) 286-0239 (fax)
Andrea.Papagno@gsfc.nasa.gov
3. Theory of Measurements

The model is driven primarily by vegetation light absorption, which determines potential photosynthetic rates. The potential rates are reduced by stress terms, including Ta, VPD, and CSI, which act on stomatal physiology (i.e., conductance, Gs). The "stressed" photosynthetic rates are used to provide an actual value of daily carbon gain. The loss of carbon via autotrophic respiration (Ra) is modeled based on a semi-empirical relationship with standing above-ground biomass, which, in turn, is derived from monthly minimum visible reflectance. A contextual approach is used to derive pixel-by-pixel maps of the environmental variables on a daily basis for all days when AVHRR scenes were available (the BOREAS results were based on 35 acquisitions throughout the 1994 growing season). GPP, NPP, Ra, and the amount of NPP per unit APAR on an annual basis are also generated as output maps.

Variations of the PEM approach have been taken by various investigators, beginning with correlative models first described by Kumar and Monteith (1982), Tucker et al. (1983), and Asrar et al. (1985). The Carnegie Ames Stanford Approach (CASA) (Potter et al., 1993) was the first model to use the PEM concept on a global scale, and Global PEM (GLO-PEM) was the first PEM to utilize variables retrieved entirely with remotely sensed observations on a global scale. Descriptions of individual model components and their performance have been reported in numerous journal publications (see Section 10.2.1).

4. Equipment

4.1 Sensor/Instrument Description
 See associated data set documentation in Section 1.6.

4.1.1 Collection Environment
 See associated data set documentation in Section 1.6.

4.1.2 Source/Platform
 See associated data set documentation in Section 1.6.

4.1.3 Source/Platform Mission Objectives
 See associated data set documentation in Section 1.6.

4.1.4 Key Variables
 See associated data set documentation in Section 1.6.

4.1.5 Principles of Operation
 See associated data set documentation in Section 1.6.

4.1.6 Sensor/Instrument Measurement Geometry
 See associated data set documentation in Section 1.6.

4.1.7 Manufacturer of Sensor/Instrument
 See associated data set documentation in Section 1.6.

4.2 Calibration

4.2.1 Specifications
 See associated data set documentation in Section 1.6.
4.2.1.1 Tolerance
See associated data set documentation in Section 1.6.

4.2.2 Frequency of Calibration
See associated data set documentation in Section 1.6.

4.2.3 Other Calibration Information
See associated data set documentation in Section 1.6.

5. Data Acquisition Methods

All data are recovered with algorithms driven by optical and thermal AVHRR observations, with the exception of incident PAR, which is derived from the Geostationary Operational Environmental Satellite (GOES) observations (provided by Eric Smith for BOREAS).

6. Observations

6.1 Data Notes
The AVHRR data as provided by the Canada Centre for Remote Sensing (CCRS) to BOREAS were used for these analyses. No additional screening was necessary; however, Boreal-PEM utilizes a series of routines to test for the presence of subpixel clouds, and this technique was improved using the BOREAS data set (Czajkowski et al., 1997a).

6.2 Field Notes
None given.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
The nominal spatial resolution of the data was 1.1 km at nadir. All data were resampled to 1-km resolution using image mapping techniques developed at CCRS (called GEOCOMP) and validated at the University of Maryland (Czajkowski et al., 1997b).

The corners of the total area covered by the model are defined by the following:

<table>
<thead>
<tr>
<th>BOREAS Grid X (KM)</th>
<th>Y (KM)</th>
<th>NAD83 Coordinates Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>175.000</td>
<td>0.000</td>
<td>108.51193W</td>
<td>50.97184N</td>
</tr>
<tr>
<td>175.000</td>
<td>1000.000</td>
<td>107.87384W</td>
<td>59.94373N</td>
</tr>
<tr>
<td>975.000</td>
<td>0.000</td>
<td>97.31119W</td>
<td>50.13370N</td>
</tr>
<tr>
<td>975.000</td>
<td>1000.000</td>
<td>93.92214W</td>
<td>58.89997N</td>
</tr>
</tbody>
</table>

The total area covered by the model runs was 800 km by 1,000 km, corresponding to the BOREAS study region within the BOREAS Information System (BORIS) X grid range of 175-975 km and the BORIS Y grid range of 0-1000 km, encompassing both the Northern Study Area (NSA) and the Southern Study Area (SSA).
Image coordinates (upper left origin) are easily related to BORIS grid coordinates (lower left origin):

\[
\text{grid}_X = \text{image}_\text{pixel} \\
\text{grid}_Y = 1000 - \text{image}_\text{line}
\]

For example, the NSA old jack pine tower site (T7Q8T) with BORIS grid coordinates \(Y=617, X=769\) has image coordinates of \(\text{line}=383, \text{pixel}=769\).

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
All data were resampled by CCRS to 1-km pixels before being used as model input fields.

7.1.4 Projection
The area mapped is projected in the BOREAS grid projection, which is based on the ellipsoidal version of the Albers Equal-Area Conic (AEAC) projection. The projection has the following parameters:

- **Datum:** NAD83
- **Ellipsoid:** GRS80 or WGS84
- **Origin:** 111.000°W 51.000°N
- **Standard Parallels:** 52° 30' 00"N
 58° 30' 00"N
- **Units of Measure:** kilometers

7.1.5 Grid Description
Lines and pixels increase from the upper left corner of the image.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The 34 AVHRR acquisitions defined the observational period during the growing season. The earliest image was 16-Apr-1994 and the latest was 07-Sep-1994. GPP, Ra, and NPP for periods between acquisitions were interpolated to a daily interval using linear interpolation. Annual (growing season) results are summed daily values.

7.2.2 Temporal Coverage Map
Not applicable.

7.2.3 Temporal Resolution
The model operates on a daily time-step. But the data represent annual values.
7.3 Input Data Characteristics
Input data required by the model are summarized in the following table.

Table 1. Boreal-PEM input variables

<table>
<thead>
<tr>
<th>7.3.1 Input Parameter/Variable</th>
<th>7.3.2 Variable Description/Definition</th>
<th>7.3.3 Unit of Measurement</th>
<th>7.3.4 Data Source</th>
<th>7.3.5 Data Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible</td>
<td>spectral exoatmospheric reflectance</td>
<td>%</td>
<td>AVHRR channel 1</td>
<td>0, 25</td>
</tr>
<tr>
<td>near infrared</td>
<td>spectral exoatmospheric reflectance</td>
<td>%</td>
<td>AVHRR channel 2</td>
<td>0, 50</td>
</tr>
<tr>
<td>T4</td>
<td>thermal emission (brightness temperature)</td>
<td>degrees C</td>
<td>AVHRR channel 4</td>
<td>0, 50°</td>
</tr>
<tr>
<td>T5</td>
<td>thermal emission (brightness temperature)</td>
<td>degrees C</td>
<td>AVHRR channel 5</td>
<td>0, 50°</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalised difference vegetation index</td>
<td>unitless</td>
<td>(ch2-ch1)/(ch2+ch1)</td>
<td>0, 1</td>
</tr>
<tr>
<td>mean Ta</td>
<td>climatological mean air temperature</td>
<td>degrees C</td>
<td>Leemans and Cramer</td>
<td>0, 50°</td>
</tr>
<tr>
<td>incident PAR</td>
<td>incident photosynthetically active radiation</td>
<td>MJ/day</td>
<td>GOES (Eric Smith/BORIS)</td>
<td>0, 12</td>
</tr>
<tr>
<td>e</td>
<td>surface spectral emissivity</td>
<td>unitless</td>
<td>Prabhakara and Dalu</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

7.4 Output Data Characteristics
Model output is image format, binary single byte-per-pixel (i.e., 8-bit) values that range between 0-255. See Section 8.2 for data format, scaling, and coordinate information. The following table describes the output variables.

Table 2. Boreal-PEM output variables

<table>
<thead>
<tr>
<th>7.4.1 Output Parameter/Variable</th>
<th>7.4.2 Variable Description/Definition</th>
<th>7.4.3 Unit of Measurement</th>
<th>7.4.4 Data Source</th>
<th>7.4.5 Data Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts</td>
<td>surface radiometric temperature</td>
<td>degrees C</td>
<td>modeled</td>
<td>0, 50°</td>
</tr>
<tr>
<td>Ta</td>
<td>ambient air temperature</td>
<td>degrees C</td>
<td>modeled</td>
<td>0, 50°</td>
</tr>
<tr>
<td>VPD</td>
<td>vapor pressure deficit</td>
<td>millibars (mb)</td>
<td>modeled</td>
<td>0, 50</td>
</tr>
<tr>
<td>CSI</td>
<td>cumulative surface wetness index</td>
<td>unitless</td>
<td>modeled</td>
<td>-5, 5</td>
</tr>
<tr>
<td>APAR</td>
<td>absorbed photosynthetically active radiation</td>
<td>megajoules (MJ)</td>
<td>modeled</td>
<td>0, 12 / day 100, 1100 / yr</td>
</tr>
</tbody>
</table>
8. Data Organization

8.1 Data Granularity
The smallest unit of data tracked by BORIS was the entire set of images.

8.2 Data Format(s)

8.2.1 Uncompressed Data Files
The entire data set contains one American Standard Code for Information Interchange (ASCII) header file and six image files. Each image file contains 1,000 records (image lines) that contain 800 1-byte pixel values.

<table>
<thead>
<tr>
<th>File Num.</th>
<th>Description</th>
<th>Record Size</th>
<th># Records</th>
<th>Bytes/ Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASCII header file</td>
<td>80</td>
<td>11</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>APAR Image</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Biomass Image</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Gross Primary Production</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Light Use Efficiency</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Net Primary Production</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Autotrophic Respiration</td>
<td>800</td>
<td>1000</td>
<td>1</td>
</tr>
</tbody>
</table>

The image files values must be multiplied or divided by a scaling factor to obtain physical units. The appropriate factors are:
- **apar** - multiply image values by 4 for actual range of 0 - 900 gC/m²-yr
- **biomass** - multiply image values by 6 for actual range of 0 - 40 kg/m²
- **gpp** - multiply image values by 6 for actual range of 0 - 1500 gC/m²-yr
- **lue** - divide image values by 255 for actual range of 0 - 1 gC/MJ
- **npp** - multiply image values by 3 for actual range of 0 - 600 gC/m²-yr
- **resp** - multiply image values by 4 for actual range of 0 - 900 gC/m²-yr
8.2.2 Compressed CD-ROM Files

On the BOREAS CD-ROMs, files 2 through 7 listed in Section 8.2.1 have been compressed with the Gzip compression program (file name *.gz). These data have been compressed using gzip version 1.2.4 and the high compression (-9) option (Copyright (C) 1992-1993 Jean-loup Gailly). Gzip (GNU zip) uses the Lempel-Ziv algorithm (Welch, 1994) used in the zip and PKZIP programs. The compressed files may be uncompressed using gzip (-d option) or gunzip. Gzip is available from many Web sites (for example, ftp site prep.ai.mit.edu/pub/gnu/gzip-*.*) for a variety of operating systems in both executable and source code form. Versions of the decompression software for various systems are included on the CD-ROMs.

9. Data Manipulations

9.1 Formulae

See Section 9.1.1.

9.1.1 Derivation Techniques and Algorithms

\[T_5 = 1.274 + \left(\frac{1}{2} \right) T_4 + \left(\frac{1}{2} \right) T_5 \] (1) (after Becker and Li, 1990)

where:
- \(T_4 \) = apparent temperature in AVHRR channel 4 (K)
- \(T_5 \) = apparent temperature in AVHRR channel 5 (K)
- \(e \) = surface spectral emissivity;

\[e = \left(\frac{1-e^*}{0.6} \right) \times \text{NDVI} + e^* \left(\frac{0.05(1-e^*)}{0.6} \right) \] (2)

e* = 'grey-body' emissivity for unvegetated surface (Prabhakara et al., 1977). and e', e'' are terms to characterize between-band differences in e.

\[T_a = a \times 0.7 + b \] (3)

where:
- \(a \) = slope of \(T_s/\text{NDVI} \) relationship
- \(b \) = intercept of \(T_s/\text{NDVI} \) relationship
- \(T_a \) = intercept

where NDVI = 0.7. a, b change with moving window contextual linear regression (TVX) approach.

\(\text{VPD} = \text{vapor pressure deficit (D)}; \)

\[\text{D} = 0.611 \left[\exp \left(17.27 \times \frac{T_a}{T_a+237} \right) - \exp \left(17.27 \times \frac{T_a}{T_a+237} \right) \right] \] (4)

where \(T_d \) = dewpoint temperature;

\[T_d = \frac{\ln(\lambda +1) + \ln(U) - 0.1133}{0.0393} \] (5)

and
- \(\lambda \) = coefficient to adjust for latitude and season (Smith 1966).
- \(U \) = atmospheric precipitable water content (cm).
\[U = 17.32 \frac{(DT - 0.6831)}{(TS - 291.97)} + 0.5456 \]

and \(DT = T4 - T5 \)

CSI = cumulative surface wetness index (Sg);

\[CSI = \sum \gamma_t + \gamma_t \quad (7) \]

where \(g_t \) = slope of \(Ts/NDVI \) at time \(t \) (i.e., a simple 'bucket' model in which \(g_t \), corrected for solar zenith angle effects, varies relative to a normalized value, 0.5);

APAR = absorbed photosynthetically active radiation,

\[APAR = FPAR \times PAR \quad (8) \]

where:

\[FPAR = 1.67 \times NDVI - 0.08 \]

\[NDVI = \frac{(ch2-ch1)}{(ch2+ch1)} \]

\[PAR = \text{incident PAR from GOES (E. Smith/BORIS)} \]

NPP = net primary production;

\[NPP = GPP - Ra \quad (9) \]

GPP = gross primary production;

\[GPP = APAR \times e_g \quad (10a) \]

where \(e_g = e_g^* \) (modified by multipliers that simulate stomatal physiology, Gs); i.e., \(Ta, VPD, CSI \)

\[e_g^* = 55.2 \alpha \quad (10b) \]

\(\alpha \) = quantum yield of photosynthesis (Collatz, et al. 1991)

\(e_n \) = carbon yield of APAR (g/MJ);

\[e_n = \frac{NPP}{APAR} \quad (11) \]

Ra = autotrophic respiration;

\[Ra = \left[\frac{0.4}{0.75} \right] \times \left[\frac{10^3}{10^3 W + 50} \right] \quad (12) \]

\(W \) = standing aboveground biomass;

\[W = 7166.1 \left(\rho^{2.6} \right) \quad (13) \]

\(r \) = minimized visible reflectance (ch1) on an annual basis, cloud-screened and corrected for sun angle
9.2 Data Processing Sequence

9.2.1 Processing Steps

Each individual AVHRR image is input to the model, and the various component models derive intermediate products that are then interpolated to a daily basis and integrated annually. The full processing sequence is complex because of the availability of individual AVHRR acquisitions, the number of individual component algorithms, and the exchange of variables between the different model time-steps. A sense of the processing steps can be best acquired in Prince and Goward (1995), Goetz et al. (1998), and the flowchart below.

BORIS staff copied the ASCII and compressed the binary files for release on CD-ROM.

![Flowchart of processing steps](image)

9.2.2 Processing Changes

None given.

9.3 Calculations

9.3.1 Special Corrections/Adjustments

None.

9.3.2 Calculated Variables

See Table 2.

9.4 Graphs and Plots

For BOREAS-specific results see Goetz and Prince (1998).
10. Errors

10.1 Sources of Error
There are several potential sources of error that can affect the model results. These include errors in the data that drive the model (e.g., calibration and correction of the AVHRR reflectances and temperatures, the GOES PAR maps and their time-integration), errors in the recovery of surface variables within model component algorithms (e.g., Ts, Ta, U, VPD, FPAR, APAR, W, en, etc.), and multiplicative or canceling errors in variables derived from other recovered variables and parameters (e.g., APAR, Ra, GPP, NPP, etc.).

10.2 Quality Assessment

10.2.1 Model Validation by Source
Numerous journal articles describe efforts to test, compare, and validate various component model results. The validity of physical environmental components of the model (i.e., Ts, Ta, U, VPD, CSI) have been assessed with different field experiment data (SNF, FIFE, HAPEx-Sahel, OTTER, GEWEX, BOREAS) as listed in the following table (see acronym list, Section 19).

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Variables</th>
<th>Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czajkowski et al. (1997a)</td>
<td>Ta</td>
<td>BOREAS</td>
</tr>
<tr>
<td>Goetz (1997)</td>
<td>CSI</td>
<td>FIFE</td>
</tr>
<tr>
<td>Goetz et al. (1998)</td>
<td>CSI</td>
<td>BOREAS</td>
</tr>
<tr>
<td>Goward et al. (1994)</td>
<td>Ta, U, VPD, CSI</td>
<td>OTTER</td>
</tr>
<tr>
<td>Goward and Dye (1997)</td>
<td>Ta, U, VPD, CSI</td>
<td>Global</td>
</tr>
<tr>
<td>Prihodko and Goward (1997)</td>
<td>Ta</td>
<td>FIFE</td>
</tr>
<tr>
<td>Prince and Goward (1995)</td>
<td>Ta, U, VPD, CSI</td>
<td>Global</td>
</tr>
<tr>
<td>Prince et al. (1998)</td>
<td>Ts, Ta, U, VPD</td>
<td>BOREAS, HAPEx, GEWEX, BOREAS</td>
</tr>
</tbody>
</table>

The biological components of the model have been assessed in the following journal publications:

Validation of biological components of Boreal-PEM.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Variables</th>
<th>Field Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goetz and Prince (1996, 1998)</td>
<td>(e_n, e_g, e_{g*}, NPP, GPP, Ra, APAR)</td>
<td>SNF</td>
</tr>
<tr>
<td>Goetz et al. (1998)</td>
<td>(e_n, NPP, GPP, Ra)</td>
<td>BOREAS</td>
</tr>
<tr>
<td>Goward et al. (1994)</td>
<td>FPAR, APAR</td>
<td>OTTER</td>
</tr>
<tr>
<td>Hanan et al. (1995, 1997)</td>
<td>(e_n, g_s, NPP, Ra, FPAR, APAR)</td>
<td>HAPEX-Sahel</td>
</tr>
<tr>
<td>Prince and Goward (1995)</td>
<td>(e_n, e_g, NPP, GPP, Ra, FPAR, APAR)</td>
<td>Global</td>
</tr>
<tr>
<td>Prince et al. (1995)</td>
<td>(e_n, e_g, NPP, Ra, APAR)</td>
<td>SNF, Global</td>
</tr>
</tbody>
</table>

Numerous other articles have examined more general aspects of model components (particularly with respect to Ts and U). A brief summary of results from the previous tables is provided below in Sections 10.2.2-10.2.4.

10.2.2 Confidence Level/Accuracy Judgment
Confidence in the results is very high in terms of the spatial patterns and magnitudes within the images and moderate to high in terms of the absolute values of variables recovered (see Sections 10.2.3 and 10.2.4). Comparisons showed a close correspondence between measured and inferred soil moisture at the BOREAS sites. There was also good agreement between inferred and site measurements of biomass and NPP, although the biomass values were underestimated compared to those derived with an independent technique (i.e., Hall et al., 1995).
10.2.3 Measurement Error for Variables

In quantitative terms, the results of model component validation work showed that Ts could be retrieved with root mean square (RMS) errors of 3.5 °C for a range of 48 °C; Ta with 3.9 °C over a range of 36 °C; U with 0.6 cm over a range of 3.6 cm; and VPD with 10.9 mb over a range of 58 mb (Prince et al., 1998). There was some evidence of compounding errors in VPD because of the integration of multiple retrieved variables (Ts, Ta, U). FPAR was recovered with an RMS error of 2.4% over a wide range of sites in Oregon (Goward et al., 1994). There was some evidence of a lag between the CSI and soil moisture at depth at sites in Oregon. The CSI was found to predict surface soil moisture at a grassland site in central Kansas with an RMS error of 3.2% (Goetz, 1997).

10.2.4 Additional Quality Assessments

Although the results sometimes had low absolute accuracies, the field data themselves are not without error: although the inferences were usually for a >1 km² area made instantaneously, they were compared with point field values generally not measured at exactly the same times in the day or covering the same spatial area. Maps of retrieved variables had good relative accuracy and possibly better absolute accuracy than the comparisons with point measurements suggest.

10.2.5 Data Verification by Data Center

Data were examined for general consistency and clarity.

11. Notes

11.1 Limitations of the Data

The model is probably limited in terms of Ra recovery; hence NPP, because of the potential insensitivity of Ra to biomass in boreal forest stands (Goetz and Prince, 1998).

11.2 Known Problems with the Data

None.

11.3 Usage Guidance

Before uncompressing the Gzip files on CD-ROM, be sure that you have enough disk space to hold the uncompressed data files. Then use the appropriate decompression program provided on the CD-ROM for your specific system.

11.4 Other Relevant Information

Contact Dr. Scott J. Goetz for a platform-independent version of the model that is available; however, the model is highly system-tailored and requires 50 Gigabytes of space for a single run. If someone really wants it, Dr. Goetz could discuss with them some collaborative effort to get it functioning in another lab.

12. Application of the Data Set

The model may be operated with any remotely sensed observations that provide a measure of vegetation amount (e.g., spectral vegetation indices) and thermal emission in more than one channel (in order to get split-window surface radiometric temperature). The results are applicable to many studies, from characterizing carbon flux and storage over large areas to monitoring changes in forest productivity, stress, and management.
13. Future Modifications and Plans

A heterotrophic respiration (Rh) component is being added to the model in order to simulate, when combined with NPP, net ecosystem productivity (NEP). Simulated NEP is more directly comparable with eddy correlation (e.g., tower) carbon flux measurements than is NPP because of the lack of separability between the Ra and Rh components of measured soil CO$_2$ efflux. Moreover, NEP is important to characterize in order to quantify the direction of vegetation - atmosphere fluxes and to address carbon budgets at the local to global scale.

14. Software

14.1 Software Description

Version 1 of the model was developed and operated under the PCI image processing package using the Engineering Analysis and Scientific Interface (EASI) procedure language. The model has since been exported, primarily for speed of processing and modularity, to the UNIX environment. Version 2 is written in the C programming language. Version 2 is operable and changes to the model are reported in the upcoming publication Goetz et al. (1999a). BOREAS results with version 2 of the model are reported in Goetz et al. (1999b).

Gzip (GNU zip) uses the Lempel-Ziv algorithm (Welch, 1994) used in the zip and PKZIP commands.

14.2 Software Access

Contact Dr. Scott J. Goetz for a platform-independent version of the model that is available, however the model is highly system-tailored and requires 50 Gigabytes of space for a single run. If someone really wants it, Dr. Goetz could discuss with them some collaborative effort to get it functioning in another lab.

Gzip is available from many Web sites across the Internet (for example, ftp site prep.ai.mit.edu/pub-gnu/gzip-*.*) for a variety of operating systems in both executable and source code form. Versions of the decompression software for various systems are included on the CD-ROMs.

15. Data Access

The production efficiency model images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov
15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics
http://www-eosdis.ornl.gov/

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These images are available on the BOREAS CD-ROM series.
Output image products listed in Section 7.4, Table 2, and described herein, that are not included on the BOREAS CD-ROM might be available on request.
A description of the model, summary of research papers, and results of model application at the global scale are available at the following URL: http://www.geog.umd.edu/glopem/.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms

CSI
Gs
e
Ra
Rh
Ta
Ts
U
W

- Cumulative surface wetness index
- Stomatal conductance
- Carbon yield of APAR
- Autotrophic respiration
- Heterotrophic respiration
- Ambient air temperature
- Surface radiometric temperature
- Atmospheric precipitable water vapor amount
- Standing above-ground biomass

19. List of Acronyms

APAR
ASCII
AVHRR
Boreal-PEM
BOREAS
BORIS
CASA
CCRS
CD-ROM
DAAC
EASI
EOS
EOSDIS
FIFE
FPAR
GEOCOMP
GEWEX
GIS
GLO-PEM
GOES
GPP
GSFC
HAPEX-Sahel
HTML
IFC
LAC
NAD83
NASA
NDVI

- Absorbed Photosynthetically Active Radiation
- American Standard Code for Information Interchange
- Advanced Very High Resolution Radiometer
- Boreal Forest Production Efficiency Model
- BOREal Ecosystem-Atmosphere Study
- BOREAS Information System
- Carnegie Ames Stanford Approach
- Canada Centre Remote Sensing
- Compact Disk-Read-Only memory
- Distributed Active Archive Center
- Engineering Analysis and Scientific Interface
- Earth Observing System
- EOS Data and Information System
- First International Satellite Land Surface Climatology Field Experiment
- Fraction of incident PAR intercepted or absorbed
- Geocoding and Compositioning System
- Global Water Energy and Water Cycle Experiment
- Geographic Information System
- Global Production Efficiency Model
- Geostationary Operational Environmental Satellite
- Gross Primary Production
- Goddard Space Flight Center (NASA)
- Hydrology Atmosphere Pilot Experiment in the Sahel
- HyperText Markup Language
- Intensive Field Campaign
- Local Area Coverage (of AVHRR)
- North American Datum of 1983
- National Aeronautics and Space Administration
- Normalized Difference Vegetation Index
20. Document Information

20.1 Document Revision Date
Written: 25-Jun-1997
Last Updated: 24-Sep-1999

20.2 Document Review Date(s)
BORIS Review: 04-May-1999

20.3 Document ID

20.4 Citation
When using these data, please include the following reference:

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Title and Subtitle
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

BOREAS TE-17 Production Efficiency Model Images

Author(s)
Scott J. Goetz, Samuel N. Goward, Stephen D. Prince, Kevin Czajkowski, and Ralph O. Dubayah
Forrest G. Hall and Andrea Papagno, Editors

Performing Organization Name(s) and Address(es)
Goddard Space Flight Center
Greenbelt, Maryland 20771

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

SUPPLEMENTARY NOTES
S. Goetz, S.N. Goward, S.D. Prince, K. Czajkowski, and R.O. Dubayah: University of Maryland, College Park; A. Papagno: Raytheon ITSS, NASA Goddard Space Flight Center, Greenbelt, Maryland

ABSTRACT (Maximum 200 words)
A BOREAS version of the Global Production Efficiency Model (http://www.inform.umd.edu/glopem/ [Internet Link]) was developed by TE-17 to generate maps of gross and net primary production, autotrophic respiration, and light use efficiency for the BOREAS region. This document provides basic information on the model and how the maps were generated. The data generated by the model are stored in binary image-format files.