Volume 127

BOREAS TE-1 CO$_2$ and CH$_4$ Flux Data
over the SSA-OBS Site

D. Anderson and A. Papagno

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2000
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and Jeffrey A. Newcomer, Editors

Volume 127

BOREAS TE-1 CO$_2$ and CH$_4$ Flux Data over the SSA-OBS Site

Darwin Anderson, University of Saskatchewan, Saskatoon, SK, Canada
Andrea Papagno, Raytheon ITSS, NASA Goddard Space Flight Center, Greenbelt, Maryland

October 2000
BOREAS TE-1 CO₂ and CH₄ Flux Data over the SSA-OBS Site

Darwin Anderson, Andrea Papagno

Summary

The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification
BOREAS TE-01 CO₂ and CH₄ Flux Data over the SSA-OBS Site

1.2 Data Set Introduction
Particular emphasis in this study was on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The transect in Prince Albert National Park (PANP) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane...
fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes.

1.3 Objective/Purpose
The objective of the research was to characterize the methane and carbon dioxide soil flux at the BOREal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) Old Black Spruce (OBS).

1.4 Summary of Parameters
The main parameters are daily and nightly CH$_4$ and CO$_2$ fluxes.

1.5 Discussion
None given.

1.6 Related Data Sets
BOREAS TGB-01 CH4 Tower flux data over NSA
BOREAS TGB-01 CO2 and CH4 Chamber Flux data over the NSA
BOREAS TGB-01/TGB-03 NEE Data over the NSA Fen
BOREAS TGB-03 CO2 and CH4 Chamber Flux data over the NSA
BOREAS TGB-05 CO, CO2, and CH4 Chamber Flux data over the NSA

2. Investigator(s)

2.1 Investigator(s) Name and Title
Dr. Darwin Anderson
Research Professor
University of Saskatchewan

2.2 Title of Investigation
Stores and Dynamics of Organic Matter in Boreal Ecosystems

2.3 Contact Information

Contact 1:
Dr. Darwin Anderson
Department of Soil Science
University of Saskatchewan
Saskatoon, Saskatchewan
S7N0W0
(306) 966-6827
(306) 966-6881 (fax)

Contact 2:
Andrea Papagno
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-3134
(301) 286-0239 (fax)
Andrea.Papagno@gsfc.nasa.gov
3. Theory of Measurements

None given.

4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment
CH₄ and CO₂ fluxes were measured during all ambient environmental conditions at the sites.

4.1.2 Source/Platform
Ground.

4.1.3 Source/Platform Mission Objectives
The mission objective was to determine the flux of CH₄ and CO₂ at the SSA-OBS site.

4.1.4 Key Variables
The key variables measured during the fluxes were CH₄ and CO₂ flux.

4.1.5 Principles of Operation
None given.

4.1.6 Sensor/Instrument Measurement Geometry
Not applicable.

4.1.7 Manufacturer of Sensor/Instrument
None given.

4.2 Calibration
None given.

4.2.1 Specifications

4.2.1.1 Tolerance
None given.

4.2.2 Frequency of Calibration
None given.

4.2.3 Other Calibration Information
None given.

5. Data Acquisition Methods

None given.
6. Observations

6.1 Data Notes
None given.

6.2 Field Notes
None given.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
The North American Datum of 1983 (NAD83) coordinates of the SSA-OBS flux tower (site id G814T), close to where the measurements were taken, are 53.98717° N Lat, 105.11779° W Long, Universal Transverse Mercator (UTM) Zone 13, N: 5,982,100.5, E: 492,276.5.

7.1.2 Spatial Coverage Map
Not available.

7.1.3 Spatial Resolution
These are point source measurements along a transect near the given location.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.

7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The data were collected from 09-Jun to 04-Sep-1994.

7.2.2 Temporal Coverage Map
Not available.

7.2.3 Temporal Resolution
Measurements were collected on a daily basis. Mean flux measurements were calculated every 2 to 10 days from 09-Jun to 04-Sep-1994. The mean and standard deviation of the nighttime methane measurements were taken during the night of 14-Aug to 3 a.m. 15-Aug-1994.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
</tr>
<tr>
<td>SUB_SITE</td>
</tr>
<tr>
<td>DATE_OBS</td>
</tr>
<tr>
<td>MEAN_CH4_FLUX</td>
</tr>
</tbody>
</table>
7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>The date on which the data were collected.</td>
</tr>
<tr>
<td>MEAN_CH4_FLUX</td>
<td>Mean of all daily methane flux measurements.</td>
</tr>
<tr>
<td>STD_ERR_CH4</td>
<td>Standard error of means.</td>
</tr>
<tr>
<td>CH4_FLUX_NIGHT</td>
<td>Measurements done during the night of Aug 14 to 3 AM Aug 15.</td>
</tr>
<tr>
<td>STD_ERR_CH4_NIGHT</td>
<td>Standard error for measurements done during the night of Aug 14 to 3 AM Aug 15.</td>
</tr>
<tr>
<td>MEAN_CO2_FLUX</td>
<td>Mean of the daily CO2 flux measurements.</td>
</tr>
<tr>
<td>STD_ERR_CO2</td>
<td>Standard error of means.</td>
</tr>
<tr>
<td>CO2_FLUX_NIGHT</td>
<td>Measurements done during the night of Aug 14 to 3 AM Aug 15.</td>
</tr>
<tr>
<td>STD_ERR_CO2_NIGHT</td>
<td>Standard error for measurements done during the night of Aug 14 to 3 AM Aug 15.</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-??? (CPI but questionable).</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>The most recent date when the information in the referenced data base table record was revised.</td>
</tr>
</tbody>
</table>
7.3.3 Unit of Measurement

The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>MEAN_CH4_FLUX</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>STD_ERR_CH4</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CH4_FLUX_NIGHT</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>STD_ERR_CH4_NIGHT</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>MEAN_CO2_FLUX</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>STD_ERR_CO2</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CO2_FLUX_NIGHT</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>STD_ERR_CO2_NIGHT</td>
<td>[micromoles][meter^-2][second^-1]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Human Observer]</td>
</tr>
<tr>
<td>MEAN_CH4_FLUX</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>STD_ERR_CH4</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>CH4_FLUX_NIGHT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>STD_ERR_CH4_NIGHT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>MEAN_CO2_FLUX</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>STD_ERR_CO2</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>CO2_FLUX_NIGHT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>STD_ERR_CO2_NIGHT</td>
<td>[Laboratory Equipment]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[BORIS Designation]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[BORIS Designation]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Missing Not</th>
<th>Unrel Not</th>
<th>Below Not</th>
<th>Data Value</th>
<th>Data Value</th>
<th>Limit</th>
<th>Clcltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>SSA-OBS-FLXTR</td>
<td>SSA-OBS-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>9TE01-FLX01</td>
<td>9TE01-FLX01</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>09-JUN-94</td>
<td>04-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_CH4_FLUX</td>
<td>-.000081</td>
<td>.0974537</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>STD_ERR_CH4</td>
<td>.000001157</td>
<td>.01157407</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CH4_FLUX_NIGHT</td>
<td>.01094907</td>
<td>.05153935</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>STD_ERR_CH4_NIGHT</td>
<td>.00322917</td>
<td>.00322917</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MEAN_CO2_FLUX</td>
<td>-1.5966782</td>
<td>2.0808912</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>STD_ERR_CO2</td>
<td>.02233</td>
<td>1.20968</td>
<td>-999</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
7.4 Sample Data Record

The following are wrapped versions of data record from a sample data file on the CD-ROM.

```
'SSA-OBX-FLXTR', '9TE01-FLX01', 09-JUN-94, -0.0000081, -0.00001157, -0.01094907, -0.00322917, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, 'CPI', 07-NOV-96

'SSA-OBX-FLXTR', '9TE01-FLX01', 09-JUN-94, -0.0000081, -0.00001157, -0.01094907, -0.00322917, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, -999.0, 'CPI', 07-NOV-96
```

8. Data Organization

8.1 Data Granularity

The smallest unit of data tracked by the BOREAS Information System (BORIS) was the data collected at a given site on a given date.

8.2 Data Format(s)

The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.
Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms
None given.

9.2 Data Processing Sequence

9.2.1 Processing Steps
None given.

9.2.2 Processing Changes
None given.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None given.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
None.

10. Errors

10.1 Sources of Error
None given.

10.2 Quality Assessment

10.2.1 Data Validation by Source
None given.

10.2.2 Confidence Level/Accuracy Judgment
None given.

10.2.3 Measurement Error for Parameters
None given.

10.2.4 Additional Quality Assessments
None given.
10.2.5 Data Verification by Data Center
Data were examined for general consistency and clarity.

11. Notes

11.1 Limitations of the Data
None given.

11.2 Known Problems with the Data
None given.

11.3 Usage Guidance
None given.

11.4 Other Relevant Information
None given.

12. Application of the Data Set
None given.

13. Future Modifications and Plans
This data set is in its final format.

14. Software

14.1 Software Description
None given.

14.2 Software Access
None given.

15. Data Access
The CO₂ and CH₄ flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information
For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

Page 9
15.2 Data Center Identification
Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

15.3 Procedures for Obtaining Data
Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.ornl.gov/] and the anonymous FTP site [ftp://www-eosdis.ornl.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.

15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

AES - Atmospheric Environment Services
ASCII - American Standard Code for Information Interchange
BOREAS - BOREal Ecosystem-Atmosphere Study
BORIS - BOREAS Information System
BP - Beaver Pond
CD-ROM - Compact Disk-Read-Only Memory
CMDL - Climate Monitoring and Diagnostics Laboratory
DAAC - Distributed Active Archive Center
ECD - Electron Capture Detector
EOS - Earth Observing System
EOSDIS - EOS Data and Information System
FID - Flame Ionization Detector
GC - Gas Chromatograph
GIS - Geographic Information System
GSFC - Goddard Space Flight Center
HTML - Hypertext Markup Language
NAD83 - North American Datum of 1983
NASA - National Aeronautics and Space Administration
NSA - Northern Study Area
OBS - Old Black Spruce
ORNL - Oak Ridge National Laboratory
PANP - Prince Albert National Park
SSA - Southern Study Area
TCD - Thermal Conductivity Detector
TE - Terrestrial Ecology
TGB - Trace Gas Biogeochemistry
URL - Uniform Resource Locator
UTM - Universal Transverse Mercator
20. Document Information

20.1 Document Revision Date
Written: 07-Aug-1998
Last Updated: 18-Aug-1999

20.2 Document Review Date(s)
BORIS Review: 01-Dec-1998
Science Review:

20.3 Document ID

20.4 Citation
When using these data, please contact the individuals listed in Section 2.3 as well as citing relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Technical Report Series on the Boreal Ecosystem-Atmosphere Study (BOREAS)

BOREAS TE-1 CO₂ and CH₄ Flux Data over the SSA-OBS Site

Darwin Anderson and Andrea Papagno
Forrest G. Hall and Jeffrey A. Newcomer, Editors

Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics and Space Administration
Washington, DC 20546-0001

D. Anderson: University of Saskatchewan, Saskatoon, SK, Canada; A. Papagno and J. A. Newcomer: Raytheon ITSS, NASA Goddard Space Flight Center, Greenbelt, Maryland

Unclassified–Unlimited
Subject Category: 43
Report available from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files.